summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-stmts.c
blob: 9ac733a76beba10c8bddda86bbd5cb0908f077b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
/* Statement Analysis and Transformation for Vectorization
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
   Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com> 
   and Ira Rosen <irar@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "recog.h"
#include "optabs.h"
#include "toplev.h"
#include "tree-vectorizer.h"
#include "langhooks.h"


/* Utility functions used by vect_mark_stmts_to_be_vectorized.  */

/* Function vect_mark_relevant.

   Mark STMT as "relevant for vectorization" and add it to WORKLIST.  */

static void
vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt,
		    enum vect_relevant relevant, bool live_p)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
  bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);

  if (STMT_VINFO_IN_PATTERN_P (stmt_info))
    {
      gimple pattern_stmt;

      /* This is the last stmt in a sequence that was detected as a 
         pattern that can potentially be vectorized.  Don't mark the stmt
         as relevant/live because it's not going to be vectorized.
         Instead mark the pattern-stmt that replaces it.  */

      pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);

      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
      stmt_info = vinfo_for_stmt (pattern_stmt);
      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
      save_relevant = STMT_VINFO_RELEVANT (stmt_info);
      save_live_p = STMT_VINFO_LIVE_P (stmt_info);
      stmt = pattern_stmt;
    }

  STMT_VINFO_LIVE_P (stmt_info) |= live_p;
  if (relevant > STMT_VINFO_RELEVANT (stmt_info))
    STMT_VINFO_RELEVANT (stmt_info) = relevant;

  if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
      && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "already marked relevant/live.");
      return;
    }

  VEC_safe_push (gimple, heap, *worklist, stmt);
}


/* Function vect_stmt_relevant_p.

   Return true if STMT in loop that is represented by LOOP_VINFO is
   "relevant for vectorization".

   A stmt is considered "relevant for vectorization" if:
   - it has uses outside the loop.
   - it has vdefs (it alters memory).
   - control stmts in the loop (except for the exit condition).

   CHECKME: what other side effects would the vectorizer allow?  */

static bool
vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
		      enum vect_relevant *relevant, bool *live_p)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  ssa_op_iter op_iter;
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  def_operand_p def_p;

  *relevant = vect_unused_in_scope;
  *live_p = false;

  /* cond stmt other than loop exit cond.  */
  if (is_ctrl_stmt (stmt) 
      && STMT_VINFO_TYPE (vinfo_for_stmt (stmt)) 
         != loop_exit_ctrl_vec_info_type) 
    *relevant = vect_used_in_scope;

  /* changing memory.  */
  if (gimple_code (stmt) != GIMPLE_PHI)
    if (gimple_vdef (stmt))
      {
	if (vect_print_dump_info (REPORT_DETAILS))
	  fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
	*relevant = vect_used_in_scope;
      }

  /* uses outside the loop.  */
  FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
    {
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
	{
	  basic_block bb = gimple_bb (USE_STMT (use_p));
	  if (!flow_bb_inside_loop_p (loop, bb))
	    {
	      if (vect_print_dump_info (REPORT_DETAILS))
		fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");

	      /* We expect all such uses to be in the loop exit phis
		 (because of loop closed form)   */
	      gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
	      gcc_assert (bb == single_exit (loop)->dest);

              *live_p = true;
	    }
	}
    }

  return (*live_p || *relevant);
}


/* Function exist_non_indexing_operands_for_use_p 

   USE is one of the uses attached to STMT. Check if USE is 
   used in STMT for anything other than indexing an array.  */

static bool
exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
{
  tree operand;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
 
  /* USE corresponds to some operand in STMT. If there is no data
     reference in STMT, then any operand that corresponds to USE
     is not indexing an array.  */
  if (!STMT_VINFO_DATA_REF (stmt_info))
    return true;
 
  /* STMT has a data_ref. FORNOW this means that its of one of
     the following forms:
     -1- ARRAY_REF = var
     -2- var = ARRAY_REF
     (This should have been verified in analyze_data_refs).

     'var' in the second case corresponds to a def, not a use,
     so USE cannot correspond to any operands that are not used 
     for array indexing.

     Therefore, all we need to check is if STMT falls into the
     first case, and whether var corresponds to USE.  */
 
  if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
    return false;

  if (!gimple_assign_copy_p (stmt))
    return false;
  operand = gimple_assign_rhs1 (stmt);

  if (TREE_CODE (operand) != SSA_NAME)
    return false;

  if (operand == use)
    return true;

  return false;
}


/* 
   Function process_use.

   Inputs:
   - a USE in STMT in a loop represented by LOOP_VINFO
   - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt 
     that defined USE. This is done by calling mark_relevant and passing it
     the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).

   Outputs:
   Generally, LIVE_P and RELEVANT are used to define the liveness and
   relevance info of the DEF_STMT of this USE:
       STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
       STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
   Exceptions:
   - case 1: If USE is used only for address computations (e.g. array indexing),
   which does not need to be directly vectorized, then the liveness/relevance 
   of the respective DEF_STMT is left unchanged.
   - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we 
   skip DEF_STMT cause it had already been processed.  
   - case 3: If DEF_STMT and STMT are in different nests, then  "relevant" will
   be modified accordingly.

   Return true if everything is as expected. Return false otherwise.  */

static bool
process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p, 
	     enum vect_relevant relevant, VEC(gimple,heap) **worklist)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  stmt_vec_info dstmt_vinfo;
  basic_block bb, def_bb;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt;

  /* case 1: we are only interested in uses that need to be vectorized.  Uses 
     that are used for address computation are not considered relevant.  */
  if (!exist_non_indexing_operands_for_use_p (use, stmt))
     return true;

  if (!vect_is_simple_use (use, loop_vinfo, NULL, &def_stmt, &def, &dt))
    { 
      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
        fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
      return false;
    }

  if (!def_stmt || gimple_nop_p (def_stmt))
    return true;

  def_bb = gimple_bb (def_stmt);
  if (!flow_bb_inside_loop_p (loop, def_bb))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "def_stmt is out of loop.");
      return true;
    }

  /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT). 
     DEF_STMT must have already been processed, because this should be the 
     only way that STMT, which is a reduction-phi, was put in the worklist, 
     as there should be no other uses for DEF_STMT in the loop.  So we just 
     check that everything is as expected, and we are done.  */
  dstmt_vinfo = vinfo_for_stmt (def_stmt);
  bb = gimple_bb (stmt);
  if (gimple_code (stmt) == GIMPLE_PHI
      && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
      && gimple_code (def_stmt) != GIMPLE_PHI
      && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
      && bb->loop_father == def_bb->loop_father)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest.");
      if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
	dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
      gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
      gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo) 
		  || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
      return true;
    }

  /* case 3a: outer-loop stmt defining an inner-loop stmt:
	outer-loop-header-bb:
		d = def_stmt
	inner-loop:
		stmt # use (d)
	outer-loop-tail-bb:
		...		  */
  if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt.");
      switch (relevant)
	{
	case vect_unused_in_scope:
	  relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def) ?
			vect_used_by_reduction : vect_unused_in_scope;
	  break;
	case vect_used_in_outer_by_reduction:
	  relevant = vect_used_by_reduction;
	  break;
	case vect_used_in_outer:
	  relevant = vect_used_in_scope;
	  break;
	case vect_used_by_reduction: 
	case vect_used_in_scope:
	  break;

	default:
	  gcc_unreachable ();
	}   
    }

  /* case 3b: inner-loop stmt defining an outer-loop stmt:
	outer-loop-header-bb:
		...
	inner-loop:
		d = def_stmt
	outer-loop-tail-bb:
		stmt # use (d)		*/
  else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt.");
      switch (relevant)
        {
        case vect_unused_in_scope:
          relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def) ?
                      vect_used_in_outer_by_reduction : vect_unused_in_scope;
          break;

        case vect_used_in_outer_by_reduction:
        case vect_used_in_outer:
          break;

        case vect_used_by_reduction:
          relevant = vect_used_in_outer_by_reduction;
          break;

        case vect_used_in_scope:
          relevant = vect_used_in_outer;
          break;

        default:
          gcc_unreachable ();
        }
    }

  vect_mark_relevant (worklist, def_stmt, relevant, live_p);
  return true;
}


/* Function vect_mark_stmts_to_be_vectorized.

   Not all stmts in the loop need to be vectorized. For example:

     for i...
       for j...
   1.    T0 = i + j
   2.	 T1 = a[T0]

   3.    j = j + 1

   Stmt 1 and 3 do not need to be vectorized, because loop control and
   addressing of vectorized data-refs are handled differently.

   This pass detects such stmts.  */

bool
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
{
  VEC(gimple,heap) *worklist;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  unsigned int nbbs = loop->num_nodes;
  gimple_stmt_iterator si;
  gimple stmt;
  unsigned int i;
  stmt_vec_info stmt_vinfo;
  basic_block bb;
  gimple phi;
  bool live_p;
  enum vect_relevant relevant;

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");

  worklist = VEC_alloc (gimple, heap, 64);

  /* 1. Init worklist.  */
  for (i = 0; i < nbbs; i++)
    {
      bb = bbs[i];
      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	{ 
	  phi = gsi_stmt (si);
	  if (vect_print_dump_info (REPORT_DETAILS))
	    {
	      fprintf (vect_dump, "init: phi relevant? ");
	      print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
	    }

	  if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
	    vect_mark_relevant (&worklist, phi, relevant, live_p);
	}
      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  stmt = gsi_stmt (si);
	  if (vect_print_dump_info (REPORT_DETAILS))
	    {
	      fprintf (vect_dump, "init: stmt relevant? ");
	      print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
	    } 

	  if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
            vect_mark_relevant (&worklist, stmt, relevant, live_p);
	}
    }

  /* 2. Process_worklist */
  while (VEC_length (gimple, worklist) > 0)
    {
      use_operand_p use_p;
      ssa_op_iter iter;

      stmt = VEC_pop (gimple, worklist);
      if (vect_print_dump_info (REPORT_DETAILS))
	{
          fprintf (vect_dump, "worklist: examine stmt: ");
          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
	}

      /* Examine the USEs of STMT. For each USE, mark the stmt that defines it 
	 (DEF_STMT) as relevant/irrelevant and live/dead according to the 
	 liveness and relevance properties of STMT.  */
      stmt_vinfo = vinfo_for_stmt (stmt);
      relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
      live_p = STMT_VINFO_LIVE_P (stmt_vinfo);

      /* Generally, the liveness and relevance properties of STMT are
	 propagated as is to the DEF_STMTs of its USEs:
	  live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
	  relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)

	 One exception is when STMT has been identified as defining a reduction
	 variable; in this case we set the liveness/relevance as follows:
	   live_p = false
	   relevant = vect_used_by_reduction
	 This is because we distinguish between two kinds of relevant stmts -
	 those that are used by a reduction computation, and those that are 
	 (also) used by a regular computation. This allows us later on to 
	 identify stmts that are used solely by a reduction, and therefore the 
	 order of the results that they produce does not have to be kept.

	 Reduction phis are expected to be used by a reduction stmt, or by
	 in an outer loop;  Other reduction stmts are expected to be
	 in the loop, and possibly used by a stmt in an outer loop. 
	 Here are the expected values of "relevant" for reduction phis/stmts:

	 relevance:				phi	stmt
	 vect_unused_in_scope				ok
	 vect_used_in_outer_by_reduction	ok	ok
	 vect_used_in_outer			ok	ok
	 vect_used_by_reduction			ok
	 vect_used_in_scope				              */

      if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def)
        {
	  enum vect_relevant tmp_relevant = relevant;
	  switch (tmp_relevant)
	    {
	    case vect_unused_in_scope:
	      gcc_assert (gimple_code (stmt) != GIMPLE_PHI);
	      relevant = vect_used_by_reduction;
	      break;

	    case vect_used_in_outer_by_reduction:
	    case vect_used_in_outer:
	      gcc_assert (gimple_code (stmt) != GIMPLE_ASSIGN
                          || (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR
                              && (gimple_assign_rhs_code (stmt)
                                  != DOT_PROD_EXPR)));
	      break;

	    case vect_used_by_reduction:
	      if (gimple_code (stmt) == GIMPLE_PHI)
		break;
	      /* fall through */
	    case vect_used_in_scope:
	    default:
	      if (vect_print_dump_info (REPORT_DETAILS))
	        fprintf (vect_dump, "unsupported use of reduction.");
	      VEC_free (gimple, heap, worklist);
	      return false;
	    }
	  live_p = false;	
	}

      FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
	{
	  tree op = USE_FROM_PTR (use_p);
	  if (!process_use (stmt, op, loop_vinfo, live_p, relevant, &worklist))
	    {
	      VEC_free (gimple, heap, worklist);
	      return false;
	    }
	}
    } /* while worklist */

  VEC_free (gimple, heap, worklist);
  return true;
}


int
cost_for_stmt (gimple stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);

  switch (STMT_VINFO_TYPE (stmt_info))
  {
  case load_vec_info_type:
    return TARG_SCALAR_LOAD_COST;
  case store_vec_info_type:
    return TARG_SCALAR_STORE_COST;
  case op_vec_info_type:
  case condition_vec_info_type:
  case assignment_vec_info_type:
  case reduc_vec_info_type:
  case induc_vec_info_type:
  case type_promotion_vec_info_type:
  case type_demotion_vec_info_type:
  case type_conversion_vec_info_type:
  case call_vec_info_type:
    return TARG_SCALAR_STMT_COST;
  case undef_vec_info_type:
  default:
    gcc_unreachable ();
  }
}

/* Function vect_model_simple_cost.  

   Models cost for simple operations, i.e. those that only emit ncopies of a 
   single op.  Right now, this does not account for multiple insns that could
   be generated for the single vector op.  We will handle that shortly.  */

void
vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies, 
			enum vect_def_type *dt, slp_tree slp_node)
{
  int i;
  int inside_cost = 0, outside_cost = 0;

  /* The SLP costs were already calculated during SLP tree build.  */
  if (PURE_SLP_STMT (stmt_info))
    return;

  inside_cost = ncopies * TARG_VEC_STMT_COST;

  /* FORNOW: Assuming maximum 2 args per stmts.  */
  for (i = 0; i < 2; i++)
    {
      if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
	outside_cost += TARG_SCALAR_TO_VEC_COST; 
    }
  
  if (vect_print_dump_info (REPORT_COST))
    fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
             "outside_cost = %d .", inside_cost, outside_cost);

  /* Set the costs either in STMT_INFO or SLP_NODE (if exists).  */
  stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
  stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
}


/* Function vect_cost_strided_group_size 
 
   For strided load or store, return the group_size only if it is the first
   load or store of a group, else return 1.  This ensures that group size is
   only returned once per group.  */

static int
vect_cost_strided_group_size (stmt_vec_info stmt_info)
{
  gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);

  if (first_stmt == STMT_VINFO_STMT (stmt_info))
    return DR_GROUP_SIZE (stmt_info);

  return 1;
}


/* Function vect_model_store_cost

   Models cost for stores.  In the case of strided accesses, one access
   has the overhead of the strided access attributed to it.  */

void
vect_model_store_cost (stmt_vec_info stmt_info, int ncopies, 
		       enum vect_def_type dt, slp_tree slp_node)
{
  int group_size;
  int inside_cost = 0, outside_cost = 0;

  /* The SLP costs were already calculated during SLP tree build.  */
  if (PURE_SLP_STMT (stmt_info))
    return;

  if (dt == vect_constant_def || dt == vect_external_def)
    outside_cost = TARG_SCALAR_TO_VEC_COST;

  /* Strided access?  */
  if (DR_GROUP_FIRST_DR (stmt_info) && !slp_node) 
    group_size = vect_cost_strided_group_size (stmt_info);
  /* Not a strided access.  */
  else
    group_size = 1;

  /* Is this an access in a group of stores, which provide strided access?  
     If so, add in the cost of the permutes.  */
  if (group_size > 1) 
    {
      /* Uses a high and low interleave operation for each needed permute.  */
      inside_cost = ncopies * exact_log2(group_size) * group_size 
             * TARG_VEC_STMT_COST;

      if (vect_print_dump_info (REPORT_COST))
        fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
                 group_size);

    }

  /* Costs of the stores.  */
  inside_cost += ncopies * TARG_VEC_STORE_COST;

  if (vect_print_dump_info (REPORT_COST))
    fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
             "outside_cost = %d .", inside_cost, outside_cost);

  /* Set the costs either in STMT_INFO or SLP_NODE (if exists).  */
  stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
  stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
}


/* Function vect_model_load_cost

   Models cost for loads.  In the case of strided accesses, the last access
   has the overhead of the strided access attributed to it.  Since unaligned
   accesses are supported for loads, we also account for the costs of the 
   access scheme chosen.  */

void
vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, slp_tree slp_node)
		 
{
  int group_size;
  int alignment_support_cheme;
  gimple first_stmt;
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
  int inside_cost = 0, outside_cost = 0;

  /* The SLP costs were already calculated during SLP tree build.  */
  if (PURE_SLP_STMT (stmt_info))
    return;

  /* Strided accesses?  */
  first_stmt = DR_GROUP_FIRST_DR (stmt_info);
  if (first_stmt && !slp_node)
    {
      group_size = vect_cost_strided_group_size (stmt_info);
      first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
    }
  /* Not a strided access.  */
  else
    {
      group_size = 1;
      first_dr = dr;
    }

  alignment_support_cheme = vect_supportable_dr_alignment (first_dr);

  /* Is this an access in a group of loads providing strided access?  
     If so, add in the cost of the permutes.  */
  if (group_size > 1) 
    {
      /* Uses an even and odd extract operations for each needed permute.  */
      inside_cost = ncopies * exact_log2(group_size) * group_size
	* TARG_VEC_STMT_COST;

      if (vect_print_dump_info (REPORT_COST))
        fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
                 group_size);

    }

  /* The loads themselves.  */
  switch (alignment_support_cheme)
    {
    case dr_aligned:
      {
        inside_cost += ncopies * TARG_VEC_LOAD_COST;

        if (vect_print_dump_info (REPORT_COST))
          fprintf (vect_dump, "vect_model_load_cost: aligned.");

        break;
      }
    case dr_unaligned_supported:
      {
        /* Here, we assign an additional cost for the unaligned load.  */
        inside_cost += ncopies * TARG_VEC_UNALIGNED_LOAD_COST;

        if (vect_print_dump_info (REPORT_COST))
          fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
                   "hardware.");

        break;
      }
    case dr_explicit_realign:
      {
        inside_cost += ncopies * (2*TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);

        /* FIXME: If the misalignment remains fixed across the iterations of
           the containing loop, the following cost should be added to the
           outside costs.  */
        if (targetm.vectorize.builtin_mask_for_load)
          inside_cost += TARG_VEC_STMT_COST;

        break;
      }
    case dr_explicit_realign_optimized:
      {
        if (vect_print_dump_info (REPORT_COST))
          fprintf (vect_dump, "vect_model_load_cost: unaligned software "
                   "pipelined.");

        /* Unaligned software pipeline has a load of an address, an initial
           load, and possibly a mask operation to "prime" the loop. However,
           if this is an access in a group of loads, which provide strided
           access, then the above cost should only be considered for one
           access in the group. Inside the loop, there is a load op
           and a realignment op.  */

        if ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1 || slp_node)
          {
            outside_cost = 2*TARG_VEC_STMT_COST;
            if (targetm.vectorize.builtin_mask_for_load)
              outside_cost += TARG_VEC_STMT_COST;
          }

        inside_cost += ncopies * (TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);

        break;
      }

    default:
      gcc_unreachable ();
    }
  
  if (vect_print_dump_info (REPORT_COST))
    fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
             "outside_cost = %d .", inside_cost, outside_cost);

  /* Set the costs either in STMT_INFO or SLP_NODE (if exists).  */
  stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
  stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
}


/* Function vect_init_vector.

   Insert a new stmt (INIT_STMT) that initializes a new vector variable with
   the vector elements of VECTOR_VAR. Place the initialization at BSI if it
   is not NULL. Otherwise, place the initialization at the loop preheader.
   Return the DEF of INIT_STMT. 
   It will be used in the vectorization of STMT.  */

tree
vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
		  gimple_stmt_iterator *gsi)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree new_var;
  gimple init_stmt;
  tree vec_oprnd;
  edge pe;
  tree new_temp;
  basic_block new_bb;
 
  new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
  add_referenced_var (new_var); 
  init_stmt = gimple_build_assign  (new_var, vector_var);
  new_temp = make_ssa_name (new_var, init_stmt);
  gimple_assign_set_lhs (init_stmt, new_temp);

  if (gsi)
    vect_finish_stmt_generation (stmt, init_stmt, gsi);
  else
    {
      loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
      
      if (loop_vinfo)
        {
          struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

          if (nested_in_vect_loop_p (loop, stmt))
            loop = loop->inner;
          
	  pe = loop_preheader_edge (loop);
          new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
          gcc_assert (!new_bb);
	}
      else
       {
          bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
          basic_block bb;
          gimple_stmt_iterator gsi_bb_start;

          gcc_assert (bb_vinfo);
          bb = BB_VINFO_BB (bb_vinfo);
          gsi_bb_start = gsi_start_bb (bb);
          gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT);
       }
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "created new init_stmt: ");
      print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
    }

  vec_oprnd = gimple_assign_lhs (init_stmt);
  return vec_oprnd;
}


/* Function vect_get_vec_def_for_operand.

   OP is an operand in STMT. This function returns a (vector) def that will be
   used in the vectorized stmt for STMT.

   In the case that OP is an SSA_NAME which is defined in the loop, then
   STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.

   In case OP is an invariant or constant, a new stmt that creates a vector def
   needs to be introduced.  */

tree
vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
{
  tree vec_oprnd;
  gimple vec_stmt;
  gimple def_stmt;
  stmt_vec_info def_stmt_info = NULL;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  tree vec_inv;
  tree vec_cst;
  tree t = NULL_TREE;
  tree def;
  int i;
  enum vect_def_type dt;
  bool is_simple_use;
  tree vector_type;

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
      print_generic_expr (vect_dump, op, TDF_SLIM);
    }

  is_simple_use = vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, 
                                      &dt);
  gcc_assert (is_simple_use);
  if (vect_print_dump_info (REPORT_DETAILS))
    {
      if (def)
        {
          fprintf (vect_dump, "def =  ");
          print_generic_expr (vect_dump, def, TDF_SLIM);
        }
      if (def_stmt)
        {
          fprintf (vect_dump, "  def_stmt =  ");
	  print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
        }
    }

  switch (dt)
    {
    /* Case 1: operand is a constant.  */
    case vect_constant_def:
      {
	vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
	gcc_assert (vector_type);

	if (scalar_def) 
	  *scalar_def = op;

        /* Create 'vect_cst_ = {cst,cst,...,cst}'  */
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);

        for (i = nunits - 1; i >= 0; --i)
          {
            t = tree_cons (NULL_TREE, op, t);
          }
        vec_cst = build_vector (vector_type, t);
        return vect_init_vector (stmt, vec_cst, vector_type, NULL);
      }

    /* Case 2: operand is defined outside the loop - loop invariant.  */
    case vect_external_def:
      {
	vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
	gcc_assert (vector_type);
	nunits = TYPE_VECTOR_SUBPARTS (vector_type);

	if (scalar_def) 
	  *scalar_def = def;

        /* Create 'vec_inv = {inv,inv,..,inv}'  */
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "Create vector_inv.");

        for (i = nunits - 1; i >= 0; --i)
          {
            t = tree_cons (NULL_TREE, def, t);
          }

	/* FIXME: use build_constructor directly.  */
        vec_inv = build_constructor_from_list (vector_type, t);
        return vect_init_vector (stmt, vec_inv, vector_type, NULL);
      }

    /* Case 3: operand is defined inside the loop.  */
    case vect_internal_def:
      {
	if (scalar_def) 
	  *scalar_def = NULL/* FIXME tuples: def_stmt*/;

        /* Get the def from the vectorized stmt.  */
        def_stmt_info = vinfo_for_stmt (def_stmt);
        vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
        gcc_assert (vec_stmt);
	if (gimple_code (vec_stmt) == GIMPLE_PHI)
	  vec_oprnd = PHI_RESULT (vec_stmt);
	else if (is_gimple_call (vec_stmt))
	  vec_oprnd = gimple_call_lhs (vec_stmt);
	else
	  vec_oprnd = gimple_assign_lhs (vec_stmt);
        return vec_oprnd;
      }

    /* Case 4: operand is defined by a loop header phi - reduction  */
    case vect_reduction_def:
      {
	struct loop *loop;

	gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
	loop = (gimple_bb (def_stmt))->loop_father; 

        /* Get the def before the loop  */
        op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
        return get_initial_def_for_reduction (stmt, op, scalar_def);
     }

    /* Case 5: operand is defined by loop-header phi - induction.  */
    case vect_induction_def:
      {
	gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);

        /* Get the def from the vectorized stmt.  */
        def_stmt_info = vinfo_for_stmt (def_stmt);
        vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
	gcc_assert (vec_stmt && gimple_code (vec_stmt) == GIMPLE_PHI);
        vec_oprnd = PHI_RESULT (vec_stmt);
        return vec_oprnd;
      }

    default:
      gcc_unreachable ();
    }
}


/* Function vect_get_vec_def_for_stmt_copy

   Return a vector-def for an operand. This function is used when the 
   vectorized stmt to be created (by the caller to this function) is a "copy" 
   created in case the vectorized result cannot fit in one vector, and several 
   copies of the vector-stmt are required. In this case the vector-def is 
   retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
   of the stmt that defines VEC_OPRND. 
   DT is the type of the vector def VEC_OPRND.

   Context:
        In case the vectorization factor (VF) is bigger than the number
   of elements that can fit in a vectype (nunits), we have to generate
   more than one vector stmt to vectorize the scalar stmt. This situation
   arises when there are multiple data-types operated upon in the loop; the 
   smallest data-type determines the VF, and as a result, when vectorizing
   stmts operating on wider types we need to create 'VF/nunits' "copies" of the
   vector stmt (each computing a vector of 'nunits' results, and together
   computing 'VF' results in each iteration).  This function is called when 
   vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
   which VF=16 and nunits=4, so the number of copies required is 4):

   scalar stmt:         vectorized into:        STMT_VINFO_RELATED_STMT
 
   S1: x = load         VS1.0:  vx.0 = memref0      VS1.1
                        VS1.1:  vx.1 = memref1      VS1.2
                        VS1.2:  vx.2 = memref2      VS1.3
                        VS1.3:  vx.3 = memref3 

   S2: z = x + ...      VSnew.0:  vz0 = vx.0 + ...  VSnew.1
                        VSnew.1:  vz1 = vx.1 + ...  VSnew.2
                        VSnew.2:  vz2 = vx.2 + ...  VSnew.3
                        VSnew.3:  vz3 = vx.3 + ...

   The vectorization of S1 is explained in vectorizable_load.
   The vectorization of S2:
        To create the first vector-stmt out of the 4 copies - VSnew.0 - 
   the function 'vect_get_vec_def_for_operand' is called to 
   get the relevant vector-def for each operand of S2. For operand x it
   returns  the vector-def 'vx.0'.

        To create the remaining copies of the vector-stmt (VSnew.j), this 
   function is called to get the relevant vector-def for each operand.  It is 
   obtained from the respective VS1.j stmt, which is recorded in the 
   STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.

        For example, to obtain the vector-def 'vx.1' in order to create the 
   vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'. 
   Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the 
   STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
   and return its def ('vx.1').
   Overall, to create the above sequence this function will be called 3 times:
        vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
        vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
        vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2);  */

tree
vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
{
  gimple vec_stmt_for_operand;
  stmt_vec_info def_stmt_info;

  /* Do nothing; can reuse same def.  */
  if (dt == vect_external_def || dt == vect_constant_def )
    return vec_oprnd;

  vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
  def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
  gcc_assert (def_stmt_info);
  vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
  gcc_assert (vec_stmt_for_operand);
  vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
  if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
    vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
  else
    vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
  return vec_oprnd;
}


/* Get vectorized definitions for the operands to create a copy of an original
   stmt. See vect_get_vec_def_for_stmt_copy() for details.  */

static void
vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt, 
				 VEC(tree,heap) **vec_oprnds0, 
				 VEC(tree,heap) **vec_oprnds1)
{
  tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);

  vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
  VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);

  if (vec_oprnds1 && *vec_oprnds1)
    {
      vec_oprnd = VEC_pop (tree, *vec_oprnds1);
      vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
      VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
    }
}


/* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not NULL.  */

static void
vect_get_vec_defs (tree op0, tree op1, gimple stmt,
		   VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1,
		   slp_tree slp_node)
{
  if (slp_node)
    vect_get_slp_defs (slp_node, vec_oprnds0, vec_oprnds1);
  else
    {
      tree vec_oprnd;

      *vec_oprnds0 = VEC_alloc (tree, heap, 1);	
      vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);      
      VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);

      if (op1)
	{
	  *vec_oprnds1 = VEC_alloc (tree, heap, 1);	
	  vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);      
	  VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
	}
    }
}


/* Function vect_finish_stmt_generation.

   Insert a new stmt.  */

void
vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
			     gimple_stmt_iterator *gsi)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);

  gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);

  gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);

  set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo, 
                                                   bb_vinfo));

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "add new stmt: ");
      print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
    }

  gimple_set_location (vec_stmt, gimple_location (gsi_stmt (*gsi)));
}

/* Checks if CALL can be vectorized in type VECTYPE.  Returns
   a function declaration if the target has a vectorized version
   of the function, or NULL_TREE if the function cannot be vectorized.  */

tree
vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
{
  tree fndecl = gimple_call_fndecl (call);
  enum built_in_function code;

  /* We only handle functions that do not read or clobber memory -- i.e.
     const or novops ones.  */
  if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
    return NULL_TREE;

  if (!fndecl
      || TREE_CODE (fndecl) != FUNCTION_DECL
      || !DECL_BUILT_IN (fndecl))
    return NULL_TREE;

  code = DECL_FUNCTION_CODE (fndecl);
  return targetm.vectorize.builtin_vectorized_function (code, vectype_out,
						        vectype_in);
}

/* Function vectorizable_call.

   Check if STMT performs a function call that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt)
{
  tree vec_dest;
  tree scalar_dest;
  tree op, type;
  tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
  tree vectype_out, vectype_in;
  int nunits_in;
  int nunits_out;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  tree fndecl, new_temp, def, rhs_type, lhs_type;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  gimple new_stmt;
  int ncopies, j;
  VEC(tree, heap) *vargs = NULL;
  enum { NARROW, NONE, WIDEN } modifier;
  size_t i, nargs;

  /* FORNOW: unsupported in basic block SLP.  */
  gcc_assert (loop_vinfo);
    
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* FORNOW: SLP not supported.  */
  if (STMT_SLP_TYPE (stmt_info))
    return false;

  /* Is STMT a vectorizable call?   */
  if (!is_gimple_call (stmt))
    return false;

  if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
    return false;

  /* Process function arguments.  */
  rhs_type = NULL_TREE;
  nargs = gimple_call_num_args (stmt);

  /* Bail out if the function has more than two arguments, we
     do not have interesting builtin functions to vectorize with
     more than two arguments.  No arguments is also not good.  */
  if (nargs == 0 || nargs > 2)
    return false;

  for (i = 0; i < nargs; i++)
    {
      op = gimple_call_arg (stmt, i);

      /* We can only handle calls with arguments of the same type.  */
      if (rhs_type
	  && rhs_type != TREE_TYPE (op))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "argument types differ.");
	  return false;
	}
      rhs_type = TREE_TYPE (op);

      if (!vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt[i]))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "use not simple.");
	  return false;
	}
    }

  vectype_in = get_vectype_for_scalar_type (rhs_type);
  if (!vectype_in)
    return false;
  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);

  lhs_type = TREE_TYPE (gimple_call_lhs (stmt));
  vectype_out = get_vectype_for_scalar_type (lhs_type);
  if (!vectype_out)
    return false;
  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);

  /* FORNOW */
  if (nunits_in == nunits_out / 2)
    modifier = NARROW;
  else if (nunits_out == nunits_in)
    modifier = NONE;
  else if (nunits_out == nunits_in / 2)
    modifier = WIDEN;
  else
    return false;

  /* For now, we only vectorize functions if a target specific builtin
     is available.  TODO -- in some cases, it might be profitable to
     insert the calls for pieces of the vector, in order to be able
     to vectorize other operations in the loop.  */
  fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
  if (fndecl == NULL_TREE)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "function is not vectorizable.");

      return false;
    }

  gcc_assert (!gimple_vuse (stmt));

  if (modifier == NARROW)
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;

  /* Sanity check: make sure that at least one copy of the vectorized stmt
     needs to be generated.  */
  gcc_assert (ncopies >= 1);

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "=== vectorizable_call ===");
      vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform operation.");

  /* Handle def.  */
  scalar_dest = gimple_call_lhs (stmt);
  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);

  prev_stmt_info = NULL;
  switch (modifier)
    {
    case NONE:
      for (j = 0; j < ncopies; ++j)
	{
	  /* Build argument list for the vectorized call.  */
	  if (j == 0)
	    vargs = VEC_alloc (tree, heap, nargs);
	  else
	    VEC_truncate (tree, vargs, 0);

	  for (i = 0; i < nargs; i++)
	    {
	      op = gimple_call_arg (stmt, i);
	      if (j == 0)
		vec_oprnd0
		  = vect_get_vec_def_for_operand (op, stmt, NULL);
	      else
		vec_oprnd0
		  = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);

	      VEC_quick_push (tree, vargs, vec_oprnd0);
	    }

	  new_stmt = gimple_build_call_vec (fndecl, vargs);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  gimple_call_set_lhs (new_stmt, new_temp);

	  vect_finish_stmt_generation (stmt, new_stmt, gsi);

	  if (j == 0)
	    STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
	  else
	    STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;

	  prev_stmt_info = vinfo_for_stmt (new_stmt);
	}

      break;

    case NARROW:
      for (j = 0; j < ncopies; ++j)
	{
	  /* Build argument list for the vectorized call.  */
	  if (j == 0)
	    vargs = VEC_alloc (tree, heap, nargs * 2);
	  else
	    VEC_truncate (tree, vargs, 0);

	  for (i = 0; i < nargs; i++)
	    {
	      op = gimple_call_arg (stmt, i);
	      if (j == 0)
		{
		  vec_oprnd0
		    = vect_get_vec_def_for_operand (op, stmt, NULL);
		  vec_oprnd1
		    = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
		}
	      else
		{
		  vec_oprnd0
		    = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd1);
		  vec_oprnd1
		    = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
		}

	      VEC_quick_push (tree, vargs, vec_oprnd0);
	      VEC_quick_push (tree, vargs, vec_oprnd1);
	    }

	  new_stmt = gimple_build_call_vec (fndecl, vargs);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  gimple_call_set_lhs (new_stmt, new_temp);

	  vect_finish_stmt_generation (stmt, new_stmt, gsi);

	  if (j == 0)
	    STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
	  else
	    STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;

	  prev_stmt_info = vinfo_for_stmt (new_stmt);
	}

      *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);

      break;

    case WIDEN:
      /* No current target implements this case.  */
      return false;
    }

  VEC_free (tree, heap, vargs);

  /* Update the exception handling table with the vector stmt if necessary.  */
  if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
    gimple_purge_dead_eh_edges (gimple_bb (stmt));

  /* The call in STMT might prevent it from being removed in dce.
     We however cannot remove it here, due to the way the ssa name
     it defines is mapped to the new definition.  So just replace
     rhs of the statement with something harmless.  */

  type = TREE_TYPE (scalar_dest);
  new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
				  fold_convert (type, integer_zero_node));
  set_vinfo_for_stmt (new_stmt, stmt_info);
  set_vinfo_for_stmt (stmt, NULL);
  STMT_VINFO_STMT (stmt_info) = new_stmt;
  gsi_replace (gsi, new_stmt, false);
  SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;

  return true;
}


/* Function vect_gen_widened_results_half

   Create a vector stmt whose code, type, number of arguments, and result
   variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are 
   VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
   In the case that CODE is a CALL_EXPR, this means that a call to DECL
   needs to be created (DECL is a function-decl of a target-builtin).
   STMT is the original scalar stmt that we are vectorizing.  */

static gimple
vect_gen_widened_results_half (enum tree_code code,
			       tree decl,
                               tree vec_oprnd0, tree vec_oprnd1, int op_type,
			       tree vec_dest, gimple_stmt_iterator *gsi,
			       gimple stmt)
{ 
  gimple new_stmt;
  tree new_temp; 
 
  /* Generate half of the widened result:  */ 
  if (code == CALL_EXPR) 
    {  
      /* Target specific support  */ 
      if (op_type == binary_op)
	new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
      else
	new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      gimple_call_set_lhs (new_stmt, new_temp);
    } 
  else 
    {
      /* Generic support */ 
      gcc_assert (op_type == TREE_CODE_LENGTH (code)); 
      if (op_type != binary_op)
	vec_oprnd1 = NULL;
      new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
					       vec_oprnd1);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      gimple_assign_set_lhs (new_stmt, new_temp);
    } 
  vect_finish_stmt_generation (stmt, new_stmt, gsi);

  return new_stmt;
}


/* Check if STMT performs a conversion operation, that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
			 gimple *vec_stmt, slp_tree slp_node)
{
  tree vec_dest;
  tree scalar_dest;
  tree op0;
  tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
  tree decl1 = NULL_TREE, decl2 = NULL_TREE;
  tree new_temp;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  gimple new_stmt = NULL;
  stmt_vec_info prev_stmt_info;
  int nunits_in;
  int nunits_out;
  tree vectype_out, vectype_in;
  int ncopies, j;
  tree expr;
  tree rhs_type, lhs_type;
  tree builtin_decl;
  enum { NARROW, NONE, WIDEN } modifier;
  int i;
  VEC(tree,heap) *vec_oprnds0 = NULL;
  tree vop0;
  tree integral_type;
  VEC(tree,heap) *dummy = NULL;
  int dummy_int;

  /* Is STMT a vectorizable conversion?   */

  /* FORNOW: unsupported in basic block SLP.  */
  gcc_assert (loop_vinfo);
  
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  if (!is_gimple_assign (stmt))
    return false;

  if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
    return false;

  /* Check types of lhs and rhs.  */
  op0 = gimple_assign_rhs1 (stmt);
  rhs_type = TREE_TYPE (op0);
  vectype_in = get_vectype_for_scalar_type (rhs_type);
  if (!vectype_in)
    return false;
  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);

  scalar_dest = gimple_assign_lhs (stmt);
  lhs_type = TREE_TYPE (scalar_dest);
  vectype_out = get_vectype_for_scalar_type (lhs_type);
  if (!vectype_out)
    return false;
  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);

  /* FORNOW */
  if (nunits_in == nunits_out / 2)
    modifier = NARROW;
  else if (nunits_out == nunits_in)
    modifier = NONE;
  else if (nunits_out == nunits_in / 2)
    modifier = WIDEN;
  else
    return false;

  if (modifier == NONE)
    gcc_assert (STMT_VINFO_VECTYPE (stmt_info) == vectype_out);

  /* Bail out if the types are both integral or non-integral.  */
  if ((INTEGRAL_TYPE_P (rhs_type) && INTEGRAL_TYPE_P (lhs_type))
      || (!INTEGRAL_TYPE_P (rhs_type) && !INTEGRAL_TYPE_P (lhs_type)))
    return false;

  integral_type = INTEGRAL_TYPE_P (rhs_type) ? vectype_in : vectype_out;

  if (modifier == NARROW)
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;

  /* FORNOW: SLP with multiple types is not supported. The SLP analysis verifies
     this, so we can safely override NCOPIES with 1 here.  */
  if (slp_node)
    ncopies = 1;
  
  /* Sanity check: make sure that at least one copy of the vectorized stmt
     needs to be generated.  */
  gcc_assert (ncopies >= 1);

  /* Check the operands of the operation.  */
  if (!vect_is_simple_use (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0]))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "use not simple.");
      return false;
    }

  /* Supportable by target?  */
  if ((modifier == NONE
       && !targetm.vectorize.builtin_conversion (code, integral_type))
      || (modifier == WIDEN
	  && !supportable_widening_operation (code, stmt, vectype_in,
					      &decl1, &decl2,
					      &code1, &code2,
                                              &dummy_int, &dummy))
      || (modifier == NARROW
	  && !supportable_narrowing_operation (code, stmt, vectype_in,
					       &code1, &dummy_int, &dummy)))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "conversion not supported by target.");
      return false;
    }

  if (modifier != NONE)
    {
      STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
      /* FORNOW: SLP not supported.  */
      if (STMT_SLP_TYPE (stmt_info))
	return false;      
    }

  if (!vec_stmt)		/* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
      return true;
    }

  /** Transform.  **/
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform conversion.");

  /* Handle def.  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);

  if (modifier == NONE && !slp_node)
    vec_oprnds0 = VEC_alloc (tree, heap, 1);

  prev_stmt_info = NULL;
  switch (modifier)
    {
    case NONE:
      for (j = 0; j < ncopies; j++)
	{
	  if (j == 0)
	    vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node); 
	  else
	    vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);

	  builtin_decl =
	    targetm.vectorize.builtin_conversion (code, integral_type);
	  for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
	    { 
	      /* Arguments are ready. create the new vector stmt.  */
	      new_stmt = gimple_build_call (builtin_decl, 1, vop0);
	      new_temp = make_ssa_name (vec_dest, new_stmt);
	      gimple_call_set_lhs (new_stmt, new_temp);
	      vect_finish_stmt_generation (stmt, new_stmt, gsi);
	      if (slp_node)
		VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
	    }

	  if (j == 0)
	    STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
	  else
	    STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
	  prev_stmt_info = vinfo_for_stmt (new_stmt);
	}
      break;

    case WIDEN:
      /* In case the vectorization factor (VF) is bigger than the number
	 of elements that we can fit in a vectype (nunits), we have to
	 generate more than one vector stmt - i.e - we need to "unroll"
	 the vector stmt by a factor VF/nunits.  */
      for (j = 0; j < ncopies; j++)
	{
	  if (j == 0)
	    vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
	  else
	    vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);

	  STMT_VINFO_VECTYPE (stmt_info) = vectype_in;

	  /* Generate first half of the widened result:  */
	  new_stmt
	    = vect_gen_widened_results_half (code1, decl1, 
					     vec_oprnd0, vec_oprnd1,
					     unary_op, vec_dest, gsi, stmt);
	  if (j == 0)
	    STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
	  else
	    STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
	  prev_stmt_info = vinfo_for_stmt (new_stmt);

	  /* Generate second half of the widened result:  */
	  new_stmt
	    = vect_gen_widened_results_half (code2, decl2,
					     vec_oprnd0, vec_oprnd1,
					     unary_op, vec_dest, gsi, stmt);
	  STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
	  prev_stmt_info = vinfo_for_stmt (new_stmt);
	}
      break;

    case NARROW:
      /* In case the vectorization factor (VF) is bigger than the number
	 of elements that we can fit in a vectype (nunits), we have to
	 generate more than one vector stmt - i.e - we need to "unroll"
	 the vector stmt by a factor VF/nunits.  */
      for (j = 0; j < ncopies; j++)
	{
	  /* Handle uses.  */
	  if (j == 0)
	    {
	      vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
	      vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
	    }
	  else
	    {
	      vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
	      vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
	    }

	  /* Arguments are ready. Create the new vector stmt.  */
	  expr = build2 (code1, vectype_out, vec_oprnd0, vec_oprnd1);
	  new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0,
						   vec_oprnd1);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  gimple_assign_set_lhs (new_stmt, new_temp);
	  vect_finish_stmt_generation (stmt, new_stmt, gsi);

	  if (j == 0)
	    STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
	  else
	    STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;

	  prev_stmt_info = vinfo_for_stmt (new_stmt);
	}

      *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
    }

  if (vec_oprnds0)
    VEC_free (tree, heap, vec_oprnds0); 

  return true;
}
/* Function vectorizable_assignment.

   Check if STMT performs an assignment (copy) that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
			 gimple *vec_stmt, slp_tree slp_node)
{
  tree vec_dest;
  tree scalar_dest;
  tree op;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  tree new_temp;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  int ncopies;
  int i;
  VEC(tree,heap) *vec_oprnds = NULL;
  tree vop;
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);

  /* Multiple types in SLP are handled by creating the appropriate number of
     vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
     case of SLP.  */
  if (slp_node)
    ncopies = 1;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;

  gcc_assert (ncopies >= 1);
  if (ncopies > 1)
    return false; /* FORNOW */

  if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* Is vectorizable assignment?  */
  if (!is_gimple_assign (stmt))
    return false;

  scalar_dest = gimple_assign_lhs (stmt);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  if (gimple_assign_single_p (stmt)
      || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
    op = gimple_assign_rhs1 (stmt);
  else
    return false;

  if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[0]))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "=== vectorizable_assignment ===");
      vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
      return true;
    }

  /** Transform.  **/
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform assignment.");

  /* Handle def.  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle use.  */
  vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);

  /* Arguments are ready. create the new vector stmt.  */
  for (i = 0; VEC_iterate (tree, vec_oprnds, i, vop); i++)
    {
      *vec_stmt = gimple_build_assign (vec_dest, vop);
      new_temp = make_ssa_name (vec_dest, *vec_stmt);
      gimple_assign_set_lhs (*vec_stmt, new_temp);
      vect_finish_stmt_generation (stmt, *vec_stmt, gsi);
      STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt;

      if (slp_node)
	VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), *vec_stmt);
   }
  
  VEC_free (tree, heap, vec_oprnds);       
  return true;
}

/* Function vectorizable_operation.

   Check if STMT performs a binary or unary operation that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
			gimple *vec_stmt, slp_tree slp_node)
{
  tree vec_dest;
  tree scalar_dest;
  tree op0, op1 = NULL;
  tree vec_oprnd1 = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum tree_code code;
  enum machine_mode vec_mode;
  tree new_temp;
  int op_type;
  optab optab;
  int icode;
  enum machine_mode optab_op2_mode;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  gimple new_stmt = NULL;
  stmt_vec_info prev_stmt_info;
  int nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
  int nunits_out;
  tree vectype_out;
  int ncopies;
  int j, i;
  VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
  tree vop0, vop1;
  unsigned int k;
  bool shift_p = false;
  bool scalar_shift_arg = false;
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
  int vf;

  if (loop_vinfo)
    vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  else
    /* FORNOW: multiple types are not supported in basic block SLP.  */
    vf = nunits_in;

  /* Multiple types in SLP are handled by creating the appropriate number of
     vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
     case of SLP.  */
  if (slp_node)
    ncopies = 1;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;

  gcc_assert (ncopies >= 1);

  if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* Is STMT a vectorizable binary/unary operation?   */
  if (!is_gimple_assign (stmt))
    return false;

  if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
    return false;

  scalar_dest = gimple_assign_lhs (stmt);
  vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
  if (!vectype_out)
    return false;
  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
  if (nunits_out != nunits_in)
    return false;

  code = gimple_assign_rhs_code (stmt);

  /* For pointer addition, we should use the normal plus for
     the vector addition.  */
  if (code == POINTER_PLUS_EXPR)
    code = PLUS_EXPR;

  /* Support only unary or binary operations.  */
  op_type = TREE_CODE_LENGTH (code);
  if (op_type != unary_op && op_type != binary_op)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
      return false;
    }

  op0 = gimple_assign_rhs1 (stmt);
  if (!vect_is_simple_use (op0, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[0]))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
      return false;
    }

  if (op_type == binary_op)
    {
      op1 = gimple_assign_rhs2 (stmt);
      if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def, 
                               &dt[1]))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "use not simple.");
	  return false;
	}
    }

  /* If this is a shift/rotate, determine whether the shift amount is a vector,
     or scalar.  If the shift/rotate amount is a vector, use the vector/vector
     shift optabs.  */
  if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
      || code == RROTATE_EXPR)
    {
      shift_p = true;

      /* vector shifted by vector */
      if (dt[1] == vect_internal_def)
	{
	  optab = optab_for_tree_code (code, vectype, optab_vector);
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "vector/vector shift/rotate found.");
	}

      /* See if the machine has a vector shifted by scalar insn and if not
	 then see if it has a vector shifted by vector insn */
      else if (dt[1] == vect_constant_def || dt[1] == vect_external_def)
	{
	  optab = optab_for_tree_code (code, vectype, optab_scalar);
	  if (optab
	      && (optab_handler (optab, TYPE_MODE (vectype))->insn_code
		  != CODE_FOR_nothing))
	    {
	      scalar_shift_arg = true;
	      if (vect_print_dump_info (REPORT_DETAILS))
		fprintf (vect_dump, "vector/scalar shift/rotate found.");
	    }
	  else
	    {
	      optab = optab_for_tree_code (code, vectype, optab_vector);
	      if (optab
		  && (optab_handler (optab, TYPE_MODE (vectype))->insn_code
		      != CODE_FOR_nothing))
		{
		  if (vect_print_dump_info (REPORT_DETAILS))
		    fprintf (vect_dump, "vector/vector shift/rotate found.");

		  /* Unlike the other binary operators, shifts/rotates have
		     the rhs being int, instead of the same type as the lhs,
		     so make sure the scalar is the right type if we are
		     dealing with vectors of short/char.  */
		  if (dt[1] == vect_constant_def)
		    op1 = fold_convert (TREE_TYPE (vectype), op1);
		}
	    }
	}

      else
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "operand mode requires invariant argument.");
	  return false;
	}
    }
  else
    optab = optab_for_tree_code (code, vectype, optab_default);

  /* Supportable by target?  */
  if (!optab)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "no optab.");
      return false;
    }
  vec_mode = TYPE_MODE (vectype);
  icode = (int) optab_handler (optab, vec_mode)->insn_code;
  if (icode == CODE_FOR_nothing)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "op not supported by target.");
      /* Check only during analysis.  */
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
	  || (vf < vect_min_worthwhile_factor (code)
              && !vec_stmt))
        return false;
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "proceeding using word mode.");
    }

  /* Worthwhile without SIMD support? Check only during analysis.  */
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && vf < vect_min_worthwhile_factor (code)
      && !vec_stmt)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "not worthwhile without SIMD support.");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "=== vectorizable_operation ===");
      vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform binary/unary operation.");

  /* Handle def.  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Allocate VECs for vector operands. In case of SLP, vector operands are 
     created in the previous stages of the recursion, so no allocation is
     needed, except for the case of shift with scalar shift argument. In that
     case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
     be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
     In case of loop-based vectorization we allocate VECs of size 1. We 
     allocate VEC_OPRNDS1 only in case of binary operation.  */ 
  if (!slp_node)
    {
      vec_oprnds0 = VEC_alloc (tree, heap, 1);
      if (op_type == binary_op)
        vec_oprnds1 = VEC_alloc (tree, heap, 1);
    }
  else if (scalar_shift_arg)
    vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);  

  /* In case the vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits. In doing so, we record a pointer
     from one copy of the vector stmt to the next, in the field
     STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
     stages to find the correct vector defs to be used when vectorizing
     stmts that use the defs of the current stmt. The example below illustrates
     the vectorization process when VF=16 and nunits=4 (i.e - we need to create
     4 vectorized stmts):

     before vectorization:
                                RELATED_STMT    VEC_STMT
        S1:     x = memref      -               -
        S2:     z = x + 1       -               -

     step 1: vectorize stmt S1 (done in vectorizable_load. See more details
             there):
                                RELATED_STMT    VEC_STMT
        VS1_0:  vx0 = memref0   VS1_1           -
        VS1_1:  vx1 = memref1   VS1_2           -
        VS1_2:  vx2 = memref2   VS1_3           -
        VS1_3:  vx3 = memref3   -               -
        S1:     x = load        -               VS1_0
        S2:     z = x + 1       -               -

     step2: vectorize stmt S2 (done here):
        To vectorize stmt S2 we first need to find the relevant vector
        def for the first operand 'x'. This is, as usual, obtained from
        the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
        that defines 'x' (S1). This way we find the stmt VS1_0, and the
        relevant vector def 'vx0'. Having found 'vx0' we can generate
        the vector stmt VS2_0, and as usual, record it in the
        STMT_VINFO_VEC_STMT of stmt S2.
        When creating the second copy (VS2_1), we obtain the relevant vector
        def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
        stmt VS1_0. This way we find the stmt VS1_1 and the relevant
        vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
        pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
        Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
        chain of stmts and pointers:
                                RELATED_STMT    VEC_STMT
        VS1_0:  vx0 = memref0   VS1_1           -
        VS1_1:  vx1 = memref1   VS1_2           -
        VS1_2:  vx2 = memref2   VS1_3           -
        VS1_3:  vx3 = memref3   -               -
        S1:     x = load        -               VS1_0
        VS2_0:  vz0 = vx0 + v1  VS2_1           -
        VS2_1:  vz1 = vx1 + v1  VS2_2           -
        VS2_2:  vz2 = vx2 + v1  VS2_3           -
        VS2_3:  vz3 = vx3 + v1  -               -
        S2:     z = x + 1       -               VS2_0  */

  prev_stmt_info = NULL;
  for (j = 0; j < ncopies; j++)
    {
      /* Handle uses.  */
      if (j == 0)
	{
	  if (op_type == binary_op && scalar_shift_arg)
	    {
	      /* Vector shl and shr insn patterns can be defined with scalar 
		 operand 2 (shift operand). In this case, use constant or loop 
		 invariant op1 directly, without extending it to vector mode 
		 first.  */
	      optab_op2_mode = insn_data[icode].operand[2].mode;
	      if (!VECTOR_MODE_P (optab_op2_mode))
		{
		  if (vect_print_dump_info (REPORT_DETAILS))
		    fprintf (vect_dump, "operand 1 using scalar mode.");
		  vec_oprnd1 = op1;
		  VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
	          if (slp_node)
	            {
	              /* Store vec_oprnd1 for every vector stmt to be created
	                 for SLP_NODE. We check during the analysis that all the
                         shift arguments are the same.  
	                 TODO: Allow different constants for different vector 
	                 stmts generated for an SLP instance.  */          
	              for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
	                VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
	            }
		}
	    }
	 
          /* vec_oprnd1 is available if operand 1 should be of a scalar-type 
             (a special case for certain kind of vector shifts); otherwise, 
             operand 1 should be of a vector type (the usual case).  */
	  if (op_type == binary_op && !vec_oprnd1)
	    vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1, 
			       slp_node);
	  else
	    vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL, 
			       slp_node);
	}
      else
	vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);

      /* Arguments are ready. Create the new vector stmt.  */
      for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
        {
	  vop1 = ((op_type == binary_op)
		  ? VEC_index (tree, vec_oprnds1, i) : NULL);
	  new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  gimple_assign_set_lhs (new_stmt, new_temp);
	  vect_finish_stmt_generation (stmt, new_stmt, gsi);
          if (slp_node)
	    VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
        }

      if (slp_node)
        continue;

      if (j == 0)
	STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
      else
	STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
      prev_stmt_info = vinfo_for_stmt (new_stmt);
    }

  VEC_free (tree, heap, vec_oprnds0);
  if (vec_oprnds1)
    VEC_free (tree, heap, vec_oprnds1);

  return true;
}


/* Get vectorized definitions for loop-based vectorization. For the first
   operand we call vect_get_vec_def_for_operand() (with OPRND containing 
   scalar operand), and for the rest we get a copy with 
   vect_get_vec_def_for_stmt_copy() using the previous vector definition
   (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
   The vectors are collected into VEC_OPRNDS.  */

static void
vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt, 
                          VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
{
  tree vec_oprnd;

  /* Get first vector operand.  */
  /* All the vector operands except the very first one (that is scalar oprnd)
     are stmt copies.  */
  if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)  
    vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
  else
    vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);

  VEC_quick_push (tree, *vec_oprnds, vec_oprnd);

  /* Get second vector operand.  */
  vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
  VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
    
  *oprnd = vec_oprnd;

  /* For conversion in multiple steps, continue to get operands 
     recursively.  */
  if (multi_step_cvt)
    vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds,  multi_step_cvt - 1); 
}


/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
   For multi-step conversions store the resulting vectors and call the function 
   recursively.  */

static void
vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
                                       int multi_step_cvt, gimple stmt,
                                       VEC (tree, heap) *vec_dsts,
                                       gimple_stmt_iterator *gsi,
                                       slp_tree slp_node, enum tree_code code,
                                       stmt_vec_info *prev_stmt_info)
{
  unsigned int i;
  tree vop0, vop1, new_tmp, vec_dest;
  gimple new_stmt;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);

  vec_dest = VEC_pop (tree, vec_dsts); 

  for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
    {
      /* Create demotion operation.  */
      vop0 = VEC_index (tree, *vec_oprnds, i);
      vop1 = VEC_index (tree, *vec_oprnds, i + 1);
      new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
      new_tmp = make_ssa_name (vec_dest, new_stmt);
      gimple_assign_set_lhs (new_stmt, new_tmp);
      vect_finish_stmt_generation (stmt, new_stmt, gsi);

      if (multi_step_cvt)
        /* Store the resulting vector for next recursive call.  */
        VEC_replace (tree, *vec_oprnds, i/2, new_tmp);      
      else
        {
          /* This is the last step of the conversion sequence. Store the 
             vectors in SLP_NODE or in vector info of the scalar statement
             (or in STMT_VINFO_RELATED_STMT chain).  */
          if (slp_node)
            VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
          else
            {
              if (!*prev_stmt_info)
                STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
              else
                STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;

              *prev_stmt_info = vinfo_for_stmt (new_stmt);
            }
        }
    }

  /* For multi-step demotion operations we first generate demotion operations
     from the source type to the intermediate types, and then combine the 
     results (stored in VEC_OPRNDS) in demotion operation to the destination
     type.  */
  if (multi_step_cvt)
    {
      /* At each level of recursion we have have of the operands we had at the
         previous level.  */
      VEC_truncate (tree, *vec_oprnds, (i+1)/2);
      vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1, 
                                             stmt, vec_dsts, gsi, slp_node,
                                             code, prev_stmt_info);
    }
}


/* Function vectorizable_type_demotion

   Check if STMT performs a binary or unary operation that involves
   type demotion, and if it can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
			    gimple *vec_stmt, slp_tree slp_node)
{
  tree vec_dest;
  tree scalar_dest;
  tree op0;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum tree_code code, code1 = ERROR_MARK;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  stmt_vec_info prev_stmt_info;
  int nunits_in;
  int nunits_out;
  tree vectype_out;
  int ncopies;
  int j, i;
  tree vectype_in;
  int multi_step_cvt = 0;
  VEC (tree, heap) *vec_oprnds0 = NULL;
  VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
  tree last_oprnd, intermediate_type;

  /* FORNOW: not supported by basic block SLP vectorization.  */
  gcc_assert (loop_vinfo);

  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* Is STMT a vectorizable type-demotion operation?  */
  if (!is_gimple_assign (stmt))
    return false;

  if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (!CONVERT_EXPR_CODE_P (code))
    return false;

  op0 = gimple_assign_rhs1 (stmt);
  vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
  if (!vectype_in)
    return false;
  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);

  scalar_dest = gimple_assign_lhs (stmt);
  vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
  if (!vectype_out)
    return false;
  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
  if (nunits_in >= nunits_out)
    return false;

  /* Multiple types in SLP are handled by creating the appropriate number of
     vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
     case of SLP.  */
  if (slp_node)
    ncopies = 1;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
  gcc_assert (ncopies >= 1);

  if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
	  && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
	 || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
	     && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
	     && CONVERT_EXPR_CODE_P (code))))
    return false;

  /* Check the operands of the operation.  */
  if (!vect_is_simple_use (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0]))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
      return false;
    }

  /* Supportable by target?  */
  if (!supportable_narrowing_operation (code, stmt, vectype_in, &code1,
                                        &multi_step_cvt, &interm_types))
    return false;

  STMT_VINFO_VECTYPE (stmt_info) = vectype_in;

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "=== vectorizable_demotion ===");
      vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
      return true;
    }

  /** Transform.  **/
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
	     ncopies);

  /* In case of multi-step demotion, we first generate demotion operations to 
     the intermediate types, and then from that types to the final one. 
     We create vector destinations for the intermediate type (TYPES) received
     from supportable_narrowing_operation, and store them in the correct order 
     for future use in vect_create_vectorized_demotion_stmts().  */
  if (multi_step_cvt)
    vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
  else
    vec_dsts = VEC_alloc (tree, heap, 1);
 
  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
  VEC_quick_push (tree, vec_dsts, vec_dest);

  if (multi_step_cvt)
    {
      for (i = VEC_length (tree, interm_types) - 1; 
           VEC_iterate (tree, interm_types, i, intermediate_type); i--)
        {
          vec_dest = vect_create_destination_var (scalar_dest, 
                                                  intermediate_type);
          VEC_quick_push (tree, vec_dsts, vec_dest);
        }
    }

  /* In case the vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits.   */
  last_oprnd = op0;
  prev_stmt_info = NULL;
  for (j = 0; j < ncopies; j++)
    {
      /* Handle uses.  */
      if (slp_node)
        vect_get_slp_defs (slp_node, &vec_oprnds0, NULL); 
      else
        {
          VEC_free (tree, heap, vec_oprnds0);
          vec_oprnds0 = VEC_alloc (tree, heap,
                        (multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2));
          vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,  
                                    vect_pow2 (multi_step_cvt) - 1);
        }

      /* Arguments are ready. Create the new vector stmts.  */
      tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
      vect_create_vectorized_demotion_stmts (&vec_oprnds0,  
                                             multi_step_cvt, stmt, tmp_vec_dsts,
                                             gsi, slp_node, code1, 
                                             &prev_stmt_info);
    }

  VEC_free (tree, heap, vec_oprnds0);
  VEC_free (tree, heap, vec_dsts);
  VEC_free (tree, heap, tmp_vec_dsts);
  VEC_free (tree, heap, interm_types);

  *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
  return true;
}


/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
   and VEC_OPRNDS1 (for binary operations). For multi-step conversions store 
   the resulting vectors and call the function recursively.  */

static void
vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
                                        VEC (tree, heap) **vec_oprnds1,
                                        int multi_step_cvt, gimple stmt,
                                        VEC (tree, heap) *vec_dsts,
                                        gimple_stmt_iterator *gsi,
                                        slp_tree slp_node, enum tree_code code1,
                                        enum tree_code code2, tree decl1, 
                                        tree decl2, int op_type,
                                        stmt_vec_info *prev_stmt_info)
{
  int i;
  tree vop0, vop1, new_tmp1, new_tmp2, vec_dest;
  gimple new_stmt1, new_stmt2;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  VEC (tree, heap) *vec_tmp;

  vec_dest = VEC_pop (tree, vec_dsts);
  vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);

  for (i = 0; VEC_iterate (tree, *vec_oprnds0, i, vop0); i++)
    {
      if (op_type == binary_op)
        vop1 = VEC_index (tree, *vec_oprnds1, i);
      else
        vop1 = NULL_TREE;

      /* Generate the two halves of promotion operation.  */
      new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,  
                                                 op_type, vec_dest, gsi, stmt);
      new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
                                                 op_type, vec_dest, gsi, stmt);
      if (is_gimple_call (new_stmt1))
        {
          new_tmp1 = gimple_call_lhs (new_stmt1);
          new_tmp2 = gimple_call_lhs (new_stmt2);
        }
      else
        {
          new_tmp1 = gimple_assign_lhs (new_stmt1);
          new_tmp2 = gimple_assign_lhs (new_stmt2);
        }

      if (multi_step_cvt)
        {
          /* Store the results for the recursive call.  */
          VEC_quick_push (tree, vec_tmp, new_tmp1);
          VEC_quick_push (tree, vec_tmp, new_tmp2);
        }
      else
        {
          /* Last step of promotion sequience - store the results.  */
          if (slp_node)
            {
              VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1);
              VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2);
            }
          else
            {
              if (!*prev_stmt_info)
                STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1;
              else
                STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1;

              *prev_stmt_info = vinfo_for_stmt (new_stmt1);
              STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2;
              *prev_stmt_info = vinfo_for_stmt (new_stmt2);
            }
        }
    }

  if (multi_step_cvt)
    {
      /* For multi-step promotion operation we first generate we call the 
         function recurcively for every stage. We start from the input type,
         create promotion operations to the intermediate types, and then
         create promotions to the output type.  */
      *vec_oprnds0 = VEC_copy (tree, heap, vec_tmp);
      VEC_free (tree, heap, vec_tmp);
      vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1,
                                              multi_step_cvt - 1, stmt,
                                              vec_dsts, gsi, slp_node, code1,
                                              code2, decl2, decl2, op_type,
                                              prev_stmt_info);
    }
}
    

/* Function vectorizable_type_promotion

   Check if STMT performs a binary or unary operation that involves
   type promotion, and if it can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
			     gimple *vec_stmt, slp_tree slp_node)
{
  tree vec_dest;
  tree scalar_dest;
  tree op0, op1 = NULL;
  tree vec_oprnd0=NULL, vec_oprnd1=NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
  tree decl1 = NULL_TREE, decl2 = NULL_TREE;
  int op_type; 
  tree def;
  gimple def_stmt;
  enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
  stmt_vec_info prev_stmt_info;
  int nunits_in;
  int nunits_out;
  tree vectype_out;
  int ncopies;
  int j, i;
  tree vectype_in;
  tree intermediate_type = NULL_TREE;
  int multi_step_cvt = 0;
  VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
  VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
  
  /* FORNOW: not supported by basic block SLP vectorization.  */
  gcc_assert (loop_vinfo);
    
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* Is STMT a vectorizable type-promotion operation?  */
  if (!is_gimple_assign (stmt))
    return false;

  if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (!CONVERT_EXPR_CODE_P (code)
      && code != WIDEN_MULT_EXPR)
    return false;

  op0 = gimple_assign_rhs1 (stmt);
  vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
  if (!vectype_in)
    return false;
  nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);

  scalar_dest = gimple_assign_lhs (stmt);
  vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
  if (!vectype_out)
    return false;
  nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
  if (nunits_in <= nunits_out)
    return false;

  /* Multiple types in SLP are handled by creating the appropriate number of
     vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
     case of SLP.  */
  if (slp_node)
    ncopies = 1;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;

  gcc_assert (ncopies >= 1);

  if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
	  && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
	 || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
	     && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
	     && CONVERT_EXPR_CODE_P (code))))
    return false;

  /* Check the operands of the operation.  */
  if (!vect_is_simple_use (op0, loop_vinfo, NULL, &def_stmt, &def, &dt[0]))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "use not simple.");
      return false;
    }

  op_type = TREE_CODE_LENGTH (code);
  if (op_type == binary_op)
    {
      op1 = gimple_assign_rhs2 (stmt);
      if (!vect_is_simple_use (op1, loop_vinfo, NULL, &def_stmt, &def, &dt[1]))
        {
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "use not simple.");
          return false;
        }
    }

  /* Supportable by target?  */
  if (!supportable_widening_operation (code, stmt, vectype_in,
				       &decl1, &decl2, &code1, &code2,
                                       &multi_step_cvt, &interm_types))
    return false;

  /* Binary widening operation can only be supported directly by the
     architecture.  */
  gcc_assert (!(multi_step_cvt && op_type == binary_op));

  STMT_VINFO_VECTYPE (stmt_info) = vectype_in;

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "=== vectorizable_promotion ===");
      vect_model_simple_cost (stmt_info, 2*ncopies, dt, NULL);
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
                        ncopies);

  /* Handle def.  */
  /* In case of multi-step promotion, we first generate promotion operations 
     to the intermediate types, and then from that types to the final one.
     We store vector destination in VEC_DSTS in the correct order for 
     recursive creation of promotion operations in 
     vect_create_vectorized_promotion_stmts(). Vector destinations are created
     according to TYPES recieved from supportable_widening_operation().   */
  if (multi_step_cvt)
    vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
  else
    vec_dsts = VEC_alloc (tree, heap, 1);

  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
  VEC_quick_push (tree, vec_dsts, vec_dest);

  if (multi_step_cvt)
    {
      for (i = VEC_length (tree, interm_types) - 1;
           VEC_iterate (tree, interm_types, i, intermediate_type); i--)
        {
          vec_dest = vect_create_destination_var (scalar_dest,
                                                  intermediate_type);
          VEC_quick_push (tree, vec_dsts, vec_dest);
        }
    }
  
  if (!slp_node)
    {
      vec_oprnds0 = VEC_alloc (tree, heap, 
                            (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
      if (op_type == binary_op)
        vec_oprnds1 = VEC_alloc (tree, heap, 1);
    }

  /* In case the vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits.   */

  prev_stmt_info = NULL;
  for (j = 0; j < ncopies; j++)
    {
      /* Handle uses.  */
      if (j == 0)
        {
          if (slp_node)
              vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1);
          else
            {
              vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
              VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
              if (op_type == binary_op)
                {
                  vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
                  VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
                }
            }
        }
      else
        {
          vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
          VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0);
          if (op_type == binary_op)
            {
              vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
              VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1);
            }
        }

      /* Arguments are ready. Create the new vector stmts.  */
      tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
      vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1,
                                              multi_step_cvt, stmt, 
                                              tmp_vec_dsts,
                                              gsi, slp_node, code1, code2,
                                              decl1, decl2, op_type,
                                              &prev_stmt_info);
    }

  VEC_free (tree, heap, vec_dsts);
  VEC_free (tree, heap, tmp_vec_dsts);
  VEC_free (tree, heap, interm_types);
  VEC_free (tree, heap, vec_oprnds0);
  VEC_free (tree, heap, vec_oprnds1);

  *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
  return true;
}


/* Function vectorizable_store.

   Check if STMT defines a non scalar data-ref (array/pointer/structure) that 
   can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
		    slp_tree slp_node)
{
  tree scalar_dest;
  tree data_ref;
  tree op;
  tree vec_oprnd = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = NULL;
  enum machine_mode vec_mode;
  tree dummy;
  enum dr_alignment_support alignment_support_scheme;
  tree def;
  gimple def_stmt;
  enum vect_def_type dt;
  stmt_vec_info prev_stmt_info = NULL;
  tree dataref_ptr = NULL_TREE;
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  int ncopies;
  int j;
  gimple next_stmt, first_stmt = NULL;
  bool strided_store = false;
  unsigned int group_size, i;
  VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
  bool inv_p;
  VEC(tree,heap) *vec_oprnds = NULL;
  bool slp = (slp_node != NULL);
  stmt_vec_info first_stmt_vinfo;
  unsigned int vec_num;
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);

  if (loop_vinfo)
    loop = LOOP_VINFO_LOOP (loop_vinfo);

  /* Multiple types in SLP are handled by creating the appropriate number of
     vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
     case of SLP.  */
  if (slp)
    ncopies = 1;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;

  gcc_assert (ncopies >= 1);

  /* FORNOW. This restriction should be relaxed.  */
  if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "multiple types in nested loop.");
      return false;
    }

  if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* Is vectorizable store? */

  if (!is_gimple_assign (stmt))
    return false;

  scalar_dest = gimple_assign_lhs (stmt);
  if (TREE_CODE (scalar_dest) != ARRAY_REF
      && TREE_CODE (scalar_dest) != INDIRECT_REF
      && !STMT_VINFO_STRIDED_ACCESS (stmt_info))
    return false;

  gcc_assert (gimple_assign_single_p (stmt));
  op = gimple_assign_rhs1 (stmt);
  if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
      return false;
    }

  /* The scalar rhs type needs to be trivially convertible to the vector
     component type.  This should always be the case.  */
  if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op)))
    {      
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "???  operands of different types");
      return false;
    }

  vec_mode = TYPE_MODE (vectype);
  /* FORNOW. In some cases can vectorize even if data-type not supported
     (e.g. - array initialization with 0).  */
  if (optab_handler (mov_optab, (int)vec_mode)->insn_code == CODE_FOR_nothing)
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
    {
      strided_store = true;
      first_stmt = DR_GROUP_FIRST_DR (stmt_info);
      if (!vect_strided_store_supported (vectype)
	  && !PURE_SLP_STMT (stmt_info) && !slp)
	return false;
     
      if (first_stmt == stmt)
	{
          /* STMT is the leader of the group. Check the operands of all the
             stmts of the group.  */
          next_stmt = DR_GROUP_NEXT_DR (stmt_info);
          while (next_stmt)
            {
	      gcc_assert (gimple_assign_single_p (next_stmt));
	      op = gimple_assign_rhs1 (next_stmt);
              if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, 
                                       &def, &dt))
                {
                  if (vect_print_dump_info (REPORT_DETAILS))
                    fprintf (vect_dump, "use not simple.");
                  return false;
                }
              next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
            }
        }
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
      vect_model_store_cost (stmt_info, ncopies, dt, NULL);
      return true;
    }

  /** Transform.  **/

  if (strided_store)
    {
      first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
      group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));

      DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;

      /* FORNOW */
      gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));

      /* We vectorize all the stmts of the interleaving group when we
	 reach the last stmt in the group.  */
      if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt)) 
	  < DR_GROUP_SIZE (vinfo_for_stmt (first_stmt))
	  && !slp)
	{
	  *vec_stmt = NULL;
	  return true;
	}

      if (slp)
	strided_store = false;

      /* VEC_NUM is the number of vect stmts to be created for this group.  */
      if (slp)
	vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
      else
	vec_num = group_size;
    }
  else 
    {
      first_stmt = stmt;
      first_dr = dr;
      group_size = vec_num = 1;
      first_stmt_vinfo = stmt_info;
    }
  
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform store. ncopies = %d",ncopies);

  dr_chain = VEC_alloc (tree, heap, group_size);
  oprnds = VEC_alloc (tree, heap, group_size);

  alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
  gcc_assert (alignment_support_scheme);
  gcc_assert (alignment_support_scheme == dr_aligned);  /* FORNOW */

  /* In case the vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits.  For more details see documentation in 
     vect_get_vec_def_for_copy_stmt.  */

  /* In case of interleaving (non-unit strided access):

        S1:  &base + 2 = x2
        S2:  &base = x0
        S3:  &base + 1 = x1
        S4:  &base + 3 = x3

     We create vectorized stores starting from base address (the access of the
     first stmt in the chain (S2 in the above example), when the last store stmt
     of the chain (S4) is reached:

        VS1: &base = vx2
	VS2: &base + vec_size*1 = vx0
	VS3: &base + vec_size*2 = vx1
	VS4: &base + vec_size*3 = vx3

     Then permutation statements are generated:

        VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
        VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
	...
	
     And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
     (the order of the data-refs in the output of vect_permute_store_chain
     corresponds to the order of scalar stmts in the interleaving chain - see
     the documentation of vect_permute_store_chain()).

     In case of both multiple types and interleaving, above vector stores and
     permutation stmts are created for every copy. The result vector stmts are
     put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
     STMT_VINFO_RELATED_STMT for the next copies.     
  */

  prev_stmt_info = NULL;
  for (j = 0; j < ncopies; j++)
    {
      gimple new_stmt;
      gimple ptr_incr;

      if (j == 0)
	{
          if (slp)
            {
	      /* Get vectorized arguments for SLP_NODE.  */
              vect_get_slp_defs (slp_node, &vec_oprnds, NULL);

              vec_oprnd = VEC_index (tree, vec_oprnds, 0);
            }
          else
            {
	      /* For interleaved stores we collect vectorized defs for all the 
		 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then 
		 used as an input to vect_permute_store_chain(), and OPRNDS as 
		 an input to vect_get_vec_def_for_stmt_copy() for the next copy.

		 If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
		 OPRNDS are of size 1.  */
	      next_stmt = first_stmt;	  
	      for (i = 0; i < group_size; i++)
		{
		  /* Since gaps are not supported for interleaved stores, 
		     GROUP_SIZE is the exact number of stmts in the chain. 
		     Therefore, NEXT_STMT can't be NULL_TREE.  In case that 
		     there is no interleaving, GROUP_SIZE is 1, and only one 
		     iteration of the loop will be executed.  */
		  gcc_assert (next_stmt
			      && gimple_assign_single_p (next_stmt));
		  op = gimple_assign_rhs1 (next_stmt);

		  vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt, 
							    NULL);
		  VEC_quick_push(tree, dr_chain, vec_oprnd); 
		  VEC_quick_push(tree, oprnds, vec_oprnd); 
		  next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
		}
	    }

	  /* We should have catched mismatched types earlier.  */
	  gcc_assert (useless_type_conversion_p (vectype,
						 TREE_TYPE (vec_oprnd)));
	  dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE, 
						  &dummy, &ptr_incr, false, 
						  &inv_p);
	  gcc_assert (bb_vinfo || !inv_p);
	}
      else 
	{
	  /* For interleaved stores we created vectorized defs for all the 
	     defs stored in OPRNDS in the previous iteration (previous copy). 
	     DR_CHAIN is then used as an input to vect_permute_store_chain(), 
	     and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
	     next copy.
	     If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
	     OPRNDS are of size 1.  */
	  for (i = 0; i < group_size; i++)
	    {
	      op = VEC_index (tree, oprnds, i);
	      vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, 
	                          &dt);
	      vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op); 
	      VEC_replace(tree, dr_chain, i, vec_oprnd);
	      VEC_replace(tree, oprnds, i, vec_oprnd);
	    }
	  dataref_ptr = 
		bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
	}

      if (strided_store)
	{
	  result_chain = VEC_alloc (tree, heap, group_size);     
	  /* Permute.  */
	  if (!vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
					 &result_chain))
	    return false;
	}

      next_stmt = first_stmt;
      for (i = 0; i < vec_num; i++)
	{
	  if (i > 0)
	    /* Bump the vector pointer.  */
	    dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
					   NULL_TREE);

	  if (slp)
	    vec_oprnd = VEC_index (tree, vec_oprnds, i);
	  else if (strided_store)
	    /* For strided stores vectorized defs are interleaved in 
	       vect_permute_store_chain().  */
	    vec_oprnd = VEC_index (tree, result_chain, i);

	  data_ref = build_fold_indirect_ref (dataref_ptr);
	  /* If accesses through a pointer to vectype do not alias the original
	     memory reference we have a problem.  This should never happen.  */
	  gcc_assert (alias_sets_conflict_p (get_alias_set (data_ref),
		      get_alias_set (gimple_assign_lhs (stmt))));

	  /* Arguments are ready. Create the new vector stmt.  */
	  new_stmt = gimple_build_assign (data_ref, vec_oprnd);
	  vect_finish_stmt_generation (stmt, new_stmt, gsi);
	  mark_symbols_for_renaming (new_stmt);

          if (slp)
            continue;
	  
          if (j == 0)
            STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt =  new_stmt;
	  else
	    STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;

	  prev_stmt_info = vinfo_for_stmt (new_stmt);
	  next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
	  if (!next_stmt)
	    break;
	}
    }

  VEC_free (tree, heap, dr_chain);  
  VEC_free (tree, heap, oprnds);  
  if (result_chain)
    VEC_free (tree, heap, result_chain);  

  return true;
}

/* vectorizable_load.

   Check if STMT reads a non scalar data-ref (array/pointer/structure) that 
   can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
		   slp_tree slp_node, slp_instance slp_node_instance)
{
  tree scalar_dest;
  tree vec_dest = NULL;
  tree data_ref = NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  stmt_vec_info prev_stmt_info; 
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = NULL;
  struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
  bool nested_in_vect_loop = false;
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree new_temp;
  int mode;
  gimple new_stmt = NULL;
  tree dummy;
  enum dr_alignment_support alignment_support_scheme;
  tree dataref_ptr = NULL_TREE;
  gimple ptr_incr;
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  int ncopies;
  int i, j, group_size;
  tree msq = NULL_TREE, lsq;
  tree offset = NULL_TREE;
  tree realignment_token = NULL_TREE;
  gimple phi = NULL;
  VEC(tree,heap) *dr_chain = NULL;
  bool strided_load = false;
  gimple first_stmt;
  tree scalar_type;
  bool inv_p;
  bool compute_in_loop = false;
  struct loop *at_loop;
  int vec_num;
  bool slp = (slp_node != NULL);
  bool slp_perm = false;
  enum tree_code code;
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
  int vf;

  if (loop_vinfo)
    {
      loop = LOOP_VINFO_LOOP (loop_vinfo);
      nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
      vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
    }
  else
    /* FORNOW: multiple types are not supported in basic block SLP.  */
    vf = nunits;

  /* Multiple types in SLP are handled by creating the appropriate number of
     vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
     case of SLP.  */
  if (slp)
    ncopies = 1;
  else
    ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;

  gcc_assert (ncopies >= 1);

  /* FORNOW. This restriction should be relaxed.  */
  if (nested_in_vect_loop && ncopies > 1)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "multiple types in nested loop.");
      return false;
    }

  if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* Is vectorizable load? */
  if (!is_gimple_assign (stmt))
    return false;

  scalar_dest = gimple_assign_lhs (stmt);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  code = gimple_assign_rhs_code (stmt);
  if (code != ARRAY_REF
      && code != INDIRECT_REF
      && !STMT_VINFO_STRIDED_ACCESS (stmt_info))
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  scalar_type = TREE_TYPE (DR_REF (dr));
  mode = (int) TYPE_MODE (vectype);

  /* FORNOW. In some cases can vectorize even if data-type not supported
    (e.g. - data copies).  */
  if (optab_handler (mov_optab, mode)->insn_code == CODE_FOR_nothing)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "Aligned load, but unsupported type.");
      return false;
    }

  /* The vector component type needs to be trivially convertible to the
     scalar lhs.  This should always be the case.  */
  if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), TREE_TYPE (vectype)))
    {      
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "???  operands of different types");
      return false;
    }

  /* Check if the load is a part of an interleaving chain.  */
  if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
    {
      strided_load = true;
      /* FORNOW */
      gcc_assert (! nested_in_vect_loop);

      /* Check if interleaving is supported.  */
      if (!vect_strided_load_supported (vectype)
	  && !PURE_SLP_STMT (stmt_info) && !slp)
	return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
      vect_model_load_cost (stmt_info, ncopies, NULL);
      return true;
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform load.");

  /** Transform.  **/

  if (strided_load)
    {
      first_stmt = DR_GROUP_FIRST_DR (stmt_info);
      /* Check if the chain of loads is already vectorized.  */
      if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
	{
	  *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
	  return true;
	}
      first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
      group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));

      /* VEC_NUM is the number of vect stmts to be created for this group.  */
      if (slp)
	{
	  strided_load = false;
	  vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
          if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
            slp_perm = true;
    	}
      else
	vec_num = group_size;

      dr_chain = VEC_alloc (tree, heap, vec_num);
    }
  else
    {
      first_stmt = stmt;
      first_dr = dr;
      group_size = vec_num = 1;
    }

  alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
  gcc_assert (alignment_support_scheme);

  /* In case the vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits. In doing so, we record a pointer
     from one copy of the vector stmt to the next, in the field
     STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
     stages to find the correct vector defs to be used when vectorizing
     stmts that use the defs of the current stmt. The example below illustrates
     the vectorization process when VF=16 and nunits=4 (i.e - we need to create
     4 vectorized stmts):

     before vectorization:
                                RELATED_STMT    VEC_STMT
        S1:     x = memref      -               -
        S2:     z = x + 1       -               -

     step 1: vectorize stmt S1:
        We first create the vector stmt VS1_0, and, as usual, record a
        pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
        Next, we create the vector stmt VS1_1, and record a pointer to
        it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
        Similarly, for VS1_2 and VS1_3. This is the resulting chain of
        stmts and pointers:
                                RELATED_STMT    VEC_STMT
        VS1_0:  vx0 = memref0   VS1_1           -
        VS1_1:  vx1 = memref1   VS1_2           -
        VS1_2:  vx2 = memref2   VS1_3           -
        VS1_3:  vx3 = memref3   -               -
        S1:     x = load        -               VS1_0
        S2:     z = x + 1       -               -

     See in documentation in vect_get_vec_def_for_stmt_copy for how the 
     information we recorded in RELATED_STMT field is used to vectorize 
     stmt S2.  */

  /* In case of interleaving (non-unit strided access):

     S1:  x2 = &base + 2
     S2:  x0 = &base
     S3:  x1 = &base + 1
     S4:  x3 = &base + 3

     Vectorized loads are created in the order of memory accesses 
     starting from the access of the first stmt of the chain:

     VS1: vx0 = &base
     VS2: vx1 = &base + vec_size*1
     VS3: vx3 = &base + vec_size*2
     VS4: vx4 = &base + vec_size*3

     Then permutation statements are generated:

     VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
     VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
       ...

     And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
     (the order of the data-refs in the output of vect_permute_load_chain
     corresponds to the order of scalar stmts in the interleaving chain - see
     the documentation of vect_permute_load_chain()).
     The generation of permutation stmts and recording them in
     STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().

     In case of both multiple types and interleaving, the vector loads and 
     permutation stmts above are created for every copy. The result vector stmts
     are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
     STMT_VINFO_RELATED_STMT for the next copies.  */

  /* If the data reference is aligned (dr_aligned) or potentially unaligned
     on a target that supports unaligned accesses (dr_unaligned_supported)
     we generate the following code:
         p = initial_addr;
         indx = 0;
         loop {
	   p = p + indx * vectype_size;
           vec_dest = *(p);
           indx = indx + 1;
         }

     Otherwise, the data reference is potentially unaligned on a target that
     does not support unaligned accesses (dr_explicit_realign_optimized) - 
     then generate the following code, in which the data in each iteration is
     obtained by two vector loads, one from the previous iteration, and one
     from the current iteration:
         p1 = initial_addr;
         msq_init = *(floor(p1))
         p2 = initial_addr + VS - 1;
         realignment_token = call target_builtin;
         indx = 0;
         loop {
           p2 = p2 + indx * vectype_size
           lsq = *(floor(p2))
           vec_dest = realign_load (msq, lsq, realignment_token)
           indx = indx + 1;
           msq = lsq;
         }   */

  /* If the misalignment remains the same throughout the execution of the
     loop, we can create the init_addr and permutation mask at the loop
     preheader. Otherwise, it needs to be created inside the loop.
     This can only occur when vectorizing memory accesses in the inner-loop
     nested within an outer-loop that is being vectorized.  */

  if (loop && nested_in_vect_loop_p (loop, stmt)
      && (TREE_INT_CST_LOW (DR_STEP (dr))
	  % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
    {
      gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
      compute_in_loop = true;
    }

  if ((alignment_support_scheme == dr_explicit_realign_optimized
       || alignment_support_scheme == dr_explicit_realign)
      && !compute_in_loop)
    {
      msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
				    alignment_support_scheme, NULL_TREE,
				    &at_loop);
      if (alignment_support_scheme == dr_explicit_realign_optimized)
	{
	  phi = SSA_NAME_DEF_STMT (msq);
	  offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
	}
    }
  else
    at_loop = loop;

  prev_stmt_info = NULL;
  for (j = 0; j < ncopies; j++)
    { 
      /* 1. Create the vector pointer update chain.  */
      if (j == 0)
        dataref_ptr = vect_create_data_ref_ptr (first_stmt,
					        at_loop, offset, 
						&dummy, &ptr_incr, false, 
						&inv_p);
      else
        dataref_ptr = 
		bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);

      for (i = 0; i < vec_num; i++)
	{
	  if (i > 0)
	    dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
					   NULL_TREE);

	  /* 2. Create the vector-load in the loop.  */
	  switch (alignment_support_scheme)
	    {
	    case dr_aligned:
	      gcc_assert (aligned_access_p (first_dr));
	      data_ref = build_fold_indirect_ref (dataref_ptr);
	      break;
	    case dr_unaligned_supported:
	      {
		int mis = DR_MISALIGNMENT (first_dr);
		tree tmis = (mis == -1 ? size_zero_node : size_int (mis));

		tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
		data_ref =
		  build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
		break;
	      }
	    case dr_explicit_realign:
	      {
		tree ptr, bump;
		tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);

		if (compute_in_loop)
		  msq = vect_setup_realignment (first_stmt, gsi,
						&realignment_token,
						dr_explicit_realign, 
						dataref_ptr, NULL);

		data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
		vec_dest = vect_create_destination_var (scalar_dest, vectype);
		new_stmt = gimple_build_assign (vec_dest, data_ref);
		new_temp = make_ssa_name (vec_dest, new_stmt);
		gimple_assign_set_lhs (new_stmt, new_temp);
		gimple_set_vdef (new_stmt, gimple_vdef (stmt));
		gimple_set_vuse (new_stmt, gimple_vuse (stmt));
		vect_finish_stmt_generation (stmt, new_stmt, gsi);
		msq = new_temp;

		bump = size_binop (MULT_EXPR, vs_minus_1,
				   TYPE_SIZE_UNIT (scalar_type));
		ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
	        data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
	        break;
	      }
	    case dr_explicit_realign_optimized:
	      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  /* If accesses through a pointer to vectype do not alias the original
	     memory reference we have a problem.  This should never happen. */
	  gcc_assert (alias_sets_conflict_p (get_alias_set (data_ref),
		      get_alias_set (gimple_assign_rhs1 (stmt))));
	  vec_dest = vect_create_destination_var (scalar_dest, vectype);
	  new_stmt = gimple_build_assign (vec_dest, data_ref);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  gimple_assign_set_lhs (new_stmt, new_temp);
	  vect_finish_stmt_generation (stmt, new_stmt, gsi);
	  mark_symbols_for_renaming (new_stmt);

	  /* 3. Handle explicit realignment if necessary/supported. Create in
		loop: vec_dest = realign_load (msq, lsq, realignment_token)  */
	  if (alignment_support_scheme == dr_explicit_realign_optimized
	      || alignment_support_scheme == dr_explicit_realign)
	    {
	      tree tmp;

	      lsq = gimple_assign_lhs (new_stmt);
	      if (!realignment_token)
		realignment_token = dataref_ptr;
	      vec_dest = vect_create_destination_var (scalar_dest, vectype);
	      tmp = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq,
			    realignment_token);
	      new_stmt = gimple_build_assign (vec_dest, tmp);
	      new_temp = make_ssa_name (vec_dest, new_stmt);
	      gimple_assign_set_lhs (new_stmt, new_temp);
	      vect_finish_stmt_generation (stmt, new_stmt, gsi);

	      if (alignment_support_scheme == dr_explicit_realign_optimized)
		{
		  gcc_assert (phi);
		  if (i == vec_num - 1 && j == ncopies - 1)
		    add_phi_arg (phi, lsq, loop_latch_edge (containing_loop));
		  msq = lsq;
		}
	    }

	  /* 4. Handle invariant-load.  */
	  if (inv_p && !bb_vinfo)
	    {
	      gcc_assert (!strided_load);
	      gcc_assert (nested_in_vect_loop_p (loop, stmt));
	      if (j == 0)
		{
		  int k;
		  tree t = NULL_TREE;
		  tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type);

		  /* CHECKME: bitpos depends on endianess?  */
		  bitpos = bitsize_zero_node;
		  vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp, 
				    bitsize, bitpos);
		  vec_dest = 
			vect_create_destination_var (scalar_dest, NULL_TREE);
		  new_stmt = gimple_build_assign (vec_dest, vec_inv);
                  new_temp = make_ssa_name (vec_dest, new_stmt);
		  gimple_assign_set_lhs (new_stmt, new_temp);
		  vect_finish_stmt_generation (stmt, new_stmt, gsi);

		  for (k = nunits - 1; k >= 0; --k)
		    t = tree_cons (NULL_TREE, new_temp, t);
		  /* FIXME: use build_constructor directly.  */
		  vec_inv = build_constructor_from_list (vectype, t);
		  new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
		  new_stmt = SSA_NAME_DEF_STMT (new_temp);
		}
	      else
		gcc_unreachable (); /* FORNOW. */
	    }

	  /* Collect vector loads and later create their permutation in
	     vect_transform_strided_load ().  */
          if (strided_load || slp_perm)
            VEC_quick_push (tree, dr_chain, new_temp);

         /* Store vector loads in the corresponding SLP_NODE.  */
	  if (slp && !slp_perm)
	    VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
	}

      if (slp && !slp_perm)
	continue;

      if (slp_perm)
        {
          if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
                                             slp_node_instance, false))
            {
              VEC_free (tree, heap, dr_chain);
              return false;
            }
        }
      else
        {
          if (strided_load)
  	    {
	      if (!vect_transform_strided_load (stmt, dr_chain, group_size, gsi))
	        return false;	  

	      *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
              VEC_free (tree, heap, dr_chain);
	      dr_chain = VEC_alloc (tree, heap, group_size);
	    }
          else
	    {
	      if (j == 0)
	        STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
	      else
	        STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
	      prev_stmt_info = vinfo_for_stmt (new_stmt);
	    }
        }
    }

  if (dr_chain)
    VEC_free (tree, heap, dr_chain);

  return true;
}

/* Function vect_is_simple_cond.
  
   Input:
   LOOP - the loop that is being vectorized.
   COND - Condition that is checked for simple use.

   Returns whether a COND can be vectorized.  Checks whether
   condition operands are supportable using vec_is_simple_use.  */

static bool
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
{
  tree lhs, rhs;
  tree def;
  enum vect_def_type dt;

  if (!COMPARISON_CLASS_P (cond))
    return false;

  lhs = TREE_OPERAND (cond, 0);
  rhs = TREE_OPERAND (cond, 1);

  if (TREE_CODE (lhs) == SSA_NAME)
    {
      gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
      if (!vect_is_simple_use (lhs, loop_vinfo, NULL, &lhs_def_stmt, &def, 
                               &dt))
	return false;
    }
  else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
	   && TREE_CODE (lhs) != FIXED_CST)
    return false;

  if (TREE_CODE (rhs) == SSA_NAME)
    {
      gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
      if (!vect_is_simple_use (rhs, loop_vinfo, NULL, &rhs_def_stmt, &def, 
                               &dt))
	return false;
    }
  else if (TREE_CODE (rhs) != INTEGER_CST  && TREE_CODE (rhs) != REAL_CST
	   && TREE_CODE (rhs) != FIXED_CST)
    return false;

  return true;
}

/* vectorizable_condition.

   Check if STMT is conditional modify expression that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt using VEC_COND_EXPR  to replace it, put it in VEC_STMT, and insert it 
   at BSI.

   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
			gimple *vec_stmt)
{
  tree scalar_dest = NULL_TREE;
  tree vec_dest = NULL_TREE;
  tree op = NULL_TREE;
  tree cond_expr, then_clause, else_clause;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
  tree vec_compare, vec_cond_expr;
  tree new_temp;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum machine_mode vec_mode;
  tree def;
  enum vect_def_type dt;
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
  enum tree_code code;

  /* FORNOW: unsupported in basic block SLP.  */
  gcc_assert (loop_vinfo);
    
  gcc_assert (ncopies >= 1);
  if (ncopies > 1)
    return false; /* FORNOW */

  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
    return false;

  /* FORNOW: SLP not supported.  */
  if (STMT_SLP_TYPE (stmt_info))
    return false;

  /* FORNOW: not yet supported.  */
  if (STMT_VINFO_LIVE_P (stmt_info))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
      return false;
    }

  /* Is vectorizable conditional operation?  */
  if (!is_gimple_assign (stmt))
    return false;

  code = gimple_assign_rhs_code (stmt);

  if (code != COND_EXPR)
    return false;

  gcc_assert (gimple_assign_single_p (stmt));
  op = gimple_assign_rhs1 (stmt);
  cond_expr = TREE_OPERAND (op, 0);
  then_clause = TREE_OPERAND (op, 1);
  else_clause = TREE_OPERAND (op, 2);

  if (!vect_is_simple_cond (cond_expr, loop_vinfo))
    return false;

  /* We do not handle two different vector types for the condition
     and the values.  */
  if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
    return false;

  if (TREE_CODE (then_clause) == SSA_NAME)
    {
      gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
      if (!vect_is_simple_use (then_clause, loop_vinfo, NULL, 
			       &then_def_stmt, &def, &dt))
	return false;
    }
  else if (TREE_CODE (then_clause) != INTEGER_CST 
	   && TREE_CODE (then_clause) != REAL_CST
	   && TREE_CODE (then_clause) != FIXED_CST)
    return false;

  if (TREE_CODE (else_clause) == SSA_NAME)
    {
      gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
      if (!vect_is_simple_use (else_clause, loop_vinfo, NULL,
			       &else_def_stmt, &def, &dt))
	return false;
    }
  else if (TREE_CODE (else_clause) != INTEGER_CST 
	   && TREE_CODE (else_clause) != REAL_CST
	   && TREE_CODE (else_clause) != FIXED_CST)
    return false;


  vec_mode = TYPE_MODE (vectype);

  if (!vec_stmt) 
    {
      STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
      return expand_vec_cond_expr_p (op, vec_mode);
    }

  /* Transform */

  /* Handle def.  */
  scalar_dest = gimple_assign_lhs (stmt);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle cond expr.  */
  vec_cond_lhs = 
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
  vec_cond_rhs = 
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
  vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
  vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);

  /* Arguments are ready. Create the new vector stmt.  */
  vec_compare = build2 (TREE_CODE (cond_expr), vectype, 
			vec_cond_lhs, vec_cond_rhs);
  vec_cond_expr = build3 (VEC_COND_EXPR, vectype, 
			  vec_compare, vec_then_clause, vec_else_clause);

  *vec_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  gimple_assign_set_lhs (*vec_stmt, new_temp);
  vect_finish_stmt_generation (stmt, *vec_stmt, gsi);
  
  return true;
}


/* Make sure the statement is vectorizable.  */

bool
vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
  enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);  
  bool ok;
  HOST_WIDE_INT dummy;
  tree scalar_type, vectype;

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "==> examining statement: ");
      print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
    }

  /* Skip stmts that do not need to be vectorized. In loops this is expected 
     to include:
     - the COND_EXPR which is the loop exit condition
     - any LABEL_EXPRs in the loop
     - computations that are used only for array indexing or loop control.  
     In basic blocks we only analyze statements that are a part of some SLP
     instance, therefore, all the statements are relevant.  */

  if (!STMT_VINFO_RELEVANT_P (stmt_info) 
      && !STMT_VINFO_LIVE_P (stmt_info))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "irrelevant.");

      return true;
    }

  switch (STMT_VINFO_DEF_TYPE (stmt_info))
    {
      case vect_internal_def:
        break;

      case vect_reduction_def:
         gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
                     || relevance == vect_used_in_outer_by_reduction
                     || relevance == vect_unused_in_scope));
         break;

      case vect_induction_def:
      case vect_constant_def:
      case vect_external_def:
      case vect_unknown_def_type:
      default:
        gcc_unreachable ();
    }

  if (bb_vinfo)
    {
      gcc_assert (PURE_SLP_STMT (stmt_info));

      scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy);
      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "get vectype for scalar type:  ");
          print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
        }

      vectype = get_vectype_for_scalar_type (scalar_type);
      if (!vectype)
        {
          if (vect_print_dump_info (REPORT_DETAILS))
            {
               fprintf (vect_dump, "not SLPed: unsupported data-type ");
               print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
            }
          return false;
        }

      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "vectype:  ");
          print_generic_expr (vect_dump, vectype, TDF_SLIM);
        }

      STMT_VINFO_VECTYPE (stmt_info) = vectype;
   }

  if (STMT_VINFO_RELEVANT_P (stmt_info))
    {
      gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
      gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
      *need_to_vectorize = true;
    }

   ok = true;
   if (!bb_vinfo 
       && (STMT_VINFO_RELEVANT_P (stmt_info)
           || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
      ok = (vectorizable_type_promotion (stmt, NULL, NULL, NULL)
            || vectorizable_type_demotion (stmt, NULL, NULL, NULL)
            || vectorizable_conversion (stmt, NULL, NULL, NULL)
            || vectorizable_operation (stmt, NULL, NULL, NULL)
            || vectorizable_assignment (stmt, NULL, NULL, NULL)
            || vectorizable_load (stmt, NULL, NULL, NULL, NULL)
            || vectorizable_call (stmt, NULL, NULL)
            || vectorizable_store (stmt, NULL, NULL, NULL)
            || vectorizable_condition (stmt, NULL, NULL)
            || vectorizable_reduction (stmt, NULL, NULL));
    else
      {
        if (bb_vinfo)
          ok = (vectorizable_operation (stmt, NULL, NULL, node)
                || vectorizable_assignment (stmt, NULL, NULL, node)
                || vectorizable_load (stmt, NULL, NULL, node, NULL)
                || vectorizable_store (stmt, NULL, NULL, node));
      }	    

  if (!ok)
    {
      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
        {
          fprintf (vect_dump, "not vectorized: relevant stmt not ");
          fprintf (vect_dump, "supported: ");
          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
        }
    
      return false;
    }

  if (bb_vinfo)
    return true;

  /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
      need extra handling, except for vectorizable reductions.  */
  if (STMT_VINFO_LIVE_P (stmt_info)
      && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
    ok = vectorizable_live_operation (stmt, NULL, NULL);

  if (!ok)
    {
      if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
        {
          fprintf (vect_dump, "not vectorized: live stmt not ");
          fprintf (vect_dump, "supported: ");
          print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
        }
   
       return false;
    }

  if (!PURE_SLP_STMT (stmt_info))
    {
      /* Groups of strided accesses whose size is not a power of 2 are not 
         vectorizable yet using loop-vectorization. Therefore, if this stmt 
	 feeds non-SLP-able stmts (i.e., this stmt has to be both SLPed and 
	 loop-based vectorized), the loop cannot be vectorized.  */
      if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
          && exact_log2 (DR_GROUP_SIZE (vinfo_for_stmt (
                                        DR_GROUP_FIRST_DR (stmt_info)))) == -1)
        {
          if (vect_print_dump_info (REPORT_DETAILS))
            {
              fprintf (vect_dump, "not vectorized: the size of group "
                                  "of strided accesses is not a power of 2");
              print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
            }

          return false;
        }
    }
     
  return true;
}


/* Function vect_transform_stmt.

   Create a vectorized stmt to replace STMT, and insert it at BSI.  */

bool
vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
		     bool *strided_store, slp_tree slp_node, 
                     slp_instance slp_node_instance)
{
  bool is_store = false;
  gimple vec_stmt = NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  gimple orig_stmt_in_pattern;
  bool done;

  switch (STMT_VINFO_TYPE (stmt_info))
    {
    case type_demotion_vec_info_type:
      done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node);
      gcc_assert (done);
      break;

    case type_promotion_vec_info_type:
      done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node);
      gcc_assert (done);
      break;

    case type_conversion_vec_info_type:
      done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
      gcc_assert (done);
      break;

    case induc_vec_info_type:
      gcc_assert (!slp_node);
      done = vectorizable_induction (stmt, gsi, &vec_stmt);
      gcc_assert (done);
      break;

    case op_vec_info_type:
      done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
      gcc_assert (done);
      break;

    case assignment_vec_info_type:
      done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
      gcc_assert (done);
      break;

    case load_vec_info_type:
      done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node, 
                                slp_node_instance);
      gcc_assert (done);
      break;

    case store_vec_info_type:
      done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
      gcc_assert (done);
      if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
	{
	  /* In case of interleaving, the whole chain is vectorized when the
	     last store in the chain is reached. Store stmts before the last
	     one are skipped, and there vec_stmt_info shouldn't be freed
	     meanwhile.  */
	  *strided_store = true;
	  if (STMT_VINFO_VEC_STMT (stmt_info))
	    is_store = true;
	  }
      else
	is_store = true;
      break;

    case condition_vec_info_type:
      gcc_assert (!slp_node);
      done = vectorizable_condition (stmt, gsi, &vec_stmt);
      gcc_assert (done);
      break;

    case call_vec_info_type:
      gcc_assert (!slp_node);
      done = vectorizable_call (stmt, gsi, &vec_stmt);
      break;

    case reduc_vec_info_type:
      gcc_assert (!slp_node);
      done = vectorizable_reduction (stmt, gsi, &vec_stmt);
      gcc_assert (done);
      break;

    default:
      if (!STMT_VINFO_LIVE_P (stmt_info))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "stmt not supported.");
	  gcc_unreachable ();
	}
    }

  /* Handle inner-loop stmts whose DEF is used in the loop-nest that
     is being vectorized, but outside the immediately enclosing loop.  */
  if (vec_stmt
      && STMT_VINFO_LOOP_VINFO (stmt_info)
      && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
                                STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
      && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
      && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
          || STMT_VINFO_RELEVANT (stmt_info) == 
                                           vect_used_in_outer_by_reduction))
    {
      struct loop *innerloop = LOOP_VINFO_LOOP (
                                STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
      imm_use_iterator imm_iter;
      use_operand_p use_p;
      tree scalar_dest;
      gimple exit_phi;

      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");

      /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
        (to be used when vectorizing outer-loop stmts that use the DEF of
        STMT).  */
      if (gimple_code (stmt) == GIMPLE_PHI)
        scalar_dest = PHI_RESULT (stmt);
      else
        scalar_dest = gimple_assign_lhs (stmt);

      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
       {
         if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
           {
             exit_phi = USE_STMT (use_p);
             STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
           }
       }
    }

  /* Handle stmts whose DEF is used outside the loop-nest that is
     being vectorized.  */
  if (STMT_VINFO_LIVE_P (stmt_info)
      && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
    {
      done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
      gcc_assert (done);
    }

  if (vec_stmt)
    {
      STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
      orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
      if (orig_stmt_in_pattern)
	{
	  stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
	  /* STMT was inserted by the vectorizer to replace a computation idiom.
	     ORIG_STMT_IN_PATTERN is a stmt in the original sequence that 
	     computed this idiom.  We need to record a pointer to VEC_STMT in 
	     the stmt_info of ORIG_STMT_IN_PATTERN.  See more details in the 
	     documentation of vect_pattern_recog.  */
	  if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
	    {
	      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
	      STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
	    }
	}
    }

  return is_store; 
}


/* Remove a group of stores (for SLP or interleaving), free their 
   stmt_vec_info.  */

void
vect_remove_stores (gimple first_stmt)
{
  gimple next = first_stmt;
  gimple tmp;
  gimple_stmt_iterator next_si;

  while (next)
    {
      /* Free the attached stmt_vec_info and remove the stmt.  */
      next_si = gsi_for_stmt (next);
      gsi_remove (&next_si, true);
      tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
      free_stmt_vec_info (next);
      next = tmp;
    }
}


/* Function new_stmt_vec_info.

   Create and initialize a new stmt_vec_info struct for STMT.  */

stmt_vec_info
new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo, 
                   bb_vec_info bb_vinfo)
{
  stmt_vec_info res;
  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));

  STMT_VINFO_TYPE (res) = undef_vec_info_type;
  STMT_VINFO_STMT (res) = stmt;
  STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
  STMT_VINFO_BB_VINFO (res) = bb_vinfo;
  STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
  STMT_VINFO_LIVE_P (res) = false;
  STMT_VINFO_VECTYPE (res) = NULL;
  STMT_VINFO_VEC_STMT (res) = NULL;
  STMT_VINFO_IN_PATTERN_P (res) = false;
  STMT_VINFO_RELATED_STMT (res) = NULL;
  STMT_VINFO_DATA_REF (res) = NULL;

  STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
  STMT_VINFO_DR_OFFSET (res) = NULL;
  STMT_VINFO_DR_INIT (res) = NULL;
  STMT_VINFO_DR_STEP (res) = NULL;
  STMT_VINFO_DR_ALIGNED_TO (res) = NULL;

  if (gimple_code (stmt) == GIMPLE_PHI
      && is_loop_header_bb_p (gimple_bb (stmt)))
    STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
  else
    STMT_VINFO_DEF_TYPE (res) = vect_internal_def;

  STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
  STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
  STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
  STMT_SLP_TYPE (res) = loop_vect;
  DR_GROUP_FIRST_DR (res) = NULL;
  DR_GROUP_NEXT_DR (res) = NULL;
  DR_GROUP_SIZE (res) = 0;
  DR_GROUP_STORE_COUNT (res) = 0;
  DR_GROUP_GAP (res) = 0;
  DR_GROUP_SAME_DR_STMT (res) = NULL;
  DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;

  return res;
}


/* Create a hash table for stmt_vec_info. */

void
init_stmt_vec_info_vec (void)
{
  gcc_assert (!stmt_vec_info_vec);
  stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
}


/* Free hash table for stmt_vec_info. */

void
free_stmt_vec_info_vec (void)
{
  gcc_assert (stmt_vec_info_vec);
  VEC_free (vec_void_p, heap, stmt_vec_info_vec);
}


/* Free stmt vectorization related info.  */

void
free_stmt_vec_info (gimple stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);

  if (!stmt_info)
    return;

  VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
  set_vinfo_for_stmt (stmt, NULL);
  free (stmt_info);
}


/* Function get_vectype_for_scalar_type.

   Returns the vector type corresponding to SCALAR_TYPE as supported
   by the target.  */

tree
get_vectype_for_scalar_type (tree scalar_type)
{
  enum machine_mode inner_mode = TYPE_MODE (scalar_type);
  int nbytes = GET_MODE_SIZE (inner_mode);
  int nunits;
  tree vectype;

  if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
    return NULL_TREE;

  /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
     is expected.  */
  nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;

  vectype = build_vector_type (scalar_type, nunits);
  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "get vectype with %d units of type ", nunits);
      print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
    }

  if (!vectype)
    return NULL_TREE;

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "vectype: ");
      print_generic_expr (vect_dump, vectype, TDF_SLIM);
    }

  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "mode not supported by target.");
      return NULL_TREE;
    }

  return vectype;
}

/* Function vect_is_simple_use.

   Input:
   LOOP_VINFO - the vect info of the loop that is being vectorized.
   BB_VINFO - the vect info of the basic block that is being vectorized.
   OPERAND - operand of a stmt in the loop or bb.
   DEF - the defining stmt in case OPERAND is an SSA_NAME.

   Returns whether a stmt with OPERAND can be vectorized.
   For loops, supportable operands are constants, loop invariants, and operands 
   that are defined by the current iteration of the loop. Unsupportable 
   operands are those that are defined by a previous iteration of the loop (as 
   is the case in reduction/induction computations).
   For basic blocks, supportable operands are constants and bb invariants.
   For now, operands defined outside the basic block are not supported.  */

bool
vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, 
                    bb_vec_info bb_vinfo, gimple *def_stmt,
		    tree *def, enum vect_def_type *dt)
{ 
  basic_block bb;
  stmt_vec_info stmt_vinfo;
  struct loop *loop = NULL;
  
  if (loop_vinfo)
    loop = LOOP_VINFO_LOOP (loop_vinfo);

  *def_stmt = NULL;
  *def = NULL_TREE;
  
  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "vect_is_simple_use: operand ");
      print_generic_expr (vect_dump, operand, TDF_SLIM);
    }
    
  if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
    {
      *dt = vect_constant_def;
      return true;
    }
    
  if (is_gimple_min_invariant (operand))
    {
      *def = operand;
      *dt = vect_external_def;
      return true;
    }

  if (TREE_CODE (operand) == PAREN_EXPR)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "non-associatable copy.");
      operand = TREE_OPERAND (operand, 0);
    }
    
  if (TREE_CODE (operand) != SSA_NAME)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "not ssa-name.");
      return false;
    }
    
  *def_stmt = SSA_NAME_DEF_STMT (operand);
  if (*def_stmt == NULL)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no def_stmt.");
      return false;
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "def_stmt: ");
      print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
    }

  /* Empty stmt is expected only in case of a function argument.
     (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN).  */
  if (gimple_nop_p (*def_stmt))
    {
      *def = operand;
      *dt = vect_external_def;
      return true;
    }

  bb = gimple_bb (*def_stmt);

  if ((loop && !flow_bb_inside_loop_p (loop, bb))
      || (!loop && bb != BB_VINFO_BB (bb_vinfo))
      || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI)) 
    *dt = vect_external_def;
  else
    {
      stmt_vinfo = vinfo_for_stmt (*def_stmt);
      *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
    }

  if (*dt == vect_unknown_def_type)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Unsupported pattern.");
      return false;
    }

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "type of def: %d.",*dt);

  switch (gimple_code (*def_stmt))
    {
    case GIMPLE_PHI:
      *def = gimple_phi_result (*def_stmt);
      break;

    case GIMPLE_ASSIGN:
      *def = gimple_assign_lhs (*def_stmt);
      break;

    case GIMPLE_CALL:
      *def = gimple_call_lhs (*def_stmt);
      if (*def != NULL)
	break;
      /* FALLTHRU */
    default:
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "unsupported defining stmt: ");
      return false;
    }

  return true;
}


/* Function supportable_widening_operation

   Check whether an operation represented by the code CODE is a 
   widening operation that is supported by the target platform in 
   vector form (i.e., when operating on arguments of type VECTYPE).
    
   Widening operations we currently support are NOP (CONVERT), FLOAT
   and WIDEN_MULT.  This function checks if these operations are supported
   by the target platform either directly (via vector tree-codes), or via
   target builtins.

   Output:
   - CODE1 and CODE2 are codes of vector operations to be used when 
   vectorizing the operation, if available. 
   - DECL1 and DECL2 are decls of target builtin functions to be used
   when vectorizing the operation, if available. In this case,
   CODE1 and CODE2 are CALL_EXPR.  
   - MULTI_STEP_CVT determines the number of required intermediate steps in
   case of multi-step conversion (like char->short->int - in that case
   MULTI_STEP_CVT will be 1).
   - INTERM_TYPES contains the intermediate type required to perform the 
   widening operation (short in the above example).  */   

bool
supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype,
                                tree *decl1, tree *decl2,
                                enum tree_code *code1, enum tree_code *code2,
                                int *multi_step_cvt,
                                VEC (tree, heap) **interm_types)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
  bool ordered_p;
  enum machine_mode vec_mode;
  enum insn_code icode1, icode2;
  optab optab1, optab2;
  tree type = gimple_expr_type (stmt);
  tree wide_vectype = get_vectype_for_scalar_type (type);
  enum tree_code c1, c2;

  /* The result of a vectorized widening operation usually requires two vectors
     (because the widened results do not fit int one vector). The generated 
     vector results would normally be expected to be generated in the same 
     order as in the original scalar computation, i.e. if 8 results are
     generated in each vector iteration, they are to be organized as follows:
        vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8]. 

     However, in the special case that the result of the widening operation is 
     used in a reduction computation only, the order doesn't matter (because
     when vectorizing a reduction we change the order of the computation). 
     Some targets can take advantage of this and generate more efficient code.
     For example, targets like Altivec, that support widen_mult using a sequence
     of {mult_even,mult_odd} generate the following vectors:
        vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].

     When vectorizing outer-loops, we execute the inner-loop sequentially
     (each vectorized inner-loop iteration contributes to VF outer-loop 
     iterations in parallel). We therefore don't allow to change the order 
     of the computation in the inner-loop during outer-loop vectorization.  */

   if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
       && !nested_in_vect_loop_p (vect_loop, stmt))
     ordered_p = false;
   else
     ordered_p = true;

  if (!ordered_p
      && code == WIDEN_MULT_EXPR
      && targetm.vectorize.builtin_mul_widen_even
      && targetm.vectorize.builtin_mul_widen_even (vectype)
      && targetm.vectorize.builtin_mul_widen_odd
      && targetm.vectorize.builtin_mul_widen_odd (vectype))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "Unordered widening operation detected.");

      *code1 = *code2 = CALL_EXPR;
      *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
      *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
      return true;
    }

  switch (code)
    {
    case WIDEN_MULT_EXPR:
      if (BYTES_BIG_ENDIAN)
        {
          c1 = VEC_WIDEN_MULT_HI_EXPR;
          c2 = VEC_WIDEN_MULT_LO_EXPR;
        }
      else
        {
          c2 = VEC_WIDEN_MULT_HI_EXPR;
          c1 = VEC_WIDEN_MULT_LO_EXPR;
        }
      break;

    CASE_CONVERT:
      if (BYTES_BIG_ENDIAN)
        {
          c1 = VEC_UNPACK_HI_EXPR;
          c2 = VEC_UNPACK_LO_EXPR;
        }
      else
        {
          c2 = VEC_UNPACK_HI_EXPR;
          c1 = VEC_UNPACK_LO_EXPR;
        }
      break;

    case FLOAT_EXPR:
      if (BYTES_BIG_ENDIAN)
        {
          c1 = VEC_UNPACK_FLOAT_HI_EXPR;
          c2 = VEC_UNPACK_FLOAT_LO_EXPR;
        }
      else
        {
          c2 = VEC_UNPACK_FLOAT_HI_EXPR;
          c1 = VEC_UNPACK_FLOAT_LO_EXPR;
        }
      break;

    case FIX_TRUNC_EXPR:
      /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
	 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
	 computing the operation.  */
      return false;

    default:
      gcc_unreachable ();
    }

  if (code == FIX_TRUNC_EXPR)
    {
      /* The signedness is determined from output operand.  */
      optab1 = optab_for_tree_code (c1, type, optab_default);
      optab2 = optab_for_tree_code (c2, type, optab_default);
    }
  else
    {
      optab1 = optab_for_tree_code (c1, vectype, optab_default);
      optab2 = optab_for_tree_code (c2, vectype, optab_default);
    }

  if (!optab1 || !optab2)
    return false;

  vec_mode = TYPE_MODE (vectype);
  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
       || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
                                                       == CODE_FOR_nothing)
    return false;

  /* Check if it's a multi-step conversion that can be done using intermediate 
     types.  */
  if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
       || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
    {
      int i;
      tree prev_type = vectype, intermediate_type;
      enum machine_mode intermediate_mode, prev_mode = vec_mode;
      optab optab3, optab4;

      if (!CONVERT_EXPR_CODE_P (code))
        return false;
      
      *code1 = c1;
      *code2 = c2;
    
      /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
         intermediate  steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
         to get to NARROW_VECTYPE, and fail if we do not.  */
      *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
      for (i = 0; i < 3; i++)
        {
          intermediate_mode = insn_data[icode1].operand[0].mode;
          intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
                                                     TYPE_UNSIGNED (prev_type));
          optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
          optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);

          if (!optab3 || !optab4
              || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
                                                        == CODE_FOR_nothing
              || insn_data[icode1].operand[0].mode != intermediate_mode
              || (icode2 = optab2->handlers[(int) prev_mode].insn_code)
                                                        == CODE_FOR_nothing
              || insn_data[icode2].operand[0].mode != intermediate_mode
              || (icode1 = optab3->handlers[(int) intermediate_mode].insn_code) 
                                                        == CODE_FOR_nothing
              || (icode2 = optab4->handlers[(int) intermediate_mode].insn_code)
                                                        == CODE_FOR_nothing)
            return false;

          VEC_quick_push (tree, *interm_types, intermediate_type);
          (*multi_step_cvt)++;

          if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
              && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
            return true;

          prev_type = intermediate_type;
          prev_mode = intermediate_mode;
        }

       return false;
    }

  *code1 = c1;
  *code2 = c2;
  return true;
}


/* Function supportable_narrowing_operation

   Check whether an operation represented by the code CODE is a 
   narrowing operation that is supported by the target platform in 
   vector form (i.e., when operating on arguments of type VECTYPE).
    
   Narrowing operations we currently support are NOP (CONVERT) and
   FIX_TRUNC. This function checks if these operations are supported by
   the target platform directly via vector tree-codes.

   Output:
   - CODE1 is the code of a vector operation to be used when 
   vectorizing the operation, if available. 
   - MULTI_STEP_CVT determines the number of required intermediate steps in
   case of multi-step conversion (like int->short->char - in that case
   MULTI_STEP_CVT will be 1).
   - INTERM_TYPES contains the intermediate type required to perform the
   narrowing operation (short in the above example).   */ 

bool
supportable_narrowing_operation (enum tree_code code,
				 const_gimple stmt, tree vectype,
				 enum tree_code *code1, int *multi_step_cvt,
                                 VEC (tree, heap) **interm_types)
{
  enum machine_mode vec_mode;
  enum insn_code icode1;
  optab optab1, interm_optab;
  tree type = gimple_expr_type (stmt);
  tree narrow_vectype = get_vectype_for_scalar_type (type);
  enum tree_code c1;
  tree intermediate_type, prev_type;
  int i;

  switch (code)
    {
    CASE_CONVERT:
      c1 = VEC_PACK_TRUNC_EXPR;
      break;

    case FIX_TRUNC_EXPR:
      c1 = VEC_PACK_FIX_TRUNC_EXPR;
      break;

    case FLOAT_EXPR:
      /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
	 tree code and optabs used for computing the operation.  */
      return false;

    default:
      gcc_unreachable ();
    }

  if (code == FIX_TRUNC_EXPR)
    /* The signedness is determined from output operand.  */
    optab1 = optab_for_tree_code (c1, type, optab_default);
  else
    optab1 = optab_for_tree_code (c1, vectype, optab_default);

  if (!optab1)
    return false;

  vec_mode = TYPE_MODE (vectype);
  if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) 
       == CODE_FOR_nothing)
    return false;

  /* Check if it's a multi-step conversion that can be done using intermediate
     types.  */
  if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
    {
      enum machine_mode intermediate_mode, prev_mode = vec_mode;

      *code1 = c1;
      prev_type = vectype;
      /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
         intermediate  steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
         to get to NARROW_VECTYPE, and fail if we do not.  */
      *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
      for (i = 0; i < 3; i++)
        {
          intermediate_mode = insn_data[icode1].operand[0].mode;
          intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
                                                     TYPE_UNSIGNED (prev_type));
          interm_optab = optab_for_tree_code (c1, intermediate_type, 
                                              optab_default);
          if (!interm_optab  
              || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
                                                        == CODE_FOR_nothing
              || insn_data[icode1].operand[0].mode != intermediate_mode
              || (icode1 
                  = interm_optab->handlers[(int) intermediate_mode].insn_code)
                 == CODE_FOR_nothing)
            return false;

          VEC_quick_push (tree, *interm_types, intermediate_type);
          (*multi_step_cvt)++;

          if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
            return true;

          prev_type = intermediate_type;
          prev_mode = intermediate_mode;
        }

      return false;
    }

  *code1 = c1;
  return true;
}