summaryrefslogtreecommitdiff
path: root/gcc/vec.h
blob: 61a6189407699b4f4baca983d4b06eedbd60f38b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
/* Vector API for GNU compiler.
   Copyright (C) 2004-2015 Free Software Foundation, Inc.
   Contributed by Nathan Sidwell <nathan@codesourcery.com>
   Re-implemented in C++ by Diego Novillo <dnovillo@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_VEC_H
#define GCC_VEC_H

/* Some gen* file have no ggc support as the header file gtype-desc.h is
   missing.  Provide these definitions in case ggc.h has not been included.
   This is not a problem because any code that runs before gengtype is built
   will never need to use GC vectors.*/

extern void ggc_free (void *);
extern size_t ggc_round_alloc_size (size_t requested_size);
extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);

/* Templated vector type and associated interfaces.

   The interface functions are typesafe and use inline functions,
   sometimes backed by out-of-line generic functions.  The vectors are
   designed to interoperate with the GTY machinery.

   There are both 'index' and 'iterate' accessors.  The index accessor
   is implemented by operator[].  The iterator returns a boolean
   iteration condition and updates the iteration variable passed by
   reference.  Because the iterator will be inlined, the address-of
   can be optimized away.

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
   (it dies if there is not).  The latter will reallocate the
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
   specific size from the get go.

   You should prefer the push and pop operations, as they append and
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
   array using insert that will maintain sorted order.

   Vectors are template types with three arguments: the type of the
   elements in the vector, the allocation strategy, and the physical
   layout to use

   Four allocation strategies are supported:

	- Heap: allocation is done using malloc/free.  This is the
	  default allocation strategy.

  	- GC: allocation is done using ggc_alloc/ggc_free.

  	- GC atomic: same as GC with the exception that the elements
	  themselves are assumed to be of an atomic type that does
	  not need to be garbage collected.  This means that marking
	  routines do not need to traverse the array marking the
	  individual elements.  This increases the performance of
	  GC activities.

   Two physical layouts are supported:

	- Embedded: The vector is structured using the trailing array
	  idiom.  The last member of the structure is an array of size
	  1.  When the vector is initially allocated, a single memory
	  block is created to hold the vector's control data and the
	  array of elements.  These vectors cannot grow without
	  reallocation (see discussion on embeddable vectors below).

	- Space efficient: The vector is structured as a pointer to an
	  embedded vector.  This is the default layout.  It means that
	  vectors occupy a single word of storage before initial
	  allocation.  Vectors are allowed to grow (the internal
	  pointer is reallocated but the main vector instance does not
	  need to relocate).

   The type, allocation and layout are specified when the vector is
   declared.

   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.

   Notes on the different layout strategies

   * Embeddable vectors (vec<T, A, vl_embed>)
   
     These vectors are suitable to be embedded in other data
     structures so that they can be pre-allocated in a contiguous
     memory block.

     Embeddable vectors are implemented using the trailing array
     idiom, thus they are not resizeable without changing the address
     of the vector object itself.  This means you cannot have
     variables or fields of embeddable vector type -- always use a
     pointer to a vector.  The one exception is the final field of a
     structure, which could be a vector type.

     You will have to use the embedded_size & embedded_init calls to
     create such objects, and they will not be resizeable (so the
     'safe' allocation variants are not available).

     Properties of embeddable vectors:

	  - The whole vector and control data are allocated in a single
	    contiguous block.  It uses the trailing-vector idiom, so
	    allocation must reserve enough space for all the elements
	    in the vector plus its control data.
	  - The vector cannot be re-allocated.
	  - The vector cannot grow nor shrink.
	  - No indirections needed for access/manipulation.
	  - It requires 2 words of storage (prior to vector allocation).


   * Space efficient vector (vec<T, A, vl_ptr>)

     These vectors can grow dynamically and are allocated together
     with their control data.  They are suited to be included in data
     structures.  Prior to initial allocation, they only take a single
     word of storage.

     These vectors are implemented as a pointer to embeddable vectors.
     The semantics allow for this pointer to be NULL to represent
     empty vectors.  This way, empty vectors occupy minimal space in
     the structure containing them.

     Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.
  	- The whole vector may be re-allocated.
  	- Vector data may grow and shrink.
  	- Access and manipulation requires a pointer test and
	  indirection.
  	- It requires 1 word of storage (prior to vector allocation).

   An example of their use would be,

   struct my_struct {
     // A space-efficient vector of tree pointers in GC memory.
     vec<tree, va_gc, vl_ptr> v;
   };

   struct my_struct *s;

   if (s->v.length ()) { we have some contents }
   s->v.safe_push (decl); // append some decl onto the end
   for (ix = 0; s->v.iterate (ix, &elt); ix++)
     { do something with elt }
*/

/* Support function for statistics.  */
extern void dump_vec_loc_statistics (void);

/* Hashtable mapping vec addresses to descriptors.  */
extern htab_t vec_mem_usage_hash;

/* Control data for vectors.  This contains the number of allocated
   and used slots inside a vector.  */

struct vec_prefix
{
  /* FIXME - These fields should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */

  /* Memory allocation support routines in vec.c.  */
  void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
  void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
  static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
  static unsigned calculate_allocation_1 (unsigned, unsigned);

  /* Note that vec_prefix should be a base class for vec, but we use
     offsetof() on vector fields of tree structures (e.g.,
     tree_binfo::base_binfos), and offsetof only supports base types.

     To compensate, we make vec_prefix a field inside vec and make
     vec a friend class of vec_prefix so it can access its fields.  */
  template <typename, typename, typename> friend struct vec;

  /* The allocator types also need access to our internals.  */
  friend struct va_gc;
  friend struct va_gc_atomic;
  friend struct va_heap;

  unsigned m_alloc : 31;
  unsigned m_using_auto_storage : 1;
  unsigned m_num;
};

/* Calculate the number of slots to reserve a vector, making sure that
   RESERVE slots are free.  If EXACT grow exactly, otherwise grow
   exponentially.  PFX is the control data for the vector.  */

inline unsigned
vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
				  bool exact)
{
  if (exact)
    return (pfx ? pfx->m_num : 0) + reserve;
  else if (!pfx)
    return MAX (4, reserve);
  return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
}

template<typename, typename, typename> struct vec;

/* Valid vector layouts

   vl_embed	- Embeddable vector that uses the trailing array idiom.
   vl_ptr	- Space efficient vector that uses a pointer to an
		  embeddable vector.  */
struct vl_embed { };
struct vl_ptr { };


/* Types of supported allocations

   va_heap	- Allocation uses malloc/free.
   va_gc	- Allocation uses ggc_alloc.
   va_gc_atomic	- Same as GC, but individual elements of the array
		  do not need to be marked during collection.  */

/* Allocator type for heap vectors.  */
struct va_heap
{
  /* Heap vectors are frequently regular instances, so use the vl_ptr
     layout for them.  */
  typedef vl_ptr default_layout;

  template<typename T>
  static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
		       CXX_MEM_STAT_INFO);

  template<typename T>
  static void release (vec<T, va_heap, vl_embed> *&);
};


/* Allocator for heap memory.  Ensure there are at least RESERVE free
   slots in V.  If EXACT is true, grow exactly, else grow
   exponentially.  As a special case, if the vector had not been
   allocated and and RESERVE is 0, no vector will be created.  */

template<typename T>
inline void
va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
		  MEM_STAT_DECL)
{
  unsigned alloc
    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
  gcc_checking_assert (alloc);

  if (GATHER_STATISTICS && v)
    v->m_vecpfx.release_overhead (v, v->allocated (), false);

  size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
  unsigned nelem = v ? v->length () : 0;
  v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
  v->embedded_init (alloc, nelem);

  if (GATHER_STATISTICS)
    v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
}


/* Free the heap space allocated for vector V.  */

template<typename T>
void
va_heap::release (vec<T, va_heap, vl_embed> *&v)
{
  if (v == NULL)
    return;

  if (GATHER_STATISTICS)
    v->m_vecpfx.release_overhead (v, v->allocated (), true);
  ::free (v);
  v = NULL;
}


/* Allocator type for GC vectors.  Notice that we need the structure
   declaration even if GC is not enabled.  */

struct va_gc
{
  /* Use vl_embed as the default layout for GC vectors.  Due to GTY
     limitations, GC vectors must always be pointers, so it is more
     efficient to use a pointer to the vl_embed layout, rather than
     using a pointer to a pointer as would be the case with vl_ptr.  */
  typedef vl_embed default_layout;

  template<typename T, typename A>
  static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
		       CXX_MEM_STAT_INFO);

  template<typename T, typename A>
  static void release (vec<T, A, vl_embed> *&v);
};


/* Free GC memory used by V and reset V to NULL.  */

template<typename T, typename A>
inline void
va_gc::release (vec<T, A, vl_embed> *&v)
{
  if (v)
    ::ggc_free (v);
  v = NULL;
}


/* Allocator for GC memory.  Ensure there are at least RESERVE free
   slots in V.  If EXACT is true, grow exactly, else grow
   exponentially.  As a special case, if the vector had not been
   allocated and and RESERVE is 0, no vector will be created.  */

template<typename T, typename A>
void
va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
		MEM_STAT_DECL)
{
  unsigned alloc
    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
  if (!alloc)
    {
      ::ggc_free (v);
      v = NULL;
      return;
    }

  /* Calculate the amount of space we want.  */
  size_t size = vec<T, A, vl_embed>::embedded_size (alloc);

  /* Ask the allocator how much space it will really give us.  */
  size = ::ggc_round_alloc_size (size);

  /* Adjust the number of slots accordingly.  */
  size_t vec_offset = sizeof (vec_prefix);
  size_t elt_size = sizeof (T);
  alloc = (size - vec_offset) / elt_size;

  /* And finally, recalculate the amount of space we ask for.  */
  size = vec_offset + alloc * elt_size;

  unsigned nelem = v ? v->length () : 0;
  v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
							       PASS_MEM_STAT));
  v->embedded_init (alloc, nelem);
}


/* Allocator type for GC vectors.  This is for vectors of types
   atomics w.r.t. collection, so allocation and deallocation is
   completely inherited from va_gc.  */
struct va_gc_atomic : va_gc
{
};


/* Generic vector template.  Default values for A and L indicate the
   most commonly used strategies.

   FIXME - Ideally, they would all be vl_ptr to encourage using regular
           instances for vectors, but the existing GTY machinery is limited
	   in that it can only deal with GC objects that are pointers
	   themselves.

	   This means that vector operations that need to deal with
	   potentially NULL pointers, must be provided as free
	   functions (see the vec_safe_* functions above).  */
template<typename T,
         typename A = va_heap,
         typename L = typename A::default_layout>
struct GTY((user)) vec
{
};

/* Type to provide NULL values for vec<T, A, L>.  This is used to
   provide nil initializers for vec instances.  Since vec must be
   a POD, we cannot have proper ctor/dtor for it.  To initialize
   a vec instance, you can assign it the value vNULL.  */
struct vnull
{
  template <typename T, typename A, typename L>
  operator vec<T, A, L> () { return vec<T, A, L>(); }
};
extern vnull vNULL;


/* Embeddable vector.  These vectors are suitable to be embedded
   in other data structures so that they can be pre-allocated in a
   contiguous memory block.

   Embeddable vectors are implemented using the trailing array idiom,
   thus they are not resizeable without changing the address of the
   vector object itself.  This means you cannot have variables or
   fields of embeddable vector type -- always use a pointer to a
   vector.  The one exception is the final field of a structure, which
   could be a vector type.

   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will not be resizeable (so the 'safe'
   allocation variants are not available).

   Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.  It uses the trailing-vector idiom, so
	  allocation must reserve enough space for all the elements
  	  in the vector plus its control data.
  	- The vector cannot be re-allocated.
  	- The vector cannot grow nor shrink.
  	- No indirections needed for access/manipulation.
  	- It requires 2 words of storage (prior to vector allocation).  */

template<typename T, typename A>
struct GTY((user)) vec<T, A, vl_embed>
{
public:
  unsigned allocated (void) const { return m_vecpfx.m_alloc; }
  unsigned length (void) const { return m_vecpfx.m_num; }
  bool is_empty (void) const { return m_vecpfx.m_num == 0; }
  T *address (void) { return m_vecdata; }
  const T *address (void) const { return m_vecdata; }
  const T &operator[] (unsigned) const;
  T &operator[] (unsigned);
  T &last (void);
  bool space (unsigned) const;
  bool iterate (unsigned, T *) const;
  bool iterate (unsigned, T **) const;
  vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
  void splice (const vec &);
  void splice (const vec *src);
  T *quick_push (const T &);
  T &pop (void);
  void truncate (unsigned);
  void quick_insert (unsigned, const T &);
  void ordered_remove (unsigned);
  void unordered_remove (unsigned);
  void block_remove (unsigned, unsigned);
  void qsort (int (*) (const void *, const void *));
  T *bsearch (const void *key, int (*compar)(const void *, const void *));
  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
  static size_t embedded_size (unsigned);
  void embedded_init (unsigned, unsigned = 0, unsigned = 0);
  void quick_grow (unsigned len);
  void quick_grow_cleared (unsigned len);

  /* vec class can access our internal data and functions.  */
  template <typename, typename, typename> friend struct vec;

  /* The allocator types also need access to our internals.  */
  friend struct va_gc;
  friend struct va_gc_atomic;
  friend struct va_heap;

  /* FIXME - These fields should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
  vec_prefix m_vecpfx;
  T m_vecdata[1];
};


/* Convenience wrapper functions to use when dealing with pointers to
   embedded vectors.  Some functionality for these vectors must be
   provided via free functions for these reasons:

	1- The pointer may be NULL (e.g., before initial allocation).

  	2- When the vector needs to grow, it must be reallocated, so
  	   the pointer will change its value.

   Because of limitations with the current GC machinery, all vectors
   in GC memory *must* be pointers.  */


/* If V contains no room for NELEMS elements, return false. Otherwise,
   return true.  */
template<typename T, typename A>
inline bool
vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
{
  return v ? v->space (nelems) : nelems == 0;
}


/* If V is NULL, return 0.  Otherwise, return V->length().  */
template<typename T, typename A>
inline unsigned
vec_safe_length (const vec<T, A, vl_embed> *v)
{
  return v ? v->length () : 0;
}


/* If V is NULL, return NULL.  Otherwise, return V->address().  */
template<typename T, typename A>
inline T *
vec_safe_address (vec<T, A, vl_embed> *v)
{
  return v ? v->address () : NULL;
}


/* If V is NULL, return true.  Otherwise, return V->is_empty().  */
template<typename T, typename A>
inline bool
vec_safe_is_empty (vec<T, A, vl_embed> *v)
{
  return v ? v->is_empty () : true;
}


/* If V does not have space for NELEMS elements, call
   V->reserve(NELEMS, EXACT).  */
template<typename T, typename A>
inline bool
vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
		  CXX_MEM_STAT_INFO)
{
  bool extend = nelems ? !vec_safe_space (v, nelems) : false;
  if (extend)
    A::reserve (v, nelems, exact PASS_MEM_STAT);
  return extend;
}

template<typename T, typename A>
inline bool
vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
			CXX_MEM_STAT_INFO)
{
  return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
}


/* Allocate GC memory for V with space for NELEMS slots.  If NELEMS
   is 0, V is initialized to NULL.  */

template<typename T, typename A>
inline void
vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
{
  v = NULL;
  vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
}


/* Free the GC memory allocated by vector V and set it to NULL.  */

template<typename T, typename A>
inline void
vec_free (vec<T, A, vl_embed> *&v)
{
  A::release (v);
}


/* Grow V to length LEN.  Allocate it, if necessary.  */
template<typename T, typename A>
inline void
vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
{
  unsigned oldlen = vec_safe_length (v);
  gcc_checking_assert (len >= oldlen);
  vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
  v->quick_grow (len);
}


/* If V is NULL, allocate it.  Call V->safe_grow_cleared(LEN).  */
template<typename T, typename A>
inline void
vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
{
  unsigned oldlen = vec_safe_length (v);
  vec_safe_grow (v, len PASS_MEM_STAT);
  memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
}


/* If V is NULL return false, otherwise return V->iterate(IX, PTR).  */
template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
{
  if (v)
    return v->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}

template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
{
  if (v)
    return v->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}


/* If V has no room for one more element, reallocate it.  Then call
   V->quick_push(OBJ).  */
template<typename T, typename A>
inline T *
vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
{
  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  return v->quick_push (obj);
}


/* if V has no room for one more element, reallocate it.  Then call
   V->quick_insert(IX, OBJ).  */
template<typename T, typename A>
inline void
vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
		 CXX_MEM_STAT_INFO)
{
  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  v->quick_insert (ix, obj);
}


/* If V is NULL, do nothing.  Otherwise, call V->truncate(SIZE).  */
template<typename T, typename A>
inline void
vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
{
  if (v)
    v->truncate (size);
}


/* If SRC is not NULL, return a pointer to a copy of it.  */
template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
{
  return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
}

/* Copy the elements from SRC to the end of DST as if by memcpy.
   Reallocate DST, if necessary.  */
template<typename T, typename A>
inline void
vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
		 CXX_MEM_STAT_INFO)
{
  unsigned src_len = vec_safe_length (src);
  if (src_len)
    {
      vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
			      PASS_MEM_STAT);
      dst->splice (*src);
    }
}


/* Index into vector.  Return the IX'th element.  IX must be in the
   domain of the vector.  */

template<typename T, typename A>
inline const T &
vec<T, A, vl_embed>::operator[] (unsigned ix) const
{
  gcc_checking_assert (ix < m_vecpfx.m_num);
  return m_vecdata[ix];
}

template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::operator[] (unsigned ix)
{
  gcc_checking_assert (ix < m_vecpfx.m_num);
  return m_vecdata[ix];
}


/* Get the final element of the vector, which must not be empty.  */

template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::last (void)
{
  gcc_checking_assert (m_vecpfx.m_num > 0);
  return (*this)[m_vecpfx.m_num - 1];
}


/* If this vector has space for NELEMS additional entries, return
   true.  You usually only need to use this if you are doing your
   own vector reallocation, for instance on an embedded vector.  This
   returns true in exactly the same circumstances that vec::reserve
   will.  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::space (unsigned nelems) const
{
  return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
}


/* Return iteration condition and update PTR to point to the IX'th
   element of this vector.  Use this to iterate over the elements of a
   vector as follows,

     for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
       continue;  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
{
  if (ix < m_vecpfx.m_num)
    {
      *ptr = m_vecdata[ix];
      return true;
    }
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Return iteration condition and update *PTR to point to the
   IX'th element of this vector.  Use this to iterate over the
   elements of a vector as follows,

     for (ix = 0; v->iterate (ix, &ptr); ix++)
       continue;

   This variant is for vectors of objects.  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
{
  if (ix < m_vecpfx.m_num)
    {
      *ptr = CONST_CAST (T *, &m_vecdata[ix]);
      return true;
    }
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Return a pointer to a copy of this vector.  */

template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
{
  vec<T, A, vl_embed> *new_vec = NULL;
  unsigned len = length ();
  if (len)
    {
      vec_alloc (new_vec, len PASS_MEM_STAT);
      new_vec->embedded_init (len, len);
      memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
    }
  return new_vec;
}


/* Copy the elements from SRC to the end of this vector as if by memcpy.
   The vector must have sufficient headroom available.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
{
  unsigned len = src.length ();
  if (len)
    {
      gcc_checking_assert (space (len));
      memcpy (address () + length (), src.address (), len * sizeof (T));
      m_vecpfx.m_num += len;
    }
}

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
{
  if (src)
    splice (*src);
}


/* Push OBJ (a new element) onto the end of the vector.  There must be
   sufficient space in the vector.  Return a pointer to the slot
   where OBJ was inserted.  */

template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::quick_push (const T &obj)
{
  gcc_checking_assert (space (1));
  T *slot = &m_vecdata[m_vecpfx.m_num++];
  *slot = obj;
  return slot;
}


/* Pop and return the last element off the end of the vector.  */

template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::pop (void)
{
  gcc_checking_assert (length () > 0);
  return m_vecdata[--m_vecpfx.m_num];
}


/* Set the length of the vector to SIZE.  The new length must be less
   than or equal to the current length.  This is an O(1) operation.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::truncate (unsigned size)
{
  gcc_checking_assert (length () >= size);
  m_vecpfx.m_num = size;
}


/* Insert an element, OBJ, at the IXth position of this vector.  There
   must be sufficient space.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
{
  gcc_checking_assert (length () < allocated ());
  gcc_checking_assert (ix <= length ());
  T *slot = &m_vecdata[ix];
  memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
  *slot = obj;
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is preserved.  This is an O(N) operation due to
   memmove.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::ordered_remove (unsigned ix)
{
  gcc_checking_assert (ix < length ());
  T *slot = &m_vecdata[ix];
  memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is destroyed.  This is an O(1) operation.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::unordered_remove (unsigned ix)
{
  gcc_checking_assert (ix < length ());
  m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
}


/* Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(N) operation due to memmove.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
{
  gcc_checking_assert (ix + len <= length ());
  T *slot = &m_vecdata[ix];
  m_vecpfx.m_num -= len;
  memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
}


/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
{
  if (length () > 1)
    ::qsort (address (), length (), sizeof (T), cmp);
}


/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::bsearch (const void *key,
			      int (*compar) (const void *, const void *))
{
  const void *base = this->address ();
  size_t nmemb = this->length ();
  size_t size = sizeof (T);
  /* The following is a copy of glibc stdlib-bsearch.h.  */
  size_t l, u, idx;
  const void *p;
  int comparison;

  l = 0;
  u = nmemb;
  while (l < u)
    {
      idx = (l + u) / 2;
      p = (const void *) (((const char *) base) + (idx * size));
      comparison = (*compar) (key, p);
      if (comparison < 0)
	u = idx;
      else if (comparison > 0)
	l = idx + 1;
      else
	return (T *)const_cast<void *>(p);
    }

  return NULL;
}


/* Find and return the first position in which OBJ could be inserted
   without changing the ordering of this vector.  LESSTHAN is a
   function that returns true if the first argument is strictly less
   than the second.  */

template<typename T, typename A>
unsigned
vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
  const
{
  unsigned int len = length ();
  unsigned int half, middle;
  unsigned int first = 0;
  while (len > 0)
    {
      half = len / 2;
      middle = first;
      middle += half;
      T middle_elem = (*this)[middle];
      if (lessthan (middle_elem, obj))
	{
	  first = middle;
	  ++first;
	  len = len - half - 1;
	}
      else
	len = half;
    }
  return first;
}


/* Return the number of bytes needed to embed an instance of an
   embeddable vec inside another data structure.

   Use these methods to determine the required size and initialization
   of a vector V of type T embedded within another structure (as the
   final member):

   size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
   void v->embedded_init (unsigned alloc, unsigned num);

   These allow the caller to perform the memory allocation.  */

template<typename T, typename A>
inline size_t
vec<T, A, vl_embed>::embedded_size (unsigned alloc)
{
  typedef vec<T, A, vl_embed> vec_embedded;
  return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
}


/* Initialize the vector to contain room for ALLOC elements and
   NUM active elements.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
{
  m_vecpfx.m_alloc = alloc;
  m_vecpfx.m_using_auto_storage = aut;
  m_vecpfx.m_num = num;
}


/* Grow the vector to a specific length.  LEN must be as long or longer than
   the current length.  The new elements are uninitialized.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow (unsigned len)
{
  gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
  m_vecpfx.m_num = len;
}


/* Grow the vector to a specific length.  LEN must be as long or longer than
   the current length.  The new elements are initialized to zero.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
{
  unsigned oldlen = length ();
  quick_grow (len);
  memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
}


/* Garbage collection support for vec<T, A, vl_embed>.  */

template<typename T>
void
gt_ggc_mx (vec<T, va_gc> *v)
{
  extern void gt_ggc_mx (T &);
  for (unsigned i = 0; i < v->length (); i++)
    gt_ggc_mx ((*v)[i]);
}

template<typename T>
void
gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
{
  /* Nothing to do.  Vectors of atomic types wrt GC do not need to
     be traversed.  */
}


/* PCH support for vec<T, A, vl_embed>.  */

template<typename T, typename A>
void
gt_pch_nx (vec<T, A, vl_embed> *v)
{
  extern void gt_pch_nx (T &);
  for (unsigned i = 0; i < v->length (); i++)
    gt_pch_nx ((*v)[i]);
}

template<typename T, typename A>
void
gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
  for (unsigned i = 0; i < v->length (); i++)
    op (&((*v)[i]), cookie);
}

template<typename T, typename A>
void
gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
  extern void gt_pch_nx (T *, gt_pointer_operator, void *);
  for (unsigned i = 0; i < v->length (); i++)
    gt_pch_nx (&((*v)[i]), op, cookie);
}


/* Space efficient vector.  These vectors can grow dynamically and are
   allocated together with their control data.  They are suited to be
   included in data structures.  Prior to initial allocation, they
   only take a single word of storage.

   These vectors are implemented as a pointer to an embeddable vector.
   The semantics allow for this pointer to be NULL to represent empty
   vectors.  This way, empty vectors occupy minimal space in the
   structure containing them.

   Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.
  	- The whole vector may be re-allocated.
  	- Vector data may grow and shrink.
  	- Access and manipulation requires a pointer test and
	  indirection.
	- It requires 1 word of storage (prior to vector allocation).


   Limitations:

   These vectors must be PODs because they are stored in unions.
   (http://en.wikipedia.org/wiki/Plain_old_data_structures).
   As long as we use C++03, we cannot have constructors nor
   destructors in classes that are stored in unions.  */

template<typename T>
struct vec<T, va_heap, vl_ptr>
{
public:
  /* Memory allocation and deallocation for the embedded vector.
     Needed because we cannot have proper ctors/dtors defined.  */
  void create (unsigned nelems CXX_MEM_STAT_INFO);
  void release (void);

  /* Vector operations.  */
  bool exists (void) const
  { return m_vec != NULL; }

  bool is_empty (void) const
  { return m_vec ? m_vec->is_empty () : true; }

  unsigned length (void) const
  { return m_vec ? m_vec->length () : 0; }

  T *address (void)
  { return m_vec ? m_vec->m_vecdata : NULL; }

  const T *address (void) const
  { return m_vec ? m_vec->m_vecdata : NULL; }

  const T &operator[] (unsigned ix) const
  { return (*m_vec)[ix]; }

  bool operator!=(const vec &other) const
  { return !(*this == other); }

  bool operator==(const vec &other) const
  { return address () == other.address (); }

  T &operator[] (unsigned ix)
  { return (*m_vec)[ix]; }

  T &last (void)
  { return m_vec->last (); }

  bool space (int nelems) const
  { return m_vec ? m_vec->space (nelems) : nelems == 0; }

  bool iterate (unsigned ix, T *p) const;
  bool iterate (unsigned ix, T **p) const;
  vec copy (ALONE_CXX_MEM_STAT_INFO) const;
  bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
  bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
  void splice (const vec &);
  void safe_splice (const vec & CXX_MEM_STAT_INFO);
  T *quick_push (const T &);
  T *safe_push (const T &CXX_MEM_STAT_INFO);
  T &pop (void);
  void truncate (unsigned);
  void safe_grow (unsigned CXX_MEM_STAT_INFO);
  void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
  void quick_grow (unsigned);
  void quick_grow_cleared (unsigned);
  void quick_insert (unsigned, const T &);
  void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
  void ordered_remove (unsigned);
  void unordered_remove (unsigned);
  void block_remove (unsigned, unsigned);
  void qsort (int (*) (const void *, const void *));
  T *bsearch (const void *key, int (*compar)(const void *, const void *));
  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;

  bool using_auto_storage () const;

  /* FIXME - This field should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
  vec<T, va_heap, vl_embed> *m_vec;
};


/* auto_vec is a subclass of vec that automatically manages creating and
   releasing the internal vector. If N is non zero then it has N elements of
   internal storage.  The default is no internal storage, and you probably only
   want to ask for internal storage for vectors on the stack because if the
   size of the vector is larger than the internal storage that space is wasted.
   */
template<typename T, size_t N = 0>
class auto_vec : public vec<T, va_heap>
{
public:
  auto_vec ()
  {
    m_auto.embedded_init (MAX (N, 2), 0, 1);
    this->m_vec = &m_auto;
  }

  ~auto_vec ()
  {
    this->release ();
  }

private:
  vec<T, va_heap, vl_embed> m_auto;
  T m_data[MAX (N - 1, 1)];
};

/* auto_vec is a sub class of vec whose storage is released when it is
  destroyed. */
template<typename T>
class auto_vec<T, 0> : public vec<T, va_heap>
{
public:
  auto_vec () { this->m_vec = NULL; }
  auto_vec (size_t n) { this->create (n); }
  ~auto_vec () { this->release (); }
};


/* Allocate heap memory for pointer V and create the internal vector
   with space for NELEMS elements.  If NELEMS is 0, the internal
   vector is initialized to empty.  */

template<typename T>
inline void
vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
{
  v = new vec<T>;
  v->create (nelems PASS_MEM_STAT);
}


/* Conditionally allocate heap memory for VEC and its internal vector.  */

template<typename T>
inline void
vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
{
  if (!vec)
    vec_alloc (vec, nelems PASS_MEM_STAT);
}


/* Free the heap memory allocated by vector V and set it to NULL.  */

template<typename T>
inline void
vec_free (vec<T> *&v)
{
  if (v == NULL)
    return;

  v->release ();
  delete v;
  v = NULL;
}


/* Return iteration condition and update PTR to point to the IX'th
   element of this vector.  Use this to iterate over the elements of a
   vector as follows,

     for (ix = 0; v.iterate (ix, &ptr); ix++)
       continue;  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
{
  if (m_vec)
    return m_vec->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Return iteration condition and update *PTR to point to the
   IX'th element of this vector.  Use this to iterate over the
   elements of a vector as follows,

     for (ix = 0; v->iterate (ix, &ptr); ix++)
       continue;

   This variant is for vectors of objects.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
{
  if (m_vec)
    return m_vec->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Convenience macro for forward iteration.  */
#define FOR_EACH_VEC_ELT(V, I, P)			\
  for (I = 0; (V).iterate ((I), &(P)); ++(I))

#define FOR_EACH_VEC_SAFE_ELT(V, I, P)			\
  for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))

/* Likewise, but start from FROM rather than 0.  */
#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)		\
  for (I = (FROM); (V).iterate ((I), &(P)); ++(I))

/* Convenience macro for reverse iteration.  */
#define FOR_EACH_VEC_ELT_REVERSE(V, I, P)		\
  for (I = (V).length () - 1;				\
       (V).iterate ((I), &(P));				\
       (I)--)

#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)		\
  for (I = vec_safe_length (V) - 1;			\
       vec_safe_iterate ((V), (I), &(P));	\
       (I)--)


/* Return a copy of this vector.  */

template<typename T>
inline vec<T, va_heap, vl_ptr>
vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
{
  vec<T, va_heap, vl_ptr> new_vec = vNULL;
  if (length ())
    new_vec.m_vec = m_vec->copy ();
  return new_vec;
}


/* Ensure that the vector has at least RESERVE slots available (if
   EXACT is false), or exactly RESERVE slots available (if EXACT is
   true).

   This may create additional headroom if EXACT is false.

   Note that this can cause the embedded vector to be reallocated.
   Returns true iff reallocation actually occurred.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
{
  if (space (nelems))
    return false;

  /* For now play a game with va_heap::reserve to hide our auto storage if any,
     this is necessary because it doesn't have enough information to know the
     embedded vector is in auto storage, and so should not be freed.  */
  vec<T, va_heap, vl_embed> *oldvec = m_vec;
  unsigned int oldsize = 0;
  bool handle_auto_vec = m_vec && using_auto_storage ();
  if (handle_auto_vec)
    {
      m_vec = NULL;
      oldsize = oldvec->length ();
      nelems += oldsize;
    }

  va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
  if (handle_auto_vec)
    {
      memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
      m_vec->m_vecpfx.m_num = oldsize;
    }

  return true;
}


/* Ensure that this vector has exactly NELEMS slots available.  This
   will not create additional headroom.  Note this can cause the
   embedded vector to be reallocated.  Returns true iff reallocation
   actually occurred.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
{
  return reserve (nelems, true PASS_MEM_STAT);
}


/* Create the internal vector and reserve NELEMS for it.  This is
   exactly like vec::reserve, but the internal vector is
   unconditionally allocated from scratch.  The old one, if it
   existed, is lost.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
{
  m_vec = NULL;
  if (nelems > 0)
    reserve_exact (nelems PASS_MEM_STAT);
}


/* Free the memory occupied by the embedded vector.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::release (void)
{
  if (!m_vec)
    return;

  if (using_auto_storage ())
    {
      m_vec->m_vecpfx.m_num = 0;
      return;
    }

  va_heap::release (m_vec);
}

/* Copy the elements from SRC to the end of this vector as if by memcpy.
   SRC and this vector must be allocated with the same memory
   allocation mechanism. This vector is assumed to have sufficient
   headroom available.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
{
  if (src.m_vec)
    m_vec->splice (*(src.m_vec));
}


/* Copy the elements in SRC to the end of this vector as if by memcpy.
   SRC and this vector must be allocated with the same mechanism.
   If there is not enough headroom in this vector, it will be reallocated
   as needed.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
				      MEM_STAT_DECL)
{
  if (src.length ())
    {
      reserve_exact (src.length ());
      splice (src);
    }
}


/* Push OBJ (a new element) onto the end of the vector.  There must be
   sufficient space in the vector.  Return a pointer to the slot
   where OBJ was inserted.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
{
  return m_vec->quick_push (obj);
}


/* Push a new element OBJ onto the end of this vector.  Reallocates
   the embedded vector, if needed.  Return a pointer to the slot where
   OBJ was inserted.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
{
  reserve (1, false PASS_MEM_STAT);
  return quick_push (obj);
}


/* Pop and return the last element off the end of the vector.  */

template<typename T>
inline T &
vec<T, va_heap, vl_ptr>::pop (void)
{
  return m_vec->pop ();
}


/* Set the length of the vector to LEN.  The new length must be less
   than or equal to the current length.  This is an O(1) operation.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::truncate (unsigned size)
{
  if (m_vec)
    m_vec->truncate (size);
  else
    gcc_checking_assert (size == 0);
}


/* Grow the vector to a specific length.  LEN must be as long or
   longer than the current length.  The new elements are
   uninitialized.  Reallocate the internal vector, if needed.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
{
  unsigned oldlen = length ();
  gcc_checking_assert (oldlen <= len);
  reserve_exact (len - oldlen PASS_MEM_STAT);
  if (m_vec)
    m_vec->quick_grow (len);
  else
    gcc_checking_assert (len == 0);
}


/* Grow the embedded vector to a specific length.  LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  Reallocate the internal vector, if needed.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
{
  unsigned oldlen = length ();
  safe_grow (len PASS_MEM_STAT);
  memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
}


/* Same as vec::safe_grow but without reallocation of the internal vector.
   If the vector cannot be extended, a runtime assertion will be triggered.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
{
  gcc_checking_assert (m_vec);
  m_vec->quick_grow (len);
}


/* Same as vec::quick_grow_cleared but without reallocation of the
   internal vector. If the vector cannot be extended, a runtime
   assertion will be triggered.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
{
  gcc_checking_assert (m_vec);
  m_vec->quick_grow_cleared (len);
}


/* Insert an element, OBJ, at the IXth position of this vector.  There
   must be sufficient space.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
{
  m_vec->quick_insert (ix, obj);
}


/* Insert an element, OBJ, at the IXth position of the vector.
   Reallocate the embedded vector, if necessary.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
{
  reserve (1, false PASS_MEM_STAT);
  quick_insert (ix, obj);
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is preserved.  This is an O(N) operation due to
   a memmove.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
{
  m_vec->ordered_remove (ix);
}


/* Remove an element from the IXth position of this vector.  Ordering
   of remaining elements is destroyed.  This is an O(1) operation.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
{
  m_vec->unordered_remove (ix);
}


/* Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(N) operation due to memmove.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
{
  m_vec->block_remove (ix, len);
}


/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
{
  if (m_vec)
    m_vec->qsort (cmp);
}


/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
				  int (*cmp) (const void *, const void *))
{
  if (m_vec)
    return m_vec->bsearch (key, cmp);
  return NULL;
}


/* Find and return the first position in which OBJ could be inserted
   without changing the ordering of this vector.  LESSTHAN is a
   function that returns true if the first argument is strictly less
   than the second.  */

template<typename T>
inline unsigned
vec<T, va_heap, vl_ptr>::lower_bound (T obj,
				      bool (*lessthan)(const T &, const T &))
    const
{
  return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
}

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::using_auto_storage () const
{
  return m_vec->m_vecpfx.m_using_auto_storage;
}

#if (GCC_VERSION >= 3000)
# pragma GCC poison m_vec m_vecpfx m_vecdata
#endif

#endif // GCC_VEC_H