1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
|
/* Support routines for Value Range Propagation (VRP).
Copyright (C) 2005 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "flags.h"
#include "tree.h"
#include "basic-block.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "timevar.h"
#include "diagnostic.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "tree-chrec.h"
/* Set of SSA names found during the dominator traversal of a
sub-graph in maybe_add_assert_expr_on_edges. */
static sbitmap found;
/* Loop structure of the program. Used to analyze scalar evolutions
inside adjust_range_with_scev. */
static struct loops *cfg_loops;
/* Local functions. */
static int compare_values (tree val1, tree val2);
/* Given a conditional predicate COND that has WHICH as one of its
operands, return the other operand. No error checking is done.
This helper assumes that COND is a comparison and WHICH is one of
its operands. */
static inline tree
get_opposite_operand (tree cond, tree which)
{
if (TREE_OPERAND (cond, 0) == which)
return TREE_OPERAND (cond, 1);
else
return TREE_OPERAND (cond, 0);
}
/* Given a comparison code, return its opposite. Note that this is *not*
the same as inverting its truth value (invert_tree_comparison). Here we
just want to literally flip the comparison around.
So, '<' gets '>', '<=' gets '>='. Both '==' and '!=' are returned
unchanged. */
static enum tree_code
opposite_comparison (enum tree_code code)
{
switch (code)
{
case EQ_EXPR:
case NE_EXPR:
case ORDERED_EXPR:
case UNORDERED_EXPR:
case LTGT_EXPR:
case UNEQ_EXPR:
return code;
case GT_EXPR:
return LT_EXPR;
case GE_EXPR:
return LE_EXPR;
case LT_EXPR:
return GT_EXPR;
case LE_EXPR:
return GE_EXPR;
case UNGT_EXPR:
return UNLT_EXPR;
case UNGE_EXPR:
return UNLE_EXPR;
case UNLT_EXPR:
return UNGT_EXPR;
case UNLE_EXPR:
return UNGE_EXPR;
default:
gcc_unreachable ();
}
}
/* Set value range VR to {T, MIN, MAX}. */
static inline void
set_value_range (value_range *vr, enum value_range_type t, tree min, tree max)
{
#if defined ENABLE_CHECKING
if (t == VR_RANGE || t == VR_ANTI_RANGE)
{
int cmp;
gcc_assert (min && max);
if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
|| max != TYPE_MAX_VALUE (TREE_TYPE (max)));
cmp = compare_values (min, max);
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
}
#endif
if (t == VR_RANGE
&& INTEGRAL_TYPE_P (TREE_TYPE (min))
&& min == TYPE_MIN_VALUE (TREE_TYPE (min))
&& max == TYPE_MAX_VALUE (TREE_TYPE (max)))
{
/* Ranges that cover all the possible values for the type decay
to VARYING. */
vr->type = VR_VARYING;
vr->min = NULL_TREE;
vr->max = NULL_TREE;
return;
}
vr->type = t;
vr->min = min;
vr->max = max;
}
/* Similar to set_value_range but return true if any field of VR
changed from its previous value. */
static inline bool
update_value_range (value_range *vr, enum value_range_type t, tree min,
tree max)
{
bool is_new = vr->type != t || vr->min != min || vr->max != max;
if (is_new)
set_value_range (vr, t, min, max);
return is_new;
}
/* Return value range information for VAR. Create an empty range if
none existed. */
value_range *
get_value_range (tree var)
{
value_range *vr;
tree sym;
vr = SSA_NAME_VALUE_RANGE (var);
if (vr)
return vr;
/* Create a default value range. */
vr = ggc_alloc (sizeof (*vr));
memset ((void *) vr, 0, sizeof (*vr));
SSA_NAME_VALUE_RANGE (var) = vr;
/* If VAR is a default definition for a PARM_DECL, then we have to
assume a VARYING range for it. */
sym = SSA_NAME_VAR (var);
if (TREE_CODE (sym) == PARM_DECL && var == var_ann (sym)->default_def)
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return vr;
}
/* Return true if value range VR involves at least one symbol. */
static inline bool
symbolic_range_p (value_range *vr)
{
return (!is_gimple_min_invariant (vr->min)
|| !is_gimple_min_invariant (vr->max));
}
/* Return true if EXPR computes a non-zero value. */
bool
expr_computes_nonzero (tree expr)
{
/* Type casts won't change anything, so just strip it. */
STRIP_NOPS (expr);
/* Calling alloca, guarantees that the value is non-NULL. */
if (alloca_call_p (expr))
return true;
/* The address of a non-weak symbol is never NULL, unless the user
has requested not to remove NULL pointer checks. */
if (flag_delete_null_pointer_checks
&& TREE_CODE (expr) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (expr, 0))
&& !DECL_WEAK (TREE_OPERAND (expr, 0)))
return true;
/* IOR of any value with a nonzero value will result in a nonzero
value. */
if (TREE_CODE (expr) == BIT_IOR_EXPR
&& integer_nonzerop (TREE_OPERAND (expr, 1)))
return true;
return false;
}
/* Return true if VR is ~[0, 0]. */
static inline bool
range_is_nonnull (value_range *vr)
{
return vr->type == VR_ANTI_RANGE
&& integer_zerop (vr->min)
&& integer_zerop (vr->max);
}
/* Return true if VR is [0, 0]. */
static inline bool
range_is_null (value_range *vr)
{
return vr->type == VR_RANGE
&& integer_zerop (vr->min)
&& integer_zerop (vr->max);
}
/* Set value range VR to a non-NULL range of type TYPE. */
static void
set_value_range_to_nonnull (value_range *vr, tree type)
{
tree zero = build_int_cst (type, 0);
set_value_range (vr, VR_ANTI_RANGE, zero, zero);
}
/* Set value range VR to a NULL range of type TYPE. */
static void
set_value_range_to_null (value_range *vr, tree type)
{
tree zero = build_int_cst (type, 0);
set_value_range (vr, VR_RANGE, zero, zero);
}
/* Compare two values VAL1 and VAL2. Return
-2 if VAL1 and VAL2 cannot be compared at compile-time,
-1 if VAL1 < VAL2,
0 if VAL1 == VAL2,
+1 if VAL1 > VAL2, and
+2 if VAL1 != VAL2
This is similar to tree_int_cst_compare but supports pointer values
and values that cannot be compared at compile time. */
static int
compare_values (tree val1, tree val2)
{
if (val1 == val2)
return 0;
/* Do some limited symbolic comparisons. */
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
{
/* We can determine some comparisons against +INF and -INF even
if the other value is an expression. */
if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
&& TREE_CODE (val2) == MINUS_EXPR)
{
/* +INF > NAME - CST. */
return 1;
}
else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
&& TREE_CODE (val2) == PLUS_EXPR)
{
/* -INF < NAME + CST. */
return -1;
}
else if (TREE_CODE (val1) == MINUS_EXPR
&& val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
{
/* NAME - CST < +INF. */
return -1;
}
else if (TREE_CODE (val1) == PLUS_EXPR
&& val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
{
/* NAME + CST > -INF. */
return 1;
}
}
if ((TREE_CODE (val1) == SSA_NAME
|| TREE_CODE (val1) == PLUS_EXPR
|| TREE_CODE (val1) == MINUS_EXPR)
&& (TREE_CODE (val2) == SSA_NAME
|| TREE_CODE (val2) == PLUS_EXPR
|| TREE_CODE (val2) == MINUS_EXPR))
{
tree n1, c1, n2, c2;
/* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
same name, return -2. */
if (TREE_CODE (val1) == SSA_NAME)
{
n1 = val1;
c1 = NULL_TREE;
}
else
{
n1 = TREE_OPERAND (val1, 0);
c1 = TREE_OPERAND (val1, 1);
}
if (TREE_CODE (val2) == SSA_NAME)
{
n2 = val2;
c2 = NULL_TREE;
}
else
{
n2 = TREE_OPERAND (val2, 0);
c2 = TREE_OPERAND (val2, 1);
}
/* Both values must use the same name. */
if (n1 != n2)
return -2;
if (TREE_CODE (val1) == SSA_NAME)
{
if (TREE_CODE (val2) == SSA_NAME)
/* NAME == NAME */
return 0;
else if (TREE_CODE (val2) == PLUS_EXPR)
/* NAME < NAME + CST */
return -1;
else if (TREE_CODE (val2) == MINUS_EXPR)
/* NAME > NAME - CST */
return 1;
}
else if (TREE_CODE (val1) == PLUS_EXPR)
{
if (TREE_CODE (val2) == SSA_NAME)
/* NAME + CST > NAME */
return 1;
else if (TREE_CODE (val2) == PLUS_EXPR)
/* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
return compare_values (c1, c2);
else if (TREE_CODE (val2) == MINUS_EXPR)
/* NAME + CST1 > NAME - CST2 */
return 1;
}
else if (TREE_CODE (val1) == MINUS_EXPR)
{
if (TREE_CODE (val2) == SSA_NAME)
/* NAME - CST < NAME */
return -1;
else if (TREE_CODE (val2) == PLUS_EXPR)
/* NAME - CST1 < NAME + CST2 */
return -1;
else if (TREE_CODE (val2) == MINUS_EXPR)
/* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
C1 and C2 are swapped in the call to compare_values. */
return compare_values (c2, c1);
}
gcc_unreachable ();
}
/* We cannot compare non-constants. */
if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
return -2;
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
return tree_int_cst_compare (val1, val2);
else
{
tree t;
/* First see if VAL1 and VAL2 are not the same. */
if (val1 == val2 || operand_equal_p (val1, val2, 0))
return 0;
/* If VAL1 is a lower address than VAL2, return -1. */
t = fold (build2 (LT_EXPR, TREE_TYPE (val1), val1, val2));
if (t == boolean_true_node)
return -1;
/* If VAL1 is a higher address than VAL2, return +1. */
t = fold (build2 (GT_EXPR, TREE_TYPE (val1), val1, val2));
if (t == boolean_true_node)
return 1;
/* If VAL1 is different than VAL2, return +2. */
t = fold (build2 (NE_EXPR, TREE_TYPE (val1), val1, val2));
if (t == boolean_true_node)
return 2;
return -2;
}
}
/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
0 if VAL is not inside VR,
-2 if we cannot tell either way. */
static inline int
value_inside_range (tree val, value_range *vr)
{
int cmp1, cmp2;
cmp1 = compare_values (val, vr->min);
if (cmp1 == -2 || cmp1 == 2)
return -2;
cmp2 = compare_values (val, vr->max);
if (cmp2 == -2 || cmp2 == 2)
return -2;
return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
}
/* Return true if value ranges VR0 and VR1 have a non-empty
intersection. */
static inline bool
value_ranges_intersect_p (value_range *vr0, value_range *vr1)
{
return (value_inside_range (vr1->min, vr0) == 1
|| value_inside_range (vr1->max, vr0) == 1
|| value_inside_range (vr0->min, vr1) == 1
|| value_inside_range (vr0->max, vr1) == 1);
}
/* Extract value range information from an ASSERT_EXPR EXPR and store
it in *VR_P. */
static void
extract_range_from_assert (value_range *vr_p, tree expr)
{
tree var, cond, limit, type;
value_range *var_vr;
var = ASSERT_EXPR_VAR (expr);
cond = ASSERT_EXPR_COND (expr);
gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
/* Find VAR in the ASSERT_EXPR conditional. */
limit = get_opposite_operand (cond, var);
type = TREE_TYPE (limit);
gcc_assert (limit != var);
/* For pointer arithmetic, we only keep track of anti-ranges
(NE_EXPR). Notice that we don't need to handle EQ_EXPR in these
cases because assertions with equalities are never generated.
The assert pass generates straight assignments in those cases. */
if (POINTER_TYPE_P (type) && TREE_CODE (cond) != NE_EXPR)
{
set_value_range (vr_p, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
if (TREE_CODE (cond) == NE_EXPR)
set_value_range (vr_p, VR_ANTI_RANGE, limit, limit);
else if (TREE_CODE (cond) == LE_EXPR)
set_value_range (vr_p, VR_RANGE, TYPE_MIN_VALUE (type), limit);
else if (TREE_CODE (cond) == LT_EXPR)
{
tree one = build_int_cst (type, 1);
set_value_range (vr_p, VR_RANGE, TYPE_MIN_VALUE (type),
fold (build (MINUS_EXPR, type, limit, one)));
}
else if (TREE_CODE (cond) == GE_EXPR)
set_value_range (vr_p, VR_RANGE, limit, TYPE_MAX_VALUE (type));
else if (TREE_CODE (cond) == GT_EXPR)
{
tree one = build_int_cst (type, 1);
set_value_range (vr_p, VR_RANGE,
fold (build (PLUS_EXPR, type, limit, one)),
TYPE_MAX_VALUE (type));
}
else
gcc_unreachable ();
/* If VAR already has a known range and the two ranges have a
non-empty intersection, we can refine the resulting range.
Since the assert expression creates an equivalency and at the
same time it asserts a predicate, we can take the intersection of
the two ranges to get better precision. */
var_vr = get_value_range (var);
if (var_vr->type == VR_RANGE
&& vr_p->type == VR_RANGE
&& value_ranges_intersect_p (var_vr, vr_p))
{
tree min, max;
/* Use the larger of the two minimums. */
if (compare_values (vr_p->min, var_vr->min) == -1)
min = var_vr->min;
else
min = vr_p->min;
/* Use the smaller of the two maximums. */
if (compare_values (vr_p->max, var_vr->max) == 1)
max = var_vr->max;
else
max = vr_p->max;
set_value_range (vr_p, vr_p->type, min, max);
}
}
/* Extract range information from SSA name VAR and store it in VR. If
VAR has an interesting range, use it. Otherwise, create the
range [VAR, VAR] and return it. This is useful in situations where
we may have conditionals testing values of VARYING names. For
instance,
x_3 = y_5;
if (x_3 > y_5)
...
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
always false. */
static void
extract_range_from_ssa_name (value_range *vr, tree var)
{
value_range *var_vr = get_value_range (var);
if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
*vr = *var_vr;
else
set_value_range (vr, VR_RANGE, var, var);
}
/* Extract range information from a binary expression EXPR based on
the ranges of each of its operands and the expression code. */
static void
extract_range_from_binary_expr (value_range *vr, tree expr)
{
enum tree_code code = TREE_CODE (expr);
tree op0, op1, min, max;
value_range vr0, vr1;
int cmp;
/* Not all binary expressions can be applied to ranges in a
meaningful way. Handle only arithmetic operations. */
if (code != PLUS_EXPR
&& code != MINUS_EXPR
&& code != MULT_EXPR
&& code != TRUNC_DIV_EXPR
&& code != FLOOR_DIV_EXPR
&& code != CEIL_DIV_EXPR
&& code != EXACT_DIV_EXPR
&& code != ROUND_DIV_EXPR
&& code != MIN_EXPR
&& code != MAX_EXPR)
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* Get value ranges for each operand. For constant operands, create
a new value range with the operand to simplify processing. */
op0 = TREE_OPERAND (expr, 0);
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0));
else
{
if (is_gimple_min_invariant (op0))
set_value_range (&vr0, VR_RANGE, op0, op0);
else
set_value_range (&vr0, VR_VARYING, NULL_TREE, NULL_TREE);
}
op1 = TREE_OPERAND (expr, 1);
if (TREE_CODE (op1) == SSA_NAME)
vr1 = *(get_value_range (op1));
else
{
if (is_gimple_min_invariant (op1))
set_value_range (&vr1, VR_RANGE, op1, op1);
else
set_value_range (&vr1, VR_VARYING, 0, 0);
}
/* If either range is UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
{
set_value_range (vr, VR_UNDEFINED, NULL_TREE, NULL_TREE);
return;
}
/* If either range is VARYING, so is the result. */
if (vr0.type == VR_VARYING || vr1.type == VR_VARYING)
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* If the ranges are of different types, the result is VARYING. */
if (vr0.type != vr1.type)
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* TODO. Refuse to do any symbolic range operations for now. */
if (symbolic_range_p (&vr0) || symbolic_range_p (&vr1))
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* Now evaluate the expression to determine the new range. */
if (POINTER_TYPE_P (TREE_TYPE (expr))
|| POINTER_TYPE_P (TREE_TYPE (op0))
|| POINTER_TYPE_P (TREE_TYPE (op1)))
{
/* For pointer types, we are really only interested in asserting
whether the expression evaluates to non-NULL. FIXME. We
used to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR),
but ivopts is generating expressions with pointer
multiplication in them. */
if (code == PLUS_EXPR)
{
/* Assume that pointers can never wrap around. FIXME, Is
this always safe? */
tree zero = build_int_cst (TREE_TYPE (expr), 0);
set_value_range (vr, VR_ANTI_RANGE, zero, zero);
}
else
{
/* Subtracting from a pointer, may yield 0, so just drop the
resulting range to varying. */
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
}
return;
}
/* For integer ranges, apply the operation to each end of the
range and see what we end up with. */
if (code == PLUS_EXPR
|| code == MULT_EXPR
|| code == MIN_EXPR
|| code == MAX_EXPR)
{
/* For operations that make the resulting range directly
proportional to the original ranges, apply the operation to
the same end of each range. */
min = int_const_binop (code, vr0.min, vr1.min, 0);
max = int_const_binop (code, vr0.max, vr1.max, 0);
}
else
{
/* For operations that make the resulting range inversely
proportional to the original ranges (-, /), apply the
operation to the opposite ends of each range. */
min = int_const_binop (code, vr0.min, vr1.max, 0);
max = int_const_binop (code, vr0.max, vr1.min, 0);
}
cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{
/* If the new range has its limits swapped around (MIN > MAX),
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
}
else
set_value_range (vr, vr0.type, min, max);
}
/* Extract range information from a unary expression EXPR based on
the range of its operand and the expression code. */
static void
extract_range_from_unary_expr (value_range *vr, tree expr)
{
enum tree_code code = TREE_CODE (expr);
tree min, max, op0;
value_range vr0;
int cmp;
/* Get value ranges for the operand. For constant operands, create
a new value range with the operand to simplify processing. */
op0 = TREE_OPERAND (expr, 0);
if (TREE_CODE (op0) == SSA_NAME)
vr0 = *(get_value_range (op0));
else
{
if (is_gimple_min_invariant (op0))
set_value_range (&vr0, VR_RANGE, op0, op0);
else
set_value_range (&vr0, VR_VARYING, NULL_TREE, NULL_TREE);
}
/* If VR0 is UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED)
{
set_value_range (vr, VR_UNDEFINED, NULL_TREE, NULL_TREE);
return;
}
/* If VR0 is VARYING, so is the result. */
if (vr0.type == VR_VARYING)
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* TODO. Refuse to do any symbolic range operations for now. */
if (symbolic_range_p (&vr0))
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* If the operand is neither a pointer nor an integral type, set the
range to VARYING. TODO, we may set the range to non-zero. */
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
{
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* If the expression involves pointers, we are only interested in
determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
{
if (range_is_nonnull (&vr0) || expr_computes_nonzero (expr))
set_value_range_to_nonnull (vr, TREE_TYPE (expr));
else if (range_is_null (&vr0))
set_value_range_to_null (vr, TREE_TYPE (expr));
else
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* Handle unary expressions on integer ranges. */
if ((code == NOP_EXPR || code == CONVERT_EXPR)
&& (TYPE_SIZE (TREE_TYPE (vr0.min)) != TYPE_SIZE (TREE_TYPE (expr))))
{
/* When converting types of different sizes, set the result to
VARYING. Things like sign extensions and precision loss may
change the range. For instance, if x_3 is of type 'long long
int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
is impossible to know at compile time whether y_5 will be
~[0, 0]. */
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
/* Apply the operation to each end of the range and see what we end
up with. */
min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{
/* If the new range has its limits swapped around (MIN > MAX),
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
}
else
set_value_range (vr, vr0.type, min, max);
}
/* Try to compute a useful range out of expression EXPR and store it
in *VR_P. */
static void
extract_range_from_expr (value_range *vr, tree expr)
{
enum tree_code code = TREE_CODE (expr);
if (code == ASSERT_EXPR)
extract_range_from_assert (vr, expr);
else if (code == SSA_NAME)
extract_range_from_ssa_name (vr, expr);
else if (TREE_CODE_CLASS (code) == tcc_binary)
extract_range_from_binary_expr (vr, expr);
else if (TREE_CODE_CLASS (code) == tcc_unary)
extract_range_from_unary_expr (vr, expr);
else if (expr_computes_nonzero (expr))
set_value_range_to_nonnull (vr, TREE_TYPE (expr));
else
set_value_range (vr, VR_VARYING, NULL_TREE, NULL_TREE);
}
/* Given a range VR, a loop L and a variable VAR, determine whether it
would be profitable to adjust VR using scalar evolution information
for VAR. If so, update VR with the new limits. */
static void
adjust_range_with_scev (value_range *vr, struct loop *l, tree var)
{
tree init, step, chrec;
bool init_is_max;
/* TODO. Don't adjust anti-ranges. An anti-range may provide
better opportunities than a regular range, but I'm not sure. */
if (vr->type == VR_ANTI_RANGE)
return;
chrec = analyze_scalar_evolution (l, var);
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
return;
init = CHREC_LEFT (chrec);
step = CHREC_RIGHT (chrec);
/* If STEP is symbolic, we can't know whether INIT will be the
minimum or maximum value in the range. */
if (!is_gimple_min_invariant (step))
return;
/* FIXME. When dealing with unsigned types,
analyze_scalar_evolution sets STEP to very large unsigned values
when the evolution goes backwards. This confuses this analysis
because we think that INIT is the smallest value that the range
can take, instead of the largest. Ignore these chrecs for now. */
if (INTEGRAL_TYPE_P (TREE_TYPE (step)) && TYPE_UNSIGNED (TREE_TYPE (step)))
return;
/* If STEP is negative, then INIT is the maximum value the range
will take. Otherwise, INIT is the minimum value. */
init_is_max = (tree_int_cst_sgn (step) < 0);
if (!POINTER_TYPE_P (TREE_TYPE (init))
&& (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
{
/* For VARYING or UNDEFINED ranges, just about anything we get
from scalar evolutions should be better. */
if (init_is_max)
set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)), init);
else
set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)));
}
else if (vr->type == VR_RANGE)
{
if (init_is_max)
{
/* INIT is the maximum value. If INIT is lower than
VR->MAX, set VR->MAX to INIT. */
if (compare_values (init, vr->max) == -1)
set_value_range (vr, VR_RANGE, vr->min, init);
}
else
{
/* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
if (compare_values (init, vr->min) == 1)
set_value_range (vr, VR_RANGE, init, vr->max);
}
}
}
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for all the
values in the ranges.
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
- Return NULL_TREE if it is not always possible to determine the value of
the comparison. */
static tree
compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1)
{
/* VARYING or UNDEFINED ranges cannot be compared. */
if (vr0->type == VR_VARYING
|| vr0->type == VR_UNDEFINED
|| vr1->type == VR_VARYING
|| vr1->type == VR_UNDEFINED)
return NULL_TREE;
/* Anti-ranges need to be handled separately. */
if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
{
/* If both are anti-ranges, then we cannot compute any
comparison. */
if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
return NULL_TREE;
/* These comparisons are never statically computable. */
if (comp == GT_EXPR
|| comp == GE_EXPR
|| comp == LT_EXPR
|| comp == LE_EXPR)
return NULL_TREE;
/* Equality can be computed only between a range and an
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
if (vr0->type == VR_RANGE)
{
/* To simplify processing, make VR0 the anti-range. */
value_range *tmp = vr0;
vr0 = vr1;
vr1 = tmp;
}
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
if (compare_values (vr0->min, vr1->min) == 0
&& compare_values (vr0->max, vr1->max) == 0)
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
return NULL_TREE;
}
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
operands around and change the comparison code. */
if (comp == GT_EXPR || comp == GE_EXPR)
{
value_range *tmp;
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
tmp = vr0;
vr0 = vr1;
vr1 = tmp;
}
if (comp == EQ_EXPR)
{
/* Equality may only be computed if both ranges represent
exactly one value. */
if (compare_values (vr0->min, vr0->max) == 0
&& compare_values (vr1->min, vr1->max) == 0)
{
int cmp_min = compare_values (vr0->min, vr1->min);
int cmp_max = compare_values (vr0->max, vr1->max);
if (cmp_min == 0 && cmp_max == 0)
return boolean_true_node;
else if (cmp_min != -2 && cmp_max != -2)
return boolean_false_node;
}
return NULL_TREE;
}
else if (comp == NE_EXPR)
{
int cmp1, cmp2;
/* If VR0 is completely to the left or completely to the right
of VR1, they are always different. Notice that we need to
make sure that both comparisons yield similar results to
avoid comparing values that cannot be compared at
compile-time. */
cmp1 = compare_values (vr0->max, vr1->min);
cmp2 = compare_values (vr0->min, vr1->max);
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
return boolean_true_node;
/* If VR0 and VR1 represent a single value and are identical,
return false. */
else if (compare_values (vr0->min, vr0->max) == 0
&& compare_values (vr1->min, vr1->max) == 0
&& compare_values (vr0->min, vr1->min) == 0
&& compare_values (vr0->max, vr1->max) == 0)
return boolean_false_node;
/* Otherwise, they may or may not be different. */
else
return NULL_TREE;
}
else if (comp == LT_EXPR || comp == LE_EXPR)
{
int tst;
/* If VR0 is to the left of VR1, return true. */
tst = compare_values (vr0->max, vr1->min);
if ((comp == LT_EXPR && tst == -1)
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
return boolean_true_node;
/* If VR0 is to the right of VR1, return false. */
tst = compare_values (vr0->min, vr1->max);
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|| (comp == LE_EXPR && tst == 1))
return boolean_false_node;
/* Otherwise, we don't know. */
return NULL_TREE;
}
gcc_unreachable ();
}
/* Given a value range VR, a value VAL and a comparison code COMP, return
BOOLEAN_TRUE_NODE if VR COMP VR1 always returns true for all the
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
always returns false. Return NULL_TREE if it is not always
possible to determine the value of the comparison. */
static tree
compare_range_with_value (enum tree_code comp, value_range *vr, tree val)
{
if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
return NULL_TREE;
/* Anti-ranges need to be handled separately. */
if (vr->type == VR_ANTI_RANGE)
{
/* For anti-ranges, the only predicates that we can compute at
compile time are equality and inequality. */
if (comp == GT_EXPR
|| comp == GE_EXPR
|| comp == LT_EXPR
|| comp == LE_EXPR)
return NULL_TREE;
/* ~[VAL, VAL] == VAL is always false. */
if (compare_values (vr->min, val) == 0
&& compare_values (vr->max, val) == 0)
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
return NULL_TREE;
}
if (comp == EQ_EXPR)
{
/* EQ_EXPR may only be computed if VR represents exactly
one value. */
if (compare_values (vr->min, vr->max) == 0)
{
int cmp = compare_values (vr->min, val);
if (cmp == 0)
return boolean_true_node;
else if (cmp == -1 || cmp == 1 || cmp == 2)
return boolean_false_node;
}
return NULL_TREE;
}
else if (comp == NE_EXPR)
{
/* If VAL is not inside VR, then they are always different. */
if (compare_values (vr->max, val) == -1
|| compare_values (vr->min, val) == 1)
return boolean_true_node;
/* If VR represents exactly one value equal to VAL, then return
false. */
if (compare_values (vr->min, vr->max) == 0
&& compare_values (vr->min, val) == 0)
return boolean_false_node;
/* Otherwise, they may or may not be different. */
return NULL_TREE;
}
else if (comp == LT_EXPR || comp == LE_EXPR)
{
int tst;
/* If VR is to the left of VAL, return true. */
tst = compare_values (vr->max, val);
if ((comp == LT_EXPR && tst == -1)
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
return boolean_true_node;
/* If VR is to the right of VAL, return false. */
tst = compare_values (vr->min, val);
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|| (comp == LE_EXPR && tst == 1))
return boolean_false_node;
/* Otherwise, we don't know. */
return NULL_TREE;
}
else if (comp == GT_EXPR || comp == GE_EXPR)
{
int tst;
/* If VR is to the right of VAL, return true. */
tst = compare_values (vr->min, val);
if ((comp == GT_EXPR && tst == 1)
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
return boolean_true_node;
/* If VR is to the left of VAL, return false. */
tst = compare_values (vr->max, val);
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|| (comp == GE_EXPR && tst == -1))
return boolean_false_node;
/* Otherwise, we don't know. */
return NULL_TREE;
}
gcc_unreachable ();
}
/* Debugging dumps. */
void
dump_value_range (FILE *file, value_range *vr)
{
if (vr == NULL)
fprintf (file, "[]");
else if (vr->type == VR_UNDEFINED)
fprintf (file, "UNDEFINED");
else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
{
fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
print_generic_expr (file, vr->min, 0);
fprintf (file, ", ");
print_generic_expr (file, vr->max, 0);
fprintf (file, "]");
}
else if (vr->type == VR_VARYING)
fprintf (file, "VARYING");
else
fprintf (file, "INVALID RANGE");
}
/* Dump value range VR to stderr. */
void
debug_value_range (value_range *vr)
{
dump_value_range (stderr, vr);
}
/* Dump value ranges of all SSA_NAMEs to FILE. */
void
dump_all_value_ranges (FILE *file)
{
size_t i;
for (i = 0; i < num_ssa_names; i++)
{
tree var = ssa_name (i);
if (var && SSA_NAME_VALUE_RANGE (var))
{
print_generic_expr (file, var, 0);
fprintf (file, ": ");
dump_value_range (file, SSA_NAME_VALUE_RANGE (var));
fprintf (file, "\n");
}
}
fprintf (file, "\n");
}
/* Dump all value ranges to stderr. */
void
debug_all_value_ranges (void)
{
dump_all_value_ranges (stderr);
}
/*---------------------------------------------------------------------------
Value Range Propagation
---------------------------------------------------------------------------*/
/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
create a new SSA name N and return the assertion assignment
'V = ASSERT_EXPR <V, V OP W>'. */
static tree
build_assert_expr_for (tree cond, tree v)
{
tree n, assertion;
gcc_assert (TREE_CODE (v) == SSA_NAME);
n = duplicate_ssa_name (v, NULL_TREE);
if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
{
/* Build N = ASSERT_EXPR <V, COND>. As a special case, if the
conditional is an EQ_EXPR (V == Z), just build the assignment
N = Z. */
if (TREE_CODE (cond) == EQ_EXPR)
{
tree other = get_opposite_operand (cond, v);
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, other);
}
else
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n,
build (ASSERT_EXPR, TREE_TYPE (v), v, cond));
}
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
{
/* Given !V, build the assignment N = false. */
tree op0 = TREE_OPERAND (cond, 0);
gcc_assert (op0 == v);
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
}
else if (TREE_CODE (cond) == SSA_NAME)
{
/* Given V, build the assignment N = true. */
gcc_assert (v == cond);
assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
}
else
gcc_unreachable ();
SSA_NAME_DEF_STMT (n) = assertion;
/* The new ASSERT_EXPR, creates a new SSA name that replaces the
operand of the ASSERT_EXPR. Register the new name and the old one
in the replacement table so that we can fix the SSA web after
adding all the ASSERT_EXPRs. */
register_new_name_mapping (n, v);
return assertion;
}
/* Return false if EXPR is a predicate expression involving floating
point values. */
static inline bool
fp_predicate (tree expr)
{
return TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison
&& FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
}
/* Return an expression predicate that represents the range of values
that can be taken by operand OP after STMT executes. */
static tree
infer_value_range (tree stmt, tree op)
{
if (POINTER_TYPE_P (TREE_TYPE (op)))
{
bool is_store;
unsigned num_uses, num_derefs;
count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
if (num_derefs > 0 && flag_delete_null_pointer_checks)
{
/* We can only assume that a pointer dereference will yield
non-NULL if -fdelete-null-pointer-checks is enabled. */
tree null = build_int_cst (TREE_TYPE (op), 0);
tree t = build (NE_EXPR, boolean_type_node, op, null);
return t;
}
}
return NULL_TREE;
}
/* Return true if OP is the result of an ASSERT_EXPR that tests the
same condition as COND. */
static bool
has_assert_expr (tree op, tree cond)
{
tree def_stmt = SSA_NAME_DEF_STMT (op);
tree assert_expr, other_cond, other_op;
/* If OP was not generated by an ASSERT_EXPR, return false. */
if (TREE_CODE (def_stmt) != MODIFY_EXPR
|| TREE_CODE (TREE_OPERAND (def_stmt, 1)) != ASSERT_EXPR)
return false;
assert_expr = TREE_OPERAND (def_stmt, 1);
other_cond = ASSERT_EXPR_COND (assert_expr);
other_op = ASSERT_EXPR_VAR (assert_expr);
if (TREE_CODE (cond) == TREE_CODE (other_cond))
{
tree t1, t2;
/* If COND is not a comparison predicate, something is wrong. */
gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
/* Note that we only need to compare against one of the operands
of OTHER_COND.
Suppose that we are about to insert the assertion ASSERT_EXPR
<x_4, x_4 != 0> and the defining statement for x_4 is x_4 =
ASSERT_EXPR <x_3, x_3 != 0>.
In this case, we don't really want to insert a new
ASSERT_EXPR for x_4 because that would be redundant. We
already know that x_4 is not 0. So, when comparing the
conditionals 'x_3 != 0' and 'x_4 != 0', we don't want to
compare x_3 and x_4, we just want to compare the predicate's
code (!=) and the other operand (0). */
if (TREE_OPERAND (cond, 0) == op)
t1 = TREE_OPERAND (cond, 1);
else
t1 = TREE_OPERAND (cond, 0);
if (TREE_OPERAND (other_cond, 0) == other_op)
t2 = TREE_OPERAND (other_cond, 1);
else
t2 = TREE_OPERAND (other_cond, 0);
return (t1 == t2 || operand_equal_p (t1, t2, 0));
}
return false;
}
/* Traverse all the statements in block BB looking for used variables.
Variables used in BB are added to bitmap FOUND. The algorithm
works in three main parts:
1- For every statement S in BB, all the variables used by S are
added to bitmap FOUND.
2- If statement S uses an operand N in a way that exposes a known
value range for N, then if N was not already generated by an
ASSERT_EXPR, create a new ASSERT_EXPR for N. For instance, if N
is a pointer and the statement dereferences it, we can assume
that N is not NULL.
3- COND_EXPRs are a special case of #2. We can derive range
information from the predicate but need to insert different
ASSERT_EXPRs for each of the sub-graphs rooted at the
conditional block. If the last statement of BB is a conditional
expression of the form 'X op Y', then
a) Remove X and Y from the set FOUND.
b) If the conditional dominates its THEN_CLAUSE sub-graph,
recurse into it. On return, if X and/or Y are marked in
FOUND, then an ASSERT_EXPR is added for the corresponding
variable.
c) Repeat step (b) on the ELSE_CLAUSE.
d) Mark X and Y in FOUND.
3- If BB does not end in a conditional expression, then we recurse
into BB's dominator children.
At the end of the recursive traversal, ASSERT_EXPRs will have been
added to the edges of COND_EXPR blocks that have sub-graphs using
one or both predicate operands. For instance,
if (a == 9)
b = a;
else
b = c + 1;
In this case, an assertion on the THEN clause is useful to
determine that 'a' is always 9 on that edge. However, an assertion
on the ELSE clause would be unnecessary.
On exit from this function, all the names created by the newly
inserted ASSERT_EXPRs need to be added to the SSA web by rewriting
the SSA names that they replace.
TODO. Handle SWITCH_EXPR. */
static bool
maybe_add_assert_expr (basic_block bb)
{
block_stmt_iterator si;
tree last;
bool added;
use_optype uses;
/* Step 1. Mark all the SSA names used in BB in bitmap FOUND. */
added = false;
last = NULL_TREE;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt, op;
ssa_op_iter i;
stmt = bsi_stmt (si);
get_stmt_operands (stmt);
/* Mark all the SSA names used by STMT in bitmap FOUND. If STMT
is inside the sub-graph of a conditional block, when we
return from this recursive walk, our parent will use the
FOUND bitset to determine if one of the operands it was
looking for was present in the sub-graph. */
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
{
tree cond;
SET_BIT (found, SSA_NAME_VERSION (op));
cond = infer_value_range (stmt, op);
if (!cond)
continue;
/* Step 3. If OP is used in such a way that we can infer a
value range for it, create a new ASSERT_EXPR for OP
(unless OP already has an ASSERT_EXPR). */
gcc_assert (!is_ctrl_stmt (stmt));
if (has_assert_expr (op, cond))
continue;
if (!stmt_ends_bb_p (stmt))
{
/* If STMT does not end the block, we can insert the new
assertion right after it. */
tree t = build_assert_expr_for (cond, op);
bsi_insert_after (&si, t, BSI_NEW_STMT);
added = true;
}
else
{
/* STMT must be the last statement in BB. We can only
insert new assertions on the non-abnormal edge out of
BB. Note that since STMT is not control flow, there
may only be one non-abnormal edge out of BB. */
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & EDGE_ABNORMAL))
{
tree t = build_assert_expr_for (cond, op);
bsi_insert_on_edge (e, t);
added = true;
break;
}
}
}
/* Remember the last statement of the block. */
last = stmt;
}
/* Step 3. If BB's last statement is a conditional expression
involving integer operands, recurse into each of the sub-graphs
rooted at BB to determine if we need to add ASSERT_EXPRs.
Notice that we only care about the first operand of the
conditional. Adding assertions for both operands may actually
hinder VRP. FIXME, add example. */
if (last
&& TREE_CODE (last) == COND_EXPR
&& !fp_predicate (COND_EXPR_COND (last))
&& NUM_USES (uses = STMT_USE_OPS (last)) > 0)
{
edge e;
edge_iterator ei;
tree op, cond;
cond = COND_EXPR_COND (last);
/* Remove the COND_EXPR operand from the FOUND bitmap.
Otherwise, when we finish traversing each of the sub-graphs,
we won't know whether the variables were found in the
sub-graphs or if they had been found in a block upstream from
BB. */
op = USE_OP (uses, 0);
RESET_BIT (found, SSA_NAME_VERSION (op));
/* Look for uses of the operands in each of the sub-graphs
rooted at BB. We need to check each of the outgoing edges
separately, so that we know what kind of ASSERT_EXPR to
insert. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
/* If BB strictly dominates the sub-graph at E->DEST,
recurse into it. */
if (e->dest != bb
&& dominated_by_p (CDI_DOMINATORS, e->dest, bb))
added |= maybe_add_assert_expr (e->dest);
/* Once we traversed the sub-graph, check if any block inside
used either of the predicate's operands. If so, add the
appropriate ASSERT_EXPR. */
if (TEST_BIT (found, SSA_NAME_VERSION (op)))
{
/* We found a use of OP in the sub-graph rooted at
E->DEST. Add an ASSERT_EXPR according to whether
E goes to THEN_CLAUSE or ELSE_CLAUSE. */
tree c, t;
if (e->flags & EDGE_TRUE_VALUE)
c = unshare_expr (cond);
else if (e->flags & EDGE_FALSE_VALUE)
c = invert_truthvalue (cond);
else
gcc_unreachable ();
t = build_assert_expr_for (c, op);
bsi_insert_on_edge (e, t);
added = true;
}
}
/* Finally, mark all the COND_EXPR operands as found. */
SET_BIT (found, SSA_NAME_VERSION (op));
}
else
{
/* Step 3. Recurse into the dominator children of BB. */
basic_block son;
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
added |= maybe_add_assert_expr (son);
}
return added;
}
/* Traverse the flowgraph looking for conditional jumps to insert range
expressions. These range expressions are meant to provide information
to optimizations that need to reason in terms of value ranges. They
will not be expanded into RTL. For instance, given:
x = ...
y = ...
if (x < y)
y = x - 2;
else
x = y + 3;
this pass will transform the code into:
x = ...
y = ...
if (x < y)
{
x = ASSERT_EXPR <x, x < y>
y = x - 2
}
else
{
y = ASSERT_EXPR <y, x <= y>
x = y + 3
}
The idea is that once copy and constant propagation have run, other
optimizations will be able to determine what ranges of values can 'x'
take in different paths of the code, simply by checking the reaching
definition of 'x'. */
static void
insert_range_assertions (void)
{
edge e;
edge_iterator ei;
bool update_ssa_p;
found = sbitmap_alloc (num_ssa_names);
sbitmap_zero (found);
calculate_dominance_info (CDI_DOMINATORS);
update_ssa_p = false;
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
if (maybe_add_assert_expr (e->dest))
update_ssa_p = true;
if (update_ssa_p)
{
bsi_commit_edge_inserts ();
update_ssa (TODO_update_ssa_no_phi);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
dump_function_to_file (current_function_decl, dump_file, dump_flags);
}
sbitmap_free (found);
}
/* Convert range assertion expressions into copies. FIXME, explain why. */
static void
remove_range_assertions (void)
{
basic_block bb;
block_stmt_iterator si;
FOR_EACH_BB (bb)
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
if (TREE_CODE (stmt) == MODIFY_EXPR
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
{
tree rhs = TREE_OPERAND (stmt, 1);
tree cond = fold (ASSERT_EXPR_COND (rhs));
gcc_assert (cond != boolean_false_node);
TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
update_stmt (stmt);
}
}
}
/* Return true if STMT is interesting for VRP. */
static bool
stmt_interesting_for_vrp (tree stmt)
{
if (TREE_CODE (stmt) == PHI_NODE
&& is_gimple_reg (PHI_RESULT (stmt))
&& (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
|| POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
return true;
else if (TREE_CODE (stmt) == MODIFY_EXPR)
{
tree lhs = TREE_OPERAND (stmt, 0);
stmt_ann_t ann = stmt_ann (stmt);
if (TREE_CODE (lhs) == SSA_NAME
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
&& NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) == 0
&& NUM_VUSES (VUSE_OPS (ann)) == 0
&& NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) == 0)
return true;
}
else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
return true;
return false;
}
/* Initialize local data structures for VRP. Return true if VRP
is worth running (i.e. if we found any statements that could
benefit from range information). */
static bool
vrp_initialize (void)
{
basic_block bb;
bool do_vrp;
/* If we don't find any ASSERT_EXPRs in the code, there's no point
running VRP. */
do_vrp = false;
FOR_EACH_BB (bb)
{
block_stmt_iterator si;
tree phi;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
if (!stmt_interesting_for_vrp (phi))
{
tree lhs = PHI_RESULT (phi);
set_value_range (get_value_range (lhs), VR_VARYING, 0, 0);
DONT_SIMULATE_AGAIN (phi) = true;
}
else
DONT_SIMULATE_AGAIN (phi) = false;
}
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
if (!stmt_interesting_for_vrp (stmt))
{
ssa_op_iter i;
tree def;
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
set_value_range (get_value_range (def), VR_VARYING, 0, 0);
DONT_SIMULATE_AGAIN (stmt) = true;
}
else
{
if (TREE_CODE (stmt) == MODIFY_EXPR
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
do_vrp = true;
DONT_SIMULATE_AGAIN (stmt) = false;
}
}
}
return do_vrp;
}
/* Visit assignment STMT. If it produces an interesting range, record
the SSA name in *OUTPUT_P. */
static enum ssa_prop_result
vrp_visit_assignment (tree stmt, tree *output_p)
{
tree lhs, rhs, def;
ssa_op_iter iter;
lhs = TREE_OPERAND (stmt, 0);
rhs = TREE_OPERAND (stmt, 1);
/* We only keep track of ranges in integral and pointer types. */
if (TREE_CODE (lhs) == SSA_NAME
&& (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|| POINTER_TYPE_P (TREE_TYPE (lhs))))
{
value_range *vr, new_vr;
struct loop *l;
vr = get_value_range (lhs);
extract_range_from_expr (&new_vr, rhs);
/* If STMT is inside a loop, we may be able to know something
else about the range of LHS by examining scalar evolution
information. */
if (cfg_loops && (l = loop_containing_stmt (stmt)))
adjust_range_with_scev (&new_vr, l, lhs);
if (update_value_range (vr, new_vr.type, new_vr.min, new_vr.max))
{
*output_p = lhs;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Found new range ");
dump_value_range (dump_file, &new_vr);
fprintf (dump_file, " for ");
print_generic_expr (dump_file, lhs, 0);
fprintf (dump_file, "\n\n");
}
if (new_vr.type == VR_VARYING)
return SSA_PROP_VARYING;
return SSA_PROP_INTERESTING;
}
return SSA_PROP_NOT_INTERESTING;
}
/* Every other statements produces no useful ranges. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
set_value_range (get_value_range (def), VR_VARYING, 0, 0);
return SSA_PROP_VARYING;
}
/* Given a conditional predicate COND, try to determine if COND yields
true or false based on the value ranges of its operands. */
static tree
vrp_evaluate_conditional (tree cond)
{
gcc_assert (TREE_CODE (cond) == SSA_NAME
|| TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
if (TREE_CODE (cond) == SSA_NAME)
{
/* For SSA names, only return a truth value if the range is
known and contains exactly one value. */
value_range *vr = SSA_NAME_VALUE_RANGE (cond);
if (vr && vr->type == VR_RANGE && vr->min == vr->max)
return vr->min;
}
else
{
/* For comparisons, evaluate each operand and compare their
ranges. */
tree op0, op1;
value_range *vr0, *vr1;
op0 = TREE_OPERAND (cond, 0);
vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
op1 = TREE_OPERAND (cond, 1);
vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
if (vr0 && vr1)
return compare_ranges (TREE_CODE (cond), vr0, vr1);
else if (vr0 && vr1 == NULL)
return compare_range_with_value (TREE_CODE (cond), vr0, op1);
else if (vr0 == NULL && vr1)
return compare_range_with_value (opposite_comparison (TREE_CODE (cond)),
vr1, op0);
}
/* Anything else cannot be computed statically. */
return NULL_TREE;
}
/* Visit conditional statement STMT. If we can determine which edge
will be taken out of STMT's basic block, record it in
*TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
SSA_PROP_VARYING. */
static enum ssa_prop_result
vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
{
tree cond, val;
*taken_edge_p = NULL;
/* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
add ASSERT_EXPRs for them. */
if (TREE_CODE (stmt) == SWITCH_EXPR)
return SSA_PROP_VARYING;
cond = COND_EXPR_COND (stmt);
if (dump_file && (dump_flags & TDF_DETAILS))
{
tree use;
ssa_op_iter i;
fprintf (dump_file, "\nVisiting conditional with predicate: ");
print_generic_expr (dump_file, cond, 0);
fprintf (dump_file, "\nWith known ranges\n");
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
{
fprintf (dump_file, "\t");
print_generic_expr (dump_file, use, 0);
fprintf (dump_file, ": ");
dump_value_range (dump_file, SSA_NAME_VALUE_RANGE (use));
}
fprintf (dump_file, "\n");
}
/* Compute the value of the predicate COND by checking the known
ranges of each of its operands. */
val = vrp_evaluate_conditional (cond);
if (val)
*taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nPredicate evaluates to: ");
if (val == NULL_TREE)
fprintf (dump_file, "DON'T KNOW\n");
else
print_generic_stmt (dump_file, val, 0);
}
return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
}
/* Evaluate statement STMT. If the statement produces a useful range,
return SSA_PROP_INTERESTING and record the SSA name with the
interesting range into *OUTPUT_P.
If STMT is a conditional branch and we can determine its truth
value, the taken edge is recorded in *TAKEN_EDGE_P.
If STMT produces a varying value, return SSA_PROP_VARYING. */
static enum ssa_prop_result
vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
{
tree def;
ssa_op_iter iter;
stmt_ann_t ann;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting statement:\n");
print_generic_stmt (dump_file, stmt, dump_flags);
fprintf (dump_file, "\n");
}
ann = stmt_ann (stmt);
if (TREE_CODE (stmt) == MODIFY_EXPR
&& NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) == 0
&& NUM_VUSES (VUSE_OPS (ann)) == 0
&& NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) == 0)
return vrp_visit_assignment (stmt, output_p);
else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
return vrp_visit_cond_stmt (stmt, taken_edge_p);
/* All other statements produce nothing of interest for VRP, so mark
their outputs varying and prevent further simulation. */
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
set_value_range (get_value_range (def), VR_VARYING, 0, 0);
return SSA_PROP_VARYING;
}
/* Meet operation for value ranges. Given two value ranges VR0 and
VR1, store in VR0 the result of meeting VR0 and VR1.
The meeting rules are as follows:
1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
union of VR0 and VR1. */
static void
vrp_meet (value_range *vr0, value_range *vr1)
{
if (vr0->type == VR_UNDEFINED)
{
*vr0 = *vr1;
return;
}
if (vr1->type == VR_UNDEFINED)
{
/* Nothing to do. VR0 already has the resulting range. */
return;
}
if (vr0->type == VR_VARYING)
{
/* Nothing to do. VR0 already has the resulting range. */
return;
}
if (vr1->type == VR_VARYING)
{
*vr0 = *vr1;
return;
}
/* If either is a symbolic range, drop to VARYING. */
if (symbolic_range_p (vr0) || symbolic_range_p (vr1))
{
set_value_range (vr0, VR_VARYING, NULL_TREE, NULL_TREE);
return;
}
if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
{
/* If VR0 and VR1 have a non-empty intersection, compute the
union of both ranges. */
if (value_ranges_intersect_p (vr0, vr1))
{
tree min, max;
min = vr0->min;
max = vr0->max;
/* The lower limit of the new range is the minimum of the
two ranges. */
if (compare_values (vr0->min, vr1->min) == 1)
min = vr1->min;
/* The upper limit of the new range is the maximium of the
two ranges. */
if (compare_values (vr0->max, vr1->max) == -1)
max = vr1->max;
set_value_range (vr0, vr0->type, min, max);
}
else
{
/* The two ranges don't intersect, set the result to VR_VARYING. */
set_value_range (vr0, VR_VARYING, NULL_TREE, NULL_TREE);
}
}
else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
{
/* Two anti-ranges meet only if they are both identical. */
if (compare_values (vr0->min, vr1->min) == 0
&& compare_values (vr0->max, vr1->max) == 0
&& compare_values (vr0->min, vr0->max) == 0)
/* Nothing to do. */ ;
else
set_value_range (vr0, VR_VARYING, NULL_TREE, NULL_TREE);
}
else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
{
/* A range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4] meet
only if the ranges have an empty intersection. The result of
the meet operation is the anti-range. */
if (!value_ranges_intersect_p (vr0, vr1))
{
if (vr1->type == VR_ANTI_RANGE)
*vr0 = *vr1;
}
else
set_value_range (vr0, VR_VARYING, NULL_TREE, NULL_TREE);
}
else
gcc_unreachable ();
}
/* Visit all arguments for PHI node PHI that flow through executable
edges. If a valid value range can be derived from all the incoming
value ranges, set a new range for the LHS of PHI. */
static enum ssa_prop_result
vrp_visit_phi_node (tree phi)
{
int i;
tree lhs = PHI_RESULT (phi);
value_range *lhs_vr = get_value_range (lhs);
value_range vr_result = *lhs_vr;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nVisiting PHI node: ");
print_generic_expr (dump_file, phi, dump_flags);
}
for (i = 0; i < PHI_NUM_ARGS (phi); i++)
{
edge e = PHI_ARG_EDGE (phi, i);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"\n Argument #%d (%d -> %d %sexecutable)\n",
i, e->src->index, e->dest->index,
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
}
if (e->flags & EDGE_EXECUTABLE)
{
tree arg = PHI_ARG_DEF (phi, i);
value_range vr_arg;
if (TREE_CODE (arg) == SSA_NAME)
vr_arg = *(get_value_range (arg));
else
{
vr_arg.type = VR_RANGE;
vr_arg.min = arg;
vr_arg.max = arg;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\t");
print_generic_expr (dump_file, arg, dump_flags);
fprintf (dump_file, "\n\tValue: ");
dump_value_range (dump_file, &vr_arg);
fprintf (dump_file, "\n");
}
vrp_meet (&vr_result, &vr_arg);
if (vr_result.type == VR_VARYING)
break;
}
}
if (vr_result.type == VR_VARYING)
{
set_value_range (lhs_vr, VR_VARYING, 0, 0);
return SSA_PROP_VARYING;
}
/* To prevent infinite iterations in the algorithm, derive ranges
when the new value is slightly bigger or smaller than the
previous one. */
if (lhs_vr->type == VR_RANGE)
{
if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
{
int cmp_min = compare_values (lhs_vr->min, vr_result.min);
int cmp_max = compare_values (lhs_vr->max, vr_result.max);
/* If the new minimum is smaller or larger than the previous
one, go all the way to -INF. In the first case, to avoid
iterating millions of times to reach -INF, and in the
other case to avoid infinite bouncing between different
minimums. */
if (cmp_min > 0 || cmp_min < 0)
vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
/* Similarly, if the new maximum is smaller or larger than
the previous one, go all the way to +INF. */
if (cmp_max < 0 || cmp_max > 0)
vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
/* If we ended up with a (-INF, +INF) range, set it to
VARYING. */
if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
&& vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
{
set_value_range (lhs_vr, VR_VARYING, 0, 0);
return SSA_PROP_VARYING;
}
}
}
/* If the new range is different than the previous value, keep
iterating. */
if (update_value_range (lhs_vr, vr_result.type, vr_result.min, vr_result.max))
return SSA_PROP_INTERESTING;
/* Nothing changed, don't add outgoing edges. */
return SSA_PROP_NOT_INTERESTING;
}
/* Traverse all the blocks folding conditionals with known ranges. */
static void
vrp_finalize (void)
{
basic_block bb;
int num_pred_folded = 0;
if (dump_file)
{
fprintf (dump_file, "\nValue ranges after VRP:\n\n");
dump_all_value_ranges (dump_file);
fprintf (dump_file, "\n");
}
FOR_EACH_BB (bb)
{
tree last = last_stmt (bb);
if (last && TREE_CODE (last) == COND_EXPR)
{
tree val = vrp_evaluate_conditional (COND_EXPR_COND (last));
if (val)
{
if (dump_file)
{
fprintf (dump_file, "Folding predicate ");
print_generic_expr (dump_file, COND_EXPR_COND (last), 0);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, val, 0);
fprintf (dump_file, "\n");
}
num_pred_folded++;
COND_EXPR_COND (last) = val;
update_stmt (last);
}
}
}
if (dump_file && (dump_flags & TDF_STATS))
fprintf (dump_file, "\nNumber of predicates folded: %d\n\n",
num_pred_folded);
}
/* Main entry point to VRP (Value Range Propagation). This pass is
loosely based on J. R. C. Patterson, ``Accurate Static Branch
Prediction by Value Range Propagation,'' in SIGPLAN Conference on
Programming Language Design and Implementation, pp. 67-78, 1995.
Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
This is essentially an SSA-CCP pass modified to deal with ranges
instead of constants.
TODO, the main difference between this pass and Patterson's is that
we do not propagate edge probabilities. We only compute whether
edges can be taken or not. That is, instead of having a spectrum
of jump probabilities between 0 and 1, we only deal with 0, 1 and
DON'T KNOW. In the future, it may be worthwhile to propagate
probabilities to aid branch prediction. */
static void
execute_vrp (void)
{
insert_range_assertions ();
cfg_loops = loop_optimizer_init (NULL);
if (cfg_loops)
scev_initialize (cfg_loops);
if (vrp_initialize ())
{
ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
vrp_finalize ();
}
if (cfg_loops)
{
scev_finalize ();
loop_optimizer_finalize (cfg_loops, NULL);
current_loops = NULL;
}
remove_range_assertions ();
}
static bool
gate_vrp (void)
{
return flag_tree_vrp != 0;
}
struct tree_opt_pass pass_vrp =
{
"vrp", /* name */
gate_vrp, /* gate */
execute_vrp, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_VRP, /* tv_id */
PROP_ssa | PROP_alias, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_cleanup_cfg
| TODO_ggc_collect
| TODO_verify_ssa
| TODO_dump_func
| TODO_update_ssa, /* todo_flags_finish */
0 /* letter */
};
|