summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-patterns.c
blob: 9c494fd61f624c6e4df3ea0fc1d41530b4a60b60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
/* Analysis Utilities for Loop Vectorization.
   Copyright (C) 2006-2015 Free Software Foundation, Inc.
   Contributed by Dorit Nuzman <dorit@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs-tree.h"
#include "insn-config.h"
#include "recog.h"		/* FIXME: for insn_data */
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "internal-fn.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "cfgloop.h"
#include "flags.h"
#include "params.h"
#include "tree-data-ref.h"
#include "tree-vectorizer.h"
#include "dumpfile.h"
#include "builtins.h"

/* Pattern recognition functions  */
static gimple *vect_recog_widen_sum_pattern (vec<gimple *> *, tree *,
					    tree *);
static gimple *vect_recog_widen_mult_pattern (vec<gimple *> *, tree *,
					     tree *);
static gimple *vect_recog_dot_prod_pattern (vec<gimple *> *, tree *,
					   tree *);
static gimple *vect_recog_sad_pattern (vec<gimple *> *, tree *,
				      tree *);
static gimple *vect_recog_pow_pattern (vec<gimple *> *, tree *, tree *);
static gimple *vect_recog_over_widening_pattern (vec<gimple *> *, tree *,
                                                 tree *);
static gimple *vect_recog_widen_shift_pattern (vec<gimple *> *,
	                                tree *, tree *);
static gimple *vect_recog_rotate_pattern (vec<gimple *> *, tree *, tree *);
static gimple *vect_recog_vector_vector_shift_pattern (vec<gimple *> *,
						      tree *, tree *);
static gimple *vect_recog_divmod_pattern (vec<gimple *> *,
					 tree *, tree *);

static gimple *vect_recog_mult_pattern (vec<gimple *> *,
				       tree *, tree *);

static gimple *vect_recog_mixed_size_cond_pattern (vec<gimple *> *,
						  tree *, tree *);
static gimple *vect_recog_bool_pattern (vec<gimple *> *, tree *, tree *);
static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
	vect_recog_widen_mult_pattern,
	vect_recog_widen_sum_pattern,
	vect_recog_dot_prod_pattern,
        vect_recog_sad_pattern,
	vect_recog_pow_pattern,
	vect_recog_widen_shift_pattern,
	vect_recog_over_widening_pattern,
	vect_recog_rotate_pattern,
	vect_recog_vector_vector_shift_pattern,
	vect_recog_divmod_pattern,
	vect_recog_mult_pattern,
	vect_recog_mixed_size_cond_pattern,
	vect_recog_bool_pattern};

static inline void
append_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
{
  gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
				      stmt);
}

static inline void
new_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
{
  STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
  append_pattern_def_seq (stmt_info, stmt);
}

/* Check whether STMT2 is in the same loop or basic block as STMT1.
   Which of the two applies depends on whether we're currently doing
   loop-based or basic-block-based vectorization, as determined by
   the vinfo_for_stmt for STMT1 (which must be defined).

   If this returns true, vinfo_for_stmt for STMT2 is guaranteed
   to be defined as well.  */

static bool
vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);

  if (!gimple_bb (stmt2))
    return false;

  if (loop_vinfo)
    {
      struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
      if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt2)))
	return false;
    }
  else
    {
      if (gimple_bb (stmt2) != BB_VINFO_BB (bb_vinfo)
	  || gimple_code (stmt2) == GIMPLE_PHI)
	return false;
    }

  gcc_assert (vinfo_for_stmt (stmt2));
  return true;
}

/* If the LHS of DEF_STMT has a single use, and that statement is
   in the same loop or basic block, return it.  */

static gimple *
vect_single_imm_use (gimple *def_stmt)
{
  tree lhs = gimple_assign_lhs (def_stmt);
  use_operand_p use_p;
  gimple *use_stmt;

  if (!single_imm_use (lhs, &use_p, &use_stmt))
    return NULL;

  if (!vect_same_loop_or_bb_p (def_stmt, use_stmt))
    return NULL;

  return use_stmt;
}

/* Check whether NAME, an ssa-name used in USE_STMT,
   is a result of a type promotion, such that:
     DEF_STMT: NAME = NOP (name0)
   If CHECK_SIGN is TRUE, check that either both types are signed or both are
   unsigned.  */

static bool
type_conversion_p (tree name, gimple *use_stmt, bool check_sign,
		   tree *orig_type, gimple **def_stmt, bool *promotion)
{
  gimple *dummy_gimple;
  stmt_vec_info stmt_vinfo;
  tree type = TREE_TYPE (name);
  tree oprnd0;
  enum vect_def_type dt;

  stmt_vinfo = vinfo_for_stmt (use_stmt);
  if (!vect_is_simple_use (name, stmt_vinfo->vinfo, def_stmt, &dt))
    return false;

  if (dt != vect_internal_def
      && dt != vect_external_def && dt != vect_constant_def)
    return false;

  if (!*def_stmt)
    return false;

  if (!is_gimple_assign (*def_stmt))
    return false;

  if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
    return false;

  oprnd0 = gimple_assign_rhs1 (*def_stmt);

  *orig_type = TREE_TYPE (oprnd0);
  if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
      || ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
    return false;

  if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
    *promotion = true;
  else
    *promotion = false;

  if (!vect_is_simple_use (oprnd0, stmt_vinfo->vinfo, &dummy_gimple, &dt))
    return false;

  return true;
}

/* Helper to return a new temporary for pattern of TYPE for STMT.  If STMT
   is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */

static tree
vect_recog_temp_ssa_var (tree type, gimple *stmt)
{
  return make_temp_ssa_name (type, stmt, "patt");
}

/* Function vect_recog_dot_prod_pattern

   Try to find the following pattern:

     type x_t, y_t;
     TYPE1 prod;
     TYPE2 sum = init;
   loop:
     sum_0 = phi <init, sum_1>
     S1  x_t = ...
     S2  y_t = ...
     S3  x_T = (TYPE1) x_t;
     S4  y_T = (TYPE1) y_t;
     S5  prod = x_T * y_T;
     [S6  prod = (TYPE2) prod;  #optional]
     S7  sum_1 = prod + sum_0;

   where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
   same size of 'TYPE1' or bigger. This is a special case of a reduction
   computation.

   Input:

   * STMTS: Contains a stmt from which the pattern search begins.  In the
   example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
   will be detected.

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output  of this pattern.

   * Return value: A new stmt that will be used to replace the sequence of
   stmts that constitute the pattern. In this case it will be:
        WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>

   Note: The dot-prod idiom is a widening reduction pattern that is
         vectorized without preserving all the intermediate results. It
         produces only N/2 (widened) results (by summing up pairs of
         intermediate results) rather than all N results.  Therefore, we
         cannot allow this pattern when we want to get all the results and in
         the correct order (as is the case when this computation is in an
         inner-loop nested in an outer-loop that us being vectorized).  */

static gimple *
vect_recog_dot_prod_pattern (vec<gimple *> *stmts, tree *type_in,
			     tree *type_out)
{
  gimple *stmt, *last_stmt = (*stmts)[0];
  tree oprnd0, oprnd1;
  tree oprnd00, oprnd01;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  tree type, half_type;
  gimple *pattern_stmt;
  tree prod_type;
  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop;
  tree var;
  bool promotion;

  if (!loop_info)
    return NULL;

  loop = LOOP_VINFO_LOOP (loop_info);

  /* We don't allow changing the order of the computation in the inner-loop
     when doing outer-loop vectorization.  */
  if (loop && nested_in_vect_loop_p (loop, last_stmt))
    return NULL;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  type = gimple_expr_type (last_stmt);

  /* Look for the following pattern
          DX = (TYPE1) X;
          DY = (TYPE1) Y;
          DPROD = DX * DY;
          DDPROD = (TYPE2) DPROD;
          sum_1 = DDPROD + sum_0;
     In which
     - DX is double the size of X
     - DY is double the size of Y
     - DX, DY, DPROD all have the same type
     - sum is the same size of DPROD or bigger
     - sum has been recognized as a reduction variable.

     This is equivalent to:
       DPROD = X w* Y;          #widen mult
       sum_1 = DPROD w+ sum_0;  #widen summation
     or
       DPROD = X w* Y;          #widen mult
       sum_1 = DPROD + sum_0;   #summation
   */

  /* Starting from LAST_STMT, follow the defs of its uses in search
     of the above pattern.  */

  if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
    return NULL;

  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
    {
      /* Has been detected as widening-summation?  */

      stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
      type = gimple_expr_type (stmt);
      if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
        return NULL;
      oprnd0 = gimple_assign_rhs1 (stmt);
      oprnd1 = gimple_assign_rhs2 (stmt);
      half_type = TREE_TYPE (oprnd0);
    }
  else
    {
      gimple *def_stmt;

      oprnd0 = gimple_assign_rhs1 (last_stmt);
      oprnd1 = gimple_assign_rhs2 (last_stmt);
      if (!types_compatible_p (TREE_TYPE (oprnd0), type)
	  || !types_compatible_p (TREE_TYPE (oprnd1), type))
        return NULL;
      stmt = last_stmt;

      if (type_conversion_p (oprnd0, stmt, true, &half_type, &def_stmt,
                               &promotion)
         && promotion)
        {
          stmt = def_stmt;
          oprnd0 = gimple_assign_rhs1 (stmt);
        }
      else
        half_type = type;
    }

  /* So far so good.  Since last_stmt was detected as a (summation) reduction,
     we know that oprnd1 is the reduction variable (defined by a loop-header
     phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
     Left to check that oprnd0 is defined by a (widen_)mult_expr  */
  if (TREE_CODE (oprnd0) != SSA_NAME)
    return NULL;

  prod_type = half_type;
  stmt = SSA_NAME_DEF_STMT (oprnd0);

  /* It could not be the dot_prod pattern if the stmt is outside the loop.  */
  if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
    return NULL;

  /* FORNOW.  Can continue analyzing the def-use chain when this stmt in a phi
     inside the loop (in case we are analyzing an outer-loop).  */
  if (!is_gimple_assign (stmt))
    return NULL;
  stmt_vinfo = vinfo_for_stmt (stmt);
  gcc_assert (stmt_vinfo);
  if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
    return NULL;
  if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
    return NULL;
  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
    {
      /* Has been detected as a widening multiplication?  */

      stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
      if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
        return NULL;
      stmt_vinfo = vinfo_for_stmt (stmt);
      gcc_assert (stmt_vinfo);
      gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
      oprnd00 = gimple_assign_rhs1 (stmt);
      oprnd01 = gimple_assign_rhs2 (stmt);
      STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (last_stmt))
	  = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
    }
  else
    {
      tree half_type0, half_type1;
      gimple *def_stmt;
      tree oprnd0, oprnd1;

      oprnd0 = gimple_assign_rhs1 (stmt);
      oprnd1 = gimple_assign_rhs2 (stmt);
      if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
          || !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
        return NULL;
      if (!type_conversion_p (oprnd0, stmt, true, &half_type0, &def_stmt,
                                &promotion)
          || !promotion)
        return NULL;
      oprnd00 = gimple_assign_rhs1 (def_stmt);
      if (!type_conversion_p (oprnd1, stmt, true, &half_type1, &def_stmt,
                                &promotion)
          || !promotion)
        return NULL;
      oprnd01 = gimple_assign_rhs1 (def_stmt);
      if (!types_compatible_p (half_type0, half_type1))
        return NULL;
      if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
	return NULL;
    }

  half_type = TREE_TYPE (oprnd00);
  *type_in = half_type;
  *type_out = type;

  /* Pattern detected. Create a stmt to be used to replace the pattern: */
  var = vect_recog_temp_ssa_var (type, NULL);
  pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
				      oprnd00, oprnd01, oprnd1);

  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "vect_recog_dot_prod_pattern: detected: ");
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
      dump_printf (MSG_NOTE, "\n");
    }

  return pattern_stmt;
}


/* Function vect_recog_sad_pattern

   Try to find the following Sum of Absolute Difference (SAD) pattern:

     type x_t, y_t;
     signed TYPE1 diff, abs_diff;
     TYPE2 sum = init;
   loop:
     sum_0 = phi <init, sum_1>
     S1  x_t = ...
     S2  y_t = ...
     S3  x_T = (TYPE1) x_t;
     S4  y_T = (TYPE1) y_t;
     S5  diff = x_T - y_T;
     S6  abs_diff = ABS_EXPR <diff>;
     [S7  abs_diff = (TYPE2) abs_diff;  #optional]
     S8  sum_1 = abs_diff + sum_0;

   where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
   same size of 'TYPE1' or bigger. This is a special case of a reduction
   computation.

   Input:

   * STMTS: Contains a stmt from which the pattern search begins.  In the
   example, when this function is called with S8, the pattern
   {S3,S4,S5,S6,S7,S8} will be detected.

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output of this pattern.

   * Return value: A new stmt that will be used to replace the sequence of
   stmts that constitute the pattern. In this case it will be:
        SAD_EXPR <x_t, y_t, sum_0>
  */

static gimple *
vect_recog_sad_pattern (vec<gimple *> *stmts, tree *type_in,
			     tree *type_out)
{
  gimple *last_stmt = (*stmts)[0];
  tree sad_oprnd0, sad_oprnd1;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  tree half_type;
  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop;
  bool promotion;

  if (!loop_info)
    return NULL;

  loop = LOOP_VINFO_LOOP (loop_info);

  /* We don't allow changing the order of the computation in the inner-loop
     when doing outer-loop vectorization.  */
  if (loop && nested_in_vect_loop_p (loop, last_stmt))
    return NULL;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  tree sum_type = gimple_expr_type (last_stmt);

  /* Look for the following pattern
          DX = (TYPE1) X;
          DY = (TYPE1) Y;
          DDIFF = DX - DY;
          DAD = ABS_EXPR <DDIFF>;
          DDPROD = (TYPE2) DPROD;
          sum_1 = DAD + sum_0;
     In which
     - DX is at least double the size of X
     - DY is at least double the size of Y
     - DX, DY, DDIFF, DAD all have the same type
     - sum is the same size of DAD or bigger
     - sum has been recognized as a reduction variable.

     This is equivalent to:
       DDIFF = X w- Y;          #widen sub
       DAD = ABS_EXPR <DDIFF>;
       sum_1 = DAD w+ sum_0;    #widen summation
     or
       DDIFF = X w- Y;          #widen sub
       DAD = ABS_EXPR <DDIFF>;
       sum_1 = DAD + sum_0;     #summation
   */

  /* Starting from LAST_STMT, follow the defs of its uses in search
     of the above pattern.  */

  if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
    return NULL;

  tree plus_oprnd0, plus_oprnd1;

  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
    {
      /* Has been detected as widening-summation?  */

      gimple *stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
      sum_type = gimple_expr_type (stmt);
      if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
        return NULL;
      plus_oprnd0 = gimple_assign_rhs1 (stmt);
      plus_oprnd1 = gimple_assign_rhs2 (stmt);
      half_type = TREE_TYPE (plus_oprnd0);
    }
  else
    {
      gimple *def_stmt;

      plus_oprnd0 = gimple_assign_rhs1 (last_stmt);
      plus_oprnd1 = gimple_assign_rhs2 (last_stmt);
      if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type)
	  || !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type))
        return NULL;

      /* The type conversion could be promotion, demotion,
         or just signed -> unsigned.  */
      if (type_conversion_p (plus_oprnd0, last_stmt, false,
                             &half_type, &def_stmt, &promotion))
        plus_oprnd0 = gimple_assign_rhs1 (def_stmt);
      else
        half_type = sum_type;
    }

  /* So far so good.  Since last_stmt was detected as a (summation) reduction,
     we know that plus_oprnd1 is the reduction variable (defined by a loop-header
     phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
     Then check that plus_oprnd0 is defined by an abs_expr.  */

  if (TREE_CODE (plus_oprnd0) != SSA_NAME)
    return NULL;

  tree abs_type = half_type;
  gimple *abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0);

  /* It could not be the sad pattern if the abs_stmt is outside the loop.  */
  if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt)))
    return NULL;

  /* FORNOW.  Can continue analyzing the def-use chain when this stmt in a phi
     inside the loop (in case we are analyzing an outer-loop).  */
  if (!is_gimple_assign (abs_stmt))
    return NULL;

  stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt);
  gcc_assert (abs_stmt_vinfo);
  if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def)
    return NULL;
  if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR)
    return NULL;

  tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
  if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type))
    return NULL;
  if (TYPE_UNSIGNED (abs_type))
    return NULL;

  /* We then detect if the operand of abs_expr is defined by a minus_expr.  */

  if (TREE_CODE (abs_oprnd) != SSA_NAME)
    return NULL;

  gimple *diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd);

  /* It could not be the sad pattern if the diff_stmt is outside the loop.  */
  if (!gimple_bb (diff_stmt)
      || !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt)))
    return NULL;

  /* FORNOW.  Can continue analyzing the def-use chain when this stmt in a phi
     inside the loop (in case we are analyzing an outer-loop).  */
  if (!is_gimple_assign (diff_stmt))
    return NULL;

  stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt);
  gcc_assert (diff_stmt_vinfo);
  if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def)
    return NULL;
  if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR)
    return NULL;

  tree half_type0, half_type1;
  gimple *def_stmt;

  tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt);
  tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt);

  if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type)
      || !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type))
    return NULL;
  if (!type_conversion_p (minus_oprnd0, diff_stmt, false,
                          &half_type0, &def_stmt, &promotion)
      || !promotion)
    return NULL;
  sad_oprnd0 = gimple_assign_rhs1 (def_stmt);

  if (!type_conversion_p (minus_oprnd1, diff_stmt, false,
                          &half_type1, &def_stmt, &promotion)
      || !promotion)
    return NULL;
  sad_oprnd1 = gimple_assign_rhs1 (def_stmt);

  if (!types_compatible_p (half_type0, half_type1))
    return NULL;
  if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2
      || TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2)
    return NULL;

  *type_in = TREE_TYPE (sad_oprnd0);
  *type_out = sum_type;

  /* Pattern detected. Create a stmt to be used to replace the pattern: */
  tree var = vect_recog_temp_ssa_var (sum_type, NULL);
  gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd0,
					      sad_oprnd1, plus_oprnd1);

  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "vect_recog_sad_pattern: detected: ");
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
      dump_printf (MSG_NOTE, "\n");
    }

  return pattern_stmt;
}


/* Handle widening operation by a constant.  At the moment we support MULT_EXPR
   and LSHIFT_EXPR.

   For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR
   we check that CONST_OPRND is less or equal to the size of HALF_TYPE.

   Otherwise, if the type of the result (TYPE) is at least 4 times bigger than
   HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE)
   that satisfies the above restrictions,  we can perform a widening opeartion
   from the intermediate type to TYPE and replace a_T = (TYPE) a_t;
   with a_it = (interm_type) a_t;  Store such operation in *WSTMT.  */

static bool
vect_handle_widen_op_by_const (gimple *stmt, enum tree_code code,
		               tree const_oprnd, tree *oprnd,
			       gimple **wstmt, tree type,
			       tree *half_type, gimple *def_stmt)
{
  tree new_type, new_oprnd;

  if (code != MULT_EXPR && code != LSHIFT_EXPR)
    return false;

  if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type))
        || (code == LSHIFT_EXPR
            && compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type))
	    	!= 1))
      && TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2))
    {
      /* CONST_OPRND is a constant of HALF_TYPE.  */
      *oprnd = gimple_assign_rhs1 (def_stmt);
      return true;
    }

  if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4))
    return false;

  if (!vect_same_loop_or_bb_p (stmt, def_stmt))
    return false;

  /* TYPE is 4 times bigger than HALF_TYPE, try widening operation for
     a type 2 times bigger than HALF_TYPE.  */
  new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2,
                                             TYPE_UNSIGNED (type));
  if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type))
      || (code == LSHIFT_EXPR
          && compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1))
    return false;

  /* Use NEW_TYPE for widening operation and create a_T = (NEW_TYPE) a_t;  */
  *oprnd = gimple_assign_rhs1 (def_stmt);
  new_oprnd = make_ssa_name (new_type);
  *wstmt = gimple_build_assign (new_oprnd, NOP_EXPR, *oprnd);
  *oprnd = new_oprnd;

  *half_type = new_type;
  return true;
}


/* Function vect_recog_widen_mult_pattern

   Try to find the following pattern:

     type1 a_t;
     type2 b_t;
     TYPE a_T, b_T, prod_T;

     S1  a_t = ;
     S2  b_t = ;
     S3  a_T = (TYPE) a_t;
     S4  b_T = (TYPE) b_t;
     S5  prod_T = a_T * b_T;

   where type 'TYPE' is at least double the size of type 'type1' and 'type2'.

   Also detect unsigned cases:

     unsigned type1 a_t;
     unsigned type2 b_t;
     unsigned TYPE u_prod_T;
     TYPE a_T, b_T, prod_T;

     S1  a_t = ;
     S2  b_t = ;
     S3  a_T = (TYPE) a_t;
     S4  b_T = (TYPE) b_t;
     S5  prod_T = a_T * b_T;
     S6  u_prod_T = (unsigned TYPE) prod_T;

   and multiplication by constants:

     type a_t;
     TYPE a_T, prod_T;

     S1  a_t = ;
     S3  a_T = (TYPE) a_t;
     S5  prod_T = a_T * CONST;

   A special case of multiplication by constants is when 'TYPE' is 4 times
   bigger than 'type', but CONST fits an intermediate type 2 times smaller
   than 'TYPE'.  In that case we create an additional pattern stmt for S3
   to create a variable of the intermediate type, and perform widen-mult
   on the intermediate type as well:

     type a_t;
     interm_type a_it;
     TYPE a_T, prod_T,  prod_T';

     S1  a_t = ;
     S3  a_T = (TYPE) a_t;
           '--> a_it = (interm_type) a_t;
     S5  prod_T = a_T * CONST;
           '--> prod_T' = a_it w* CONST;

   Input/Output:

   * STMTS: Contains a stmt from which the pattern search begins.  In the
   example, when this function is called with S5, the pattern {S3,S4,S5,(S6)}
   is detected.  In case of unsigned widen-mult, the original stmt (S5) is
   replaced with S6 in STMTS.  In case of multiplication by a constant
   of an intermediate type (the last case above), STMTS also contains S3
   (inserted before S5).

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output of this pattern.

   * Return value: A new stmt that will be used to replace the sequence of
   stmts that constitute the pattern.  In this case it will be:
        WIDEN_MULT <a_t, b_t>
   If the result of WIDEN_MULT needs to be converted to a larger type, the
   returned stmt will be this type conversion stmt.
*/

static gimple *
vect_recog_widen_mult_pattern (vec<gimple *> *stmts,
                               tree *type_in, tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  gimple *def_stmt0, *def_stmt1;
  tree oprnd0, oprnd1;
  tree type, half_type0, half_type1;
  gimple *new_stmt = NULL, *pattern_stmt = NULL;
  tree vectype, vecitype;
  tree var;
  enum tree_code dummy_code;
  int dummy_int;
  vec<tree> dummy_vec;
  bool op1_ok;
  bool promotion;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  type = gimple_expr_type (last_stmt);

  /* Starting from LAST_STMT, follow the defs of its uses in search
     of the above pattern.  */

  if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
    return NULL;

  oprnd0 = gimple_assign_rhs1 (last_stmt);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  if (!types_compatible_p (TREE_TYPE (oprnd0), type)
      || !types_compatible_p (TREE_TYPE (oprnd1), type))
    return NULL;

  /* Check argument 0.  */
  if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
                         &promotion)
      || !promotion)
     return NULL;
  /* Check argument 1.  */
  op1_ok = type_conversion_p (oprnd1, last_stmt, false, &half_type1,
                              &def_stmt1, &promotion);

  if (op1_ok && promotion)
    {
      oprnd0 = gimple_assign_rhs1 (def_stmt0);
      oprnd1 = gimple_assign_rhs1 (def_stmt1);
    }	       
  else
    {
      if (TREE_CODE (oprnd1) == INTEGER_CST
          && TREE_CODE (half_type0) == INTEGER_TYPE
          && vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1,
		                            &oprnd0, &new_stmt, type,
					    &half_type0, def_stmt0))
	{
	  half_type1 = half_type0;
	  oprnd1 = fold_convert (half_type1, oprnd1);
	}
      else
        return NULL;
    }

  /* If the two arguments have different sizes, convert the one with
     the smaller type into the larger type.  */
  if (TYPE_PRECISION (half_type0) != TYPE_PRECISION (half_type1))
    {
      /* If we already used up the single-stmt slot give up.  */
      if (new_stmt)
	return NULL;

      tree* oprnd = NULL;
      gimple *def_stmt = NULL;

      if (TYPE_PRECISION (half_type0) < TYPE_PRECISION (half_type1))
	{
	  def_stmt = def_stmt0;
	  half_type0 = half_type1;
	  oprnd = &oprnd0;
	}
      else
	{
	  def_stmt = def_stmt1;
	  half_type1 = half_type0;
	  oprnd = &oprnd1;
	}

        tree old_oprnd = gimple_assign_rhs1 (def_stmt);
	tree new_oprnd = make_ssa_name (half_type0);
	new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, old_oprnd);
        *oprnd = new_oprnd;
    }

  /* Handle unsigned case.  Look for
     S6  u_prod_T = (unsigned TYPE) prod_T;
     Use unsigned TYPE as the type for WIDEN_MULT_EXPR.  */
  if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
    {
      gimple *use_stmt;
      tree use_lhs;
      tree use_type;

      if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1))
        return NULL;

      use_stmt = vect_single_imm_use (last_stmt);
      if (!use_stmt || !is_gimple_assign (use_stmt)
	  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
        return NULL;

      use_lhs = gimple_assign_lhs (use_stmt);
      use_type = TREE_TYPE (use_lhs);
      if (!INTEGRAL_TYPE_P (use_type)
          || (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
          || (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
        return NULL;

      type = use_type;
      last_stmt = use_stmt;
    }

  if (!types_compatible_p (half_type0, half_type1))
    return NULL;

  /* If TYPE is more than twice larger than HALF_TYPE, we use WIDEN_MULT
     to get an intermediate result of type ITYPE.  In this case we need
     to build a statement to convert this intermediate result to type TYPE.  */
  tree itype = type;
  if (TYPE_PRECISION (type) > TYPE_PRECISION (half_type0) * 2)
    itype = build_nonstandard_integer_type
              (GET_MODE_BITSIZE (TYPE_MODE (half_type0)) * 2,
               TYPE_UNSIGNED (type));

  /* Pattern detected.  */
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "vect_recog_widen_mult_pattern: detected:\n");

  /* Check target support  */
  vectype = get_vectype_for_scalar_type (half_type0);
  vecitype = get_vectype_for_scalar_type (itype);
  if (!vectype
      || !vecitype
      || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt,
					  vecitype, vectype,
					  &dummy_code, &dummy_code,
					  &dummy_int, &dummy_vec))
    return NULL;

  *type_in = vectype;
  *type_out = get_vectype_for_scalar_type (type);

  /* Pattern supported. Create a stmt to be used to replace the pattern: */
  var = vect_recog_temp_ssa_var (itype, NULL);
  pattern_stmt = gimple_build_assign (var, WIDEN_MULT_EXPR, oprnd0, oprnd1);

  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;

  /* If the original two operands have different sizes, we may need to convert
     the smaller one into the larget type.  If this is the case, at this point
     the new stmt is already built.  */
  if (new_stmt)
    {
      append_pattern_def_seq (stmt_vinfo, new_stmt);
      stmt_vec_info new_stmt_info
        = new_stmt_vec_info (new_stmt, stmt_vinfo->vinfo);
      set_vinfo_for_stmt (new_stmt, new_stmt_info);
      STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
    }

  /* If ITYPE is not TYPE, we need to build a type convertion stmt to convert
     the result of the widen-mult operation into type TYPE.  */
  if (itype != type)
    {
      append_pattern_def_seq (stmt_vinfo, pattern_stmt);
      stmt_vec_info pattern_stmt_info
        = new_stmt_vec_info (pattern_stmt, stmt_vinfo->vinfo);
      set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
      STMT_VINFO_VECTYPE (pattern_stmt_info) = vecitype;
      pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
					  NOP_EXPR,
					  gimple_assign_lhs (pattern_stmt));
    }

  if (dump_enabled_p ())
    dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);

  stmts->safe_push (last_stmt);
  return pattern_stmt;
}


/* Function vect_recog_pow_pattern

   Try to find the following pattern:

     x = POW (y, N);

   with POW being one of pow, powf, powi, powif and N being
   either 2 or 0.5.

   Input:

   * LAST_STMT: A stmt from which the pattern search begins.

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output of this pattern.

   * Return value: A new stmt that will be used to replace the sequence of
   stmts that constitute the pattern. In this case it will be:
        x = x * x
   or
	x = sqrt (x)
*/

static gimple *
vect_recog_pow_pattern (vec<gimple *> *stmts, tree *type_in,
			tree *type_out)
{
  gimple *last_stmt = (*stmts)[0];
  tree fn, base, exp = NULL;
  gimple *stmt;
  tree var;

  if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
    return NULL;

  fn = gimple_call_fndecl (last_stmt);
  if (fn == NULL_TREE || DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL)
   return NULL;

  switch (DECL_FUNCTION_CODE (fn))
    {
    case BUILT_IN_POWIF:
    case BUILT_IN_POWI:
    case BUILT_IN_POWF:
    case BUILT_IN_POW:
      base = gimple_call_arg (last_stmt, 0);
      exp = gimple_call_arg (last_stmt, 1);
      if (TREE_CODE (exp) != REAL_CST
	  && TREE_CODE (exp) != INTEGER_CST)
        return NULL;
      break;

    default:
      return NULL;
    }

  /* We now have a pow or powi builtin function call with a constant
     exponent.  */

  *type_out = NULL_TREE;

  /* Catch squaring.  */
  if ((tree_fits_shwi_p (exp)
       && tree_to_shwi (exp) == 2)
      || (TREE_CODE (exp) == REAL_CST
          && real_equal (&TREE_REAL_CST (exp), &dconst2)))
    {
      *type_in = TREE_TYPE (base);

      var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
      stmt = gimple_build_assign (var, MULT_EXPR, base, base);
      return stmt;
    }

  /* Catch square root.  */
  if (TREE_CODE (exp) == REAL_CST
      && real_equal (&TREE_REAL_CST (exp), &dconsthalf))
    {
      tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
      *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
      if (*type_in)
	{
	  gcall *stmt = gimple_build_call (newfn, 1, base);
	  if (vectorizable_function (stmt, *type_in, *type_in)
	      != NULL_TREE)
	    {
	      var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
	      gimple_call_set_lhs (stmt, var);
	      return stmt;
	    }
	}
    }

  return NULL;
}


/* Function vect_recog_widen_sum_pattern

   Try to find the following pattern:

     type x_t;
     TYPE x_T, sum = init;
   loop:
     sum_0 = phi <init, sum_1>
     S1  x_t = *p;
     S2  x_T = (TYPE) x_t;
     S3  sum_1 = x_T + sum_0;

   where type 'TYPE' is at least double the size of type 'type', i.e - we're
   summing elements of type 'type' into an accumulator of type 'TYPE'. This is
   a special case of a reduction computation.

   Input:

   * LAST_STMT: A stmt from which the pattern search begins. In the example,
   when this function is called with S3, the pattern {S2,S3} will be detected.

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output of this pattern.

   * Return value: A new stmt that will be used to replace the sequence of
   stmts that constitute the pattern. In this case it will be:
        WIDEN_SUM <x_t, sum_0>

   Note: The widening-sum idiom is a widening reduction pattern that is
	 vectorized without preserving all the intermediate results. It
         produces only N/2 (widened) results (by summing up pairs of
	 intermediate results) rather than all N results.  Therefore, we
	 cannot allow this pattern when we want to get all the results and in
	 the correct order (as is the case when this computation is in an
	 inner-loop nested in an outer-loop that us being vectorized).  */

static gimple *
vect_recog_widen_sum_pattern (vec<gimple *> *stmts, tree *type_in,
			      tree *type_out)
{
  gimple *stmt, *last_stmt = (*stmts)[0];
  tree oprnd0, oprnd1;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  tree type, half_type;
  gimple *pattern_stmt;
  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop;
  tree var;
  bool promotion;

  if (!loop_info)
    return NULL;

  loop = LOOP_VINFO_LOOP (loop_info);

  /* We don't allow changing the order of the computation in the inner-loop
     when doing outer-loop vectorization.  */
  if (loop && nested_in_vect_loop_p (loop, last_stmt))
    return NULL;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  type = gimple_expr_type (last_stmt);

  /* Look for the following pattern
          DX = (TYPE) X;
          sum_1 = DX + sum_0;
     In which DX is at least double the size of X, and sum_1 has been
     recognized as a reduction variable.
   */

  /* Starting from LAST_STMT, follow the defs of its uses in search
     of the above pattern.  */

  if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
    return NULL;

  oprnd0 = gimple_assign_rhs1 (last_stmt);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  if (!types_compatible_p (TREE_TYPE (oprnd0), type)
      || !types_compatible_p (TREE_TYPE (oprnd1), type))
    return NULL;

  /* So far so good.  Since last_stmt was detected as a (summation) reduction,
     we know that oprnd1 is the reduction variable (defined by a loop-header
     phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
     Left to check that oprnd0 is defined by a cast from type 'type' to type
     'TYPE'.  */

  if (!type_conversion_p (oprnd0, last_stmt, true, &half_type, &stmt,
                          &promotion)
      || !promotion)
     return NULL;

  oprnd0 = gimple_assign_rhs1 (stmt);
  *type_in = half_type;
  *type_out = type;

  /* Pattern detected. Create a stmt to be used to replace the pattern: */
  var = vect_recog_temp_ssa_var (type, NULL);
  pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, oprnd0, oprnd1);

  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "vect_recog_widen_sum_pattern: detected: ");
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
      dump_printf (MSG_NOTE, "\n");
    }

  return pattern_stmt;
}


/* Return TRUE if the operation in STMT can be performed on a smaller type.

   Input:
   STMT - a statement to check.
   DEF - we support operations with two operands, one of which is constant.
         The other operand can be defined by a demotion operation, or by a
         previous statement in a sequence of over-promoted operations.  In the
         later case DEF is used to replace that operand.  (It is defined by a
         pattern statement we created for the previous statement in the
         sequence).

   Input/output:
   NEW_TYPE - Output: a smaller type that we are trying to use.  Input: if not
         NULL, it's the type of DEF.
   STMTS - additional pattern statements.  If a pattern statement (type
         conversion) is created in this function, its original statement is
         added to STMTS.

   Output:
   OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
         operands to use in the new pattern statement for STMT (will be created
         in vect_recog_over_widening_pattern ()).
   NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
         statements for STMT: the first one is a type promotion and the second
         one is the operation itself.  We return the type promotion statement
	 in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
         the second pattern statement.  */

static bool
vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type,
				  tree *op0, tree *op1, gimple **new_def_stmt,
				  vec<gimple *> *stmts)
{
  enum tree_code code;
  tree const_oprnd, oprnd;
  tree interm_type = NULL_TREE, half_type, new_oprnd, type;
  gimple *def_stmt, *new_stmt;
  bool first = false;
  bool promotion;

  *op0 = NULL_TREE;
  *op1 = NULL_TREE;
  *new_def_stmt = NULL;

  if (!is_gimple_assign (stmt))
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
      && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
    return false;

  oprnd = gimple_assign_rhs1 (stmt);
  const_oprnd = gimple_assign_rhs2 (stmt);
  type = gimple_expr_type (stmt);

  if (TREE_CODE (oprnd) != SSA_NAME
      || TREE_CODE (const_oprnd) != INTEGER_CST)
    return false;

  /* If oprnd has other uses besides that in stmt we cannot mark it
     as being part of a pattern only.  */
  if (!has_single_use (oprnd))
    return false;

  /* If we are in the middle of a sequence, we use DEF from a previous
     statement.  Otherwise, OPRND has to be a result of type promotion.  */
  if (*new_type)
    {
      half_type = *new_type;
      oprnd = def;
    }
  else
    {
      first = true;
      if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt,
			      &promotion)
	  || !promotion
	  || !vect_same_loop_or_bb_p (stmt, def_stmt))
        return false;
    }

  /* Can we perform the operation on a smaller type?  */
  switch (code)
    {
      case BIT_IOR_EXPR:
      case BIT_XOR_EXPR:
      case BIT_AND_EXPR:
        if (!int_fits_type_p (const_oprnd, half_type))
          {
            /* HALF_TYPE is not enough.  Try a bigger type if possible.  */
            if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
              return false;

            interm_type = build_nonstandard_integer_type (
                        TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
            if (!int_fits_type_p (const_oprnd, interm_type))
              return false;
          }

        break;

      case LSHIFT_EXPR:
        /* Try intermediate type - HALF_TYPE is not enough for sure.  */
        if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
          return false;

        /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
          (e.g., if the original value was char, the shift amount is at most 8
           if we want to use short).  */
        if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
          return false;

        interm_type = build_nonstandard_integer_type (
                        TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));

        if (!vect_supportable_shift (code, interm_type))
          return false;

        break;

      case RSHIFT_EXPR:
        if (vect_supportable_shift (code, half_type))
          break;

        /* Try intermediate type - HALF_TYPE is not supported.  */
        if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
          return false;

        interm_type = build_nonstandard_integer_type (
                        TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));

        if (!vect_supportable_shift (code, interm_type))
          return false;

        break;

      default:
        gcc_unreachable ();
    }

  /* There are four possible cases:
     1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
        the first statement in the sequence)
        a. The original, HALF_TYPE, is not enough - we replace the promotion
           from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
        b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
           promotion.
     2. OPRND is defined by a pattern statement we created.
        a. Its type is not sufficient for the operation, we create a new stmt:
           a type conversion for OPRND from HALF_TYPE to INTERM_TYPE.  We store
           this statement in NEW_DEF_STMT, and it is later put in
	   STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
        b. OPRND is good to use in the new statement.  */
  if (first)
    {
      if (interm_type)
        {
          /* Replace the original type conversion HALF_TYPE->TYPE with
             HALF_TYPE->INTERM_TYPE.  */
          if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
            {
              new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
              /* Check if the already created pattern stmt is what we need.  */
              if (!is_gimple_assign (new_stmt)
                  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt))
                  || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
                return false;

	      stmts->safe_push (def_stmt);
              oprnd = gimple_assign_lhs (new_stmt);
            }
          else
            {
              /* Create NEW_OPRND = (INTERM_TYPE) OPRND.  */
              oprnd = gimple_assign_rhs1 (def_stmt);
	      new_oprnd = make_ssa_name (interm_type);
	      new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
              STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
              stmts->safe_push (def_stmt);
              oprnd = new_oprnd;
            }
        }
      else
        {
          /* Retrieve the operand before the type promotion.  */
          oprnd = gimple_assign_rhs1 (def_stmt);
        }
    }
  else
    {
      if (interm_type)
        {
          /* Create a type conversion HALF_TYPE->INTERM_TYPE.  */
	  new_oprnd = make_ssa_name (interm_type);
	  new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
          oprnd = new_oprnd;
          *new_def_stmt = new_stmt;
        }

      /* Otherwise, OPRND is already set.  */
    }

  if (interm_type)
    *new_type = interm_type;
  else
    *new_type = half_type;

  *op0 = oprnd;
  *op1 = fold_convert (*new_type, const_oprnd);

  return true;
}


/* Try to find a statement or a sequence of statements that can be performed
   on a smaller type:

     type x_t;
     TYPE x_T, res0_T, res1_T;
   loop:
     S1  x_t = *p;
     S2  x_T = (TYPE) x_t;
     S3  res0_T = op (x_T, C0);
     S4  res1_T = op (res0_T, C1);
     S5  ... = () res1_T;  - type demotion

   where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
   constants.
   Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
   be 'type' or some intermediate type.  For now, we expect S5 to be a type
   demotion operation.  We also check that S3 and S4 have only one use.  */

static gimple *
vect_recog_over_widening_pattern (vec<gimple *> *stmts,
                                  tree *type_in, tree *type_out)
{
  gimple *stmt = stmts->pop ();
  gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL,
	 *use_stmt = NULL;
  tree op0, op1, vectype = NULL_TREE, use_lhs, use_type;
  tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd;
  bool first;
  tree type = NULL;

  first = true;
  while (1)
    {
      if (!vinfo_for_stmt (stmt)
          || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
        return NULL;

      new_def_stmt = NULL;
      if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
                                             &op0, &op1, &new_def_stmt,
                                             stmts))
        {
          if (first)
            return NULL;
          else
            break;
        }

      /* STMT can be performed on a smaller type.  Check its uses.  */
      use_stmt = vect_single_imm_use (stmt);
      if (!use_stmt || !is_gimple_assign (use_stmt))
        return NULL;

      /* Create pattern statement for STMT.  */
      vectype = get_vectype_for_scalar_type (new_type);
      if (!vectype)
        return NULL;

      /* We want to collect all the statements for which we create pattern
         statetments, except for the case when the last statement in the
         sequence doesn't have a corresponding pattern statement.  In such
         case we associate the last pattern statement with the last statement
         in the sequence.  Therefore, we only add the original statement to
         the list if we know that it is not the last.  */
      if (prev_stmt)
        stmts->safe_push (prev_stmt);

      var = vect_recog_temp_ssa_var (new_type, NULL);
      pattern_stmt
	= gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1);
      STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
      new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);

      if (dump_enabled_p ())
        {
          dump_printf_loc (MSG_NOTE, vect_location,
                           "created pattern stmt: ");
          dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
          dump_printf (MSG_NOTE, "\n");
        }

      type = gimple_expr_type (stmt);
      prev_stmt = stmt;
      stmt = use_stmt;

      first = false;
    }

  /* We got a sequence.  We expect it to end with a type demotion operation.
     Otherwise, we quit (for now).  There are three possible cases: the
     conversion is to NEW_TYPE (we don't do anything), the conversion is to
     a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
     NEW_TYPE differs (we create a new conversion statement).  */
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
    {
      use_lhs = gimple_assign_lhs (use_stmt);
      use_type = TREE_TYPE (use_lhs);
      /* Support only type demotion or signedess change.  */
      if (!INTEGRAL_TYPE_P (use_type)
	  || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
        return NULL;

      /* Check that NEW_TYPE is not bigger than the conversion result.  */
      if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
	return NULL;

      if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
          || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
        {
          /* Create NEW_TYPE->USE_TYPE conversion.  */
	  new_oprnd = make_ssa_name (use_type);
	  pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var);
          STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;

          *type_in = get_vectype_for_scalar_type (new_type);
          *type_out = get_vectype_for_scalar_type (use_type);

          /* We created a pattern statement for the last statement in the
             sequence, so we don't need to associate it with the pattern
             statement created for PREV_STMT.  Therefore, we add PREV_STMT
             to the list in order to mark it later in vect_pattern_recog_1.  */
          if (prev_stmt)
            stmts->safe_push (prev_stmt);
        }
      else
        {
          if (prev_stmt)
	    STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
	       = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));

          *type_in = vectype;
          *type_out = NULL_TREE;
        }

      stmts->safe_push (use_stmt);
    }
  else
    /* TODO: support general case, create a conversion to the correct type.  */
    return NULL;

  /* Pattern detected.  */
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "vect_recog_over_widening_pattern: detected: ");
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
      dump_printf (MSG_NOTE, "\n");
    }

  return pattern_stmt;
}

/* Detect widening shift pattern:

   type a_t;
   TYPE a_T, res_T;

   S1 a_t = ;
   S2 a_T = (TYPE) a_t;
   S3 res_T = a_T << CONST;

  where type 'TYPE' is at least double the size of type 'type'.

  Also detect cases where the shift result is immediately converted
  to another type 'result_type' that is no larger in size than 'TYPE'.
  In those cases we perform a widen-shift that directly results in
  'result_type', to avoid a possible over-widening situation:

  type a_t;
  TYPE a_T, res_T;
  result_type res_result;

  S1 a_t = ;
  S2 a_T = (TYPE) a_t;
  S3 res_T = a_T << CONST;
  S4 res_result = (result_type) res_T;
      '--> res_result' = a_t w<< CONST;

  And a case when 'TYPE' is 4 times bigger than 'type'.  In that case we
  create an additional pattern stmt for S2 to create a variable of an
  intermediate type, and perform widen-shift on the intermediate type:

  type a_t;
  interm_type a_it;
  TYPE a_T, res_T, res_T';

  S1 a_t = ;
  S2 a_T = (TYPE) a_t;
      '--> a_it = (interm_type) a_t;
  S3 res_T = a_T << CONST;
      '--> res_T' = a_it <<* CONST;

  Input/Output:

  * STMTS: Contains a stmt from which the pattern search begins.
    In case of unsigned widen-shift, the original stmt (S3) is replaced with S4
    in STMTS.  When an intermediate type is used and a pattern statement is
    created for S2, we also put S2 here (before S3).

  Output:

  * TYPE_IN: The type of the input arguments to the pattern.

  * TYPE_OUT: The type of the output of this pattern.

  * Return value: A new stmt that will be used to replace the sequence of
    stmts that constitute the pattern.  In this case it will be:
    WIDEN_LSHIFT_EXPR <a_t, CONST>.  */

static gimple *
vect_recog_widen_shift_pattern (vec<gimple *> *stmts,
				tree *type_in, tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  gimple *def_stmt0;
  tree oprnd0, oprnd1;
  tree type, half_type0;
  gimple *pattern_stmt;
  tree vectype, vectype_out = NULL_TREE;
  tree var;
  enum tree_code dummy_code;
  int dummy_int;
  vec<tree>  dummy_vec;
  gimple *use_stmt;
  bool promotion;

  if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt))
    return NULL;

  if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt)))
    return NULL;

  if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR)
    return NULL;

  oprnd0 = gimple_assign_rhs1 (last_stmt);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST)
    return NULL;

  /* Check operand 0: it has to be defined by a type promotion.  */
  if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
			  &promotion)
      || !promotion)
     return NULL;

  /* Check operand 1: has to be positive.  We check that it fits the type
     in vect_handle_widen_op_by_const ().  */
  if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0)
    return NULL;

  oprnd0 = gimple_assign_rhs1 (def_stmt0);
  type = gimple_expr_type (last_stmt);

  /* Check for subsequent conversion to another type.  */
  use_stmt = vect_single_imm_use (last_stmt);
  if (use_stmt && is_gimple_assign (use_stmt)
      && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
      && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
    {
      tree use_lhs = gimple_assign_lhs (use_stmt);
      tree use_type = TREE_TYPE (use_lhs);

      if (INTEGRAL_TYPE_P (use_type)
	  && TYPE_PRECISION (use_type) <= TYPE_PRECISION (type))
	{
	  last_stmt = use_stmt;
	  type = use_type;
	}
    }

  /* Check if this a widening operation.  */
  gimple *wstmt = NULL;
  if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1,
       				      &oprnd0, &wstmt,
	                              type, &half_type0, def_stmt0))
    return NULL;

  /* Pattern detected.  */
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "vect_recog_widen_shift_pattern: detected:\n");

  /* Check target support.  */
  vectype = get_vectype_for_scalar_type (half_type0);
  vectype_out = get_vectype_for_scalar_type (type);

  if (!vectype
      || !vectype_out
      || !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt,
					  vectype_out, vectype,
					  &dummy_code, &dummy_code,
					  &dummy_int, &dummy_vec))
    return NULL;

  *type_in = vectype;
  *type_out = vectype_out;

  /* Pattern supported.  Create a stmt to be used to replace the pattern.  */
  var = vect_recog_temp_ssa_var (type, NULL);
  pattern_stmt =
    gimple_build_assign (var, WIDEN_LSHIFT_EXPR, oprnd0, oprnd1);
  if (wstmt)
    {
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
      new_pattern_def_seq (stmt_vinfo, wstmt);
      stmt_vec_info new_stmt_info
	= new_stmt_vec_info (wstmt, stmt_vinfo->vinfo);
      set_vinfo_for_stmt (wstmt, new_stmt_info);
      STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
    }

  if (dump_enabled_p ())
    dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);

  stmts->safe_push (last_stmt);
  return pattern_stmt;
}

/* Detect a rotate pattern wouldn't be otherwise vectorized:

   type a_t, b_t, c_t;

   S0 a_t = b_t r<< c_t;

  Input/Output:

  * STMTS: Contains a stmt from which the pattern search begins,
    i.e. the shift/rotate stmt.  The original stmt (S0) is replaced
    with a sequence:

   S1 d_t = -c_t;
   S2 e_t = d_t & (B - 1);
   S3 f_t = b_t << c_t;
   S4 g_t = b_t >> e_t;
   S0 a_t = f_t | g_t;

    where B is element bitsize of type.

  Output:

  * TYPE_IN: The type of the input arguments to the pattern.

  * TYPE_OUT: The type of the output of this pattern.

  * Return value: A new stmt that will be used to replace the rotate
    S0 stmt.  */

static gimple *
vect_recog_rotate_pattern (vec<gimple *> *stmts, tree *type_in, tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
  gimple *pattern_stmt, *def_stmt;
  enum tree_code rhs_code;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  vec_info *vinfo = stmt_vinfo->vinfo;
  enum vect_def_type dt;
  optab optab1, optab2;
  edge ext_def = NULL;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  rhs_code = gimple_assign_rhs_code (last_stmt);
  switch (rhs_code)
    {
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      break;
    default:
      return NULL;
    }

  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
    return NULL;

  lhs = gimple_assign_lhs (last_stmt);
  oprnd0 = gimple_assign_rhs1 (last_stmt);
  type = TREE_TYPE (oprnd0);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  if (TREE_CODE (oprnd0) != SSA_NAME
      || TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
      || !INTEGRAL_TYPE_P (type)
      || !TYPE_UNSIGNED (type))
    return NULL;

  if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
    return NULL;

  if (dt != vect_internal_def
      && dt != vect_constant_def
      && dt != vect_external_def)
    return NULL;

  vectype = get_vectype_for_scalar_type (type);
  if (vectype == NULL_TREE)
    return NULL;

  /* If vector/vector or vector/scalar rotate is supported by the target,
     don't do anything here.  */
  optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
  if (optab1
      && optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
    return NULL;

  if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def)
    {
      optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
      if (optab2
	  && optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
	return NULL;
    }

  /* If vector/vector or vector/scalar shifts aren't supported by the target,
     don't do anything here either.  */
  optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
  optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
  if (!optab1
      || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
      || !optab2
      || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
    {
      if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def)
	return NULL;
      optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
      optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
      if (!optab1
	  || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
	  || !optab2
	  || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
	return NULL;
    }

  *type_in = vectype;
  *type_out = vectype;
  if (*type_in == NULL_TREE)
    return NULL;

  if (dt == vect_external_def
      && TREE_CODE (oprnd1) == SSA_NAME
      && is_a <loop_vec_info> (vinfo))
    {
      struct loop *loop = as_a <loop_vec_info> (vinfo)->loop;
      ext_def = loop_preheader_edge (loop);
      if (!SSA_NAME_IS_DEFAULT_DEF (oprnd1))
	{
	  basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (oprnd1));
	  if (bb == NULL
	      || !dominated_by_p (CDI_DOMINATORS, ext_def->dest, bb))
	    ext_def = NULL;
	}
    }

  def = NULL_TREE;
  if (TREE_CODE (oprnd1) == INTEGER_CST
      || TYPE_MODE (TREE_TYPE (oprnd1)) == TYPE_MODE (type))
    def = oprnd1;
  else if (def_stmt && gimple_assign_cast_p (def_stmt))
    {
      tree rhs1 = gimple_assign_rhs1 (def_stmt);
      if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (type)
	  && TYPE_PRECISION (TREE_TYPE (rhs1))
	     == TYPE_PRECISION (type))
	def = rhs1;
    }

  STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
  if (def == NULL_TREE)
    {
      def = vect_recog_temp_ssa_var (type, NULL);
      def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
      if (ext_def)
	{
	  basic_block new_bb
	    = gsi_insert_on_edge_immediate (ext_def, def_stmt);
	  gcc_assert (!new_bb);
	}
      else
	append_pattern_def_seq (stmt_vinfo, def_stmt);
    }
  stype = TREE_TYPE (def);

  if (TREE_CODE (def) == INTEGER_CST)
    {
      if (!tree_fits_uhwi_p (def)
	  || tree_to_uhwi (def) >= GET_MODE_PRECISION (TYPE_MODE (type))
	  || integer_zerop (def))
	return NULL;
      def2 = build_int_cst (stype,
			    GET_MODE_PRECISION (TYPE_MODE (type))
			    - tree_to_uhwi (def));
    }
  else
    {
      tree vecstype = get_vectype_for_scalar_type (stype);
      stmt_vec_info def_stmt_vinfo;

      if (vecstype == NULL_TREE)
	return NULL;
      def2 = vect_recog_temp_ssa_var (stype, NULL);
      def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
      if (ext_def)
	{
	  basic_block new_bb
	    = gsi_insert_on_edge_immediate (ext_def, def_stmt);
	  gcc_assert (!new_bb);
	}
      else
	{
	  def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
	  set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
	  STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
	  append_pattern_def_seq (stmt_vinfo, def_stmt);
	}

      def2 = vect_recog_temp_ssa_var (stype, NULL);
      tree mask
	= build_int_cst (stype, GET_MODE_PRECISION (TYPE_MODE (stype)) - 1);
      def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
				      gimple_assign_lhs (def_stmt), mask);
      if (ext_def)
	{
	  basic_block new_bb
	    = gsi_insert_on_edge_immediate (ext_def, def_stmt);
	  gcc_assert (!new_bb);
	}
      else
	{
	  def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
	  set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
	  STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
	  append_pattern_def_seq (stmt_vinfo, def_stmt);
	}
    }

  var1 = vect_recog_temp_ssa_var (type, NULL);
  def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
					? LSHIFT_EXPR : RSHIFT_EXPR,
				  oprnd0, def);
  append_pattern_def_seq (stmt_vinfo, def_stmt);

  var2 = vect_recog_temp_ssa_var (type, NULL);
  def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
					? RSHIFT_EXPR : LSHIFT_EXPR,
				  oprnd0, def2);
  append_pattern_def_seq (stmt_vinfo, def_stmt);

  /* Pattern detected.  */
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "vect_recog_rotate_pattern: detected:\n");

  /* Pattern supported.  Create a stmt to be used to replace the pattern.  */
  var = vect_recog_temp_ssa_var (type, NULL);
  pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);

  if (dump_enabled_p ())
    dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);

  stmts->safe_push (last_stmt);
  return pattern_stmt;
}

/* Detect a vector by vector shift pattern that wouldn't be otherwise
   vectorized:

   type a_t;
   TYPE b_T, res_T;

   S1 a_t = ;
   S2 b_T = ;
   S3 res_T = b_T op a_t;

  where type 'TYPE' is a type with different size than 'type',
  and op is <<, >> or rotate.

  Also detect cases:

   type a_t;
   TYPE b_T, c_T, res_T;

   S0 c_T = ;
   S1 a_t = (type) c_T;
   S2 b_T = ;
   S3 res_T = b_T op a_t;

  Input/Output:

  * STMTS: Contains a stmt from which the pattern search begins,
    i.e. the shift/rotate stmt.  The original stmt (S3) is replaced
    with a shift/rotate which has same type on both operands, in the
    second case just b_T op c_T, in the first case with added cast
    from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.

  Output:

  * TYPE_IN: The type of the input arguments to the pattern.

  * TYPE_OUT: The type of the output of this pattern.

  * Return value: A new stmt that will be used to replace the shift/rotate
    S3 stmt.  */

static gimple *
vect_recog_vector_vector_shift_pattern (vec<gimple *> *stmts,
					tree *type_in, tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  tree oprnd0, oprnd1, lhs, var;
  gimple *pattern_stmt, *def_stmt;
  enum tree_code rhs_code;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  vec_info *vinfo = stmt_vinfo->vinfo;
  enum vect_def_type dt;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  rhs_code = gimple_assign_rhs_code (last_stmt);
  switch (rhs_code)
    {
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      break;
    default:
      return NULL;
    }

  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
    return NULL;

  lhs = gimple_assign_lhs (last_stmt);
  oprnd0 = gimple_assign_rhs1 (last_stmt);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  if (TREE_CODE (oprnd0) != SSA_NAME
      || TREE_CODE (oprnd1) != SSA_NAME
      || TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
      || TYPE_PRECISION (TREE_TYPE (oprnd1))
	 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (oprnd1)))
      || TYPE_PRECISION (TREE_TYPE (lhs))
	 != TYPE_PRECISION (TREE_TYPE (oprnd0)))
    return NULL;

  if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
    return NULL;

  if (dt != vect_internal_def)
    return NULL;

  *type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
  *type_out = *type_in;
  if (*type_in == NULL_TREE)
    return NULL;

  tree def = NULL_TREE;
  if (gimple_assign_cast_p (def_stmt))
    {
      tree rhs1 = gimple_assign_rhs1 (def_stmt);
      if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
	  && TYPE_PRECISION (TREE_TYPE (rhs1))
	     == TYPE_PRECISION (TREE_TYPE (oprnd0)))
	def = rhs1;
    }

  if (def == NULL_TREE)
    {
      def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
      def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
      new_pattern_def_seq (stmt_vinfo, def_stmt);
    }

  /* Pattern detected.  */
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "vect_recog_vector_vector_shift_pattern: detected:\n");

  /* Pattern supported.  Create a stmt to be used to replace the pattern.  */
  var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
  pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);

  if (dump_enabled_p ())
    dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);

  stmts->safe_push (last_stmt);
  return pattern_stmt;
}

/* Detect multiplication by constant which are postive or negatives of power 2,
   and convert them to shift patterns.

   Mult with constants that are postive power of two.
   type a_t;
   type b_t
   S1: b_t = a_t * n

   or

   Mult with constants that are negative power of two.
   S2: b_t = a_t * -n

   Input/Output:

   STMTS: Contains a stmt from which the pattern search begins,
   i.e. the mult stmt.  Convert the mult operation to LSHIFT if
   constant operand is a power of 2.
   type a_t, b_t
   S1': b_t = a_t << log2 (n)

   Convert the mult operation to LSHIFT and followed by a NEGATE
   if constant operand is a negative power of 2.
   type a_t, b_t, res_T;
   S2': b_t = a_t << log2 (n)
   S3': res_T  = - (b_t)

 Output:

  * TYPE_IN: The type of the input arguments to the pattern.

  * TYPE_OUT: The type of the output of this pattern.

  * Return value: A new stmt that will be used to replace the multiplication
    S1 or S2 stmt.  */

static gimple *
vect_recog_mult_pattern (vec<gimple *> *stmts,
			 tree *type_in, tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  tree oprnd0, oprnd1, vectype, itype;
  gimple *pattern_stmt, *def_stmt;
  optab optab;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  int power2_val, power2_neg_val;
  tree shift;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
    return NULL;

  oprnd0 = gimple_assign_rhs1 (last_stmt);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  itype = TREE_TYPE (oprnd0);

  if (TREE_CODE (oprnd0) != SSA_NAME
      || TREE_CODE (oprnd1) != INTEGER_CST
      || !INTEGRAL_TYPE_P (itype)
      || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
    return NULL;

  vectype = get_vectype_for_scalar_type (itype);
  if (vectype == NULL_TREE)
    return NULL;

  /* If the target can handle vectorized multiplication natively,
     don't attempt to optimize this.  */
  optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default);
  if (optab != unknown_optab)
    {
      machine_mode vec_mode = TYPE_MODE (vectype);
      int icode = (int) optab_handler (optab, vec_mode);
      if (icode != CODE_FOR_nothing)
	return NULL;
    }

  /* If target cannot handle vector left shift then we cannot
     optimize and bail out.  */
  optab = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
  if (!optab
      || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
    return NULL;

  power2_val = wi::exact_log2 (oprnd1);
  power2_neg_val = wi::exact_log2 (wi::neg (oprnd1));

  /* Handle constant operands that are postive or negative powers of 2.  */
  if (power2_val != -1)
    {
      shift = build_int_cst (itype, power2_val);
      pattern_stmt
	= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
			       LSHIFT_EXPR, oprnd0, shift);
    }
  else if (power2_neg_val != -1)
    {
      /* If the target cannot handle vector NEGATE then we cannot
	 do the optimization.  */
      optab = optab_for_tree_code (NEGATE_EXPR, vectype, optab_vector);
      if (!optab
	  || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
	return NULL;

      shift = build_int_cst (itype, power2_neg_val);
      def_stmt
	= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
			       LSHIFT_EXPR, oprnd0, shift);
      new_pattern_def_seq (stmt_vinfo, def_stmt);
      pattern_stmt
	 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
				NEGATE_EXPR, gimple_assign_lhs (def_stmt));
    }
  else
    return NULL;

  /* Pattern detected.  */
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "vect_recog_mult_pattern: detected:\n");

  if (dump_enabled_p ())
    dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM,
			  pattern_stmt,0);

  stmts->safe_push (last_stmt);
  *type_in = vectype;
  *type_out = vectype;

  return pattern_stmt;
}

/* Detect a signed division by a constant that wouldn't be
   otherwise vectorized:

   type a_t, b_t;

   S1 a_t = b_t / N;

  where type 'type' is an integral type and N is a constant.

  Similarly handle modulo by a constant:

   S4 a_t = b_t % N;

  Input/Output:

  * STMTS: Contains a stmt from which the pattern search begins,
    i.e. the division stmt.  S1 is replaced by if N is a power
    of two constant and type is signed:
  S3  y_t = b_t < 0 ? N - 1 : 0;
  S2  x_t = b_t + y_t;
  S1' a_t = x_t >> log2 (N);

    S4 is replaced if N is a power of two constant and
    type is signed by (where *_T temporaries have unsigned type):
  S9  y_T = b_t < 0 ? -1U : 0U;
  S8  z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
  S7  z_t = (type) z_T;
  S6  w_t = b_t + z_t;
  S5  x_t = w_t & (N - 1);
  S4' a_t = x_t - z_t;

  Output:

  * TYPE_IN: The type of the input arguments to the pattern.

  * TYPE_OUT: The type of the output of this pattern.

  * Return value: A new stmt that will be used to replace the division
    S1 or modulo S4 stmt.  */

static gimple *
vect_recog_divmod_pattern (vec<gimple *> *stmts,
			   tree *type_in, tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  tree oprnd0, oprnd1, vectype, itype, cond;
  gimple *pattern_stmt, *def_stmt;
  enum tree_code rhs_code;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  vec_info *vinfo = stmt_vinfo->vinfo;
  optab optab;
  tree q;
  int dummy_int, prec;
  stmt_vec_info def_stmt_vinfo;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  rhs_code = gimple_assign_rhs_code (last_stmt);
  switch (rhs_code)
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:
      break;
    default:
      return NULL;
    }

  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
    return NULL;

  oprnd0 = gimple_assign_rhs1 (last_stmt);
  oprnd1 = gimple_assign_rhs2 (last_stmt);
  itype = TREE_TYPE (oprnd0);
  if (TREE_CODE (oprnd0) != SSA_NAME
      || TREE_CODE (oprnd1) != INTEGER_CST
      || TREE_CODE (itype) != INTEGER_TYPE
      || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
    return NULL;

  vectype = get_vectype_for_scalar_type (itype);
  if (vectype == NULL_TREE)
    return NULL;

  /* If the target can handle vectorized division or modulo natively,
     don't attempt to optimize this.  */
  optab = optab_for_tree_code (rhs_code, vectype, optab_default);
  if (optab != unknown_optab)
    {
      machine_mode vec_mode = TYPE_MODE (vectype);
      int icode = (int) optab_handler (optab, vec_mode);
      if (icode != CODE_FOR_nothing)
	return NULL;
    }

  prec = TYPE_PRECISION (itype);
  if (integer_pow2p (oprnd1))
    {
      if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
	return NULL;

      /* Pattern detected.  */
      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
                         "vect_recog_divmod_pattern: detected:\n");

      cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
		     build_int_cst (itype, 0));
      if (rhs_code == TRUNC_DIV_EXPR)
	{
	  tree var = vect_recog_temp_ssa_var (itype, NULL);
	  tree shift;
	  def_stmt
	    = gimple_build_assign (var, COND_EXPR, cond,
				   fold_build2 (MINUS_EXPR, itype, oprnd1,
						build_int_cst (itype, 1)),
				   build_int_cst (itype, 0));
	  new_pattern_def_seq (stmt_vinfo, def_stmt);
	  var = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt
	    = gimple_build_assign (var, PLUS_EXPR, oprnd0,
				   gimple_assign_lhs (def_stmt));
	  append_pattern_def_seq (stmt_vinfo, def_stmt);

	  shift = build_int_cst (itype, tree_log2 (oprnd1));
	  pattern_stmt
	    = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
				   RSHIFT_EXPR, var, shift);
	}
      else
	{
	  tree signmask;
	  STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
	  if (compare_tree_int (oprnd1, 2) == 0)
	    {
	      signmask = vect_recog_temp_ssa_var (itype, NULL);
	      def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
					      build_int_cst (itype, 1),
					      build_int_cst (itype, 0));
	      append_pattern_def_seq (stmt_vinfo, def_stmt);
	    }
	  else
	    {
	      tree utype
		= build_nonstandard_integer_type (prec, 1);
	      tree vecutype = get_vectype_for_scalar_type (utype);
	      tree shift
		= build_int_cst (utype, GET_MODE_BITSIZE (TYPE_MODE (itype))
					- tree_log2 (oprnd1));
	      tree var = vect_recog_temp_ssa_var (utype, NULL);

	      def_stmt = gimple_build_assign (var, COND_EXPR, cond,
					      build_int_cst (utype, -1),
					      build_int_cst (utype, 0));
	      def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
	      set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
	      STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
	      append_pattern_def_seq (stmt_vinfo, def_stmt);
	      var = vect_recog_temp_ssa_var (utype, NULL);
	      def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
					      gimple_assign_lhs (def_stmt),
					      shift);
	      def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
	      set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
	      STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
	      append_pattern_def_seq (stmt_vinfo, def_stmt);
	      signmask = vect_recog_temp_ssa_var (itype, NULL);
	      def_stmt
		= gimple_build_assign (signmask, NOP_EXPR, var);
	      append_pattern_def_seq (stmt_vinfo, def_stmt);
	    }
	  def_stmt
	    = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
				   PLUS_EXPR, oprnd0, signmask);
	  append_pattern_def_seq (stmt_vinfo, def_stmt);
	  def_stmt
	    = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
				   BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
				   fold_build2 (MINUS_EXPR, itype, oprnd1,
						build_int_cst (itype, 1)));
	  append_pattern_def_seq (stmt_vinfo, def_stmt);

	  pattern_stmt
	    = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
				   MINUS_EXPR, gimple_assign_lhs (def_stmt),
				   signmask);
	}

      if (dump_enabled_p ())
	dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt,
                              0);

      stmts->safe_push (last_stmt);

      *type_in = vectype;
      *type_out = vectype;
      return pattern_stmt;
    }

  if (prec > HOST_BITS_PER_WIDE_INT
      || integer_zerop (oprnd1))
    return NULL;

  if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
    return NULL;

  STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;

  if (TYPE_UNSIGNED (itype))
    {
      unsigned HOST_WIDE_INT mh, ml;
      int pre_shift, post_shift;
      unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
				  & GET_MODE_MASK (TYPE_MODE (itype)));
      tree t1, t2, t3, t4;

      if (d >= ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))
	/* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0.  */
	return NULL;

      /* Find a suitable multiplier and right shift count
	 instead of multiplying with D.  */
      mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);

      /* If the suggested multiplier is more than SIZE bits, we can do better
	 for even divisors, using an initial right shift.  */
      if (mh != 0 && (d & 1) == 0)
	{
	  pre_shift = floor_log2 (d & -d);
	  mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
				  &ml, &post_shift, &dummy_int);
	  gcc_assert (!mh);
	}
      else
	pre_shift = 0;

      if (mh != 0)
	{
	  if (post_shift - 1 >= prec)
	    return NULL;

	  /* t1 = oprnd0 h* ml;
	     t2 = oprnd0 - t1;
	     t3 = t2 >> 1;
	     t4 = t1 + t3;
	     q = t4 >> (post_shift - 1);  */
	  t1 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
					  build_int_cst (itype, ml));
	  append_pattern_def_seq (stmt_vinfo, def_stmt);

	  t2 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt
	    = gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
	  append_pattern_def_seq (stmt_vinfo, def_stmt);

	  t3 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt
	    = gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
	  append_pattern_def_seq (stmt_vinfo, def_stmt);

	  t4 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt
	    = gimple_build_assign (t4, PLUS_EXPR, t1, t3);

	  if (post_shift != 1)
	    {
	      append_pattern_def_seq (stmt_vinfo, def_stmt);

	      q = vect_recog_temp_ssa_var (itype, NULL);
	      pattern_stmt
		= gimple_build_assign (q, RSHIFT_EXPR, t4,
				       build_int_cst (itype, post_shift - 1));
	    }
	  else
	    {
	      q = t4;
	      pattern_stmt = def_stmt;
	    }
	}
      else
	{
	  if (pre_shift >= prec || post_shift >= prec)
	    return NULL;

	  /* t1 = oprnd0 >> pre_shift;
	     t2 = t1 h* ml;
	     q = t2 >> post_shift;  */
	  if (pre_shift)
	    {
	      t1 = vect_recog_temp_ssa_var (itype, NULL);
	      def_stmt
		= gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
				       build_int_cst (NULL, pre_shift));
	      append_pattern_def_seq (stmt_vinfo, def_stmt);
	    }
	  else
	    t1 = oprnd0;

	  t2 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
					  build_int_cst (itype, ml));

	  if (post_shift)
	    {
	      append_pattern_def_seq (stmt_vinfo, def_stmt);

	      q = vect_recog_temp_ssa_var (itype, NULL);
	      def_stmt
		= gimple_build_assign (q, RSHIFT_EXPR, t2,
				       build_int_cst (itype, post_shift));
	    }
	  else
	    q = t2;

	  pattern_stmt = def_stmt;
	}
    }
  else
    {
      unsigned HOST_WIDE_INT ml;
      int post_shift;
      HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
      unsigned HOST_WIDE_INT abs_d;
      bool add = false;
      tree t1, t2, t3, t4;

      /* Give up for -1.  */
      if (d == -1)
	return NULL;

      /* Since d might be INT_MIN, we have to cast to
	 unsigned HOST_WIDE_INT before negating to avoid
	 undefined signed overflow.  */
      abs_d = (d >= 0
	       ? (unsigned HOST_WIDE_INT) d
	       : - (unsigned HOST_WIDE_INT) d);

      /* n rem d = n rem -d */
      if (rhs_code == TRUNC_MOD_EXPR && d < 0)
	{
	  d = abs_d;
	  oprnd1 = build_int_cst (itype, abs_d);
	}
      else if (HOST_BITS_PER_WIDE_INT >= prec
	       && abs_d == (unsigned HOST_WIDE_INT) 1 << (prec - 1))
	/* This case is not handled correctly below.  */
	return NULL;

      choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
      if (ml >= (unsigned HOST_WIDE_INT) 1 << (prec - 1))
	{
	  add = true;
	  ml |= (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
	}
      if (post_shift >= prec)
	return NULL;

      /* t1 = oprnd0 h* ml;  */
      t1 = vect_recog_temp_ssa_var (itype, NULL);
      def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
				      build_int_cst (itype, ml));

      if (add)
	{
	  /* t2 = t1 + oprnd0;  */
	  append_pattern_def_seq (stmt_vinfo, def_stmt);
	  t2 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
	}
      else
	t2 = t1;

      if (post_shift)
	{
	  /* t3 = t2 >> post_shift;  */
	  append_pattern_def_seq (stmt_vinfo, def_stmt);
	  t3 = vect_recog_temp_ssa_var (itype, NULL);
	  def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
					  build_int_cst (itype, post_shift));
	}
      else
	t3 = t2;

      wide_int oprnd0_min, oprnd0_max;
      int msb = 1;
      if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE)
	{
	  if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype)))
	    msb = 0;
	  else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype)))
	    msb = -1;
	}

      if (msb == 0 && d >= 0)
	{
	  /* q = t3;  */
	  q = t3;
	  pattern_stmt = def_stmt;
	}
      else
	{
	  /* t4 = oprnd0 >> (prec - 1);
	     or if we know from VRP that oprnd0 >= 0
	     t4 = 0;
	     or if we know from VRP that oprnd0 < 0
	     t4 = -1;  */
	  append_pattern_def_seq (stmt_vinfo, def_stmt);
	  t4 = vect_recog_temp_ssa_var (itype, NULL);
	  if (msb != 1)
	    def_stmt = gimple_build_assign (t4, INTEGER_CST,
					    build_int_cst (itype, msb));
	  else
	    def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
					    build_int_cst (itype, prec - 1));
	  append_pattern_def_seq (stmt_vinfo, def_stmt);

	  /* q = t3 - t4;  or q = t4 - t3;  */
	  q = vect_recog_temp_ssa_var (itype, NULL);
	  pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
					      d < 0 ? t3 : t4);
	}
    }

  if (rhs_code == TRUNC_MOD_EXPR)
    {
      tree r, t1;

      /* We divided.  Now finish by:
	 t1 = q * oprnd1;
	 r = oprnd0 - t1;  */
      append_pattern_def_seq (stmt_vinfo, pattern_stmt);

      t1 = vect_recog_temp_ssa_var (itype, NULL);
      def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
      append_pattern_def_seq (stmt_vinfo, def_stmt);

      r = vect_recog_temp_ssa_var (itype, NULL);
      pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
    }

  /* Pattern detected.  */
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "vect_recog_divmod_pattern: detected: ");
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
      dump_printf (MSG_NOTE, "\n");
    }

  stmts->safe_push (last_stmt);

  *type_in = vectype;
  *type_out = vectype;
  return pattern_stmt;
}

/* Function vect_recog_mixed_size_cond_pattern

   Try to find the following pattern:

     type x_t, y_t;
     TYPE a_T, b_T, c_T;
   loop:
     S1  a_T = x_t CMP y_t ? b_T : c_T;

   where type 'TYPE' is an integral type which has different size
   from 'type'.  b_T and c_T are either constants (and if 'TYPE' is wider
   than 'type', the constants need to fit into an integer type
   with the same width as 'type') or results of conversion from 'type'.

   Input:

   * LAST_STMT: A stmt from which the pattern search begins.

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output of this pattern.

   * Return value: A new stmt that will be used to replace the pattern.
	Additionally a def_stmt is added.

	a_it = x_t CMP y_t ? b_it : c_it;
	a_T = (TYPE) a_it;  */

static gimple *
vect_recog_mixed_size_cond_pattern (vec<gimple *> *stmts, tree *type_in,
				    tree *type_out)
{
  gimple *last_stmt = (*stmts)[0];
  tree cond_expr, then_clause, else_clause;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info;
  tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
  gimple *pattern_stmt, *def_stmt;
  vec_info *vinfo = stmt_vinfo->vinfo;
  tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
  gimple *def_stmt0 = NULL, *def_stmt1 = NULL;
  bool promotion;
  tree comp_scalar_type;

  if (!is_gimple_assign (last_stmt)
      || gimple_assign_rhs_code (last_stmt) != COND_EXPR
      || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
    return NULL;

  cond_expr = gimple_assign_rhs1 (last_stmt);
  then_clause = gimple_assign_rhs2 (last_stmt);
  else_clause = gimple_assign_rhs3 (last_stmt);

  if (!COMPARISON_CLASS_P (cond_expr))
    return NULL;

  comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
  comp_vectype = get_vectype_for_scalar_type (comp_scalar_type);
  if (comp_vectype == NULL_TREE)
    return NULL;

  type = gimple_expr_type (last_stmt);
  if (types_compatible_p (type, comp_scalar_type)
      || ((TREE_CODE (then_clause) != INTEGER_CST
	   || TREE_CODE (else_clause) != INTEGER_CST)
	  && !INTEGRAL_TYPE_P (comp_scalar_type))
      || !INTEGRAL_TYPE_P (type))
    return NULL;

  if ((TREE_CODE (then_clause) != INTEGER_CST
       && !type_conversion_p (then_clause, last_stmt, false, &orig_type0,
                              &def_stmt0, &promotion))
      || (TREE_CODE (else_clause) != INTEGER_CST
          && !type_conversion_p (else_clause, last_stmt, false, &orig_type1,
                                 &def_stmt1, &promotion)))
    return NULL;

  if (orig_type0 && orig_type1
      && !types_compatible_p (orig_type0, orig_type1))
    return NULL;

  if (orig_type0)
    {
      if (!types_compatible_p (orig_type0, comp_scalar_type))
	return NULL;
      then_clause = gimple_assign_rhs1 (def_stmt0);
      itype = orig_type0;
    }

  if (orig_type1)
    {
      if (!types_compatible_p (orig_type1, comp_scalar_type))
	return NULL;
      else_clause = gimple_assign_rhs1 (def_stmt1);
      itype = orig_type1;
    }


  HOST_WIDE_INT cmp_mode_size
    = GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype));

  if (GET_MODE_BITSIZE (TYPE_MODE (type)) == cmp_mode_size)
    return NULL;

  vectype = get_vectype_for_scalar_type (type);
  if (vectype == NULL_TREE)
    return NULL;

  if (expand_vec_cond_expr_p (vectype, comp_vectype))
    return NULL;

  if (itype == NULL_TREE)
    itype = build_nonstandard_integer_type (cmp_mode_size,
  					    TYPE_UNSIGNED (type));

  if (itype == NULL_TREE
      || GET_MODE_BITSIZE (TYPE_MODE (itype)) != cmp_mode_size)
    return NULL;

  vecitype = get_vectype_for_scalar_type (itype);
  if (vecitype == NULL_TREE)
    return NULL;

  if (!expand_vec_cond_expr_p (vecitype, comp_vectype))
    return NULL;

  if (GET_MODE_BITSIZE (TYPE_MODE (type)) > cmp_mode_size)
    {
      if ((TREE_CODE (then_clause) == INTEGER_CST
	   && !int_fits_type_p (then_clause, itype))
	  || (TREE_CODE (else_clause) == INTEGER_CST
	      && !int_fits_type_p (else_clause, itype)))
	return NULL;
    }

  def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
				  COND_EXPR, unshare_expr (cond_expr),
				  fold_convert (itype, then_clause),
				  fold_convert (itype, else_clause));
  pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
				      NOP_EXPR, gimple_assign_lhs (def_stmt));

  new_pattern_def_seq (stmt_vinfo, def_stmt);
  def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
  set_vinfo_for_stmt (def_stmt, def_stmt_info);
  STMT_VINFO_VECTYPE (def_stmt_info) = vecitype;
  *type_in = vecitype;
  *type_out = vectype;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "vect_recog_mixed_size_cond_pattern: detected:\n");

  return pattern_stmt;
}


/* Helper function of vect_recog_bool_pattern.  Called recursively, return
   true if bool VAR can be optimized that way.  */

static bool
check_bool_pattern (tree var, vec_info *vinfo)
{
  gimple *def_stmt;
  enum vect_def_type dt;
  tree rhs1;
  enum tree_code rhs_code;

  if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
    return false;

  if (dt != vect_internal_def)
    return false;

  if (!is_gimple_assign (def_stmt))
    return false;

  if (!has_single_use (var))
    return false;

  rhs1 = gimple_assign_rhs1 (def_stmt);
  rhs_code = gimple_assign_rhs_code (def_stmt);
  switch (rhs_code)
    {
    case SSA_NAME:
      return check_bool_pattern (rhs1, vinfo);

    CASE_CONVERT:
      if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
	   || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
	  && TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
	return false;
      return check_bool_pattern (rhs1, vinfo);

    case BIT_NOT_EXPR:
      return check_bool_pattern (rhs1, vinfo);

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      if (!check_bool_pattern (rhs1, vinfo))
	return false;
      return check_bool_pattern (gimple_assign_rhs2 (def_stmt), vinfo);

    default:
      if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
	{
	  tree vecitype, comp_vectype;

	  /* If the comparison can throw, then is_gimple_condexpr will be
	     false and we can't make a COND_EXPR/VEC_COND_EXPR out of it.  */
	  if (stmt_could_throw_p (def_stmt))
	    return false;

	  comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
	  if (comp_vectype == NULL_TREE)
	    return false;

	  if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
	    {
	      machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
	      tree itype
		= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
	      vecitype = get_vectype_for_scalar_type (itype);
	      if (vecitype == NULL_TREE)
		return false;
	    }
	  else
	    vecitype = comp_vectype;
	  return expand_vec_cond_expr_p (vecitype, comp_vectype);
	}
      return false;
    }
}


/* Helper function of adjust_bool_pattern.  Add a cast to TYPE to a previous
   stmt (SSA_NAME_DEF_STMT of VAR) by moving the COND_EXPR from RELATED_STMT
   to PATTERN_DEF_SEQ and adding a cast as RELATED_STMT.  */

static tree
adjust_bool_pattern_cast (tree type, tree var)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (SSA_NAME_DEF_STMT (var));
  gimple *cast_stmt, *pattern_stmt;

  gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo));
  pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
  new_pattern_def_seq (stmt_vinfo, pattern_stmt);
  cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
				   NOP_EXPR, gimple_assign_lhs (pattern_stmt));
  STMT_VINFO_RELATED_STMT (stmt_vinfo) = cast_stmt;
  return gimple_assign_lhs (cast_stmt);
}


/* Helper function of vect_recog_bool_pattern.  Do the actual transformations,
   recursively.  VAR is an SSA_NAME that should be transformed from bool
   to a wider integer type, OUT_TYPE is the desired final integer type of
   the whole pattern, TRUEVAL should be NULL unless optimizing
   BIT_AND_EXPR into a COND_EXPR with one integer from one of the operands
   in the then_clause, STMTS is where statements with added pattern stmts
   should be pushed to.  */

static tree
adjust_bool_pattern (tree var, tree out_type, tree trueval,
		     vec<gimple *> *stmts)
{
  gimple *stmt = SSA_NAME_DEF_STMT (var);
  enum tree_code rhs_code, def_rhs_code;
  tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
  location_t loc;
  gimple *pattern_stmt, *def_stmt;

  rhs1 = gimple_assign_rhs1 (stmt);
  rhs2 = gimple_assign_rhs2 (stmt);
  rhs_code = gimple_assign_rhs_code (stmt);
  loc = gimple_location (stmt);
  switch (rhs_code)
    {
    case SSA_NAME:
    CASE_CONVERT:
      irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
      itype = TREE_TYPE (irhs1);
      pattern_stmt
	= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
			       SSA_NAME, irhs1);
      break;

    case BIT_NOT_EXPR:
      irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
      itype = TREE_TYPE (irhs1);
      pattern_stmt
	= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
			       BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
      break;

    case BIT_AND_EXPR:
      /* Try to optimize x = y & (a < b ? 1 : 0); into
	 x = (a < b ? y : 0);

	 E.g. for:
	   bool a_b, b_b, c_b;
	   TYPE d_T;

	   S1  a_b = x1 CMP1 y1;
	   S2  b_b = x2 CMP2 y2;
	   S3  c_b = a_b & b_b;
	   S4  d_T = (TYPE) c_b;

	 we would normally emit:

	   S1'  a_T = x1 CMP1 y1 ? 1 : 0;
	   S2'  b_T = x2 CMP2 y2 ? 1 : 0;
	   S3'  c_T = a_T & b_T;
	   S4'  d_T = c_T;

	 but we can save one stmt by using the
	 result of one of the COND_EXPRs in the other COND_EXPR and leave
	 BIT_AND_EXPR stmt out:

	   S1'  a_T = x1 CMP1 y1 ? 1 : 0;
	   S3'  c_T = x2 CMP2 y2 ? a_T : 0;
	   S4'  f_T = c_T;

	 At least when VEC_COND_EXPR is implemented using masks
	 cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
	 computes the comparison masks and ands it, in one case with
	 all ones vector, in the other case with a vector register.
	 Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
	 often more expensive.  */
      def_stmt = SSA_NAME_DEF_STMT (rhs2);
      def_rhs_code = gimple_assign_rhs_code (def_stmt);
      if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
	{
	  tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
	  irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
	  if (TYPE_PRECISION (TREE_TYPE (irhs1))
	      == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
	    {
	      gimple *tstmt;
	      stmt_vec_info stmt_def_vinfo = vinfo_for_stmt (def_stmt);
	      irhs2 = adjust_bool_pattern (rhs2, out_type, irhs1, stmts);
	      tstmt = stmts->pop ();
	      gcc_assert (tstmt == def_stmt);
	      stmts->quick_push (stmt);
	      STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt))
		= STMT_VINFO_RELATED_STMT (stmt_def_vinfo);
	      gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_def_vinfo));
	      STMT_VINFO_RELATED_STMT (stmt_def_vinfo) = NULL;
	      return irhs2;
	    }
	  else
	    irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
	  goto and_ior_xor;
	}
      def_stmt = SSA_NAME_DEF_STMT (rhs1);
      def_rhs_code = gimple_assign_rhs_code (def_stmt);
      if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
	{
	  tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
	  irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
	  if (TYPE_PRECISION (TREE_TYPE (irhs2))
	      == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
	    {
	      gimple *tstmt;
	      stmt_vec_info stmt_def_vinfo = vinfo_for_stmt (def_stmt);
	      irhs1 = adjust_bool_pattern (rhs1, out_type, irhs2, stmts);
	      tstmt = stmts->pop ();
	      gcc_assert (tstmt == def_stmt);
	      stmts->quick_push (stmt);
	      STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt))
		= STMT_VINFO_RELATED_STMT (stmt_def_vinfo);
	      gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_def_vinfo));
	      STMT_VINFO_RELATED_STMT (stmt_def_vinfo) = NULL;
	      return irhs1;
	    }
	  else
	    irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
	  goto and_ior_xor;
	}
      /* FALLTHRU */
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
      irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
    and_ior_xor:
      if (TYPE_PRECISION (TREE_TYPE (irhs1))
	  != TYPE_PRECISION (TREE_TYPE (irhs2)))
	{
	  int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
	  int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
	  int out_prec = TYPE_PRECISION (out_type);
	  if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
	    irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), rhs2);
	  else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
	    irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), rhs1);
	  else
	    {
	      irhs1 = adjust_bool_pattern_cast (out_type, rhs1);
	      irhs2 = adjust_bool_pattern_cast (out_type, rhs2);
	    }
	}
      itype = TREE_TYPE (irhs1);
      pattern_stmt
	= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
			       rhs_code, irhs1, irhs2);
      break;

    default:
      gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
      if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
	  || !TYPE_UNSIGNED (TREE_TYPE (rhs1))
	  || (TYPE_PRECISION (TREE_TYPE (rhs1))
	      != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
	{
	  machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
	  itype
	    = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
	}
      else
	itype = TREE_TYPE (rhs1);
      cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
      if (trueval == NULL_TREE)
	trueval = build_int_cst (itype, 1);
      else
	gcc_checking_assert (useless_type_conversion_p (itype,
							TREE_TYPE (trueval)));
      pattern_stmt
	= gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
			       COND_EXPR, cond_expr, trueval,
			       build_int_cst (itype, 0));
      break;
    }

  stmts->safe_push (stmt);
  gimple_set_location (pattern_stmt, loc);
  STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
  return gimple_assign_lhs (pattern_stmt);
}


/* Function vect_recog_bool_pattern

   Try to find pattern like following:

     bool a_b, b_b, c_b, d_b, e_b;
     TYPE f_T;
   loop:
     S1  a_b = x1 CMP1 y1;
     S2  b_b = x2 CMP2 y2;
     S3  c_b = a_b & b_b;
     S4  d_b = x3 CMP3 y3;
     S5  e_b = c_b | d_b;
     S6  f_T = (TYPE) e_b;

   where type 'TYPE' is an integral type.  Or a similar pattern
   ending in

     S6  f_Y = e_b ? r_Y : s_Y;

   as results from if-conversion of a complex condition.

   Input:

   * LAST_STMT: A stmt at the end from which the pattern
		search begins, i.e. cast of a bool to
		an integer type.

   Output:

   * TYPE_IN: The type of the input arguments to the pattern.

   * TYPE_OUT: The type of the output of this pattern.

   * Return value: A new stmt that will be used to replace the pattern.

	Assuming size of TYPE is the same as size of all comparisons
	(otherwise some casts would be added where needed), the above
	sequence we create related pattern stmts:
	S1'  a_T = x1 CMP1 y1 ? 1 : 0;
	S3'  c_T = x2 CMP2 y2 ? a_T : 0;
	S4'  d_T = x3 CMP3 y3 ? 1 : 0;
	S5'  e_T = c_T | d_T;
	S6'  f_T = e_T;

	Instead of the above S3' we could emit:
	S2'  b_T = x2 CMP2 y2 ? 1 : 0;
	S3'  c_T = a_T | b_T;
	but the above is more efficient.  */

static gimple *
vect_recog_bool_pattern (vec<gimple *> *stmts, tree *type_in,
			 tree *type_out)
{
  gimple *last_stmt = stmts->pop ();
  enum tree_code rhs_code;
  tree var, lhs, rhs, vectype;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
  vec_info *vinfo = stmt_vinfo->vinfo;
  gimple *pattern_stmt;

  if (!is_gimple_assign (last_stmt))
    return NULL;

  var = gimple_assign_rhs1 (last_stmt);
  lhs = gimple_assign_lhs (last_stmt);

  if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
       || !TYPE_UNSIGNED (TREE_TYPE (var)))
      && TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
    return NULL;

  rhs_code = gimple_assign_rhs_code (last_stmt);
  if (CONVERT_EXPR_CODE_P (rhs_code))
    {
      if (TREE_CODE (TREE_TYPE (lhs)) != INTEGER_TYPE
	  || TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
	return NULL;
      vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
      if (vectype == NULL_TREE)
	return NULL;

      if (!check_bool_pattern (var, vinfo))
	return NULL;

      rhs = adjust_bool_pattern (var, TREE_TYPE (lhs), NULL_TREE, stmts);
      lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
      if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
	pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
      else
	pattern_stmt
	  = gimple_build_assign (lhs, NOP_EXPR, rhs);
      *type_out = vectype;
      *type_in = vectype;
      stmts->safe_push (last_stmt);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
                         "vect_recog_bool_pattern: detected:\n");

      return pattern_stmt;
    }
  else if (rhs_code == COND_EXPR
	   && TREE_CODE (var) == SSA_NAME)
    {
      vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
      if (vectype == NULL_TREE)
	return NULL;

      /* Build a scalar type for the boolean result that when
         vectorized matches the vector type of the result in
	 size and number of elements.  */
      unsigned prec
	= wi::udiv_trunc (TYPE_SIZE (vectype),
			  TYPE_VECTOR_SUBPARTS (vectype)).to_uhwi ();
      tree type
	= build_nonstandard_integer_type (prec,
					  TYPE_UNSIGNED (TREE_TYPE (var)));
      if (get_vectype_for_scalar_type (type) == NULL_TREE)
	return NULL;

      if (!check_bool_pattern (var, vinfo))
	return NULL;

      rhs = adjust_bool_pattern (var, type, NULL_TREE, stmts);
      lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
      pattern_stmt 
	  = gimple_build_assign (lhs, COND_EXPR,
				 build2 (NE_EXPR, boolean_type_node,
					 rhs, build_int_cst (type, 0)),
				 gimple_assign_rhs2 (last_stmt),
				 gimple_assign_rhs3 (last_stmt));
      *type_out = vectype;
      *type_in = vectype;
      stmts->safe_push (last_stmt);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
                         "vect_recog_bool_pattern: detected:\n");

      return pattern_stmt;
    }
  else if (rhs_code == SSA_NAME
	   && STMT_VINFO_DATA_REF (stmt_vinfo))
    {
      stmt_vec_info pattern_stmt_info;
      vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
      gcc_assert (vectype != NULL_TREE);
      if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
	return NULL;
      if (!check_bool_pattern (var, vinfo))
	return NULL;

      rhs = adjust_bool_pattern (var, TREE_TYPE (vectype), NULL_TREE, stmts);
      lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
      if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
	{
	  tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
	  gimple *cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
	  new_pattern_def_seq (stmt_vinfo, cast_stmt);
	  rhs = rhs2;
	}
      pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
      pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
      set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
      STMT_VINFO_DATA_REF (pattern_stmt_info)
	= STMT_VINFO_DATA_REF (stmt_vinfo);
      STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
	= STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
      STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
      STMT_VINFO_DR_OFFSET (pattern_stmt_info)
	= STMT_VINFO_DR_OFFSET (stmt_vinfo);
      STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
      STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
	= STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
      DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
      *type_out = vectype;
      *type_in = vectype;
      stmts->safe_push (last_stmt);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
                         "vect_recog_bool_pattern: detected:\n");
      return pattern_stmt;
    }
  else
    return NULL;
}


/* Mark statements that are involved in a pattern.  */

static inline void
vect_mark_pattern_stmts (gimple *orig_stmt, gimple *pattern_stmt,
                         tree pattern_vectype)
{
  stmt_vec_info pattern_stmt_info, def_stmt_info;
  stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
  vec_info *vinfo = orig_stmt_info->vinfo;
  gimple *def_stmt;

  pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
  if (pattern_stmt_info == NULL)
    {
      pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
      set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
    }
  gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt));

  STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt;
  STMT_VINFO_DEF_TYPE (pattern_stmt_info)
    = STMT_VINFO_DEF_TYPE (orig_stmt_info);
  STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
  STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
  STMT_VINFO_RELATED_STMT (orig_stmt_info) = pattern_stmt;
  STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info)
    = STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
  if (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info))
    {
      gimple_stmt_iterator si;
      for (si = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info));
	   !gsi_end_p (si); gsi_next (&si))
	{
	  def_stmt = gsi_stmt (si);
	  def_stmt_info = vinfo_for_stmt (def_stmt);
	  if (def_stmt_info == NULL)
	    {
	      def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
	      set_vinfo_for_stmt (def_stmt, def_stmt_info);
	    }
	  gimple_set_bb (def_stmt, gimple_bb (orig_stmt));
	  STMT_VINFO_RELATED_STMT (def_stmt_info) = orig_stmt;
	  STMT_VINFO_DEF_TYPE (def_stmt_info) = vect_internal_def;
	  if (STMT_VINFO_VECTYPE (def_stmt_info) == NULL_TREE)
	    STMT_VINFO_VECTYPE (def_stmt_info) = pattern_vectype;
	}
    }
}

/* Function vect_pattern_recog_1

   Input:
   PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
        computation pattern.
   STMT: A stmt from which the pattern search should start.

   If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
   expression that computes the same functionality and can be used to
   replace the sequence of stmts that are involved in the pattern.

   Output:
   This function checks if the expression returned by PATTERN_RECOG_FUNC is
   supported in vector form by the target.  We use 'TYPE_IN' to obtain the
   relevant vector type. If 'TYPE_IN' is already a vector type, then this
   indicates that target support had already been checked by PATTERN_RECOG_FUNC.
   If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
   to the available target pattern.

   This function also does some bookkeeping, as explained in the documentation
   for vect_recog_pattern.  */

static void
vect_pattern_recog_1 (vect_recog_func_ptr vect_recog_func,
		      gimple_stmt_iterator si,
		      vec<gimple *> *stmts_to_replace)
{
  gimple *stmt = gsi_stmt (si), *pattern_stmt;
  stmt_vec_info stmt_info;
  loop_vec_info loop_vinfo;
  tree pattern_vectype;
  tree type_in, type_out;
  enum tree_code code;
  int i;
  gimple *next;

  stmts_to_replace->truncate (0);
  stmts_to_replace->quick_push (stmt);
  pattern_stmt = (* vect_recog_func) (stmts_to_replace, &type_in, &type_out);
  if (!pattern_stmt)
    return;

  stmt = stmts_to_replace->last ();
  stmt_info = vinfo_for_stmt (stmt);
  loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
 
  if (VECTOR_MODE_P (TYPE_MODE (type_in)))
    {
      /* No need to check target support (already checked by the pattern
         recognition function).  */
      pattern_vectype = type_out ? type_out : type_in;
    }
  else
    {
      machine_mode vec_mode;
      enum insn_code icode;
      optab optab;

      /* Check target support  */
      type_in = get_vectype_for_scalar_type (type_in);
      if (!type_in)
	return;
      if (type_out)
	type_out = get_vectype_for_scalar_type (type_out);
      else
	type_out = type_in;
      if (!type_out)
	return;
      pattern_vectype = type_out;

      if (is_gimple_assign (pattern_stmt))
	code = gimple_assign_rhs_code (pattern_stmt);
      else
        {
	  gcc_assert (is_gimple_call (pattern_stmt));
	  code = CALL_EXPR;
	}

      optab = optab_for_tree_code (code, type_in, optab_default);
      vec_mode = TYPE_MODE (type_in);
      if (!optab
          || (icode = optab_handler (optab, vec_mode)) == CODE_FOR_nothing
          || (insn_data[icode].operand[0].mode != TYPE_MODE (type_out)))
	return;
    }

  /* Found a vectorizable pattern.  */
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
                       "pattern recognized: ");
      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
    }

  /* Mark the stmts that are involved in the pattern. */
  vect_mark_pattern_stmts (stmt, pattern_stmt, pattern_vectype);

  /* Patterns cannot be vectorized using SLP, because they change the order of
     computation.  */
  if (loop_vinfo)
    FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTIONS (loop_vinfo), i, next)
      if (next == stmt)
        LOOP_VINFO_REDUCTIONS (loop_vinfo).ordered_remove (i);

  /* It is possible that additional pattern stmts are created and inserted in
     STMTS_TO_REPLACE.  We create a stmt_info for each of them, and mark the
     relevant statements.  */
  for (i = 0; stmts_to_replace->iterate (i, &stmt)
	      && (unsigned) i < (stmts_to_replace->length () - 1);
       i++)
    {
      stmt_info = vinfo_for_stmt (stmt);
      pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
      if (dump_enabled_p ())
        {
          dump_printf_loc (MSG_NOTE, vect_location,
                           "additional pattern stmt: ");
          dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
        }

      vect_mark_pattern_stmts (stmt, pattern_stmt, NULL_TREE);
    }
}


/* Function vect_pattern_recog

   Input:
   LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
        computation idioms.

   Output - for each computation idiom that is detected we create a new stmt
        that provides the same functionality and that can be vectorized.  We
        also record some information in the struct_stmt_info of the relevant
        stmts, as explained below:

   At the entry to this function we have the following stmts, with the
   following initial value in the STMT_VINFO fields:

         stmt                     in_pattern_p  related_stmt    vec_stmt
         S1: a_i = ....                 -       -               -
         S2: a_2 = ..use(a_i)..         -       -               -
         S3: a_1 = ..use(a_2)..         -       -               -
         S4: a_0 = ..use(a_1)..         -       -               -
         S5: ... = ..use(a_0)..         -       -               -

   Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
   represented by a single stmt.  We then:
   - create a new stmt S6 equivalent to the pattern (the stmt is not
     inserted into the code)
   - fill in the STMT_VINFO fields as follows:

                                  in_pattern_p  related_stmt    vec_stmt
         S1: a_i = ....                 -       -               -
         S2: a_2 = ..use(a_i)..         -       -               -
         S3: a_1 = ..use(a_2)..         -       -               -
         S4: a_0 = ..use(a_1)..         true    S6              -
          '---> S6: a_new = ....        -       S4              -
         S5: ... = ..use(a_0)..         -       -               -

   (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
   to each other through the RELATED_STMT field).

   S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
   of S4 because it will replace all its uses.  Stmts {S1,S2,S3} will
   remain irrelevant unless used by stmts other than S4.

   If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
   (because they are marked as irrelevant).  It will vectorize S6, and record
   a pointer to the new vector stmt VS6 from S6 (as usual).
   S4 will be skipped, and S5 will be vectorized as usual:

                                  in_pattern_p  related_stmt    vec_stmt
         S1: a_i = ....                 -       -               -
         S2: a_2 = ..use(a_i)..         -       -               -
         S3: a_1 = ..use(a_2)..         -       -               -
       > VS6: va_new = ....             -       -               -
         S4: a_0 = ..use(a_1)..         true    S6              VS6
          '---> S6: a_new = ....        -       S4              VS6
       > VS5: ... = ..vuse(va_new)..    -       -               -
         S5: ... = ..use(a_0)..         -       -               -

   DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
   elsewhere), and we'll end up with:

        VS6: va_new = ....
        VS5: ... = ..vuse(va_new)..

   In case of more than one pattern statements, e.g., widen-mult with
   intermediate type:

     S1  a_t = ;
     S2  a_T = (TYPE) a_t;
           '--> S3: a_it = (interm_type) a_t;
     S4  prod_T = a_T * CONST;
           '--> S5: prod_T' = a_it w* CONST;

   there may be other users of a_T outside the pattern.  In that case S2 will
   be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
   and vectorized.  The vector stmt VS2 will be recorded in S2, and VS3 will
   be recorded in S3.  */

void
vect_pattern_recog (vec_info *vinfo)
{
  struct loop *loop;
  basic_block *bbs;
  unsigned int nbbs;
  gimple_stmt_iterator si;
  unsigned int i, j;
  vect_recog_func_ptr vect_recog_func;
  auto_vec<gimple *, 1> stmts_to_replace;
  gimple *stmt;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "=== vect_pattern_recog ===\n");

  if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
    {
      loop = LOOP_VINFO_LOOP (loop_vinfo);
      bbs = LOOP_VINFO_BBS (loop_vinfo);
      nbbs = loop->num_nodes;
    }
  else
    {
      bbs = &as_a <bb_vec_info> (vinfo)->bb;
      nbbs = 1;
    }

  /* Scan through the loop stmts, applying the pattern recognition
     functions starting at each stmt visited:  */
  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
        {
	  if (is_a <bb_vec_info> (vinfo)
	      && (stmt = gsi_stmt (si))
	      && vinfo_for_stmt (stmt)
	      && !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
	   continue;

          /* Scan over all generic vect_recog_xxx_pattern functions.  */
          for (j = 0; j < NUM_PATTERNS; j++)
            {
	      vect_recog_func = vect_vect_recog_func_ptrs[j];
	      vect_pattern_recog_1 (vect_recog_func, si,
				    &stmts_to_replace);
            }
        }
    }
}