summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-transform.c
blob: db0573ce6f5cf8e5f25f50b3a97348bd20e9a272 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
/* Transformation Utilities for Loop Vectorization.
   Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "recog.h"
#include "tree-data-ref.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "langhooks.h"
#include "tree-pass.h"
#include "toplev.h"
#include "real.h"

/* Utility functions for the code transformation.  */
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static void vect_align_data_ref (tree);
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref_ptr 
  (tree, block_stmt_iterator *, tree, tree *, bool); 
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree, tree *);
static tree vect_init_vector (tree, tree);
static void vect_finish_stmt_generation 
  (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
static bool vect_is_simple_cond (tree, loop_vec_info); 
static void update_vuses_to_preheader (tree, struct loop*);
static void vect_create_epilog_for_reduction (tree, tree, enum tree_code, tree);
static tree get_initial_def_for_reduction (tree, tree, tree *);

/* Utility function dealing with loop peeling (not peeling itself).  */
static void vect_generate_tmps_on_preheader 
  (loop_vec_info, tree *, tree *, tree *);
static tree vect_build_loop_niters (loop_vec_info);
static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge); 
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
static void vect_update_init_of_dr (struct data_reference *, tree niters);
static void vect_update_inits_of_drs (loop_vec_info, tree);
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
static void vect_do_peeling_for_loop_bound 
  (loop_vec_info, tree *, struct loops *);
static int vect_min_worthwhile_factor (enum tree_code);


/* Function vect_get_new_vect_var.

   Returns a name for a new variable. The current naming scheme appends the 
   prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to 
   the name of vectorizer generated variables, and appends that to NAME if 
   provided.  */

static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
  const char *prefix;
  tree new_vect_var;

  switch (var_kind)
  {
  case vect_simple_var:
    prefix = "vect_";
    break;
  case vect_scalar_var:
    prefix = "stmp_";
    break;
  case vect_pointer_var:
    prefix = "vect_p";
    break;
  default:
    gcc_unreachable ();
  }

  if (name)
    new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
  else
    new_vect_var = create_tmp_var (type, prefix);

  return new_vect_var;
}


/* Function vect_create_addr_base_for_vector_ref.

   Create an expression that computes the address of the first memory location
   that will be accessed for a data reference.

   Input:
   STMT: The statement containing the data reference.
   NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
   OFFSET: Optional. If supplied, it is be added to the initial address.

   Output:
   1. Return an SSA_NAME whose value is the address of the memory location of 
      the first vector of the data reference.
   2. If new_stmt_list is not NULL_TREE after return then the caller must insert
      these statement(s) which define the returned SSA_NAME.

   FORNOW: We are only handling array accesses with step 1.  */

static tree
vect_create_addr_base_for_vector_ref (tree stmt,
                                      tree *new_stmt_list,
				      tree offset)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
  tree base_name = build_fold_indirect_ref (data_ref_base);
  tree ref = DR_REF (dr);
  tree scalar_type = TREE_TYPE (ref);
  tree scalar_ptr_type = build_pointer_type (scalar_type);
  tree vec_stmt;
  tree new_temp;
  tree addr_base, addr_expr;
  tree dest, new_stmt;
  tree base_offset = unshare_expr (DR_OFFSET (dr));
  tree init = unshare_expr (DR_INIT (dr));

  /* Create base_offset */
  base_offset = size_binop (PLUS_EXPR, base_offset, init);
  dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
  add_referenced_tmp_var (dest);
  base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);  
  append_to_statement_list_force (new_stmt, new_stmt_list);

  if (offset)
    {
      tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
      add_referenced_tmp_var (tmp);
      offset = fold_build2 (MULT_EXPR, TREE_TYPE (offset), offset,
			    DR_STEP (dr));
      base_offset = fold_build2 (PLUS_EXPR, TREE_TYPE (base_offset),
				 base_offset, offset);
      base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);  
      append_to_statement_list_force (new_stmt, new_stmt_list);
    }
  
  /* base + base_offset */
  addr_base = fold_build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
			   base_offset);

  /* addr_expr = addr_base */
  addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
                                     get_name (base_name));
  add_referenced_tmp_var (addr_expr);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
  new_temp = make_ssa_name (addr_expr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  append_to_statement_list_force (vec_stmt, new_stmt_list);

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "created ");
      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
    }
  return new_temp;
}


/* Function vect_align_data_ref.

   Handle misalignment of a memory accesses.

   FORNOW: Can't handle misaligned accesses. 
   Make sure that the dataref is aligned.  */

static void
vect_align_data_ref (tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);

  /* FORNOW: can't handle misaligned accesses; 
             all accesses expected to be aligned.  */
  gcc_assert (aligned_access_p (dr));
}


/* Function vect_create_data_ref_ptr.

   Create a memory reference expression for vector access, to be used in a
   vector load/store stmt. The reference is based on a new pointer to vector
   type (vp).

   Input:
   1. STMT: a stmt that references memory. Expected to be of the form
         MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
   2. BSI: block_stmt_iterator where new stmts can be added.
   3. OFFSET (optional): an offset to be added to the initial address accessed
        by the data-ref in STMT.
   4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
        pointing to the initial address.

   Output:
   1. Declare a new ptr to vector_type, and have it point to the base of the
      data reference (initial addressed accessed by the data reference).
      For example, for vector of type V8HI, the following code is generated:

      v8hi *vp;
      vp = (v8hi *)initial_address;

      if OFFSET is not supplied:
         initial_address = &a[init];
      if OFFSET is supplied:
         initial_address = &a[init + OFFSET];

      Return the initial_address in INITIAL_ADDRESS.

   2. If ONLY_INIT is true, return the initial pointer.  Otherwise, create
      a data-reference in the loop based on the new vector pointer vp.  This
      new data reference will by some means be updated each iteration of
      the loop.  Return the pointer vp'.

   FORNOW: handle only aligned and consecutive accesses.  */

static tree
vect_create_data_ref_ptr (tree stmt,
			  block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
			  tree offset, tree *initial_address, bool only_init)
{
  tree base_name;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vect_ptr_type;
  tree vect_ptr;
  tree tag;
  tree new_temp;
  tree vec_stmt;
  tree new_stmt_list = NULL_TREE;
  edge pe = loop_preheader_edge (loop);
  basic_block new_bb;
  tree vect_ptr_init;
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);

  base_name =  build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      tree data_ref_base = base_name;
      fprintf (vect_dump, "create vector-pointer variable to type: ");
      print_generic_expr (vect_dump, vectype, TDF_SLIM);
      if (TREE_CODE (data_ref_base) == VAR_DECL)
        fprintf (vect_dump, "  vectorizing a one dimensional array ref: ");
      else if (TREE_CODE (data_ref_base) == ARRAY_REF)
        fprintf (vect_dump, "  vectorizing a multidimensional array ref: ");
      else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
        fprintf (vect_dump, "  vectorizing a record based array ref: ");
      else if (TREE_CODE (data_ref_base) == SSA_NAME)
        fprintf (vect_dump, "  vectorizing a pointer ref: ");
      print_generic_expr (vect_dump, base_name, TDF_SLIM);
    }

  /** (1) Create the new vector-pointer variable:  **/

  vect_ptr_type = build_pointer_type (vectype);
  vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
                                    get_name (base_name));
  add_referenced_tmp_var (vect_ptr);
  
  
  /** (2) Add aliasing information to the new vector-pointer:
          (The points-to info (DR_PTR_INFO) may be defined later.)  **/
  
  tag = DR_MEMTAG (dr);
  gcc_assert (tag);

  /* If tag is a variable (and NOT_A_TAG) than a new type alias
     tag must be created with tag added to its may alias list.  */
  if (!MTAG_P (tag))
    new_type_alias (vect_ptr, tag);
  else
    var_ann (vect_ptr)->type_mem_tag = tag;

  var_ann (vect_ptr)->subvars = DR_SUBVARS (dr);

  /** (3) Calculate the initial address the vector-pointer, and set
          the vector-pointer to point to it before the loop:  **/

  /* Create: (&(base[init_val+offset]) in the loop preheader.  */
  new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
                                                   offset);
  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
  gcc_assert (!new_bb);
  *initial_address = new_temp;

  /* Create: p = (vectype *) initial_base  */
  vec_stmt = fold_convert (vect_ptr_type, new_temp);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
  vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = vect_ptr_init;
  new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
  gcc_assert (!new_bb);


  /** (4) Handle the updating of the vector-pointer inside the loop: **/

  if (only_init) /* No update in loop is required.  */
    {
      /* Copy the points-to information if it exists. */
      if (DR_PTR_INFO (dr))
        duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
      return vect_ptr_init;
    }
  else
    {
      block_stmt_iterator incr_bsi;
      bool insert_after;
      tree indx_before_incr, indx_after_incr;
      tree incr;

      standard_iv_increment_position (loop, &incr_bsi, &insert_after);
      create_iv (vect_ptr_init,
		 fold_convert (vect_ptr_type, TYPE_SIZE_UNIT (vectype)),
		 NULL_TREE, loop, &incr_bsi, insert_after,
		 &indx_before_incr, &indx_after_incr);
      incr = bsi_stmt (incr_bsi);
      set_stmt_info ((tree_ann_t)stmt_ann (incr),
		     new_stmt_vec_info (incr, loop_vinfo));

      /* Copy the points-to information if it exists. */
      if (DR_PTR_INFO (dr))
	{
	  duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
	  duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
	}
      merge_alias_info (vect_ptr_init, indx_before_incr);
      merge_alias_info (vect_ptr_init, indx_after_incr);

      return indx_before_incr;
    }
}


/* Function vect_create_destination_var.

   Create a new temporary of type VECTYPE.  */

static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
  tree vec_dest;
  const char *new_name;
  tree type;
  enum vect_var_kind kind;

  kind = vectype ? vect_simple_var : vect_scalar_var;
  type = vectype ? vectype : TREE_TYPE (scalar_dest);

  gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);

  new_name = get_name (scalar_dest);
  if (!new_name)
    new_name = "var_";
  vec_dest = vect_get_new_vect_var (type, vect_simple_var, new_name);
  add_referenced_tmp_var (vec_dest);

  return vec_dest;
}


/* Function vect_init_vector.

   Insert a new stmt (INIT_STMT) that initializes a new vector variable with
   the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
   used in the vectorization of STMT.  */

static tree
vect_init_vector (tree stmt, tree vector_var)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree new_var;
  tree init_stmt;
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); 
  tree vec_oprnd;
  edge pe;
  tree new_temp;
  basic_block new_bb;
 
  new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
  add_referenced_tmp_var (new_var); 
 
  init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
  new_temp = make_ssa_name (new_var, init_stmt);
  TREE_OPERAND (init_stmt, 0) = new_temp;

  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
  gcc_assert (!new_bb);

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "created new init_stmt: ");
      print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
    }

  vec_oprnd = TREE_OPERAND (init_stmt, 0);
  return vec_oprnd;
}


/* Function vect_get_vec_def_for_operand.

   OP is an operand in STMT. This function returns a (vector) def that will be
   used in the vectorized stmt for STMT.

   In the case that OP is an SSA_NAME which is defined in the loop, then
   STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.

   In case OP is an invariant or constant, a new stmt that creates a vector def
   needs to be introduced.  */

static tree
vect_get_vec_def_for_operand (tree op, tree stmt, tree *scalar_def)
{
  tree vec_oprnd;
  tree vec_stmt;
  tree def_stmt;
  stmt_vec_info def_stmt_info = NULL;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  int nunits = TYPE_VECTOR_SUBPARTS (vectype);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree vec_inv;
  tree vec_cst;
  tree t = NULL_TREE;
  tree def;
  int i;
  enum vect_def_type dt;
  bool is_simple_use;

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
      print_generic_expr (vect_dump, op, TDF_SLIM);
    }

  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
  gcc_assert (is_simple_use);
  if (vect_print_dump_info (REPORT_DETAILS))
    {
      if (def)
        {
          fprintf (vect_dump, "def =  ");
          print_generic_expr (vect_dump, def, TDF_SLIM);
        }
      if (def_stmt)
        {
          fprintf (vect_dump, "  def_stmt =  ");
          print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
        }
    }

  switch (dt)
    {
    /* Case 1: operand is a constant.  */
    case vect_constant_def:
      {
	if (scalar_def) 
	  *scalar_def = op;

        /* Create 'vect_cst_ = {cst,cst,...,cst}'  */
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);

        for (i = nunits - 1; i >= 0; --i)
          {
            t = tree_cons (NULL_TREE, op, t);
          }
        vec_cst = build_vector (vectype, t);
        return vect_init_vector (stmt, vec_cst);
      }

    /* Case 2: operand is defined outside the loop - loop invariant.  */
    case vect_invariant_def:
      {
	if (scalar_def) 
	  *scalar_def = def;

        /* Create 'vec_inv = {inv,inv,..,inv}'  */
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "Create vector_inv.");

        for (i = nunits - 1; i >= 0; --i)
          {
            t = tree_cons (NULL_TREE, def, t);
          }

	/* FIXME: use build_constructor directly.  */
        vec_inv = build_constructor_from_list (vectype, t);
        return vect_init_vector (stmt, vec_inv);
      }

    /* Case 3: operand is defined inside the loop.  */
    case vect_loop_def:
      {
	if (scalar_def) 
	  *scalar_def = def_stmt;

        /* Get the def from the vectorized stmt.  */
        def_stmt_info = vinfo_for_stmt (def_stmt);
        vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
        gcc_assert (vec_stmt);
        vec_oprnd = TREE_OPERAND (vec_stmt, 0);
        return vec_oprnd;
      }

    /* Case 4: operand is defined by a loop header phi - reduction  */
    case vect_reduction_def:
      {
        gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);

        /* Get the def before the loop  */
        op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
        return get_initial_def_for_reduction (stmt, op, scalar_def);
     }

    /* Case 5: operand is defined by loop-header phi - induction.  */
    case vect_induction_def:
      {
        if (vect_print_dump_info (REPORT_DETAILS))
          fprintf (vect_dump, "induction - unsupported.");
        internal_error ("no support for induction"); /* FORNOW */
      }

    default:
      gcc_unreachable ();
    }
}


/* Function vect_finish_stmt_generation.

   Insert a new stmt.  */

static void
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
{
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "add new stmt: ");
      print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
    }

  /* Make sure bsi points to the stmt that is being vectorized.  */
  gcc_assert (stmt == bsi_stmt (*bsi));

#ifdef USE_MAPPED_LOCATION
  SET_EXPR_LOCATION (vec_stmt, EXPR_LOCATION (stmt));
#else
  SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
#endif
}


#define ADJUST_IN_EPILOG 1

/* Function get_initial_def_for_reduction

   Input:
   STMT - a stmt that performs a reduction operation in the loop.
   INIT_VAL - the initial value of the reduction variable

   Output:
   SCALAR_DEF - a tree that holds a value to be added to the final result
	of the reduction (used for "ADJUST_IN_EPILOG" - see below).
   Return a vector variable, initialized according to the operation that STMT
	performs. This vector will be used as the initial value of the
	vector of partial results.

   Option1 ("ADJUST_IN_EPILOG"): Initialize the vector as follows:
     add:         [0,0,...,0,0]
     mult:        [1,1,...,1,1]
     min/max:     [init_val,init_val,..,init_val,init_val]
     bit and/or:  [init_val,init_val,..,init_val,init_val]
   and when necessary (e.g. add/mult case) let the caller know 
   that it needs to adjust the result by init_val.

   Option2: Initialize the vector as follows:
     add:         [0,0,...,0,init_val]
     mult:        [1,1,...,1,init_val]
     min/max:     [init_val,init_val,...,init_val]
     bit and/or:  [init_val,init_val,...,init_val]
   and no adjustments are needed.

   For example, for the following code:

   s = init_val;
   for (i=0;i<n;i++)
     s = s + a[i];

   STMT is 's = s + a[i]', and the reduction variable is 's'.
   For a vector of 4 units, we want to return either [0,0,0,init_val],
   or [0,0,0,0] and let the caller know that it needs to adjust
   the result at the end by 'init_val'.

   FORNOW: We use the "ADJUST_IN_EPILOG" scheme.
   TODO: Use some cost-model to estimate which scheme is more profitable.
*/

static tree
get_initial_def_for_reduction (tree stmt, tree init_val, tree *scalar_def)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
  int nelements;
  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
  tree type = TREE_TYPE (init_val);
  tree def;
  tree vec, t = NULL_TREE;
  bool need_epilog_adjust;
  int i;

  gcc_assert (INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));

  switch (code)
  {
  case WIDEN_SUM_EXPR:
  case DOT_PROD_EXPR:
  case PLUS_EXPR:
    if (INTEGRAL_TYPE_P (type))
      def = build_int_cst (type, 0);
    else
      def = build_real (type, dconst0);

#ifdef ADJUST_IN_EPILOG
    /* All the 'nunits' elements are set to 0. The final result will be
       adjusted by 'init_val' at the loop epilog.  */
    nelements = nunits;
    need_epilog_adjust = true;
#else
    /* 'nunits - 1' elements are set to 0; The last element is set to 
        'init_val'.  No further adjustments at the epilog are needed.  */
    nelements = nunits - 1;
    need_epilog_adjust = false;
#endif
    break;

  case MIN_EXPR:
  case MAX_EXPR:
    def = init_val;
    nelements = nunits;
    need_epilog_adjust = false;
    break;

  default:
    gcc_unreachable ();
  }

  for (i = nelements - 1; i >= 0; --i)
    t = tree_cons (NULL_TREE, def, t);

  if (nelements == nunits - 1)
    {
      /* Set the last element of the vector.  */
      t = tree_cons (NULL_TREE, init_val, t);
      nelements += 1;
    }
  gcc_assert (nelements == nunits);
  
  if (TREE_CODE (init_val) == INTEGER_CST || TREE_CODE (init_val) == REAL_CST)
    vec = build_vector (vectype, t);
  else
    vec = build_constructor_from_list (vectype, t);
    
  if (!need_epilog_adjust)
    *scalar_def = NULL_TREE;
  else
    *scalar_def = init_val;

  return vect_init_vector (stmt, vec);
}


/* Function vect_create_epilog_for_reduction
    
   Create code at the loop-epilog to finalize the result of a reduction
   computation. 
  
   VECT_DEF is a vector of partial results. 
   REDUC_CODE is the tree-code for the epilog reduction.
   STMT is the scalar reduction stmt that is being vectorized.
   REDUCTION_PHI is the phi-node that carries the reduction computation.

   This function:
   1. Creates the reduction def-use cycle: sets the the arguments for 
      REDUCTION_PHI:
      The loop-entry argument is the vectorized initial-value of the reduction.
      The loop-latch argument is VECT_DEF - the vector of partial sums.
   2. "Reduces" the vector of partial results VECT_DEF into a single result,
      by applying the operation specified by REDUC_CODE if available, or by 
      other means (whole-vector shifts or a scalar loop).
      The function also creates a new phi node at the loop exit to preserve 
      loop-closed form, as illustrated below.
  
     The flow at the entry to this function:
    
        loop:
          vec_def = phi <null, null>            # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT       
          s_loop = scalar_stmt                  # (scalar) STMT
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          use <s_out0>
          use <s_out0>

     The above is transformed by this function into:

        loop:
          vec_def = phi <vec_init, VECT_DEF>    # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT
          s_loop = scalar_stmt                  # (scalar) STMT 
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>
          s_out3 = extract_field <v_out2, 0>
          s_out4 = adjust_result <s_out3>
          use <s_out4>
          use <s_out4>
*/

static void
vect_create_epilog_for_reduction (tree vect_def, tree stmt,
                                  enum tree_code reduc_code, tree reduction_phi)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype;
  enum machine_mode mode;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block exit_bb;
  tree scalar_dest;
  tree scalar_type;
  tree new_phi;
  block_stmt_iterator exit_bsi;
  tree vec_dest;
  tree new_temp;
  tree new_name;
  tree epilog_stmt;
  tree new_scalar_dest, exit_phi;
  tree bitsize, bitpos, bytesize; 
  enum tree_code code = TREE_CODE (TREE_OPERAND (stmt, 1));
  tree scalar_initial_def;
  tree vec_initial_def;
  tree orig_name;
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  bool extract_scalar_result;
  tree reduction_op;
  tree orig_stmt;
  tree operation = TREE_OPERAND (stmt, 1);
  int op_type;
  
  op_type = TREE_CODE_LENGTH (TREE_CODE (operation));
  reduction_op = TREE_OPERAND (operation, op_type-1);
  vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
  mode = TYPE_MODE (vectype);

  /*** 1. Create the reduction def-use cycle  ***/
  
  /* 1.1 set the loop-entry arg of the reduction-phi:  */
  /* For the case of reduction, vect_get_vec_def_for_operand returns
     the scalar def before the loop, that defines the initial value
     of the reduction variable.  */
  vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
						  &scalar_initial_def);
  add_phi_arg (reduction_phi, vec_initial_def, loop_preheader_edge (loop));

  /* 1.2 set the loop-latch arg for the reduction-phi:  */
  add_phi_arg (reduction_phi, vect_def, loop_latch_edge (loop));

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "transform reduction: created def-use cycle:");
      print_generic_expr (vect_dump, reduction_phi, TDF_SLIM);
      fprintf (vect_dump, "\n");
      print_generic_expr (vect_dump, SSA_NAME_DEF_STMT (vect_def), TDF_SLIM);
    }


  /*** 2. Create epilog code
	  The reduction epilog code operates across the elements of the vector
          of partial results computed by the vectorized loop.
          The reduction epilog code consists of:
          step 1: compute the scalar result in a vector (v_out2)
          step 2: extract the scalar result (s_out3) from the vector (v_out2)
          step 3: adjust the scalar result (s_out3) if needed.

          Step 1 can be accomplished using one the following three schemes:
          (scheme 1) using reduc_code, if available.
          (scheme 2) using whole-vector shifts, if available.
          (scheme 3) using a scalar loop. In this case steps 1+2 above are 
                     combined.
                
          The overall epilog code looks like this:

          s_out0 = phi <s_loop>         # original EXIT_PHI
          v_out1 = phi <VECT_DEF>       # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>              # step 1
          s_out3 = extract_field <v_out2, 0>    # step 2
          s_out4 = adjust_result <s_out3>       # step 3

          (step 3 is optional, and step2 1 and 2 may be combined).
          Lastly, the uses of s_out0 are replaced by s_out4.

	  ***/

  /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
        v_out1 = phi <v_loop>  */

  exit_bb = loop->single_exit->dest;
  new_phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
  SET_PHI_ARG_DEF (new_phi, loop->single_exit->dest_idx, vect_def);
  exit_bsi = bsi_start (exit_bb);

  /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3 
         (i.e. when reduc_code is not available) and in the final adjusment code
         (if needed).  Also get the original scalar reduction variable as
         defined in the loop.  In case STMT is a "pattern-stmt" (i.e. - it 
         represents a reduction pattern), the tree-code and scalar-def are 
         taken from the original stmt that the pattern-stmt (STMT) replaces.  
         Otherwise (it is a regular reduction) - the tree-code and scalar-def
         are taken from STMT.  */ 

  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
  if (!orig_stmt)
    {
      /* Regular reduction  */
      orig_stmt = stmt;
    }
  else
    {
      /* Reduction pattern  */
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
      gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
      gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
    }
  code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
  scalar_dest = TREE_OPERAND (orig_stmt, 0);
  scalar_type = TREE_TYPE (scalar_dest);
  new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
  bitsize = TYPE_SIZE (scalar_type);
  bytesize = TYPE_SIZE_UNIT (scalar_type);

  /* 2.3 Create the reduction code, using one of the three schemes described
         above.  */

  if (reduc_code < NUM_TREE_CODES)
    {
      /*** Case 1:  Create:
	   v_out2 = reduc_expr <v_out1>  */

      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "Reduce using direct vector reduction.");

      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
			build1 (reduc_code, vectype,  PHI_RESULT (new_phi)));
      new_temp = make_ssa_name (vec_dest, epilog_stmt);
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);

      extract_scalar_result = true;
    }
  else
    {
      enum tree_code shift_code = 0;
      bool have_whole_vector_shift = true;
      int bit_offset;
      int element_bitsize = tree_low_cst (bitsize, 1);
      int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
      tree vec_temp;

      if (vec_shr_optab->handlers[mode].insn_code != CODE_FOR_nothing)
	shift_code = VEC_RSHIFT_EXPR;
      else
	have_whole_vector_shift = false;

      /* Regardless of whether we have a whole vector shift, if we're
	 emulating the operation via tree-vect-generic, we don't want
	 to use it.  Only the first round of the reduction is likely
	 to still be profitable via emulation.  */
      /* ??? It might be better to emit a reduction tree code here, so that
	 tree-vect-generic can expand the first round via bit tricks.  */
      if (!VECTOR_MODE_P (mode))
	have_whole_vector_shift = false;
      else
	{
	  optab optab = optab_for_tree_code (code, vectype);
	  if (optab->handlers[mode].insn_code == CODE_FOR_nothing)
	    have_whole_vector_shift = false;
	}

      if (have_whole_vector_shift)
        {
	  /*** Case 2: Create:
	     for (offset = VS/2; offset >= element_size; offset/=2)
	        {
	          Create:  va' = vec_shift <va, offset>
	          Create:  va = vop <va, va'>
	        }  */

	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "Reduce using vector shifts");

	  vec_dest = vect_create_destination_var (scalar_dest, vectype);
	  new_temp = PHI_RESULT (new_phi);

	  for (bit_offset = vec_size_in_bits/2;
	       bit_offset >= element_bitsize;
	       bit_offset /= 2)
	    {
	      tree bitpos = size_int (bit_offset);

	      epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
	      build2 (shift_code, vectype, new_temp, bitpos));
	      new_name = make_ssa_name (vec_dest, epilog_stmt);
	      TREE_OPERAND (epilog_stmt, 0) = new_name;
	      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);

	      epilog_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
	      build2 (code, vectype, new_name, new_temp));
	      new_temp = make_ssa_name (vec_dest, epilog_stmt);
	      TREE_OPERAND (epilog_stmt, 0) = new_temp;
	      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
	    }

	  extract_scalar_result = true;
	}
      else
        {
	  tree rhs;

	  /*** Case 3: Create:  
	     s = extract_field <v_out2, 0>
	     for (offset = element_size; 
		  offset < vector_size; 
		  offset += element_size;)
	       {
	         Create:  s' = extract_field <v_out2, offset>
	         Create:  s = op <s, s'>
	       }  */

	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "Reduce using scalar code. ");

	  vec_temp = PHI_RESULT (new_phi);
	  vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
	  rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
			 bitsize_zero_node);
	  BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
	  epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
	  new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
	  TREE_OPERAND (epilog_stmt, 0) = new_temp;
	  bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
	      
	  for (bit_offset = element_bitsize;
	       bit_offset < vec_size_in_bits;
	       bit_offset += element_bitsize)
	    { 
	      tree bitpos = bitsize_int (bit_offset);
	      tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
				 bitpos);
		
	      BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
	      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
				    rhs);	
	      new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
	      TREE_OPERAND (epilog_stmt, 0) = new_name;
	      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);

	      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
				build2 (code, scalar_type, new_name, new_temp));
	      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
	      TREE_OPERAND (epilog_stmt, 0) = new_temp;
	      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
	    }

	  extract_scalar_result = false;
	}
    }

  /* 2.4  Extract the final scalar result.  Create:
         s_out3 = extract_field <v_out2, bitpos>  */
  
  if (extract_scalar_result)
    {
      tree rhs;

      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "extract scalar result");

      if (BYTES_BIG_ENDIAN)
	bitpos = size_binop (MULT_EXPR,
		       bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
		       TYPE_SIZE (scalar_type));
      else
	bitpos = bitsize_zero_node;

      rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
      BIT_FIELD_REF_UNSIGNED (rhs) = TYPE_UNSIGNED (scalar_type);
      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest, rhs);
      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      TREE_OPERAND (epilog_stmt, 0) = new_temp; 
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
    }

  /* 2.4 Adjust the final result by the initial value of the reduction
	 variable. (When such adjustment is not needed, then
	 'scalar_initial_def' is zero).

	 Create: 
	 s_out4 = scalar_expr <s_out3, scalar_initial_def>  */
  
  if (scalar_initial_def)
    {
      epilog_stmt = build2 (MODIFY_EXPR, scalar_type, new_scalar_dest,
                      build2 (code, scalar_type, new_temp, scalar_initial_def));
      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      TREE_OPERAND (epilog_stmt, 0) = new_temp;
      bsi_insert_after (&exit_bsi, epilog_stmt, BSI_NEW_STMT);
    }

  /* 2.6 Replace uses of s_out0 with uses of s_out3  */

  /* Find the loop-closed-use at the loop exit of the original scalar result.  
     (The reduction result is expected to have two immediate uses - one at the 
     latch block, and one at the loop exit).  */
  exit_phi = NULL;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
    {
      if (!flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
	{
	  exit_phi = USE_STMT (use_p);
	  break;
	}
    }
  /* We expect to have found an exit_phi because of loop-closed-ssa form.  */
  gcc_assert (exit_phi);
  /* Replace the uses:  */
  orig_name = PHI_RESULT (exit_phi);
  FOR_EACH_IMM_USE_SAFE (use_p, imm_iter, orig_name)
    SET_USE (use_p, new_temp);
} 


/* Function vectorizable_reduction.

   Check if STMT performs a reduction operation that can be vectorized.
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.

   This function also handles reduction idioms (patterns) that have been 
   recognized in advance during vect_pattern_recog. In this case, STMT may be
   of this form:
     X = pattern_expr (arg0, arg1, ..., X)
   and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
   sequence that had been detected and replaced by the pattern-stmt (STMT).
  
   In some cases of reduction patterns, the type of the reduction variable X is 
   different than the type of the other arguments of STMT.
   In such cases, the vectype that is used when transforming STMT into a vector
   stmt is different than the vectype that is used to determine the 
   vectorization factor, because it consists of a different number of elements 
   than the actual number of elements that are being operated upon in parallel.

   For example, consider an accumulation of shorts into an int accumulator. 
   On some targets it's possible to vectorize this pattern operating on 8
   shorts at a time (hence, the vectype for purposes of determining the
   vectorization factor should be V8HI); on the other hand, the vectype that
   is used to create the vector form is actually V4SI (the type of the result). 

   Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that 
   indicates what is the actual level of parallelism (V8HI in the example), so 
   that the right vectorization factor would be derived. This vectype 
   corresponds to the type of arguments to the reduction stmt, and should *NOT* 
   be used to create the vectorized stmt. The right vectype for the vectorized
   stmt is obtained from the type of the result X: 
        get_vectype_for_scalar_type (TREE_TYPE (X))

   This means that, contrary to "regular" reductions (or "regular" stmts in 
   general), the following equation:
      STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
   does *NOT* necessarily hold for reduction patterns.  */

bool
vectorizable_reduction (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree vec_dest;
  tree scalar_dest;
  tree op;
  tree loop_vec_def0, loop_vec_def1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree operation;
  enum tree_code code, orig_code, epilog_reduc_code = 0;
  enum machine_mode vec_mode;
  int op_type;
  optab optab, reduc_optab;
  tree new_temp;
  tree def, def_stmt;
  enum vect_def_type dt;
  tree new_phi;
  tree scalar_type;
  bool is_simple_use;
  tree orig_stmt;
  stmt_vec_info orig_stmt_info;
  tree expr = NULL_TREE;
  int i;

  /* 1. Is vectorizable reduction?  */

  /* Not supportable if the reduction variable is used in the loop.  */
  if (STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  if (!STMT_VINFO_LIVE_P (stmt_info))
    return false;

  /* Make sure it was already recognized as a reduction computation.  */
  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
    return false;

  /* 2. Has this been recognized as a reduction pattern? 

     Check if STMT represents a pattern that has been recognized
     in earlier analysis stages.  For stmts that represent a pattern,
     the STMT_VINFO_RELATED_STMT field records the last stmt in
     the original sequence that constitutes the pattern.  */

  orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
  if (orig_stmt)
    {
      orig_stmt_info = vinfo_for_stmt (orig_stmt);
      gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
      gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
      gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
    }
 
  /* 3. Check the operands of the operation. The first operands are defined
        inside the loop body. The last operand is the reduction variable,
        which is defined by the loop-header-phi.  */

  gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);

  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);
  op_type = TREE_CODE_LENGTH (code);

  if (op_type != binary_op && op_type != ternary_op)
    return false;
  scalar_dest = TREE_OPERAND (stmt, 0);
  scalar_type = TREE_TYPE (scalar_dest);

  /* All uses but the last are expected to be defined in the loop.
     The last use is the reduction variable.  */
  for (i = 0; i < op_type-1; i++)
    {
      op = TREE_OPERAND (operation, i);
      is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
      gcc_assert (is_simple_use);
      gcc_assert (dt == vect_loop_def || dt == vect_invariant_def ||
                  dt == vect_constant_def);
    }

  op = TREE_OPERAND (operation, i);
  is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
  gcc_assert (is_simple_use);
  gcc_assert (dt == vect_reduction_def);
  gcc_assert (TREE_CODE (def_stmt) == PHI_NODE);
  if (orig_stmt) 
    gcc_assert (orig_stmt == vect_is_simple_reduction (loop, def_stmt));
  else
    gcc_assert (stmt == vect_is_simple_reduction (loop, def_stmt));
  
  if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
    return false;

  /* 4. Supportable by target?  */

  /* 4.1. check support for the operation in the loop  */
  optab = optab_for_tree_code (code, vectype);
  if (!optab)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no optab.");
      return false;
    }
  vec_mode = TYPE_MODE (vectype);
  if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "op not supported by target.");
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
	     < vect_min_worthwhile_factor (code))
        return false;
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "proceeding using word mode.");
    }

  /* Worthwhile without SIMD support?  */
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
	 < vect_min_worthwhile_factor (code))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "not worthwhile without SIMD support.");
      return false;
    }

  /* 4.2. Check support for the epilog operation.

          If STMT represents a reduction pattern, then the type of the
          reduction variable may be different than the type of the rest
          of the arguments.  For example, consider the case of accumulation
          of shorts into an int accumulator; The original code:
                        S1: int_a = (int) short_a;
          orig_stmt->   S2: int_acc = plus <int_a ,int_acc>;

          was replaced with:
                        STMT: int_acc = widen_sum <short_a, int_acc>

          This means that:
          1. The tree-code that is used to create the vector operation in the 
             epilog code (that reduces the partial results) is not the 
             tree-code of STMT, but is rather the tree-code of the original 
             stmt from the pattern that STMT is replacing. I.e, in the example 
             above we want to use 'widen_sum' in the loop, but 'plus' in the 
             epilog.
          2. The type (mode) we use to check available target support
             for the vector operation to be created in the *epilog*, is 
             determined by the type of the reduction variable (in the example 
             above we'd check this: plus_optab[vect_int_mode]).
             However the type (mode) we use to check available target support
             for the vector operation to be created *inside the loop*, is
             determined by the type of the other arguments to STMT (in the
             example we'd check this: widen_sum_optab[vect_short_mode]).
  
          This is contrary to "regular" reductions, in which the types of all 
          the arguments are the same as the type of the reduction variable. 
          For "regular" reductions we can therefore use the same vector type 
          (and also the same tree-code) when generating the epilog code and
          when generating the code inside the loop.  */

  if (orig_stmt)
    {
      /* This is a reduction pattern: get the vectype from the type of the
         reduction variable, and get the tree-code from orig_stmt.  */
      orig_code = TREE_CODE (TREE_OPERAND (orig_stmt, 1));
      vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
      vec_mode = TYPE_MODE (vectype);
    }
  else
    {
      /* Regular reduction: use the same vectype and tree-code as used for
         the vector code inside the loop can be used for the epilog code. */
      orig_code = code;
    }

  if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
    return false;
  reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype);
  if (!reduc_optab)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "no optab for reduction.");
      epilog_reduc_code = NUM_TREE_CODES;
    }
  if (reduc_optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "reduc op not supported by target.");
      epilog_reduc_code = NUM_TREE_CODES;
    }
 
  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform reduction.");

  /* Create the destination vector  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Create the reduction-phi that defines the reduction-operand.  */
  new_phi = create_phi_node (vec_dest, loop->header);

  /* Prepare the operand that is defined inside the loop body  */
  op = TREE_OPERAND (operation, 0);
  loop_vec_def0 = vect_get_vec_def_for_operand (op, stmt, NULL);
  if (op_type == binary_op)
    expr = build2 (code, vectype, loop_vec_def0, PHI_RESULT (new_phi));
  else if (op_type == ternary_op)
    {
      op = TREE_OPERAND (operation, 1);
      loop_vec_def1 = vect_get_vec_def_for_operand (op, stmt, NULL);
      expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1, 
		     PHI_RESULT (new_phi));
    }

  /* Create the vectorized operation that computes the partial results  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, expr);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);

  /* Finalize the reduction-phi (set it's arguments) and create the
     epilog reduction code.  */
  vect_create_epilog_for_reduction (new_temp, stmt, epilog_reduc_code, new_phi);
  return true;
}


/* Function vectorizable_assignment.

   Check if STMT performs an assignment (copy) that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

bool
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree vec_dest;
  tree scalar_dest;
  tree op;
  tree vec_oprnd;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  tree new_temp;
  tree def, def_stmt;
  enum vect_def_type dt;

  /* Is vectorizable assignment?  */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  op = TREE_OPERAND (stmt, 1);
  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
      return true;
    }

  /** Transform.  **/
  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform assignment.");

  /* Handle def.  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle use.  */
  op = TREE_OPERAND (stmt, 1);
  vec_oprnd = vect_get_vec_def_for_operand (op, stmt, NULL);

  /* Arguments are ready. create the new vector stmt.  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  
  return true;
}


/* Function vect_min_worthwhile_factor.

   For a loop where we could vectorize the operation indicated by CODE,
   return the minimum vectorization factor that makes it worthwhile
   to use generic vectors.  */
static int
vect_min_worthwhile_factor (enum tree_code code)
{
  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
    case NEGATE_EXPR:
      return 4;

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_NOT_EXPR:
      return 2;

    default:
      return INT_MAX;
    }
}


/* Function vectorizable_operation.

   Check if STMT performs a binary or unary operation that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

bool
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree vec_dest;
  tree scalar_dest;
  tree operation;
  tree op0, op1 = NULL;
  tree vec_oprnd0, vec_oprnd1=NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  int i;
  enum tree_code code;
  enum machine_mode vec_mode;
  tree new_temp;
  int op_type;
  tree op;
  optab optab;
  int icode;
  enum machine_mode optab_op2_mode;
  tree def, def_stmt;
  enum vect_def_type dt;

  /* Is STMT a vectorizable binary/unary operation?   */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);

  if (STMT_VINFO_LIVE_P (stmt_info))
    {
      /* FORNOW: not yet supported.  */
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
      return false;
    }

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
    return false;

  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);
  optab = optab_for_tree_code (code, vectype);

  /* Support only unary or binary operations.  */
  op_type = TREE_CODE_LENGTH (code);
  if (op_type != unary_op && op_type != binary_op)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
      return false;
    }

  for (i = 0; i < op_type; i++)
    {
      op = TREE_OPERAND (operation, i);
      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "use not simple.");
	  return false;
	}	
    } 

  /* Supportable by target?  */
  if (!optab)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "no optab.");
      return false;
    }
  vec_mode = TYPE_MODE (vectype);
  icode = (int) optab->handlers[(int) vec_mode].insn_code;
  if (icode == CODE_FOR_nothing)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "op not supported by target.");
      if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
          || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
	     < vect_min_worthwhile_factor (code))
        return false;
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "proceeding using word mode.");
    }

  /* Worthwhile without SIMD support?  */
  if (!VECTOR_MODE_P (TYPE_MODE (vectype))
      && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
	 < vect_min_worthwhile_factor (code))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "not worthwhile without SIMD support.");
      return false;
    }

  if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
    {
      /* FORNOW: not yet supported.  */
      if (!VECTOR_MODE_P (vec_mode))
	return false;

      /* Invariant argument is needed for a vector shift
	 by a scalar shift operand.  */
      optab_op2_mode = insn_data[icode].operand[2].mode;
      if (! (VECTOR_MODE_P (optab_op2_mode)
	     || dt == vect_constant_def
	     || dt == vect_invariant_def))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "operand mode requires invariant argument.");
	  return false;
	}
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform binary/unary operation.");

  /* Handle def.  */
  scalar_dest = TREE_OPERAND (stmt, 0);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle uses.  */
  op0 = TREE_OPERAND (operation, 0);
  vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);

  if (op_type == binary_op)
    {
      op1 = TREE_OPERAND (operation, 1);

      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
	{
	  /* Vector shl and shr insn patterns can be defined with
	     scalar operand 2 (shift operand).  In this case, use
	     constant or loop invariant op1 directly, without
	     extending it to vector mode first.  */

	  optab_op2_mode = insn_data[icode].operand[2].mode;
	  if (!VECTOR_MODE_P (optab_op2_mode))
	    {
	      if (vect_print_dump_info (REPORT_DETAILS))
		fprintf (vect_dump, "operand 1 using scalar mode.");
	      vec_oprnd1 = op1;
	    }
	}

      if (!vec_oprnd1)
	vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL); 
    }

  /* Arguments are ready. create the new vector stmt.  */

  if (op_type == binary_op)
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
		build2 (code, vectype, vec_oprnd0, vec_oprnd1));
  else
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
		build1 (code, vectype, vec_oprnd0));
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);

  return true;
}


/* Function vectorizable_store.

   Check if STMT defines a non scalar data-ref (array/pointer/structure) that 
   can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

bool
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree scalar_dest;
  tree data_ref;
  tree op;
  tree vec_oprnd1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum machine_mode vec_mode;
  tree dummy;
  enum dr_alignment_support alignment_support_cheme;
  ssa_op_iter iter;
  tree def, def_stmt;
  enum vect_def_type dt;

  /* Is vectorizable store? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != ARRAY_REF
      && TREE_CODE (scalar_dest) != INDIRECT_REF)
    return false;

  op = TREE_OPERAND (stmt, 1);
  if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
    {
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "use not simple.");
      return false;
    }

  vec_mode = TYPE_MODE (vectype);
  /* FORNOW. In some cases can vectorize even if data-type not supported
     (e.g. - array initialization with 0).  */
  if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;


  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform store");

  alignment_support_cheme = vect_supportable_dr_alignment (dr);
  gcc_assert (alignment_support_cheme);
  gcc_assert (alignment_support_cheme == dr_aligned);  /* FORNOW */

  /* Handle use - get the vectorized def from the defining stmt.  */
  vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt, NULL);

  /* Handle def.  */
  /* FORNOW: make sure the data reference is aligned.  */
  vect_align_data_ref (stmt);
  data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
  data_ref = build_fold_indirect_ref (data_ref);

  /* Arguments are ready. create the new vector stmt.  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);

  /* Copy the V_MAY_DEFS representing the aliasing of the original array
     element's definition to the vector's definition then update the
     defining statement.  The original is being deleted so the same
     SSA_NAMEs can be used.  */
  copy_virtual_operands (*vec_stmt, stmt);

  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VMAYDEF)
    {
      SSA_NAME_DEF_STMT (def) = *vec_stmt;

      /* If this virtual def has a use outside the loop and a loop peel is 
	 performed then the def may be renamed by the peel.  Mark it for 
	 renaming so the later use will also be renamed.  */
      mark_sym_for_renaming (SSA_NAME_VAR (def));
    }

  return true;
}


/* vectorizable_load.

   Check if STMT reads a non scalar data-ref (array/pointer/structure) that 
   can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

bool
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree scalar_dest;
  tree vec_dest = NULL;
  tree data_ref = NULL;
  tree op;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree new_temp;
  int mode;
  tree init_addr;
  tree new_stmt;
  tree dummy;
  basic_block new_bb;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  edge pe = loop_preheader_edge (loop);
  enum dr_alignment_support alignment_support_cheme;

  /* Is vectorizable load? */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);

  if (STMT_VINFO_LIVE_P (stmt_info))
    {
      /* FORNOW: not yet supported.  */
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
      return false;
    }

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  op = TREE_OPERAND (stmt, 1);
  if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  mode = (int) TYPE_MODE (vectype);

  /* FORNOW. In some cases can vectorize even if data-type not supported
    (e.g. - data copies).  */
  if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
    {
      if (vect_print_dump_info (REPORT_DETAILS))
	fprintf (vect_dump, "Aligned load, but unsupported type.");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
      return true;
    }

  /** Transform.  **/

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "transform load.");

  alignment_support_cheme = vect_supportable_dr_alignment (dr);
  gcc_assert (alignment_support_cheme);

  if (alignment_support_cheme == dr_aligned
      || alignment_support_cheme == dr_unaligned_supported)
    {
      /* Create:
         p = initial_addr;
         indx = 0;
         loop {
           vec_dest = *(p);
           indx = indx + 1;
         }
      */

      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
      if (aligned_access_p (dr))
        data_ref = build_fold_indirect_ref (data_ref);
      else
	{
	  int mis = DR_MISALIGNMENT (dr);
	  tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
	  tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
	  data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
	}
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      copy_virtual_operands (new_stmt, stmt);
    }
  else if (alignment_support_cheme == dr_unaligned_software_pipeline)
    {
      /* Create:
	 p1 = initial_addr;
	 msq_init = *(floor(p1))
	 p2 = initial_addr + VS - 1;
	 magic = have_builtin ? builtin_result : initial_address;
	 indx = 0;
	 loop {
	   p2' = p2 + indx * vectype_size
	   lsq = *(floor(p2'))
	   vec_dest = realign_load (msq, lsq, magic)
	   indx = indx + 1;
	   msq = lsq;
	 }
      */

      tree offset;
      tree magic;
      tree phi_stmt;
      tree msq_init;
      tree msq, lsq;
      tree dataref_ptr;
      tree params;

      /* <1> Create msq_init = *(floor(p1)) in the loop preheader  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, 
					   &init_addr, true);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
      gcc_assert (!new_bb);
      msq_init = TREE_OPERAND (new_stmt, 0);
      copy_virtual_operands (new_stmt, stmt);
      update_vuses_to_preheader (new_stmt, loop);


      /* <2> Create lsq = *(floor(p2')) in the loop  */ 
      offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      lsq = TREE_OPERAND (new_stmt, 0);
      copy_virtual_operands (new_stmt, stmt);


      /* <3> */
      if (targetm.vectorize.builtin_mask_for_load)
	{
	  /* Create permutation mask, if required, in loop preheader.  */
	  tree builtin_decl;
	  params = build_tree_list (NULL_TREE, init_addr);
	  vec_dest = vect_create_destination_var (scalar_dest, vectype);
	  builtin_decl = targetm.vectorize.builtin_mask_for_load ();
	  new_stmt = build_function_call_expr (builtin_decl, params);
	  new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  TREE_OPERAND (new_stmt, 0) = new_temp;
	  new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
	  gcc_assert (!new_bb);
	  magic = TREE_OPERAND (new_stmt, 0);

	  /* The result of the CALL_EXPR to this builtin is determined from
	     the value of the parameter and no global variables are touched
	     which makes the builtin a "const" function.  Requiring the
	     builtin to have the "const" attribute makes it unnecessary
	     to call mark_call_clobbered.  */
	  gcc_assert (TREE_READONLY (builtin_decl));
	}
      else
	{
	  /* Use current address instead of init_addr for reduced reg pressure.
	   */
	  magic = dataref_ptr;
	}


      /* <4> Create msq = phi <msq_init, lsq> in loop  */ 
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      msq = make_ssa_name (vec_dest, NULL_TREE);
      phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
      SSA_NAME_DEF_STMT (msq) = phi_stmt;
      add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
      add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));


      /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt); 
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
    }
  else
    gcc_unreachable ();

  *vec_stmt = new_stmt;
  return true;
}


/* Function vectorizable_live_operation.

   STMT computes a value that is used outside the loop. Check if 
   it can be supported.  */

bool
vectorizable_live_operation (tree stmt,
                             block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
                             tree *vec_stmt ATTRIBUTE_UNUSED)
{
  tree operation;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  int i;
  enum tree_code code;
  int op_type;
  tree op;
  tree def, def_stmt;
  enum vect_def_type dt; 

  if (!STMT_VINFO_LIVE_P (stmt_info))
    return false;

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
    return false;

  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);

  op_type = TREE_CODE_LENGTH (code);

  /* FORNOW: support only if all uses are invariant. This means
     that the scalar operations can remain in place, unvectorized.
     The original last scalar value that they compute will be used.  */

  for (i = 0; i < op_type; i++)
    {
      op = TREE_OPERAND (operation, i);
      if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
        {
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "use not simple.");
          return false;
        }

      if (dt != vect_invariant_def && dt != vect_constant_def)
        return false;
    }

  /* No transformation is required for the cases we currently support.  */
  return true;
}


/* Function vect_is_simple_cond.
  
   Input:
   LOOP - the loop that is being vectorized.
   COND - Condition that is checked for simple use.

   Returns whether a COND can be vectorized.  Checks whether
   condition operands are supportable using vec_is_simple_use.  */

static bool
vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
{
  tree lhs, rhs;
  tree def;
  enum vect_def_type dt;

  if (!COMPARISON_CLASS_P (cond))
    return false;

  lhs = TREE_OPERAND (cond, 0);
  rhs = TREE_OPERAND (cond, 1);

  if (TREE_CODE (lhs) == SSA_NAME)
    {
      tree lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
      if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
	return false;
    }
  else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST)
    return false;

  if (TREE_CODE (rhs) == SSA_NAME)
    {
      tree rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
      if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
	return false;
    }
  else if (TREE_CODE (rhs) != INTEGER_CST  && TREE_CODE (rhs) != REAL_CST)
    return false;

  return true;
}

/* vectorizable_condition.

   Check if STMT is conditional modify expression that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt using VEC_COND_EXPR  to replace it, put it in VEC_STMT, and insert it 
   at BSI.

   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

bool
vectorizable_condition (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree scalar_dest = NULL_TREE;
  tree vec_dest = NULL_TREE;
  tree op = NULL_TREE;
  tree cond_expr, then_clause, else_clause;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
  tree vec_compare, vec_cond_expr;
  tree new_temp;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  enum machine_mode vec_mode;
  tree def;
  enum vect_def_type dt;

  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_loop_def);

  if (STMT_VINFO_LIVE_P (stmt_info))
    {
      /* FORNOW: not yet supported.  */
      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "value used after loop.");
      return false;
    }

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  op = TREE_OPERAND (stmt, 1);

  if (TREE_CODE (op) != COND_EXPR)
    return false;

  cond_expr = TREE_OPERAND (op, 0);
  then_clause = TREE_OPERAND (op, 1);
  else_clause = TREE_OPERAND (op, 2);

  if (!vect_is_simple_cond (cond_expr, loop_vinfo))
    return false;

  if (TREE_CODE (then_clause) == SSA_NAME)
    {
      tree then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
      if (!vect_is_simple_use (then_clause, loop_vinfo, 
			       &then_def_stmt, &def, &dt))
	return false;
    }
  else if (TREE_CODE (then_clause) != INTEGER_CST 
	   && TREE_CODE (then_clause) != REAL_CST)
    return false;

  if (TREE_CODE (else_clause) == SSA_NAME)
    {
      tree else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
      if (!vect_is_simple_use (else_clause, loop_vinfo, 
			       &else_def_stmt, &def, &dt))
	return false;
    }
  else if (TREE_CODE (else_clause) != INTEGER_CST 
	   && TREE_CODE (else_clause) != REAL_CST)
    return false;


  vec_mode = TYPE_MODE (vectype);

  if (!vec_stmt) 
    {
      STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
      return expand_vec_cond_expr_p (op, vec_mode);
    }

  /* Transform */

  /* Handle def.  */
  scalar_dest = TREE_OPERAND (stmt, 0);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle cond expr.  */
  vec_cond_lhs = 
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
  vec_cond_rhs = 
    vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
  vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
  vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);

  /* Arguments are ready. create the new vector stmt.  */
  vec_compare = build2 (TREE_CODE (cond_expr), vectype, 
			vec_cond_lhs, vec_cond_rhs);
  vec_cond_expr = build3 (VEC_COND_EXPR, vectype, 
			  vec_compare, vec_then_clause, vec_else_clause);

  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_cond_expr);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  
  return true;
}

/* Function vect_transform_stmt.

   Create a vectorized stmt to replace STMT, and insert it at BSI.  */

bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
  bool is_store = false;
  tree vec_stmt = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree orig_stmt_in_pattern;
  bool done;

  if (STMT_VINFO_RELEVANT_P (stmt_info))
    {
      switch (STMT_VINFO_TYPE (stmt_info))
      {
      case op_vec_info_type:
	done = vectorizable_operation (stmt, bsi, &vec_stmt);
	gcc_assert (done);
	break;

      case assignment_vec_info_type:
	done = vectorizable_assignment (stmt, bsi, &vec_stmt);
	gcc_assert (done);
	break;

      case load_vec_info_type:
	done = vectorizable_load (stmt, bsi, &vec_stmt);
	gcc_assert (done);
	break;

      case store_vec_info_type:
	done = vectorizable_store (stmt, bsi, &vec_stmt);
	gcc_assert (done);
	is_store = true;
	break;

      case condition_vec_info_type:
	done = vectorizable_condition (stmt, bsi, &vec_stmt);
	gcc_assert (done);
	break;

      default:
	if (vect_print_dump_info (REPORT_DETAILS))
	  fprintf (vect_dump, "stmt not supported.");
	gcc_unreachable ();
      }

      gcc_assert (vec_stmt);
      STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
      orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
      if (orig_stmt_in_pattern)
        {
          stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
          if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
            {
              gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);

              /* STMT was inserted by the vectorizer to replace a computation 
                 idiom.  ORIG_STMT_IN_PATTERN is a stmt in the original
                 sequence that computed this idiom.  We need to record a pointer
                 to VEC_STMT in the stmt_info of ORIG_STMT_IN_PATTERN.  See more
                 detail in the documentation of vect_pattern_recog.  */

              STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
            }
        }
    }

  if (STMT_VINFO_LIVE_P (stmt_info))
    {
      switch (STMT_VINFO_TYPE (stmt_info))
      {
      case reduc_vec_info_type:
        done = vectorizable_reduction (stmt, bsi, &vec_stmt);
        gcc_assert (done);
        break;

      default:
        done = vectorizable_live_operation (stmt, bsi, &vec_stmt);
        gcc_assert (done);
      }

      if (vec_stmt)
        {
          gcc_assert (!STMT_VINFO_VEC_STMT (stmt_info));
          STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
        }
    }

  return is_store; 
}


/* This function builds ni_name = number of iterations loop executes
   on the loop preheader.  */

static tree
vect_build_loop_niters (loop_vec_info loop_vinfo)
{
  tree ni_name, stmt, var;
  edge pe;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));

  var = create_tmp_var (TREE_TYPE (ni), "niters");
  add_referenced_tmp_var (var);
  ni_name = force_gimple_operand (ni, &stmt, false, var);

  pe = loop_preheader_edge (loop);
  if (stmt)
    {
      basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
      gcc_assert (!new_bb);
    }
      
  return ni_name;
}


/* This function generates the following statements:

 ni_name = number of iterations loop executes
 ratio = ni_name / vf
 ratio_mult_vf_name = ratio * vf

 and places them at the loop preheader edge.  */

static void 
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo, 
				 tree *ni_name_ptr,
				 tree *ratio_mult_vf_name_ptr, 
				 tree *ratio_name_ptr)
{

  edge pe;
  basic_block new_bb;
  tree stmt, ni_name;
  tree var;
  tree ratio_name;
  tree ratio_mult_vf_name;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree ni = LOOP_VINFO_NITERS (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  tree log_vf;

  pe = loop_preheader_edge (loop);

  /* Generate temporary variable that contains 
     number of iterations loop executes.  */

  ni_name = vect_build_loop_niters (loop_vinfo);
  log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));

  /* Create: ratio = ni >> log2(vf) */

  var = create_tmp_var (TREE_TYPE (ni), "bnd");
  add_referenced_tmp_var (var);
  ratio_name = make_ssa_name (var, NULL_TREE);
  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
	   build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
  SSA_NAME_DEF_STMT (ratio_name) = stmt;

  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
  gcc_assert (!new_bb);
       
  /* Create: ratio_mult_vf = ratio << log2 (vf).  */

  var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
  add_referenced_tmp_var (var);
  ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
  stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
	   build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
  SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;

  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, stmt);
  gcc_assert (!new_bb);

  *ni_name_ptr = ni_name;
  *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
  *ratio_name_ptr = ratio_name;
    
  return;  
}


/* Function update_vuses_to_preheader.

   Input:
   STMT - a statement with potential VUSEs.
   LOOP - the loop whose preheader will contain STMT.

   It's possible to vectorize a loop even though an SSA_NAME from a VUSE
   appears to be defined in a V_MAY_DEF in another statement in a loop.
   One such case is when the VUSE is at the dereference of a __restricted__
   pointer in a load and the V_MAY_DEF is at the dereference of a different
   __restricted__ pointer in a store.  Vectorization may result in
   copy_virtual_uses being called to copy the problematic VUSE to a new
   statement that is being inserted in the loop preheader.  This procedure
   is called to change the SSA_NAME in the new statement's VUSE from the
   SSA_NAME updated in the loop to the related SSA_NAME available on the
   path entering the loop.

   When this function is called, we have the following situation:

        # vuse <name1>
        S1: vload
    do {
        # name1 = phi < name0 , name2>

        # vuse <name1>
        S2: vload

        # name2 = vdef <name1>
        S3: vstore

    }while...

   Stmt S1 was created in the loop preheader block as part of misaligned-load
   handling. This function fixes the name of the vuse of S1 from 'name1' to
   'name0'.  */

static void
update_vuses_to_preheader (tree stmt, struct loop *loop)
{
  basic_block header_bb = loop->header;
  edge preheader_e = loop_preheader_edge (loop);
  ssa_op_iter iter;
  use_operand_p use_p;

  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VUSE)
    {
      tree ssa_name = USE_FROM_PTR (use_p);
      tree def_stmt = SSA_NAME_DEF_STMT (ssa_name);
      tree name_var = SSA_NAME_VAR (ssa_name);
      basic_block bb = bb_for_stmt (def_stmt);

      /* For a use before any definitions, def_stmt is a NOP_EXPR.  */
      if (!IS_EMPTY_STMT (def_stmt)
	  && flow_bb_inside_loop_p (loop, bb))
        {
          /* If the block containing the statement defining the SSA_NAME
             is in the loop then it's necessary to find the definition
             outside the loop using the PHI nodes of the header.  */
	  tree phi;
	  bool updated = false;

	  for (phi = phi_nodes (header_bb); phi; phi = TREE_CHAIN (phi))
	    {
	      if (SSA_NAME_VAR (PHI_RESULT (phi)) == name_var)
		{
		  SET_USE (use_p, PHI_ARG_DEF (phi, preheader_e->dest_idx));
		  updated = true;
		  break;
		}
	    }
	  gcc_assert (updated);
	}
    }
}


/*   Function vect_update_ivs_after_vectorizer.

     "Advance" the induction variables of LOOP to the value they should take
     after the execution of LOOP.  This is currently necessary because the
     vectorizer does not handle induction variables that are used after the
     loop.  Such a situation occurs when the last iterations of LOOP are
     peeled, because:
     1. We introduced new uses after LOOP for IVs that were not originally used
        after LOOP: the IVs of LOOP are now used by an epilog loop.
     2. LOOP is going to be vectorized; this means that it will iterate N/VF
        times, whereas the loop IVs should be bumped N times.

     Input:
     - LOOP - a loop that is going to be vectorized. The last few iterations
              of LOOP were peeled.
     - NITERS - the number of iterations that LOOP executes (before it is
                vectorized). i.e, the number of times the ivs should be bumped.
     - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
                  coming out from LOOP on which there are uses of the LOOP ivs
		  (this is the path from LOOP->exit to epilog_loop->preheader).

                  The new definitions of the ivs are placed in LOOP->exit.
                  The phi args associated with the edge UPDATE_E in the bb
                  UPDATE_E->dest are updated accordingly.

     Assumption 1: Like the rest of the vectorizer, this function assumes
     a single loop exit that has a single predecessor.

     Assumption 2: The phi nodes in the LOOP header and in update_bb are
     organized in the same order.

     Assumption 3: The access function of the ivs is simple enough (see
     vect_can_advance_ivs_p).  This assumption will be relaxed in the future.

     Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
     coming out of LOOP on which the ivs of LOOP are used (this is the path 
     that leads to the epilog loop; other paths skip the epilog loop).  This
     path starts with the edge UPDATE_E, and its destination (denoted update_bb)
     needs to have its phis updated.
 */

static void
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters, 
				  edge update_e)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block exit_bb = loop->single_exit->dest;
  tree phi, phi1;
  basic_block update_bb = update_e->dest;

  /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */

  /* Make sure there exists a single-predecessor exit bb:  */
  gcc_assert (single_pred_p (exit_bb));

  for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb); 
       phi && phi1; 
       phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
    {
      tree access_fn = NULL;
      tree evolution_part;
      tree init_expr;
      tree step_expr;
      tree var, stmt, ni, ni_name;
      block_stmt_iterator last_bsi;

      if (vect_print_dump_info (REPORT_DETAILS))
        {
          fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
          print_generic_expr (vect_dump, phi, TDF_SLIM);
        }

      /* Skip virtual phi's.  */
      if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
	{
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "virtual phi. skip.");
	  continue;
	}

      /* Skip reduction phis.  */
      if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
        { 
          if (vect_print_dump_info (REPORT_DETAILS))
            fprintf (vect_dump, "reduc phi. skip.");
          continue;
        } 

      access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi)); 
      gcc_assert (access_fn);
      evolution_part =
	 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
      gcc_assert (evolution_part != NULL_TREE);
      
      /* FORNOW: We do not support IVs whose evolution function is a polynomial
         of degree >= 2 or exponential.  */
      gcc_assert (!tree_is_chrec (evolution_part));

      step_expr = evolution_part;
      init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, 
							       loop->num));

      ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
		  build2 (MULT_EXPR, TREE_TYPE (niters),
		       niters, step_expr), init_expr);

      var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
      add_referenced_tmp_var (var);

      ni_name = force_gimple_operand (ni, &stmt, false, var);
      
      /* Insert stmt into exit_bb.  */
      last_bsi = bsi_last (exit_bb);
      if (stmt)
        bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);   

      /* Fix phi expressions in the successor bb.  */
      SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
    }
}


/* Function vect_do_peeling_for_loop_bound

   Peel the last iterations of the loop represented by LOOP_VINFO.
   The peeled iterations form a new epilog loop.  Given that the loop now 
   iterates NITERS times, the new epilog loop iterates
   NITERS % VECTORIZATION_FACTOR times.
   
   The original loop will later be made to iterate 
   NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).  */

static void 
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
				struct loops *loops)
{
  tree ni_name, ratio_mult_vf_name;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *new_loop;
  edge update_e;
  basic_block preheader;
  int loop_num;

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");

  initialize_original_copy_tables ();

  /* Generate the following variables on the preheader of original loop:
	 
     ni_name = number of iteration the original loop executes
     ratio = ni_name / vf
     ratio_mult_vf_name = ratio * vf  */
  vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
				   &ratio_mult_vf_name, ratio);

  loop_num  = loop->num; 
  new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->single_exit,
					    ratio_mult_vf_name, ni_name, false);
  gcc_assert (new_loop);
  gcc_assert (loop_num == loop->num);
#ifdef ENABLE_CHECKING
  slpeel_verify_cfg_after_peeling (loop, new_loop);
#endif

  /* A guard that controls whether the new_loop is to be executed or skipped
     is placed in LOOP->exit.  LOOP->exit therefore has two successors - one
     is the preheader of NEW_LOOP, where the IVs from LOOP are used.  The other
     is a bb after NEW_LOOP, where these IVs are not used.  Find the edge that
     is on the path where the LOOP IVs are used and need to be updated.  */

  preheader = loop_preheader_edge (new_loop)->src;
  if (EDGE_PRED (preheader, 0)->src == loop->single_exit->dest)
    update_e = EDGE_PRED (preheader, 0);
  else
    update_e = EDGE_PRED (preheader, 1);

  /* Update IVs of original loop as if they were advanced 
     by ratio_mult_vf_name steps.  */
  vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e); 

  /* After peeling we have to reset scalar evolution analyzer.  */
  scev_reset ();

  free_original_copy_tables ();
}


/* Function vect_gen_niters_for_prolog_loop

   Set the number of iterations for the loop represented by LOOP_VINFO
   to the minimum between LOOP_NITERS (the original iteration count of the loop)
   and the misalignment of DR - the data reference recorded in
   LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).  As a result, after the execution of 
   this loop, the data reference DR will refer to an aligned location.

   The following computation is generated:

   If the misalignment of DR is known at compile time:
     addr_mis = int mis = DR_MISALIGNMENT (dr);
   Else, compute address misalignment in bytes:
     addr_mis = addr & (vectype_size - 1)

   prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
   
   (elem_size = element type size; an element is the scalar element 
	whose type is the inner type of the vectype)  */

static tree 
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
{
  struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
  int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree var, stmt;
  tree iters, iters_name;
  edge pe;
  basic_block new_bb;
  tree dr_stmt = DR_STMT (dr);
  stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
  tree niters_type = TREE_TYPE (loop_niters);

  pe = loop_preheader_edge (loop); 

  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
    {
      int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
      int element_size = vectype_align/vf;
      int elem_misalign = byte_misalign / element_size;

      if (vect_print_dump_info (REPORT_DETAILS))
        fprintf (vect_dump, "known alignment = %d.", byte_misalign);
      iters = build_int_cst (niters_type, (vf - elem_misalign)&(vf-1));
    }
  else
    {
      tree new_stmts = NULL_TREE;
      tree start_addr =
        vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
      tree ptr_type = TREE_TYPE (start_addr);
      tree size = TYPE_SIZE (ptr_type);
      tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
      tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
      tree elem_size_log =
        build_int_cst (type, exact_log2 (vectype_align/vf));
      tree vf_minus_1 = build_int_cst (type, vf - 1);
      tree vf_tree = build_int_cst (type, vf);
      tree byte_misalign;
      tree elem_misalign;

      new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
      gcc_assert (!new_bb);
  
      /* Create:  byte_misalign = addr & (vectype_size - 1)  */
      byte_misalign = 
        build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
  
      /* Create:  elem_misalign = byte_misalign / element_size  */
      elem_misalign =
        build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);

      /* Create:  (niters_type) (VF - elem_misalign)&(VF - 1)  */
      iters = build2 (MINUS_EXPR, type, vf_tree, elem_misalign);
      iters = build2 (BIT_AND_EXPR, type, iters, vf_minus_1);
      iters = fold_convert (niters_type, iters);
    }

  /* Create:  prolog_loop_niters = min (iters, loop_niters) */
  /* If the loop bound is known at compile time we already verified that it is
     greater than vf; since the misalignment ('iters') is at most vf, there's
     no need to generate the MIN_EXPR in this case.  */
  if (TREE_CODE (loop_niters) != INTEGER_CST)
    iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);

  if (vect_print_dump_info (REPORT_DETAILS))
    {
      fprintf (vect_dump, "niters for prolog loop: ");
      print_generic_expr (vect_dump, iters, TDF_SLIM);
    }

  var = create_tmp_var (niters_type, "prolog_loop_niters");
  add_referenced_tmp_var (var);
  iters_name = force_gimple_operand (iters, &stmt, false, var);

  /* Insert stmt on loop preheader edge.  */
  if (stmt)
    {
      basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
      gcc_assert (!new_bb);
    }

  return iters_name; 
}


/* Function vect_update_init_of_dr

   NITERS iterations were peeled from LOOP.  DR represents a data reference
   in LOOP.  This function updates the information recorded in DR to
   account for the fact that the first NITERS iterations had already been 
   executed.  Specifically, it updates the OFFSET field of DR.  */

static void
vect_update_init_of_dr (struct data_reference *dr, tree niters)
{
  tree offset = DR_OFFSET (dr);
      
  niters = fold_build2 (MULT_EXPR, TREE_TYPE (niters), niters, DR_STEP (dr));
  offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters);
  DR_OFFSET (dr) = offset;
}


/* Function vect_update_inits_of_drs

   NITERS iterations were peeled from the loop represented by LOOP_VINFO.  
   This function updates the information recorded for the data references in 
   the loop to account for the fact that the first NITERS iterations had 
   already been executed.  Specifically, it updates the initial_condition of the
   access_function of all the data_references in the loop.  */

static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
{
  unsigned int i;
  varray_type datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);

  if (vect_dump && (dump_flags & TDF_DETAILS))
    fprintf (vect_dump, "=== vect_update_inits_of_dr ===");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (datarefs, i);
      vect_update_init_of_dr (dr, niters);
    }
}


/* Function vect_do_peeling_for_alignment

   Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
   'niters' is set to the misalignment of one of the data references in the
   loop, thereby forcing it to refer to an aligned location at the beginning
   of the execution of this loop.  The data reference for which we are
   peeling is recorded in LOOP_VINFO_UNALIGNED_DR.  */

static void
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree niters_of_prolog_loop, ni_name;
  tree n_iters;
  struct loop *new_loop;

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");

  initialize_original_copy_tables ();

  ni_name = vect_build_loop_niters (loop_vinfo);
  niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
  
  /* Peel the prolog loop and iterate it niters_of_prolog_loop.  */
  new_loop = 
	slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop), 
				       niters_of_prolog_loop, ni_name, true); 
  gcc_assert (new_loop);
#ifdef ENABLE_CHECKING
  slpeel_verify_cfg_after_peeling (new_loop, loop);
#endif

  /* Update number of times loop executes.  */
  n_iters = LOOP_VINFO_NITERS (loop_vinfo);
  LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
		TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);

  /* Update the init conditions of the access functions of all data refs.  */
  vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);

  /* After peeling we have to reset scalar evolution analyzer.  */
  scev_reset ();

  free_original_copy_tables ();
}


/* Function vect_create_cond_for_align_checks.

   Create a conditional expression that represents the alignment checks for
   all of data references (array element references) whose alignment must be
   checked at runtime.

   Input:
   LOOP_VINFO - two fields of the loop information are used.
                LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
                LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.

   Output:
   COND_EXPR_STMT_LIST - statements needed to construct the conditional
                         expression.
   The returned value is the conditional expression to be used in the if
   statement that controls which version of the loop gets executed at runtime.

   The algorithm makes two assumptions:
     1) The number of bytes "n" in a vector is a power of 2.
     2) An address "a" is aligned if a%n is zero and that this
        test can be done as a&(n-1) == 0.  For example, for 16
        byte vectors the test is a&0xf == 0.  */

static tree
vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
                                   tree *cond_expr_stmt_list)
{
  VEC(tree,heap) *may_misalign_stmts
    = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
  tree ref_stmt;
  int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
  tree mask_cst;
  unsigned int i;
  tree psize;
  tree int_ptrsize_type;
  char tmp_name[20];
  tree or_tmp_name = NULL_TREE;
  tree and_tmp, and_tmp_name, and_stmt;
  tree ptrsize_zero;

  /* Check that mask is one less than a power of 2, i.e., mask is
     all zeros followed by all ones.  */
  gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));

  /* CHECKME: what is the best integer or unsigned type to use to hold a
     cast from a pointer value?  */
  psize = TYPE_SIZE (ptr_type_node);
  int_ptrsize_type
    = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);

  /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
     of the first vector of the i'th data reference. */

  for (i = 0; VEC_iterate (tree, may_misalign_stmts, i, ref_stmt); i++)
    {
      tree new_stmt_list = NULL_TREE;   
      tree addr_base;
      tree addr_tmp, addr_tmp_name, addr_stmt;
      tree or_tmp, new_or_tmp_name, or_stmt;

      /* create: addr_tmp = (int)(address_of_first_vector) */
      addr_base = vect_create_addr_base_for_vector_ref (ref_stmt, 
							&new_stmt_list, 
							NULL_TREE);

      if (new_stmt_list != NULL_TREE)
        append_to_statement_list_force (new_stmt_list, cond_expr_stmt_list);

      sprintf (tmp_name, "%s%d", "addr2int", i);
      addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
      add_referenced_tmp_var (addr_tmp);
      addr_tmp_name = make_ssa_name (addr_tmp, NULL_TREE);
      addr_stmt = fold_convert (int_ptrsize_type, addr_base);
      addr_stmt = build2 (MODIFY_EXPR, void_type_node,
                          addr_tmp_name, addr_stmt);
      SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
      append_to_statement_list_force (addr_stmt, cond_expr_stmt_list);

      /* The addresses are OR together.  */

      if (or_tmp_name != NULL_TREE)
        {
          /* create: or_tmp = or_tmp | addr_tmp */
          sprintf (tmp_name, "%s%d", "orptrs", i);
          or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
          add_referenced_tmp_var (or_tmp);
          new_or_tmp_name = make_ssa_name (or_tmp, NULL_TREE);
          or_stmt = build2 (MODIFY_EXPR, void_type_node, new_or_tmp_name,
                            build2 (BIT_IOR_EXPR, int_ptrsize_type,
	                            or_tmp_name,
                                    addr_tmp_name));
          SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
          append_to_statement_list_force (or_stmt, cond_expr_stmt_list);
          or_tmp_name = new_or_tmp_name;
        }
      else
        or_tmp_name = addr_tmp_name;

    } /* end for i */

  mask_cst = build_int_cst (int_ptrsize_type, mask);

  /* create: and_tmp = or_tmp & mask  */
  and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
  add_referenced_tmp_var (and_tmp);
  and_tmp_name = make_ssa_name (and_tmp, NULL_TREE);

  and_stmt = build2 (MODIFY_EXPR, void_type_node,
                     and_tmp_name,
                     build2 (BIT_AND_EXPR, int_ptrsize_type,
                             or_tmp_name, mask_cst));
  SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
  append_to_statement_list_force (and_stmt, cond_expr_stmt_list);

  /* Make and_tmp the left operand of the conditional test against zero.
     if and_tmp has a non-zero bit then some address is unaligned.  */
  ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
  return build2 (EQ_EXPR, boolean_type_node,
                 and_tmp_name, ptrsize_zero);
}


/* Function vect_transform_loop.

   The analysis phase has determined that the loop is vectorizable.
   Vectorize the loop - created vectorized stmts to replace the scalar
   stmts in the loop, and update the loop exit condition.  */

void
vect_transform_loop (loop_vec_info loop_vinfo, 
		     struct loops *loops ATTRIBUTE_UNUSED)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  int i;
  tree ratio = NULL;
  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  bitmap_iterator bi;
  unsigned int j;

  if (vect_print_dump_info (REPORT_DETAILS))
    fprintf (vect_dump, "=== vec_transform_loop ===");

  /* If the loop has data references that may or may not be aligned then
     two versions of the loop need to be generated, one which is vectorized
     and one which isn't.  A test is then generated to control which of the
     loops is executed.  The test checks for the alignment of all of the
     data references that may or may not be aligned. */

  if (VEC_length (tree, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
    {
      struct loop *nloop;
      tree cond_expr;
      tree cond_expr_stmt_list = NULL_TREE;
      basic_block condition_bb;
      block_stmt_iterator cond_exp_bsi;
      basic_block merge_bb;
      basic_block new_exit_bb;
      edge new_exit_e, e;
      tree orig_phi, new_phi, arg;

      cond_expr = vect_create_cond_for_align_checks (loop_vinfo,
                                                     &cond_expr_stmt_list);
      initialize_original_copy_tables ();
      nloop = loop_version (loops, loop, cond_expr, &condition_bb, true);
      free_original_copy_tables();

      /** Loop versioning violates an assumption we try to maintain during 
	 vectorization - that the loop exit block has a single predecessor.
	 After versioning, the exit block of both loop versions is the same
	 basic block (i.e. it has two predecessors). Just in order to simplify
	 following transformations in the vectorizer, we fix this situation
	 here by adding a new (empty) block on the exit-edge of the loop,
	 with the proper loop-exit phis to maintain loop-closed-form.  **/
      
      merge_bb = loop->single_exit->dest;
      gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
      new_exit_bb = split_edge (loop->single_exit);
      add_bb_to_loop (new_exit_bb, loop->outer);
      new_exit_e = loop->single_exit;
      e = EDGE_SUCC (new_exit_bb, 0);

      for (orig_phi = phi_nodes (merge_bb); orig_phi; 
	   orig_phi = PHI_CHAIN (orig_phi))
	{
          new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
				     new_exit_bb);
          arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
          add_phi_arg (new_phi, arg, new_exit_e);
	  SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
	} 

      /** end loop-exit-fixes after versioning  **/

      update_ssa (TODO_update_ssa);
      cond_exp_bsi = bsi_last (condition_bb);
      bsi_insert_before (&cond_exp_bsi, cond_expr_stmt_list, BSI_SAME_STMT);
    }

  /* CHECKME: we wouldn't need this if we calles update_ssa once
     for all loops.  */
  bitmap_zero (vect_vnames_to_rename);

  /* Peel the loop if there are data refs with unknown alignment.
     Only one data ref with unknown store is allowed.  */

  if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
    vect_do_peeling_for_alignment (loop_vinfo, loops);
  
  /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
     compile time constant), or it is a constant that doesn't divide by the
     vectorization factor, then an epilog loop needs to be created.
     We therefore duplicate the loop: the original loop will be vectorized,
     and will compute the first (n/VF) iterations. The second copy of the loop
     will remain scalar and will compute the remaining (n%VF) iterations.
     (VF is the vectorization factor).  */

  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
          && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
    vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
  else
    ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
		LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);

  /* 1) Make sure the loop header has exactly two entries
     2) Make sure we have a preheader basic block.  */

  gcc_assert (EDGE_COUNT (loop->header->preds) == 2);

  loop_split_edge_with (loop_preheader_edge (loop), NULL);


  /* FORNOW: the vectorizer supports only loops which body consist
     of one basic block (header + empty latch). When the vectorizer will 
     support more involved loop forms, the order by which the BBs are 
     traversed need to be reconsidered.  */

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (si = bsi_start (bb); !bsi_end_p (si);)
	{
	  tree stmt = bsi_stmt (si);
	  stmt_vec_info stmt_info;
	  bool is_store;

	  if (vect_print_dump_info (REPORT_DETAILS))
	    {
	      fprintf (vect_dump, "------>vectorizing statement: ");
	      print_generic_expr (vect_dump, stmt, TDF_SLIM);
	    }	
	  stmt_info = vinfo_for_stmt (stmt);
	  gcc_assert (stmt_info);
	  if (!STMT_VINFO_RELEVANT_P (stmt_info)
	      && !STMT_VINFO_LIVE_P (stmt_info))
	    {
	      bsi_next (&si);
	      continue;
	    }
	  /* FORNOW: Verify that all stmts operate on the same number of
	             units and no inner unrolling is necessary.  */
	  gcc_assert 
		(TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
		 == (unsigned HOST_WIDE_INT) vectorization_factor);

	  /* -------- vectorize statement ------------ */
	  if (vect_print_dump_info (REPORT_DETAILS))
	    fprintf (vect_dump, "transform statement.");

	  is_store = vect_transform_stmt (stmt, &si);
	  if (is_store)
	    {
	      /* Free the attached stmt_vec_info and remove the stmt.  */
	      stmt_ann_t ann = stmt_ann (stmt);
	      free (stmt_info);
	      set_stmt_info ((tree_ann_t)ann, NULL);
	      bsi_remove (&si, true);
	      continue;
	    }

	  bsi_next (&si);
	}		        /* stmts in BB */
    }				/* BBs in loop */

  slpeel_make_loop_iterate_ntimes (loop, ratio);

  EXECUTE_IF_SET_IN_BITMAP (vect_vnames_to_rename, 0, j, bi)
    mark_sym_for_renaming (SSA_NAME_VAR (ssa_name (j)));

  /* The memory tags and pointers in vectorized statements need to
     have their SSA forms updated.  FIXME, why can't this be delayed
     until all the loops have been transformed?  */
  update_ssa (TODO_update_ssa);

  if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
    fprintf (vect_dump, "LOOP VECTORIZED.");
}