summaryrefslogtreecommitdiff
path: root/gcc/vr-values.c
blob: e117f66d1bdb052ee72f5b39962621d9b306c8ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
/* Support routines for Value Range Propagation (VRP).
   Copyright (C) 2005-2021 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "intl.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "tree-chrec.h"
#include "omp-general.h"
#include "case-cfn-macros.h"
#include "alloc-pool.h"
#include "attribs.h"
#include "range.h"
#include "vr-values.h"
#include "cfghooks.h"
#include "range-op.h"
#include "gimple-range.h"

/* Set value range VR to a non-negative range of type TYPE.  */

static inline void
set_value_range_to_nonnegative (value_range_equiv *vr, tree type)
{
  tree zero = build_int_cst (type, 0);
  vr->update (zero, vrp_val_max (type));
}

/* Set value range VR to a range of a truthvalue of type TYPE.  */

static inline void
set_value_range_to_truthvalue (value_range_equiv *vr, tree type)
{
  if (TYPE_PRECISION (type) == 1)
    vr->set_varying (type);
  else
    vr->update (build_int_cst (type, 0), build_int_cst (type, 1));
}

/* Return the lattice entry for VAR or NULL if it doesn't exist or cannot
   be initialized.  */

value_range_equiv *
vr_values::get_lattice_entry (const_tree var)
{
  value_range_equiv *vr;
  tree sym;
  unsigned ver = SSA_NAME_VERSION (var);

  /* If we query the entry for a new SSA name avoid reallocating the lattice
     since we should get here at most from the substitute-and-fold stage which
     will never try to change values.  */
  if (ver >= num_vr_values)
    return NULL;

  vr = vr_value[ver];
  if (vr)
    return vr;

  /* Create a default value range.  */
  vr = allocate_value_range_equiv ();
  vr_value[ver] = vr;

  /* After propagation finished return varying.  */
  if (values_propagated)
    {
      vr->set_varying (TREE_TYPE (var));
      return vr;
    }

  vr->set_undefined ();

  /* If VAR is a default definition of a parameter, the variable can
     take any value in VAR's type.  */
  if (SSA_NAME_IS_DEFAULT_DEF (var))
    {
      sym = SSA_NAME_VAR (var);
      if (TREE_CODE (sym) == PARM_DECL)
	{
	  /* Try to use the "nonnull" attribute to create ~[0, 0]
	     anti-ranges for pointers.  Note that this is only valid with
	     default definitions of PARM_DECLs.  */
	  if (POINTER_TYPE_P (TREE_TYPE (sym))
	      && (nonnull_arg_p (sym)
		  || get_ptr_nonnull (var)))
	    {
	      vr->set_nonzero (TREE_TYPE (sym));
	      vr->equiv_clear ();
	    }
	  else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
	    {
	      get_range_info (var, *vr);
	      if (vr->undefined_p ())
		vr->set_varying (TREE_TYPE (sym));
	    }
	  else
	    vr->set_varying (TREE_TYPE (sym));
	}
      else if (TREE_CODE (sym) == RESULT_DECL
	       && DECL_BY_REFERENCE (sym))
	{
	  vr->set_nonzero (TREE_TYPE (sym));
	  vr->equiv_clear ();
	}
    }

  return vr;
}

/* Return value range information for VAR.

   If we have no values ranges recorded (ie, VRP is not running), then
   return NULL.  Otherwise create an empty range if none existed for VAR.  */

const value_range_equiv *
vr_values::get_value_range (const_tree var,
			    gimple *stmt ATTRIBUTE_UNUSED)
{
  /* If we have no recorded ranges, then return NULL.  */
  if (!vr_value)
    return NULL;

  value_range_equiv *vr = get_lattice_entry (var);

  /* Reallocate the lattice if needed.  */
  if (!vr)
    {
      unsigned int old_sz = num_vr_values;
      num_vr_values = num_ssa_names + num_ssa_names / 10;
      vr_value = XRESIZEVEC (value_range_equiv *, vr_value, num_vr_values);
      for ( ; old_sz < num_vr_values; old_sz++)
        vr_value [old_sz] = NULL;

      /* Now that the lattice has been resized, we should never fail.  */
      vr = get_lattice_entry (var);
      gcc_assert (vr);
    }

  return vr;
}

bool
vr_values::range_of_expr (irange &r, tree expr, gimple *stmt)
{
  if (!gimple_range_ssa_p (expr))
    return get_tree_range (r, expr);

  if (const value_range *vr = get_value_range (expr, stmt))
    {
      if (vr->undefined_p () || vr->varying_p () || vr->constant_p ())
	r = *vr;
      else
	{
	  value_range tmp = *vr;
	  tmp.normalize_symbolics ();
	  r = tmp;
	}
      return true;
    }
  return false;
}

tree
vr_values::value_of_expr (tree op, gimple *)
{
  return op_with_constant_singleton_value_range (op);
}

tree
vr_values::value_on_edge (edge, tree op)
{
  return op_with_constant_singleton_value_range (op);
}

tree
vr_values::value_of_stmt (gimple *stmt, tree op)
{
  if (!op)
    op = gimple_get_lhs (stmt);

  gcc_checking_assert (!op|| op == gimple_get_lhs (stmt));

  if (op)
    return op_with_constant_singleton_value_range (op);
  return NULL_TREE;
}

/* Set the lattice entry for DEF to VARYING.  */

void
vr_values::set_def_to_varying (const_tree def)
{
  value_range_equiv *vr = get_lattice_entry (def);
  if (vr)
    vr->set_varying (TREE_TYPE (def));
}

/* Set value-ranges of all SSA names defined by STMT to varying.  */

void
vr_values::set_defs_to_varying (gimple *stmt)
{
  ssa_op_iter i;
  tree def;
  FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
    set_def_to_varying (def);
}

/* Update the value range and equivalence set for variable VAR to
   NEW_VR.  Return true if NEW_VR is different from VAR's previous
   value.

   NOTE: This function assumes that NEW_VR is a temporary value range
   object created for the sole purpose of updating VAR's range.  The
   storage used by the equivalence set from NEW_VR will be freed by
   this function.  Do not call update_value_range when NEW_VR
   is the range object associated with another SSA name.  */

bool
vr_values::update_value_range (const_tree var, value_range_equiv *new_vr)
{
  value_range_equiv *old_vr;
  bool is_new;

  /* If there is a value-range on the SSA name from earlier analysis
     factor that in.  */
  if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
    {
      value_range_equiv nr;
      get_range_info (var, nr);
      if (!nr.undefined_p ())
	new_vr->intersect (&nr);
    }

  /* Update the value range, if necessary.  If we cannot allocate a lattice
     entry for VAR keep it at VARYING.  This happens when DOM feeds us stmts
     with SSA names allocated after setting up the lattice.  */
  old_vr = get_lattice_entry (var);
  if (!old_vr)
    return false;
  is_new = !old_vr->equal_p (*new_vr, /*ignore_equivs=*/false);

  if (is_new)
    {
      /* Do not allow transitions up the lattice.  The following
	 is slightly more awkward than just new_vr->type < old_vr->type
	 because VR_RANGE and VR_ANTI_RANGE need to be considered
	 the same.  We may not have is_new when transitioning to
	 UNDEFINED.  If old_vr->type is VARYING, we shouldn't be
	 called, if we are anyway, keep it VARYING.  */
      if (old_vr->varying_p ())
	{
	  new_vr->set_varying (TREE_TYPE (var));
	  is_new = false;
	}
      else if (new_vr->undefined_p ())
	{
	  old_vr->set_varying (TREE_TYPE (var));
	  new_vr->set_varying (TREE_TYPE (var));
	  return true;
	}
      else
	old_vr->set (new_vr->min (), new_vr->max (), new_vr->equiv (),
		     new_vr->kind ());
    }

  new_vr->equiv_clear ();

  return is_new;
}

/* Return true if value range VR involves exactly one symbol SYM.  */

static bool
symbolic_range_based_on_p (value_range *vr, const_tree sym)
{
  bool neg, min_has_symbol, max_has_symbol;
  tree inv;

  if (is_gimple_min_invariant (vr->min ()))
    min_has_symbol = false;
  else if (get_single_symbol (vr->min (), &neg, &inv) == sym)
    min_has_symbol = true;
  else
    return false;

  if (is_gimple_min_invariant (vr->max ()))
    max_has_symbol = false;
  else if (get_single_symbol (vr->max (), &neg, &inv) == sym)
    max_has_symbol = true;
  else
    return false;

  return (min_has_symbol || max_has_symbol);
}

/* Return true if the result of assignment STMT is know to be non-zero.  */

static bool
gimple_assign_nonzero_p (gimple *stmt)
{
  enum tree_code code = gimple_assign_rhs_code (stmt);
  bool strict_overflow_p;
  switch (get_gimple_rhs_class (code))
    {
    case GIMPLE_UNARY_RHS:
      return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
					 gimple_expr_type (stmt),
					 gimple_assign_rhs1 (stmt),
					 &strict_overflow_p);
    case GIMPLE_BINARY_RHS:
      return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
					  gimple_expr_type (stmt),
					  gimple_assign_rhs1 (stmt),
					  gimple_assign_rhs2 (stmt),
					  &strict_overflow_p);
    case GIMPLE_TERNARY_RHS:
      return false;
    case GIMPLE_SINGLE_RHS:
      return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
					  &strict_overflow_p);
    case GIMPLE_INVALID_RHS:
      gcc_unreachable ();
    default:
      gcc_unreachable ();
    }
}

/* Return true if STMT is known to compute a non-zero value.  */

static bool
gimple_stmt_nonzero_p (gimple *stmt)
{
  switch (gimple_code (stmt))
    {
    case GIMPLE_ASSIGN:
      return gimple_assign_nonzero_p (stmt);
    case GIMPLE_CALL:
      {
        gcall *call_stmt = as_a<gcall *> (stmt);
	return (gimple_call_nonnull_result_p (call_stmt)
		|| gimple_call_nonnull_arg (call_stmt));
      }
    default:
      gcc_unreachable ();
    }
}
/* Like tree_expr_nonzero_p, but this function uses value ranges
   obtained so far.  */

bool
vr_values::vrp_stmt_computes_nonzero (gimple *stmt)
{
  if (gimple_stmt_nonzero_p (stmt))
    return true;

  /* If we have an expression of the form &X->a, then the expression
     is nonnull if X is nonnull.  */
  if (is_gimple_assign (stmt)
      && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
    {
      tree expr = gimple_assign_rhs1 (stmt);
      poly_int64 bitsize, bitpos;
      tree offset;
      machine_mode mode;
      int unsignedp, reversep, volatilep;
      tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
				       &bitpos, &offset, &mode, &unsignedp,
				       &reversep, &volatilep);

      if (base != NULL_TREE
	  && TREE_CODE (base) == MEM_REF
	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
	{
	  poly_offset_int off = 0;
	  bool off_cst = false;
	  if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
	    {
	      off = mem_ref_offset (base);
	      if (offset)
		off += poly_offset_int::from (wi::to_poly_wide (offset),
					      SIGNED);
	      off <<= LOG2_BITS_PER_UNIT;
	      off += bitpos;
	      off_cst = true;
	    }
	  /* If &X->a is equal to X and X is ~[0, 0], the result is too.
	     For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
	     allow going from non-NULL pointer to NULL.  */
	  if ((off_cst && known_eq (off, 0))
	      || (flag_delete_null_pointer_checks
		  && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))))
	    {
	      const value_range_equiv *vr
		= get_value_range (TREE_OPERAND (base, 0));
	      if (!range_includes_zero_p (vr))
		return true;
	    }
	  /* If MEM_REF has a "positive" offset, consider it non-NULL
	     always, for -fdelete-null-pointer-checks also "negative"
	     ones.  Punt for unknown offsets (e.g. variable ones).  */
	  if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
	      && off_cst
	      && known_ne (off, 0)
	      && (flag_delete_null_pointer_checks || known_gt (off, 0)))
	    return true;
	}
    }

  return false;
}

/* Returns true if EXPR is a valid value (as expected by compare_values) --
   a gimple invariant, or SSA_NAME +- CST.  */

static bool
valid_value_p (tree expr)
{
  if (TREE_CODE (expr) == SSA_NAME)
    return true;

  if (TREE_CODE (expr) == PLUS_EXPR
      || TREE_CODE (expr) == MINUS_EXPR)
    return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);

  return is_gimple_min_invariant (expr);
}

/* If OP has a value range with a single constant value return that,
   otherwise return NULL_TREE.  This returns OP itself if OP is a
   constant.  */

tree
vr_values::op_with_constant_singleton_value_range (tree op)
{
  if (is_gimple_min_invariant (op))
    return op;

  if (TREE_CODE (op) != SSA_NAME)
    return NULL_TREE;

  tree t;
  if (get_value_range (op)->singleton_p (&t))
    return t;
  return NULL;
}

/* Return true if op is in a boolean [0, 1] value-range.  */

bool
simplify_using_ranges::op_with_boolean_value_range_p (tree op)
{
  if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
    return true;

  if (integer_zerop (op)
      || integer_onep (op))
    return true;

  if (TREE_CODE (op) != SSA_NAME)
    return false;

  /* ?? Errr, this should probably check for [0,0] and [1,1] as well
     as [0,1].  */
  const value_range *vr = query->get_value_range (op);
  return *vr == value_range (build_zero_cst (TREE_TYPE (op)),
			     build_one_cst (TREE_TYPE (op)));
}

/* Extract value range information for VAR when (OP COND_CODE LIMIT) is
   true and store it in *VR_P.  */

void
vr_values::extract_range_for_var_from_comparison_expr (tree var,
						       enum tree_code cond_code,
						       tree op, tree limit,
						       value_range_equiv *vr_p)
{
  tree  min, max, type;
  const value_range_equiv *limit_vr;
  type = TREE_TYPE (var);

  /* For pointer arithmetic, we only keep track of pointer equality
     and inequality.  If we arrive here with unfolded conditions like
     _1 > _1 do not derive anything.  */
  if ((POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
      || limit == var)
    {
      vr_p->set_varying (type);
      return;
    }

  /* If LIMIT is another SSA name and LIMIT has a range of its own,
     try to use LIMIT's range to avoid creating symbolic ranges
     unnecessarily. */
  limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;

  /* LIMIT's range is only interesting if it has any useful information.  */
  if (! limit_vr
      || limit_vr->undefined_p ()
      || limit_vr->varying_p ()
      || (limit_vr->symbolic_p ()
	  && ! (limit_vr->kind () == VR_RANGE
		&& (limit_vr->min () == limit_vr->max ()
		    || operand_equal_p (limit_vr->min (),
					limit_vr->max (), 0)))))
    limit_vr = NULL;

  /* Initially, the new range has the same set of equivalences of
     VAR's range.  This will be revised before returning the final
     value.  Since assertions may be chained via mutually exclusive
     predicates, we will need to trim the set of equivalences before
     we are done.  */
  gcc_assert (vr_p->equiv () == NULL);
  vr_p->equiv_add (var, get_value_range (var), &vrp_equiv_obstack);

  /* Extract a new range based on the asserted comparison for VAR and
     LIMIT's value range.  Notice that if LIMIT has an anti-range, we
     will only use it for equality comparisons (EQ_EXPR).  For any
     other kind of assertion, we cannot derive a range from LIMIT's
     anti-range that can be used to describe the new range.  For
     instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
     then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
     no single range for x_2 that could describe LE_EXPR, so we might
     as well build the range [b_4, +INF] for it.
     One special case we handle is extracting a range from a
     range test encoded as (unsigned)var + CST <= limit.  */
  if (TREE_CODE (op) == NOP_EXPR
      || TREE_CODE (op) == PLUS_EXPR)
    {
      if (TREE_CODE (op) == PLUS_EXPR)
        {
	  min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
			     TREE_OPERAND (op, 1));
          max = int_const_binop (PLUS_EXPR, limit, min);
	  op = TREE_OPERAND (op, 0);
	}
      else
	{
	  min = build_int_cst (TREE_TYPE (var), 0);
	  max = limit;
	}

      /* Make sure to not set TREE_OVERFLOW on the final type
	 conversion.  We are willingly interpreting large positive
	 unsigned values as negative signed values here.  */
      min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
      max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);

      /* We can transform a max, min range to an anti-range or
         vice-versa.  Use set_and_canonicalize which does this for
         us.  */
      if (cond_code == LE_EXPR)
	vr_p->set (min, max, vr_p->equiv ());
      else if (cond_code == GT_EXPR)
	vr_p->set (min, max, vr_p->equiv (), VR_ANTI_RANGE);
      else
	gcc_unreachable ();
    }
  else if (cond_code == EQ_EXPR)
    {
      enum value_range_kind range_kind;

      if (limit_vr)
	{
	  range_kind = limit_vr->kind ();
	  min = limit_vr->min ();
	  max = limit_vr->max ();
	}
      else
	{
	  range_kind = VR_RANGE;
	  min = limit;
	  max = limit;
	}

      vr_p->update (min, max, range_kind);

      /* When asserting the equality VAR == LIMIT and LIMIT is another
	 SSA name, the new range will also inherit the equivalence set
	 from LIMIT.  */
      if (TREE_CODE (limit) == SSA_NAME)
	vr_p->equiv_add (limit, get_value_range (limit), &vrp_equiv_obstack);
    }
  else if (cond_code == NE_EXPR)
    {
      /* As described above, when LIMIT's range is an anti-range and
	 this assertion is an inequality (NE_EXPR), then we cannot
	 derive anything from the anti-range.  For instance, if
	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
	 not imply that VAR's range is [0, 0].  So, in the case of
	 anti-ranges, we just assert the inequality using LIMIT and
	 not its anti-range.

	 If LIMIT_VR is a range, we can only use it to build a new
	 anti-range if LIMIT_VR is a single-valued range.  For
	 instance, if LIMIT_VR is [0, 1], the predicate
	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
	 Rather, it means that for value 0 VAR should be ~[0, 0]
	 and for value 1, VAR should be ~[1, 1].  We cannot
	 represent these ranges.

	 The only situation in which we can build a valid
	 anti-range is when LIMIT_VR is a single-valued range
	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case,
	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
      if (limit_vr
	  && limit_vr->kind () == VR_RANGE
	  && compare_values (limit_vr->min (), limit_vr->max ()) == 0)
	{
	  min = limit_vr->min ();
	  max = limit_vr->max ();
	}
      else
	{
	  /* In any other case, we cannot use LIMIT's range to build a
	     valid anti-range.  */
	  min = max = limit;
	}

      /* If MIN and MAX cover the whole range for their type, then
	 just use the original LIMIT.  */
      if (INTEGRAL_TYPE_P (type)
	  && vrp_val_is_min (min)
	  && vrp_val_is_max (max))
	min = max = limit;

      vr_p->set (min, max, vr_p->equiv (), VR_ANTI_RANGE);
    }
  else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
    {
      min = TYPE_MIN_VALUE (type);

      if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE)
	max = limit;
      else
	{
	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
	     LT_EXPR.  */
	  max = limit_vr->max ();
	}

      /* If the maximum value forces us to be out of bounds, simply punt.
	 It would be pointless to try and do anything more since this
	 all should be optimized away above us.  */
      if (cond_code == LT_EXPR
	  && compare_values (max, min) == 0)
	vr_p->set_varying (TREE_TYPE (min));
      else
	{
	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
	  if (cond_code == LT_EXPR)
	    {
	      if (TYPE_PRECISION (TREE_TYPE (max)) == 1
		  && !TYPE_UNSIGNED (TREE_TYPE (max)))
		max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
				   build_int_cst (TREE_TYPE (max), -1));
	      else
		max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
				   build_int_cst (TREE_TYPE (max), 1));
	      /* Signal to compare_values_warnv this expr doesn't overflow.  */
	      if (EXPR_P (max))
		TREE_NO_WARNING (max) = 1;
	    }

	  vr_p->update (min, max);
	}
    }
  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
    {
      max = TYPE_MAX_VALUE (type);

      if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE)
	min = limit;
      else
	{
	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
	     GT_EXPR.  */
	  min = limit_vr->min ();
	}

      /* If the minimum value forces us to be out of bounds, simply punt.
	 It would be pointless to try and do anything more since this
	 all should be optimized away above us.  */
      if (cond_code == GT_EXPR
	  && compare_values (min, max) == 0)
	vr_p->set_varying (TREE_TYPE (min));
      else
	{
	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
	  if (cond_code == GT_EXPR)
	    {
	      if (TYPE_PRECISION (TREE_TYPE (min)) == 1
		  && !TYPE_UNSIGNED (TREE_TYPE (min)))
		min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
				   build_int_cst (TREE_TYPE (min), -1));
	      else
		min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
				   build_int_cst (TREE_TYPE (min), 1));
	      /* Signal to compare_values_warnv this expr doesn't overflow.  */
	      if (EXPR_P (min))
		TREE_NO_WARNING (min) = 1;
	    }

	  vr_p->update (min, max);
	}
    }
  else
    gcc_unreachable ();

  /* Finally intersect the new range with what we already know about var.  */
  vr_p->intersect (get_value_range (var));
}

/* Extract value range information from an ASSERT_EXPR EXPR and store
   it in *VR_P.  */

void
vr_values::extract_range_from_assert (value_range_equiv *vr_p, tree expr)
{
  tree var = ASSERT_EXPR_VAR (expr);
  tree cond = ASSERT_EXPR_COND (expr);
  tree limit, op;
  enum tree_code cond_code;
  gcc_assert (COMPARISON_CLASS_P (cond));

  /* Find VAR in the ASSERT_EXPR conditional.  */
  if (var == TREE_OPERAND (cond, 0)
      || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
      || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
    {
      /* If the predicate is of the form VAR COMP LIMIT, then we just
	 take LIMIT from the RHS and use the same comparison code.  */
      cond_code = TREE_CODE (cond);
      limit = TREE_OPERAND (cond, 1);
      op = TREE_OPERAND (cond, 0);
    }
  else
    {
      /* If the predicate is of the form LIMIT COMP VAR, then we need
	 to flip around the comparison code to create the proper range
	 for VAR.  */
      cond_code = swap_tree_comparison (TREE_CODE (cond));
      limit = TREE_OPERAND (cond, 0);
      op = TREE_OPERAND (cond, 1);
    }
  extract_range_for_var_from_comparison_expr (var, cond_code, op,
					      limit, vr_p);
}

/* Extract range information from SSA name VAR and store it in VR.  If
   VAR has an interesting range, use it.  Otherwise, create the
   range [VAR, VAR] and return it.  This is useful in situations where
   we may have conditionals testing values of VARYING names.  For
   instance,

   	x_3 = y_5;
	if (x_3 > y_5)
	  ...

    Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
    always false.  */

void
vr_values::extract_range_from_ssa_name (value_range_equiv *vr, tree var)
{
  const value_range_equiv *var_vr = get_value_range (var);

  if (!var_vr->varying_p ())
    vr->deep_copy (var_vr);
  else
    vr->set (var);

  if (!vr->undefined_p ())
    vr->equiv_add (var, get_value_range (var), &vrp_equiv_obstack);
}

/* Extract range information from a binary expression OP0 CODE OP1 based on
   the ranges of each of its operands with resulting type EXPR_TYPE.
   The resulting range is stored in *VR.  */

void
vr_values::extract_range_from_binary_expr (value_range_equiv *vr,
					   enum tree_code code,
					   tree expr_type, tree op0, tree op1)
{
  /* Get value ranges for each operand.  For constant operands, create
     a new value range with the operand to simplify processing.  */
  value_range vr0, vr1;
  if (TREE_CODE (op0) == SSA_NAME)
    vr0 = *(get_value_range (op0));
  else if (is_gimple_min_invariant (op0))
    vr0.set (op0);
  else
    vr0.set_varying (TREE_TYPE (op0));

  if (TREE_CODE (op1) == SSA_NAME)
    vr1 = *(get_value_range (op1));
  else if (is_gimple_min_invariant (op1))
    vr1.set (op1);
  else
    vr1.set_varying (TREE_TYPE (op1));

  /* If one argument is varying, we can sometimes still deduce a
     range for the output: any + [3, +INF] is in [MIN+3, +INF].  */
  if (INTEGRAL_TYPE_P (TREE_TYPE (op0))
      && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
    {
      if (vr0.varying_p () && !vr1.varying_p ())
	vr0 = value_range (vrp_val_min (expr_type), vrp_val_max (expr_type));
      else if (vr1.varying_p () && !vr0.varying_p ())
	vr1 = value_range (vrp_val_min (expr_type), vrp_val_max (expr_type));
    }

  range_fold_binary_expr (vr, code, expr_type, &vr0, &vr1);

  /* Set value_range for n in following sequence:
     def = __builtin_memchr (arg, 0, sz)
     n = def - arg
     Here the range for n can be set to [0, PTRDIFF_MAX - 1]. */

  if (vr->varying_p ()
      && code == POINTER_DIFF_EXPR
      && TREE_CODE (op0) == SSA_NAME
      && TREE_CODE (op1) == SSA_NAME)
    {
      tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
      tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
      gcall *call_stmt = NULL;

      if (TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
	  && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
	  && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
	  && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
	  && (call_stmt = dyn_cast<gcall *>(SSA_NAME_DEF_STMT (op0)))
	  && gimple_call_builtin_p (call_stmt, BUILT_IN_MEMCHR)
	  && operand_equal_p (op0, gimple_call_lhs (call_stmt), 0)
	  && operand_equal_p (op1, gimple_call_arg (call_stmt, 0), 0)
	  && integer_zerop (gimple_call_arg (call_stmt, 1)))
	    {
	      tree max = vrp_val_max (ptrdiff_type_node);
	      wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
	      tree range_min = build_zero_cst (expr_type);
	      tree range_max = wide_int_to_tree (expr_type, wmax - 1);
	      vr->set (range_min, range_max);
	      return;
	    }
     }

  /* Try harder for PLUS and MINUS if the range of one operand is symbolic
     and based on the other operand, for example if it was deduced from a
     symbolic comparison.  When a bound of the range of the first operand
     is invariant, we set the corresponding bound of the new range to INF
     in order to avoid recursing on the range of the second operand.  */
  if (vr->varying_p ()
      && (code == PLUS_EXPR || code == MINUS_EXPR)
      && TREE_CODE (op1) == SSA_NAME
      && vr0.kind () == VR_RANGE
      && symbolic_range_based_on_p (&vr0, op1))
    {
      const bool minus_p = (code == MINUS_EXPR);
      value_range n_vr1;

      /* Try with VR0 and [-INF, OP1].  */
      if (is_gimple_min_invariant (minus_p ? vr0.max () : vr0.min ()))
	n_vr1.set (vrp_val_min (expr_type), op1);

      /* Try with VR0 and [OP1, +INF].  */
      else if (is_gimple_min_invariant (minus_p ? vr0.min () : vr0.max ()))
	n_vr1.set (op1, vrp_val_max (expr_type));

      /* Try with VR0 and [OP1, OP1].  */
      else
	n_vr1.set (op1, op1);

      range_fold_binary_expr (vr, code, expr_type, &vr0, &n_vr1);
    }

  if (vr->varying_p ()
      && (code == PLUS_EXPR || code == MINUS_EXPR)
      && TREE_CODE (op0) == SSA_NAME
      && vr1.kind () == VR_RANGE
      && symbolic_range_based_on_p (&vr1, op0))
    {
      const bool minus_p = (code == MINUS_EXPR);
      value_range n_vr0;

      /* Try with [-INF, OP0] and VR1.  */
      if (is_gimple_min_invariant (minus_p ? vr1.max () : vr1.min ()))
	n_vr0.set (vrp_val_min (expr_type), op0);

      /* Try with [OP0, +INF] and VR1.  */
      else if (is_gimple_min_invariant (minus_p ? vr1.min (): vr1.max ()))
	n_vr0.set (op0, vrp_val_max (expr_type));

      /* Try with [OP0, OP0] and VR1.  */
      else
	n_vr0.set (op0);

      range_fold_binary_expr (vr, code, expr_type, &n_vr0, &vr1);
    }

  /* If we didn't derive a range for MINUS_EXPR, and
     op1's range is ~[op0,op0] or vice-versa, then we
     can derive a non-null range.  This happens often for
     pointer subtraction.  */
  if (vr->varying_p ()
      && (code == MINUS_EXPR || code == POINTER_DIFF_EXPR)
      && TREE_CODE (op0) == SSA_NAME
      && ((vr0.kind () == VR_ANTI_RANGE
	   && vr0.min () == op1
	   && vr0.min () == vr0.max ())
	  || (vr1.kind () == VR_ANTI_RANGE
	      && vr1.min () == op0
	      && vr1.min () == vr1.max ())))
    {
      vr->set_nonzero (expr_type);
      vr->equiv_clear ();
    }
}

/* Extract range information from a unary expression CODE OP0 based on
   the range of its operand with resulting type TYPE.
   The resulting range is stored in *VR.  */

void
vr_values::extract_range_from_unary_expr (value_range_equiv *vr,
					  enum tree_code code,
					  tree type, tree op0)
{
  value_range vr0;

  /* Get value ranges for the operand.  For constant operands, create
     a new value range with the operand to simplify processing.  */
  if (TREE_CODE (op0) == SSA_NAME)
    vr0 = *(get_value_range (op0));
  else if (is_gimple_min_invariant (op0))
    vr0.set (op0);
  else
    vr0.set_varying (type);

  range_fold_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
}


/* Extract range information from a conditional expression STMT based on
   the ranges of each of its operands and the expression code.  */

void
vr_values::extract_range_from_cond_expr (value_range_equiv *vr, gassign *stmt)
{
  /* Get value ranges for each operand.  For constant operands, create
     a new value range with the operand to simplify processing.  */
  tree op0 = gimple_assign_rhs2 (stmt);
  value_range_equiv tem0;
  const value_range_equiv *vr0 = &tem0;
  if (TREE_CODE (op0) == SSA_NAME)
    vr0 = get_value_range (op0);
  else if (is_gimple_min_invariant (op0))
    tem0.set (op0);
  else
    tem0.set_varying (TREE_TYPE (op0));

  tree op1 = gimple_assign_rhs3 (stmt);
  value_range_equiv tem1;
  const value_range_equiv *vr1 = &tem1;
  if (TREE_CODE (op1) == SSA_NAME)
    vr1 = get_value_range (op1);
  else if (is_gimple_min_invariant (op1))
    tem1.set (op1);
  else
    tem1.set_varying (TREE_TYPE (op1));

  /* The resulting value range is the union of the operand ranges */
  vr->deep_copy (vr0);
  vr->union_ (vr1);
}


/* Extract range information from a comparison expression EXPR based
   on the range of its operand and the expression code.  */

void
vr_values::extract_range_from_comparison (value_range_equiv *vr,
					  gimple *stmt)
{
  enum tree_code code = gimple_assign_rhs_code (stmt);
  tree type = gimple_expr_type (stmt);
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
  bool sop;
  tree val
    = simplifier.vrp_evaluate_conditional_warnv_with_ops (stmt, code, op0, op1,
							  false, &sop, NULL);
  if (val)
    {
      /* Since this expression was found on the RHS of an assignment,
	 its type may be different from _Bool.  Convert VAL to EXPR's
	 type.  */
      val = fold_convert (type, val);
      if (is_gimple_min_invariant (val))
	vr->set (val);
      else
	vr->update (val, val);
    }
  else
    /* The result of a comparison is always true or false.  */
    set_value_range_to_truthvalue (vr, type);
}

/* Helper function for simplify_internal_call_using_ranges and
   extract_range_basic.  Return true if OP0 SUBCODE OP1 for
   SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
   always overflow.  Set *OVF to true if it is known to always
   overflow.  */

static bool
check_for_binary_op_overflow (range_query *query,
			      enum tree_code subcode, tree type,
			      tree op0, tree op1, bool *ovf)
{
  value_range vr0, vr1;
  if (TREE_CODE (op0) == SSA_NAME)
    vr0 = *query->get_value_range (op0);
  else if (TREE_CODE (op0) == INTEGER_CST)
    vr0.set (op0);
  else
    vr0.set_varying (TREE_TYPE (op0));

  if (TREE_CODE (op1) == SSA_NAME)
    vr1 = *query->get_value_range (op1);
  else if (TREE_CODE (op1) == INTEGER_CST)
    vr1.set (op1);
  else
    vr1.set_varying (TREE_TYPE (op1));

  tree vr0min = vr0.min (), vr0max = vr0.max ();
  tree vr1min = vr1.min (), vr1max = vr1.max ();
  if (!range_int_cst_p (&vr0)
      || TREE_OVERFLOW (vr0min)
      || TREE_OVERFLOW (vr0max))
    {
      vr0min = vrp_val_min (TREE_TYPE (op0));
      vr0max = vrp_val_max (TREE_TYPE (op0));
    }
  if (!range_int_cst_p (&vr1)
      || TREE_OVERFLOW (vr1min)
      || TREE_OVERFLOW (vr1max))
    {
      vr1min = vrp_val_min (TREE_TYPE (op1));
      vr1max = vrp_val_max (TREE_TYPE (op1));
    }
  *ovf = arith_overflowed_p (subcode, type, vr0min,
			     subcode == MINUS_EXPR ? vr1max : vr1min);
  if (arith_overflowed_p (subcode, type, vr0max,
			  subcode == MINUS_EXPR ? vr1min : vr1max) != *ovf)
    return false;
  if (subcode == MULT_EXPR)
    {
      if (arith_overflowed_p (subcode, type, vr0min, vr1max) != *ovf
	  || arith_overflowed_p (subcode, type, vr0max, vr1min) != *ovf)
	return false;
    }
  if (*ovf)
    {
      /* So far we found that there is an overflow on the boundaries.
	 That doesn't prove that there is an overflow even for all values
	 in between the boundaries.  For that compute widest_int range
	 of the result and see if it doesn't overlap the range of
	 type.  */
      widest_int wmin, wmax;
      widest_int w[4];
      int i;
      w[0] = wi::to_widest (vr0min);
      w[1] = wi::to_widest (vr0max);
      w[2] = wi::to_widest (vr1min);
      w[3] = wi::to_widest (vr1max);
      for (i = 0; i < 4; i++)
	{
	  widest_int wt;
	  switch (subcode)
	    {
	    case PLUS_EXPR:
	      wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
	      break;
	    case MINUS_EXPR:
	      wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
	      break;
	    case MULT_EXPR:
	      wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  if (i == 0)
	    {
	      wmin = wt;
	      wmax = wt;
	    }
	  else
	    {
	      wmin = wi::smin (wmin, wt);
	      wmax = wi::smax (wmax, wt);
	    }
	}
      /* The result of op0 CODE op1 is known to be in range
	 [wmin, wmax].  */
      widest_int wtmin = wi::to_widest (vrp_val_min (type));
      widest_int wtmax = wi::to_widest (vrp_val_max (type));
      /* If all values in [wmin, wmax] are smaller than
	 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
	 the arithmetic operation will always overflow.  */
      if (wmax < wtmin || wmin > wtmax)
	return true;
      return false;
    }
  return true;
}

/* Derive a range from a builtin.  Set range in VR and return TRUE if
   successful.  */

bool
vr_values::extract_range_from_ubsan_builtin (value_range_equiv *vr, gimple *stmt)
{
  gcc_assert (is_gimple_call (stmt));
  tree type = gimple_expr_type (stmt);
  enum tree_code subcode = ERROR_MARK;
  combined_fn cfn = gimple_call_combined_fn (stmt);
  scalar_int_mode mode;

  switch (cfn)
    {
    case CFN_UBSAN_CHECK_ADD:
      subcode = PLUS_EXPR;
      break;
    case CFN_UBSAN_CHECK_SUB:
      subcode = MINUS_EXPR;
      break;
    case CFN_UBSAN_CHECK_MUL:
      subcode = MULT_EXPR;
      break;
    default:
      break;
    }
  if (subcode != ERROR_MARK)
    {
      bool saved_flag_wrapv = flag_wrapv;
      /* Pretend the arithmetics is wrapping.  If there is
	 any overflow, we'll complain, but will actually do
	 wrapping operation.  */
      flag_wrapv = 1;
      extract_range_from_binary_expr (vr, subcode, type,
				      gimple_call_arg (stmt, 0),
				      gimple_call_arg (stmt, 1));
      flag_wrapv = saved_flag_wrapv;

      /* If for both arguments vrp_valueize returned non-NULL,
	 this should have been already folded and if not, it
	 wasn't folded because of overflow.  Avoid removing the
	 UBSAN_CHECK_* calls in that case.  */
      if (vr->kind () == VR_RANGE
	  && (vr->min () == vr->max ()
	      || operand_equal_p (vr->min (), vr->max (), 0)))
	vr->set_varying (vr->type ());

      return !vr->varying_p ();
    }
  return false;
}

/* Try to derive a nonnegative or nonzero range out of STMT relying
   primarily on generic routines in fold in conjunction with range data.
   Store the result in *VR */

void
vr_values::extract_range_basic (value_range_equiv *vr, gimple *stmt)
{
  bool sop;
  tree type = gimple_expr_type (stmt);

  if (is_gimple_call (stmt))
    {
      combined_fn cfn = gimple_call_combined_fn (stmt);
      switch (cfn)
	{
	case CFN_UBSAN_CHECK_ADD:
	case CFN_UBSAN_CHECK_SUB:
	case CFN_UBSAN_CHECK_MUL:
	  if (extract_range_from_ubsan_builtin (vr, stmt))
	    return;
	  break;
	default:
	  if (range_of_builtin_call (*this, *vr, as_a<gcall *> (stmt)))
	    {
	      /* The original code nuked equivalences every time a
		 range was found, so do the same here.  */
	      vr->equiv_clear ();
	      return;
	    }
	  break;
	}
    }
  /* Handle extraction of the two results (result of arithmetics and
     a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
     internal function.  Similarly from ATOMIC_COMPARE_EXCHANGE.  */
  else if (is_gimple_assign (stmt)
	   && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
	       || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
	   && INTEGRAL_TYPE_P (type))
    {
      enum tree_code code = gimple_assign_rhs_code (stmt);
      tree op = gimple_assign_rhs1 (stmt);
      if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
	{
	  gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
	  if (is_gimple_call (g) && gimple_call_internal_p (g))
	    {
	      enum tree_code subcode = ERROR_MARK;
	      switch (gimple_call_internal_fn (g))
		{
		case IFN_ADD_OVERFLOW:
		  subcode = PLUS_EXPR;
		  break;
		case IFN_SUB_OVERFLOW:
		  subcode = MINUS_EXPR;
		  break;
		case IFN_MUL_OVERFLOW:
		  subcode = MULT_EXPR;
		  break;
		case IFN_ATOMIC_COMPARE_EXCHANGE:
		  if (code == IMAGPART_EXPR)
		    {
		      /* This is the boolean return value whether compare and
			 exchange changed anything or not.  */
		      vr->set (build_int_cst (type, 0),
			       build_int_cst (type, 1));
		      return;
		    }
		  break;
		default:
		  break;
		}
	      if (subcode != ERROR_MARK)
		{
		  tree op0 = gimple_call_arg (g, 0);
		  tree op1 = gimple_call_arg (g, 1);
		  if (code == IMAGPART_EXPR)
		    {
		      bool ovf = false;
		      if (check_for_binary_op_overflow (this, subcode, type,
							op0, op1, &ovf))
			vr->set (build_int_cst (type, ovf));
		      else if (TYPE_PRECISION (type) == 1
			       && !TYPE_UNSIGNED (type))
			vr->set_varying (type);
		      else
			vr->set (build_int_cst (type, 0),
				 build_int_cst (type, 1));
		    }
		  else if (types_compatible_p (type, TREE_TYPE (op0))
			   && types_compatible_p (type, TREE_TYPE (op1)))
		    {
		      bool saved_flag_wrapv = flag_wrapv;
		      /* Pretend the arithmetics is wrapping.  If there is
			 any overflow, IMAGPART_EXPR will be set.  */
		      flag_wrapv = 1;
		      extract_range_from_binary_expr (vr, subcode, type,
						      op0, op1);
		      flag_wrapv = saved_flag_wrapv;
		    }
		  else
		    {
		      value_range_equiv vr0, vr1;
		      bool saved_flag_wrapv = flag_wrapv;
		      /* Pretend the arithmetics is wrapping.  If there is
			 any overflow, IMAGPART_EXPR will be set.  */
		      flag_wrapv = 1;
		      extract_range_from_unary_expr (&vr0, NOP_EXPR,
						     type, op0);
		      extract_range_from_unary_expr (&vr1, NOP_EXPR,
						     type, op1);
		      range_fold_binary_expr (vr, subcode, type, &vr0, &vr1);
		      flag_wrapv = saved_flag_wrapv;
		    }
		  return;
		}
	    }
	}
    }
  if (INTEGRAL_TYPE_P (type)
      && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
    set_value_range_to_nonnegative (vr, type);
  else if (vrp_stmt_computes_nonzero (stmt))
    {
      vr->set_nonzero (type);
      vr->equiv_clear ();
    }
  else
    vr->set_varying (type);
}


/* Try to compute a useful range out of assignment STMT and store it
   in *VR.  */

void
vr_values::extract_range_from_assignment (value_range_equiv *vr, gassign *stmt)
{
  enum tree_code code = gimple_assign_rhs_code (stmt);

  if (code == ASSERT_EXPR)
    extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
  else if (code == SSA_NAME)
    extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
  else if (TREE_CODE_CLASS (code) == tcc_binary)
    extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
				    gimple_expr_type (stmt),
				    gimple_assign_rhs1 (stmt),
				    gimple_assign_rhs2 (stmt));
  else if (TREE_CODE_CLASS (code) == tcc_unary)
    extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
				   gimple_expr_type (stmt),
				   gimple_assign_rhs1 (stmt));
  else if (code == COND_EXPR)
    extract_range_from_cond_expr (vr, stmt);
  else if (TREE_CODE_CLASS (code) == tcc_comparison)
    extract_range_from_comparison (vr, stmt);
  else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
	   && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
    vr->set (gimple_assign_rhs1 (stmt));
  else
    vr->set_varying (TREE_TYPE (gimple_assign_lhs (stmt)));

  if (vr->varying_p ())
    extract_range_basic (vr, stmt);
}

/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:

   - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
     all the values in the ranges.

   - Return BOOLEAN_FALSE_NODE if the comparison always returns false.

   - Return NULL_TREE if it is not always possible to determine the
     value of the comparison.

   Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
   assumed signed overflow is undefined.  */


static tree
compare_ranges (enum tree_code comp, const value_range_equiv *vr0,
		const value_range_equiv *vr1, bool *strict_overflow_p)
{
  /* VARYING or UNDEFINED ranges cannot be compared.  */
  if (vr0->varying_p ()
      || vr0->undefined_p ()
      || vr1->varying_p ()
      || vr1->undefined_p ())
    return NULL_TREE;

  /* Anti-ranges need to be handled separately.  */
  if (vr0->kind () == VR_ANTI_RANGE || vr1->kind () == VR_ANTI_RANGE)
    {
      /* If both are anti-ranges, then we cannot compute any
	 comparison.  */
      if (vr0->kind () == VR_ANTI_RANGE && vr1->kind () == VR_ANTI_RANGE)
	return NULL_TREE;

      /* These comparisons are never statically computable.  */
      if (comp == GT_EXPR
	  || comp == GE_EXPR
	  || comp == LT_EXPR
	  || comp == LE_EXPR)
	return NULL_TREE;

      /* Equality can be computed only between a range and an
	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
      if (vr0->kind () == VR_RANGE)
	/* To simplify processing, make VR0 the anti-range.  */
	std::swap (vr0, vr1);

      gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);

      if (compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p) == 0
	  && compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p) == 0)
	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;

      return NULL_TREE;
    }

  /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
     operands around and change the comparison code.  */
  if (comp == GT_EXPR || comp == GE_EXPR)
    {
      comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
      std::swap (vr0, vr1);
    }

  if (comp == EQ_EXPR)
    {
      /* Equality may only be computed if both ranges represent
	 exactly one value.  */
      if (compare_values_warnv (vr0->min (), vr0->max (), strict_overflow_p) == 0
	  && compare_values_warnv (vr1->min (), vr1->max (), strict_overflow_p) == 0)
	{
	  int cmp_min = compare_values_warnv (vr0->min (), vr1->min (),
					      strict_overflow_p);
	  int cmp_max = compare_values_warnv (vr0->max (), vr1->max (),
					      strict_overflow_p);
	  if (cmp_min == 0 && cmp_max == 0)
	    return boolean_true_node;
	  else if (cmp_min != -2 && cmp_max != -2)
	    return boolean_false_node;
	}
      /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
      else if (compare_values_warnv (vr0->min (), vr1->max (),
				     strict_overflow_p) == 1
	       || compare_values_warnv (vr1->min (), vr0->max (),
					strict_overflow_p) == 1)
	return boolean_false_node;

      return NULL_TREE;
    }
  else if (comp == NE_EXPR)
    {
      int cmp1, cmp2;

      /* If VR0 is completely to the left or completely to the right
	 of VR1, they are always different.  Notice that we need to
	 make sure that both comparisons yield similar results to
	 avoid comparing values that cannot be compared at
	 compile-time.  */
      cmp1 = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
      cmp2 = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
      if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
	return boolean_true_node;

      /* If VR0 and VR1 represent a single value and are identical,
	 return false.  */
      else if (compare_values_warnv (vr0->min (), vr0->max (),
				     strict_overflow_p) == 0
	       && compare_values_warnv (vr1->min (), vr1->max (),
					strict_overflow_p) == 0
	       && compare_values_warnv (vr0->min (), vr1->min (),
					strict_overflow_p) == 0
	       && compare_values_warnv (vr0->max (), vr1->max (),
					strict_overflow_p) == 0)
	return boolean_false_node;

      /* Otherwise, they may or may not be different.  */
      else
	return NULL_TREE;
    }
  else if (comp == LT_EXPR || comp == LE_EXPR)
    {
      int tst;

      /* If VR0 is to the left of VR1, return true.  */
      tst = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
      if ((comp == LT_EXPR && tst == -1)
	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
	return boolean_true_node;

      /* If VR0 is to the right of VR1, return false.  */
      tst = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
	  || (comp == LE_EXPR && tst == 1))
	return boolean_false_node;

      /* Otherwise, we don't know.  */
      return NULL_TREE;
    }

  gcc_unreachable ();
}

/* Given a value range VR, a value VAL and a comparison code COMP, return
   BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
   values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
   always returns false.  Return NULL_TREE if it is not always
   possible to determine the value of the comparison.  Also set
   *STRICT_OVERFLOW_P to indicate whether comparision evaluation
   assumed signed overflow is undefined.  */

static tree
compare_range_with_value (enum tree_code comp, const value_range *vr,
			  tree val, bool *strict_overflow_p)
{
  if (vr->varying_p () || vr->undefined_p ())
    return NULL_TREE;

  /* Anti-ranges need to be handled separately.  */
  if (vr->kind () == VR_ANTI_RANGE)
    {
      /* For anti-ranges, the only predicates that we can compute at
	 compile time are equality and inequality.  */
      if (comp == GT_EXPR
	  || comp == GE_EXPR
	  || comp == LT_EXPR
	  || comp == LE_EXPR)
	return NULL_TREE;

      /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
      if (!vr->may_contain_p (val))
	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;

      return NULL_TREE;
    }

  if (comp == EQ_EXPR)
    {
      /* EQ_EXPR may only be computed if VR represents exactly
	 one value.  */
      if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0)
	{
	  int cmp = compare_values_warnv (vr->min (), val, strict_overflow_p);
	  if (cmp == 0)
	    return boolean_true_node;
	  else if (cmp == -1 || cmp == 1 || cmp == 2)
	    return boolean_false_node;
	}
      else if (compare_values_warnv (val, vr->min (), strict_overflow_p) == -1
	       || compare_values_warnv (vr->max (), val, strict_overflow_p) == -1)
	return boolean_false_node;

      return NULL_TREE;
    }
  else if (comp == NE_EXPR)
    {
      /* If VAL is not inside VR, then they are always different.  */
      if (compare_values_warnv (vr->max (), val, strict_overflow_p) == -1
	  || compare_values_warnv (vr->min (), val, strict_overflow_p) == 1)
	return boolean_true_node;

      /* If VR represents exactly one value equal to VAL, then return
	 false.  */
      if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0
	  && compare_values_warnv (vr->min (), val, strict_overflow_p) == 0)
	return boolean_false_node;

      /* Otherwise, they may or may not be different.  */
      return NULL_TREE;
    }
  else if (comp == LT_EXPR || comp == LE_EXPR)
    {
      int tst;

      /* If VR is to the left of VAL, return true.  */
      tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
      if ((comp == LT_EXPR && tst == -1)
	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
	return boolean_true_node;

      /* If VR is to the right of VAL, return false.  */
      tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
	  || (comp == LE_EXPR && tst == 1))
	return boolean_false_node;

      /* Otherwise, we don't know.  */
      return NULL_TREE;
    }
  else if (comp == GT_EXPR || comp == GE_EXPR)
    {
      int tst;

      /* If VR is to the right of VAL, return true.  */
      tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
      if ((comp == GT_EXPR && tst == 1)
	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
	return boolean_true_node;

      /* If VR is to the left of VAL, return false.  */
      tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
      if ((comp == GT_EXPR && (tst == -1 || tst == 0))
	  || (comp == GE_EXPR && tst == -1))
	return boolean_false_node;

      /* Otherwise, we don't know.  */
      return NULL_TREE;
    }

  gcc_unreachable ();
}

/* Given a VAR in STMT within LOOP, determine the bounds of the
   variable and store it in MIN/MAX and return TRUE.  If no bounds
   could be determined, return FALSE.  */

bool
bounds_of_var_in_loop (tree *min, tree *max, range_query *query,
		       class loop *loop, gimple *stmt, tree var)
{
  tree init, step, chrec, tmin, tmax, type = TREE_TYPE (var);
  enum ev_direction dir;

  chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));

  /* Like in PR19590, scev can return a constant function.  */
  if (is_gimple_min_invariant (chrec))
    {
      *min = *max = chrec;
      goto fix_overflow;
    }

  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
    return false;

  init = initial_condition_in_loop_num (chrec, loop->num);
  step = evolution_part_in_loop_num (chrec, loop->num);

  /* If INIT is an SSA with a singleton range, set INIT to said
     singleton, otherwise leave INIT alone.  */
  if (TREE_CODE (init) == SSA_NAME)
    query->get_value_range (init, stmt)->singleton_p (&init);
  /* Likewise for step.  */
  if (TREE_CODE (step) == SSA_NAME)
    query->get_value_range (step, stmt)->singleton_p (&step);

  /* If STEP is symbolic, we can't know whether INIT will be the
     minimum or maximum value in the range.  Also, unless INIT is
     a simple expression, compare_values and possibly other functions
     in tree-vrp won't be able to handle it.  */
  if (step == NULL_TREE
      || !is_gimple_min_invariant (step)
      || !valid_value_p (init))
    return false;

  dir = scev_direction (chrec);
  if (/* Do not adjust ranges if we do not know whether the iv increases
	 or decreases,  ... */
      dir == EV_DIR_UNKNOWN
      /* ... or if it may wrap.  */
      || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
				get_chrec_loop (chrec), true))
    return false;

  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
    tmin = lower_bound_in_type (type, type);
  else
    tmin = TYPE_MIN_VALUE (type);
  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
    tmax = upper_bound_in_type (type, type);
  else
    tmax = TYPE_MAX_VALUE (type);

  /* Try to use estimated number of iterations for the loop to constrain the
     final value in the evolution.  */
  if (TREE_CODE (step) == INTEGER_CST
      && is_gimple_val (init)
      && (TREE_CODE (init) != SSA_NAME
	  || query->get_value_range (init, stmt)->kind () == VR_RANGE))
    {
      widest_int nit;

      /* We are only entering here for loop header PHI nodes, so using
	 the number of latch executions is the correct thing to use.  */
      if (max_loop_iterations (loop, &nit))
	{
	  signop sgn = TYPE_SIGN (TREE_TYPE (step));
	  wi::overflow_type overflow;

	  widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
				     &overflow);
	  /* If the multiplication overflowed we can't do a meaningful
	     adjustment.  Likewise if the result doesn't fit in the type
	     of the induction variable.  For a signed type we have to
	     check whether the result has the expected signedness which
	     is that of the step as number of iterations is unsigned.  */
	  if (!overflow
	      && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
	      && (sgn == UNSIGNED
		  || wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0)))
	    {
	      value_range maxvr, vr0, vr1;
	      if (TREE_CODE (init) == SSA_NAME)
		vr0 = *(query->get_value_range (init, stmt));
	      else if (is_gimple_min_invariant (init))
		vr0.set (init);
	      else
		vr0.set_varying (TREE_TYPE (init));
	      tree tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
	      vr1.set (tem, tem);
	      range_fold_binary_expr (&maxvr, PLUS_EXPR,
				      TREE_TYPE (init), &vr0, &vr1);

	      /* Likewise if the addition did.  */
	      if (maxvr.kind () == VR_RANGE)
		{
		  value_range initvr;

		  if (TREE_CODE (init) == SSA_NAME)
		    initvr = *(query->get_value_range (init, stmt));
		  else if (is_gimple_min_invariant (init))
		    initvr.set (init);
		  else
		    return false;

		  /* Check if init + nit * step overflows.  Though we checked
		     scev {init, step}_loop doesn't wrap, it is not enough
		     because the loop may exit immediately.  Overflow could
		     happen in the plus expression in this case.  */
		  if ((dir == EV_DIR_DECREASES
		       && compare_values (maxvr.min (), initvr.min ()) != -1)
		      || (dir == EV_DIR_GROWS
			  && compare_values (maxvr.max (), initvr.max ()) != 1))
		    return false;

		  tmin = maxvr.min ();
		  tmax = maxvr.max ();
		}
	    }
	}
    }

  *min = tmin;
  *max = tmax;
  if (dir == EV_DIR_DECREASES)
    *max = init;
  else
    *min = init;

 fix_overflow:
  /* Even for valid range info, sometimes overflow flag will leak in.
     As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
     drop them.  */
  if (TREE_OVERFLOW_P (*min))
    *min = drop_tree_overflow (*min);
  if (TREE_OVERFLOW_P (*max))
    *max = drop_tree_overflow (*max);

  gcc_checking_assert (compare_values (*min, *max) != 1);
  return true;
}

/* Given a range VR, a LOOP and a variable VAR, determine whether it
   would be profitable to adjust VR using scalar evolution information
   for VAR.  If so, update VR with the new limits.  */

void
vr_values::adjust_range_with_scev (value_range_equiv *vr, class loop *loop,
				   gimple *stmt, tree var)
{
  tree min, max;
  if (bounds_of_var_in_loop (&min, &max, this, loop, stmt, var))
    {
      if (vr->undefined_p () || vr->varying_p ())
	{
	  /* For VARYING or UNDEFINED ranges, just about anything we get
	     from scalar evolutions should be better.  */
	  vr->update (min, max);
	}
      else if (vr->kind () == VR_RANGE)
	{
	  /* Start with the input range... */
	  tree vrmin = vr->min ();
	  tree vrmax = vr->max ();

	  /* ...and narrow it down with what we got from SCEV.  */
	  if (compare_values (min, vrmin) == 1)
	    vrmin = min;
	  if (compare_values (max, vrmax) == -1)
	    vrmax = max;

	  vr->update (vrmin, vrmax);
	}
      else if (vr->kind () == VR_ANTI_RANGE)
	{
	  /* ?? As an enhancement, if VR, MIN, and MAX are constants, one
	     could just intersect VR with a range of [MIN,MAX].  */
	}
    }
}

/* Dump value ranges of all SSA_NAMEs to FILE.  */

void
vr_values::dump_all_value_ranges (FILE *file)
{
  size_t i;

  for (i = 0; i < num_vr_values; i++)
    {
      if (vr_value[i] && ssa_name (i))
	{
	  print_generic_expr (file, ssa_name (i));
	  fprintf (file, ": ");
	  dump_value_range (file, vr_value[i]);
	  fprintf (file, "\n");
	}
    }

  fprintf (file, "\n");
}

/* Initialize VRP lattice.  */

vr_values::vr_values () : simplifier (this)
{
  values_propagated = false;
  num_vr_values = num_ssa_names * 2;
  vr_value = XCNEWVEC (value_range_equiv *, num_vr_values);
  vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
  bitmap_obstack_initialize (&vrp_equiv_obstack);
}

/* Free VRP lattice.  */

vr_values::~vr_values ()
{
  /* Free allocated memory.  */
  free (vr_value);
  free (vr_phi_edge_counts);
  bitmap_obstack_release (&vrp_equiv_obstack);

  /* So that we can distinguish between VRP data being available
     and not available.  */
  vr_value = NULL;
  vr_phi_edge_counts = NULL;
}


/* A hack.  */
static class vr_values *x_vr_values;

/* Return the singleton value-range for NAME or NAME.  */

static inline tree
vrp_valueize (tree name)
{
  if (TREE_CODE (name) == SSA_NAME)
    {
      const value_range_equiv *vr = x_vr_values->get_value_range (name);
      if (vr->kind () == VR_RANGE
	  && (TREE_CODE (vr->min ()) == SSA_NAME
	      || is_gimple_min_invariant (vr->min ()))
	  && vrp_operand_equal_p (vr->min (), vr->max ()))
	return vr->min ();
    }
  return name;
}

/* Return the singleton value-range for NAME if that is a constant
   but signal to not follow SSA edges.  */

static inline tree
vrp_valueize_1 (tree name)
{
  if (TREE_CODE (name) == SSA_NAME)
    {
      /* If the definition may be simulated again we cannot follow
         this SSA edge as the SSA propagator does not necessarily
	 re-visit the use.  */
      gimple *def_stmt = SSA_NAME_DEF_STMT (name);
      if (!gimple_nop_p (def_stmt)
	  && prop_simulate_again_p (def_stmt))
	return NULL_TREE;
      const value_range_equiv *vr = x_vr_values->get_value_range (name);
      tree singleton;
      if (vr->singleton_p (&singleton))
	return singleton;
    }
  return name;
}

/* Given STMT, an assignment or call, return its LHS if the type
   of the LHS is suitable for VRP analysis, else return NULL_TREE.  */

tree
get_output_for_vrp (gimple *stmt)
{
  if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
    return NULL_TREE;

  /* We only keep track of ranges in integral and pointer types.  */
  tree lhs = gimple_get_lhs (stmt);
  if (TREE_CODE (lhs) == SSA_NAME
      && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
	   /* It is valid to have NULL MIN/MAX values on a type.  See
	      build_range_type.  */
	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
    return lhs;

  return NULL_TREE;
}

/* Visit assignment STMT.  If it produces an interesting range, record
   the range in VR and set LHS to OUTPUT_P.  */

void
vr_values::vrp_visit_assignment_or_call (gimple *stmt, tree *output_p,
					 value_range_equiv *vr)
{
  tree lhs = get_output_for_vrp (stmt);
  *output_p = lhs;

  /* We only keep track of ranges in integral and pointer types.  */
  if (lhs)
    {
      enum gimple_code code = gimple_code (stmt);

      /* Try folding the statement to a constant first.  */
      x_vr_values = this;
      tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
						 vrp_valueize_1);
      x_vr_values = NULL;
      if (tem)
	{
	  if (TREE_CODE (tem) == SSA_NAME
	      && (SSA_NAME_IS_DEFAULT_DEF (tem)
		  || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
	    {
	      extract_range_from_ssa_name (vr, tem);
	      return;
	    }
	  else if (is_gimple_min_invariant (tem))
	    {
	      vr->set (tem);
	      return;
	    }
	}
      /* Then dispatch to value-range extracting functions.  */
      if (code == GIMPLE_CALL)
	extract_range_basic (vr, stmt);
      else
	extract_range_from_assignment (vr, as_a <gassign *> (stmt));
    }
}

/* Helper that gets the value range of the SSA_NAME with version I
   or a symbolic range containing the SSA_NAME only if the value range
   is varying or undefined.  Uses TEM as storage for the alternate range.  */

const value_range_equiv *
simplify_using_ranges::get_vr_for_comparison (int i, value_range_equiv *tem)
{
  /* Shallow-copy equiv bitmap.  */
  const value_range_equiv *vr = query->get_value_range (ssa_name (i));

  /* If name N_i does not have a valid range, use N_i as its own
     range.  This allows us to compare against names that may
     have N_i in their ranges.  */
  if (vr->varying_p () || vr->undefined_p ())
    {
      tem->set (ssa_name (i));
      return tem;
    }

  return vr;
}

/* Compare all the value ranges for names equivalent to VAR with VAL
   using comparison code COMP.  Return the same value returned by
   compare_range_with_value, including the setting of
   *STRICT_OVERFLOW_P.  */

tree
simplify_using_ranges::compare_name_with_value
				(enum tree_code comp, tree var, tree val,
				 bool *strict_overflow_p, bool use_equiv_p)
{
  /* Get the set of equivalences for VAR.  */
  bitmap e = query->get_value_range (var)->equiv ();

  /* Start at -1.  Set it to 0 if we do a comparison without relying
     on overflow, or 1 if all comparisons rely on overflow.  */
  int used_strict_overflow = -1;

  /* Compare vars' value range with val.  */
  value_range_equiv tem_vr;
  const value_range_equiv *equiv_vr
    = get_vr_for_comparison (SSA_NAME_VERSION (var), &tem_vr);
  bool sop = false;
  tree retval = compare_range_with_value (comp, equiv_vr, val, &sop);
  if (retval)
    used_strict_overflow = sop ? 1 : 0;

  /* If the equiv set is empty we have done all work we need to do.  */
  if (e == NULL)
    {
      if (retval && used_strict_overflow > 0)
	*strict_overflow_p = true;
      return retval;
    }

  unsigned i;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
    {
      tree name = ssa_name (i);
      if (!name)
	continue;

      if (!use_equiv_p
	  && !SSA_NAME_IS_DEFAULT_DEF (name)
	  && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
	continue;

      equiv_vr = get_vr_for_comparison (i, &tem_vr);
      sop = false;
      tree t = compare_range_with_value (comp, equiv_vr, val, &sop);
      if (t)
	{
	  /* If we get different answers from different members
	     of the equivalence set this check must be in a dead
	     code region.  Folding it to a trap representation
	     would be correct here.  For now just return don't-know.  */
	  if (retval != NULL
	      && t != retval)
	    {
	      retval = NULL_TREE;
	      break;
	    }
	  retval = t;

	  if (!sop)
	    used_strict_overflow = 0;
	  else if (used_strict_overflow < 0)
	    used_strict_overflow = 1;
	}
    }

  if (retval && used_strict_overflow > 0)
    *strict_overflow_p = true;

  return retval;
}


/* Given a comparison code COMP and names N1 and N2, compare all the
   ranges equivalent to N1 against all the ranges equivalent to N2
   to determine the value of N1 COMP N2.  Return the same value
   returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
   whether we relied on undefined signed overflow in the comparison.  */


tree
simplify_using_ranges::compare_names (enum tree_code comp, tree n1, tree n2,
				      bool *strict_overflow_p)
{
  /* Compare the ranges of every name equivalent to N1 against the
     ranges of every name equivalent to N2.  */
  bitmap e1 = query->get_value_range (n1)->equiv ();
  bitmap e2 = query->get_value_range (n2)->equiv ();

  /* Use the fake bitmaps if e1 or e2 are not available.  */
  static bitmap s_e1 = NULL, s_e2 = NULL;
  static bitmap_obstack *s_obstack = NULL;
  if (s_obstack == NULL)
    {
      s_obstack = XNEW (bitmap_obstack);
      bitmap_obstack_initialize (s_obstack);
      s_e1 = BITMAP_ALLOC (s_obstack);
      s_e2 = BITMAP_ALLOC (s_obstack);
    }
  if (e1 == NULL)
    e1 = s_e1;
  if (e2 == NULL)
    e2 = s_e2;

  /* Add N1 and N2 to their own set of equivalences to avoid
     duplicating the body of the loop just to check N1 and N2
     ranges.  */
  bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
  bitmap_set_bit (e2, SSA_NAME_VERSION (n2));

  /* If the equivalence sets have a common intersection, then the two
     names can be compared without checking their ranges.  */
  if (bitmap_intersect_p (e1, e2))
    {
      bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
      bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));

      return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
	     ? boolean_true_node
	     : boolean_false_node;
    }

  /* Start at -1.  Set it to 0 if we do a comparison without relying
     on overflow, or 1 if all comparisons rely on overflow.  */
  int used_strict_overflow = -1;

  /* Otherwise, compare all the equivalent ranges.  First, add N1 and
     N2 to their own set of equivalences to avoid duplicating the body
     of the loop just to check N1 and N2 ranges.  */
  bitmap_iterator bi1;
  unsigned i1;
  EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
    {
      if (!ssa_name (i1))
	continue;

      value_range_equiv tem_vr1;
      const value_range_equiv *vr1 = get_vr_for_comparison (i1, &tem_vr1);

      tree t = NULL_TREE, retval = NULL_TREE;
      bitmap_iterator bi2;
      unsigned i2;
      EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
	{
	  if (!ssa_name (i2))
	    continue;

	  bool sop = false;

	  value_range_equiv tem_vr2;
	  const value_range_equiv *vr2 = get_vr_for_comparison (i2, &tem_vr2);

	  t = compare_ranges (comp, vr1, vr2, &sop);
	  if (t)
	    {
	      /* If we get different answers from different members
		 of the equivalence set this check must be in a dead
		 code region.  Folding it to a trap representation
		 would be correct here.  For now just return don't-know.  */
	      if (retval != NULL && t != retval)
		{
		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
		  return NULL_TREE;
		}
	      retval = t;

	      if (!sop)
		used_strict_overflow = 0;
	      else if (used_strict_overflow < 0)
		used_strict_overflow = 1;
	    }
	}

      if (retval)
	{
	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
	  if (used_strict_overflow > 0)
	    *strict_overflow_p = true;
	  return retval;
	}
    }

  /* None of the equivalent ranges are useful in computing this
     comparison.  */
  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
  return NULL_TREE;
}

/* Helper function for vrp_evaluate_conditional_warnv & other
   optimizers.  */

tree
simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops_using_ranges
    (enum tree_code code, tree op0, tree op1, bool * strict_overflow_p)
{
  const value_range_equiv *vr0, *vr1;
  vr0 = (TREE_CODE (op0) == SSA_NAME) ? query->get_value_range (op0) : NULL;
  vr1 = (TREE_CODE (op1) == SSA_NAME) ? query->get_value_range (op1) : NULL;

  tree res = NULL_TREE;
  if (vr0 && vr1)
    res = compare_ranges (code, vr0, vr1, strict_overflow_p);
  if (!res && vr0)
    res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
  if (!res && vr1)
    res = (compare_range_with_value
	    (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
  return res;
}

/* Helper function for vrp_evaluate_conditional_warnv. */

tree
simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops
						(gimple *stmt,
						 enum tree_code code,
						 tree op0, tree op1,
						 bool use_equiv_p,
						 bool *strict_overflow_p,
						 bool *only_ranges)
{
  tree ret;
  if (only_ranges)
    *only_ranges = true;

  /* We only deal with integral and pointer types.  */
  if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
      && !POINTER_TYPE_P (TREE_TYPE (op0)))
    return NULL_TREE;

  /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
     as a simple equality test, then prefer that over its current form
     for evaluation.

     An overflow test which collapses to an equality test can always be
     expressed as a comparison of one argument against zero.  Overflow
     occurs when the chosen argument is zero and does not occur if the
     chosen argument is not zero.  */
  tree x;
  if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
    {
      wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
      /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
         B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
         B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
         B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
      if (integer_zerop (x))
	{
	  op1 = x;
	  code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
	}
      /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
         B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
         B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
         B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
      else if (wi::to_wide (x) == max - 1)
	{
	  op0 = op1;
	  op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
	  code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
	}
      else
	{
	  value_range vro, vri;
	  if (code == GT_EXPR || code == GE_EXPR)
	    {
	      vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE);
	      vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
	    }
	  else if (code == LT_EXPR || code == LE_EXPR)
	    {
	      vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
	      vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE);
	    }
	  else
	    gcc_unreachable ();
	  const value_range_equiv *vr0 = query->get_value_range (op0, stmt);
	  /* If vro, the range for OP0 to pass the overflow test, has
	     no intersection with *vr0, OP0's known range, then the
	     overflow test can't pass, so return the node for false.
	     If it is the inverted range, vri, that has no
	     intersection, then the overflow test must pass, so return
	     the node for true.  In other cases, we could proceed with
	     a simplified condition comparing OP0 and X, with LE_EXPR
	     for previously LE_ or LT_EXPR and GT_EXPR otherwise, but
	     the comments next to the enclosing if suggest it's not
	     generally profitable to do so.  */
	  vro.intersect (vr0);
	  if (vro.undefined_p ())
	    return boolean_false_node;
	  vri.intersect (vr0);
	  if (vri.undefined_p ())
	    return boolean_true_node;
	}
    }

  if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
	       (code, op0, op1, strict_overflow_p)))
    return ret;
  if (only_ranges)
    *only_ranges = false;
  /* Do not use compare_names during propagation, it's quadratic.  */
  if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
      && use_equiv_p)
    return compare_names (code, op0, op1, strict_overflow_p);
  else if (TREE_CODE (op0) == SSA_NAME)
    return compare_name_with_value (code, op0, op1,
				    strict_overflow_p, use_equiv_p);
  else if (TREE_CODE (op1) == SSA_NAME)
    return compare_name_with_value (swap_tree_comparison (code), op1, op0,
				    strict_overflow_p, use_equiv_p);
  return NULL_TREE;
}

/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
   information.  Return NULL if the conditional cannot be evaluated.
   The ranges of all the names equivalent with the operands in COND
   will be used when trying to compute the value.  If the result is
   based on undefined signed overflow, issue a warning if
   appropriate.  */

tree
simplify_using_ranges::vrp_evaluate_conditional (tree_code code, tree op0,
						 tree op1, gimple *stmt)
{
  bool sop;
  tree ret;
  bool only_ranges;

  /* Some passes and foldings leak constants with overflow flag set
     into the IL.  Avoid doing wrong things with these and bail out.  */
  if ((TREE_CODE (op0) == INTEGER_CST
       && TREE_OVERFLOW (op0))
      || (TREE_CODE (op1) == INTEGER_CST
	  && TREE_OVERFLOW (op1)))
    return NULL_TREE;

  sop = false;
  ret = vrp_evaluate_conditional_warnv_with_ops (stmt, code, op0, op1, true,
						 &sop, &only_ranges);

  if (ret && sop)
    {
      enum warn_strict_overflow_code wc;
      const char* warnmsg;

      if (is_gimple_min_invariant (ret))
	{
	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
	  warnmsg = G_("assuming signed overflow does not occur when "
		       "simplifying conditional to constant");
	}
      else
	{
	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
	  warnmsg = G_("assuming signed overflow does not occur when "
		       "simplifying conditional");
	}

      if (issue_strict_overflow_warning (wc))
	{
	  location_t location;

	  if (!gimple_has_location (stmt))
	    location = input_location;
	  else
	    location = gimple_location (stmt);
	  warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
	}
    }

  if (warn_type_limits
      && ret && only_ranges
      && TREE_CODE_CLASS (code) == tcc_comparison
      && TREE_CODE (op0) == SSA_NAME)
    {
      /* If the comparison is being folded and the operand on the LHS
	 is being compared against a constant value that is outside of
	 the natural range of OP0's type, then the predicate will
	 always fold regardless of the value of OP0.  If -Wtype-limits
	 was specified, emit a warning.  */
      tree type = TREE_TYPE (op0);
      const value_range_equiv *vr0 = query->get_value_range (op0, stmt);

      if (vr0->varying_p ()
	  && INTEGRAL_TYPE_P (type)
	  && is_gimple_min_invariant (op1))
	{
	  location_t location;

	  if (!gimple_has_location (stmt))
	    location = input_location;
	  else
	    location = gimple_location (stmt);

	  warning_at (location, OPT_Wtype_limits,
		      integer_zerop (ret)
		      ? G_("comparison always false "
                           "due to limited range of data type")
		      : G_("comparison always true "
                           "due to limited range of data type"));
	}
    }

  return ret;
}


/* Visit conditional statement STMT.  If we can determine which edge
   will be taken out of STMT's basic block, record it in
   *TAKEN_EDGE_P.  Otherwise, set *TAKEN_EDGE_P to NULL.  */

void
simplify_using_ranges::vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
{
  tree val;

  *taken_edge_p = NULL;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      tree use;
      ssa_op_iter i;

      fprintf (dump_file, "\nVisiting conditional with predicate: ");
      print_gimple_stmt (dump_file, stmt, 0);
      fprintf (dump_file, "\nWith known ranges\n");

      FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
	{
	  fprintf (dump_file, "\t");
	  print_generic_expr (dump_file, use);
	  fprintf (dump_file, ": ");
	  dump_value_range (dump_file, query->get_value_range (use, stmt));
	}

      fprintf (dump_file, "\n");
    }

  /* Compute the value of the predicate COND by checking the known
     ranges of each of its operands.

     Note that we cannot evaluate all the equivalent ranges here
     because those ranges may not yet be final and with the current
     propagation strategy, we cannot determine when the value ranges
     of the names in the equivalence set have changed.

     For instance, given the following code fragment

        i_5 = PHI <8, i_13>
	...
     	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
	if (i_14 == 1)
	  ...

     Assume that on the first visit to i_14, i_5 has the temporary
     range [8, 8] because the second argument to the PHI function is
     not yet executable.  We derive the range ~[0, 0] for i_14 and the
     equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
     the first time, since i_14 is equivalent to the range [8, 8], we
     determine that the predicate is always false.

     On the next round of propagation, i_13 is determined to be
     VARYING, which causes i_5 to drop down to VARYING.  So, another
     visit to i_14 is scheduled.  In this second visit, we compute the
     exact same range and equivalence set for i_14, namely ~[0, 0] and
     { i_5 }.  But we did not have the previous range for i_5
     registered, so vrp_visit_assignment thinks that the range for
     i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
     is not visited again, which stops propagation from visiting
     statements in the THEN clause of that if().

     To properly fix this we would need to keep the previous range
     value for the names in the equivalence set.  This way we would've
     discovered that from one visit to the other i_5 changed from
     range [8, 8] to VR_VARYING.

     However, fixing this apparent limitation may not be worth the
     additional checking.  Testing on several code bases (GCC, DLV,
     MICO, TRAMP3D and SPEC2000) showed that doing this results in
     4 more predicates folded in SPEC.  */

  bool sop;
  val = vrp_evaluate_conditional_warnv_with_ops (stmt,
						 gimple_cond_code (stmt),
						 gimple_cond_lhs (stmt),
						 gimple_cond_rhs (stmt),
						 false, &sop, NULL);
  if (val)
    *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nPredicate evaluates to: ");
      if (val == NULL_TREE)
	fprintf (dump_file, "DON'T KNOW\n");
      else
	print_generic_stmt (dump_file, val);
    }
}

/* Searches the case label vector VEC for the ranges of CASE_LABELs that are
   used in range VR.  The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
   MAX_IDX2.  If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
   Returns true if the default label is not needed.  */

static bool
find_case_label_ranges (gswitch *stmt, const value_range *vr,
			size_t *min_idx1, size_t *max_idx1,
			size_t *min_idx2, size_t *max_idx2)
{
  size_t i, j, k, l;
  unsigned int n = gimple_switch_num_labels (stmt);
  bool take_default;
  tree case_low, case_high;
  tree min = vr->min (), max = vr->max ();

  gcc_checking_assert (!vr->varying_p () && !vr->undefined_p ());

  take_default = !find_case_label_range (stmt, min, max, &i, &j);

  /* Set second range to empty.  */
  *min_idx2 = 1;
  *max_idx2 = 0;

  if (vr->kind () == VR_RANGE)
    {
      *min_idx1 = i;
      *max_idx1 = j;
      return !take_default;
    }

  /* Set first range to all case labels.  */
  *min_idx1 = 1;
  *max_idx1 = n - 1;

  if (i > j)
    return false;

  /* Make sure all the values of case labels [i , j] are contained in
     range [MIN, MAX].  */
  case_low = CASE_LOW (gimple_switch_label (stmt, i));
  case_high = CASE_HIGH (gimple_switch_label (stmt, j));
  if (tree_int_cst_compare (case_low, min) < 0)
    i += 1;
  if (case_high != NULL_TREE
      && tree_int_cst_compare (max, case_high) < 0)
    j -= 1;

  if (i > j)
    return false;

  /* If the range spans case labels [i, j], the corresponding anti-range spans
     the labels [1, i - 1] and [j + 1, n -  1].  */
  k = j + 1;
  l = n - 1;
  if (k > l)
    {
      k = 1;
      l = 0;
    }

  j = i - 1;
  i = 1;
  if (i > j)
    {
      i = k;
      j = l;
      k = 1;
      l = 0;
    }

  *min_idx1 = i;
  *max_idx1 = j;
  *min_idx2 = k;
  *max_idx2 = l;
  return false;
}

/* Visit switch statement STMT.  If we can determine which edge
   will be taken out of STMT's basic block, record it in
   *TAKEN_EDGE_P.  Otherwise, *TAKEN_EDGE_P set to NULL.  */

void
vr_values::vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
{
  tree op, val;
  const value_range_equiv *vr;
  size_t i = 0, j = 0, k, l;
  bool take_default;

  *taken_edge_p = NULL;
  op = gimple_switch_index (stmt);
  if (TREE_CODE (op) != SSA_NAME)
    return;

  vr = get_value_range (op);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting switch expression with operand ");
      print_generic_expr (dump_file, op);
      fprintf (dump_file, " with known range ");
      dump_value_range (dump_file, vr);
      fprintf (dump_file, "\n");
    }

  if (vr->undefined_p ()
      || vr->varying_p ()
      || vr->symbolic_p ())
    return;

  /* Find the single edge that is taken from the switch expression.  */
  take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);

  /* Check if the range spans no CASE_LABEL. If so, we only reach the default
     label */
  if (j < i)
    {
      gcc_assert (take_default);
      val = gimple_switch_default_label (stmt);
    }
  else
    {
      /* Check if labels with index i to j and maybe the default label
	 are all reaching the same label.  */

      val = gimple_switch_label (stmt, i);
      if (take_default
	  && CASE_LABEL (gimple_switch_default_label (stmt))
	  != CASE_LABEL (val))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "  not a single destination for this "
		     "range\n");
	  return;
	}
      for (++i; i <= j; ++i)
        {
          if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "  not a single destination for this "
			 "range\n");
	      return;
	    }
        }
      for (; k <= l; ++k)
        {
          if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		fprintf (dump_file, "  not a single destination for this "
			 "range\n");
	      return;
	    }
        }
    }

  *taken_edge_p = find_edge (gimple_bb (stmt),
			     label_to_block (cfun, CASE_LABEL (val)));

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  will take edge to ");
      print_generic_stmt (dump_file, CASE_LABEL (val));
    }
}


/* Evaluate statement STMT.  If the statement produces a useful range,
   set VR and corepsponding OUTPUT_P.

   If STMT is a conditional branch and we can determine its truth
   value, the taken edge is recorded in *TAKEN_EDGE_P.  */

void
vr_values::extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
				    tree *output_p, value_range_equiv *vr)
{

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nextract_range_from_stmt visiting:\n");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
    }

  if (!stmt_interesting_for_vrp (stmt))
    gcc_assert (stmt_ends_bb_p (stmt));
  else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
    vrp_visit_assignment_or_call (stmt, output_p, vr);
  else if (gimple_code (stmt) == GIMPLE_COND)
    simplifier.vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
  else if (gimple_code (stmt) == GIMPLE_SWITCH)
    vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
}

/* Visit all arguments for PHI node PHI that flow through executable
   edges.  If a valid value range can be derived from all the incoming
   value ranges, set a new range in VR_RESULT.  */

void
vr_values::extract_range_from_phi_node (gphi *phi,
					value_range_equiv *vr_result)
{
  tree lhs = PHI_RESULT (phi);
  const value_range_equiv *lhs_vr = get_value_range (lhs);
  bool first = true;
  int old_edges;
  class loop *l;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting PHI node: ");
      print_gimple_stmt (dump_file, phi, 0, dump_flags);
    }

  bool may_simulate_backedge_again = false;
  int edges = 0;
  for (size_t i = 0; i < gimple_phi_num_args (phi); i++)
    {
      edge e = gimple_phi_arg_edge (phi, i);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file,
	      "    Argument #%d (%d -> %d %sexecutable)\n",
	      (int) i, e->src->index, e->dest->index,
	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
	}

      if (e->flags & EDGE_EXECUTABLE)
	{
	  value_range_equiv vr_arg_tem;
	  const value_range_equiv *vr_arg = &vr_arg_tem;

	  ++edges;

	  tree arg = PHI_ARG_DEF (phi, i);
	  if (TREE_CODE (arg) == SSA_NAME)
	    {
	      /* See if we are eventually going to change one of the args.  */
	      gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
	      if (! gimple_nop_p (def_stmt)
		  && prop_simulate_again_p (def_stmt)
		  && e->flags & EDGE_DFS_BACK)
		may_simulate_backedge_again = true;

	      const value_range_equiv *vr_arg_ = get_value_range (arg);
	      /* Do not allow equivalences or symbolic ranges to leak in from
		 backedges.  That creates invalid equivalencies.
		 See PR53465 and PR54767.  */
	      if (e->flags & EDGE_DFS_BACK)
		{
		  if (!vr_arg_->varying_p () && !vr_arg_->undefined_p ())
		    {
		      vr_arg_tem.set (vr_arg_->min (), vr_arg_->max (), NULL,
				      vr_arg_->kind ());
		      if (vr_arg_tem.symbolic_p ())
			vr_arg_tem.set_varying (TREE_TYPE (arg));
		    }
		  else
		    vr_arg = vr_arg_;
		}
	      /* If the non-backedge arguments range is VR_VARYING then
		 we can still try recording a simple equivalence.  */
	      else if (vr_arg_->varying_p ())
		vr_arg_tem.set (arg);
	      else
		vr_arg = vr_arg_;
	    }
	  else
	    {
	      if (TREE_OVERFLOW_P (arg))
		arg = drop_tree_overflow (arg);

	      vr_arg_tem.set (arg);
	    }

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\t");
	      print_generic_expr (dump_file, arg, dump_flags);
	      fprintf (dump_file, ": ");
	      dump_value_range (dump_file, vr_arg);
	      fprintf (dump_file, "\n");
	    }

	  if (first)
	    vr_result->deep_copy (vr_arg);
	  else
	    vr_result->union_ (vr_arg);
	  first = false;

	  if (vr_result->varying_p ())
	    break;
	}
    }

  if (vr_result->varying_p ())
    goto varying;
  else if (vr_result->undefined_p ())
    goto update_range;

  old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
  vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;

  /* To prevent infinite iterations in the algorithm, derive ranges
     when the new value is slightly bigger or smaller than the
     previous one.  We don't do this if we have seen a new executable
     edge; this helps us avoid an infinity for conditionals
     which are not in a loop.  If the old value-range was VR_UNDEFINED
     use the updated range and iterate one more time.  If we will not
     simulate this PHI again via the backedge allow us to iterate.  */
  if (edges > 0
      && gimple_phi_num_args (phi) > 1
      && edges == old_edges
      && !lhs_vr->undefined_p ()
      && may_simulate_backedge_again)
    {
      /* Compare old and new ranges, fall back to varying if the
         values are not comparable.  */
      int cmp_min = compare_values (lhs_vr->min (), vr_result->min ());
      if (cmp_min == -2)
	goto varying;
      int cmp_max = compare_values (lhs_vr->max (), vr_result->max ());
      if (cmp_max == -2)
	goto varying;

      /* For non VR_RANGE or for pointers fall back to varying if
	 the range changed.  */
      if ((lhs_vr->kind () != VR_RANGE || vr_result->kind () != VR_RANGE
	   || POINTER_TYPE_P (TREE_TYPE (lhs)))
	  && (cmp_min != 0 || cmp_max != 0))
	goto varying;

      /* If the new minimum is larger than the previous one
	 retain the old value.  If the new minimum value is smaller
	 than the previous one and not -INF go all the way to -INF + 1.
	 In the first case, to avoid infinite bouncing between different
	 minimums, and in the other case to avoid iterating millions of
	 times to reach -INF.  Going to -INF + 1 also lets the following
	 iteration compute whether there will be any overflow, at the
	 expense of one additional iteration.  */
      tree new_min = vr_result->min ();
      tree new_max = vr_result->max ();
      if (cmp_min < 0)
	new_min = lhs_vr->min ();
      else if (cmp_min > 0
	       && (TREE_CODE (vr_result->min ()) != INTEGER_CST
		   || tree_int_cst_lt (vrp_val_min (vr_result->type ()),
				       vr_result->min ())))
	new_min = int_const_binop (PLUS_EXPR,
				   vrp_val_min (vr_result->type ()),
				   build_int_cst (vr_result->type (), 1));

      /* Similarly for the maximum value.  */
      if (cmp_max > 0)
	new_max = lhs_vr->max ();
      else if (cmp_max < 0
	       && (TREE_CODE (vr_result->max ()) != INTEGER_CST
		   || tree_int_cst_lt (vr_result->max (),
				       vrp_val_max (vr_result->type ()))))
	new_max = int_const_binop (MINUS_EXPR,
				   vrp_val_max (vr_result->type ()),
				   build_int_cst (vr_result->type (), 1));

      vr_result->update (new_min, new_max, vr_result->kind ());

      /* If we dropped either bound to +-INF then if this is a loop
	 PHI node SCEV may known more about its value-range.  */
      if (cmp_min > 0 || cmp_min < 0
	   || cmp_max < 0 || cmp_max > 0)
	goto scev_check;

      goto infinite_check;
    }

  goto update_range;

varying:
  vr_result->set_varying (TREE_TYPE (lhs));

scev_check:
  /* If this is a loop PHI node SCEV may known more about its value-range.
     scev_check can be reached from two paths, one is a fall through from above
     "varying" label, the other is direct goto from code block which tries to
     avoid infinite simulation.  */
  if (scev_initialized_p ()
      && (l = loop_containing_stmt (phi))
      && l->header == gimple_bb (phi))
    adjust_range_with_scev (vr_result, l, phi, lhs);

infinite_check:
  /* If we will end up with a (-INF, +INF) range, set it to
     VARYING.  Same if the previous max value was invalid for
     the type and we end up with vr_result.min > vr_result.max.  */
  if ((!vr_result->varying_p () && !vr_result->undefined_p ())
      && !((vrp_val_is_max (vr_result->max ()) && vrp_val_is_min (vr_result->min ()))
	   || compare_values (vr_result->min (), vr_result->max ()) > 0))
    ;
  else
    vr_result->set_varying (TREE_TYPE (lhs));

  /* If the new range is different than the previous value, keep
     iterating.  */
update_range:
  return;
}

/* Simplify boolean operations if the source is known
   to be already a boolean.  */
bool
simplify_using_ranges::simplify_truth_ops_using_ranges
					(gimple_stmt_iterator *gsi,
					 gimple *stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  tree lhs, op0, op1;
  bool need_conversion;

  /* We handle only !=/== case here.  */
  gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);

  op0 = gimple_assign_rhs1 (stmt);
  if (!op_with_boolean_value_range_p (op0))
    return false;

  op1 = gimple_assign_rhs2 (stmt);
  if (!op_with_boolean_value_range_p (op1))
    return false;

  /* Reduce number of cases to handle to NE_EXPR.  As there is no
     BIT_XNOR_EXPR we cannot replace A == B with a single statement.  */
  if (rhs_code == EQ_EXPR)
    {
      if (TREE_CODE (op1) == INTEGER_CST)
	op1 = int_const_binop (BIT_XOR_EXPR, op1,
			       build_int_cst (TREE_TYPE (op1), 1));
      else
	return false;
    }

  lhs = gimple_assign_lhs (stmt);
  need_conversion
    = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));

  /* Make sure to not sign-extend a 1-bit 1 when converting the result.  */
  if (need_conversion
      && !TYPE_UNSIGNED (TREE_TYPE (op0))
      && TYPE_PRECISION (TREE_TYPE (op0)) == 1
      && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
    return false;

  /* For A != 0 we can substitute A itself.  */
  if (integer_zerop (op1))
    gimple_assign_set_rhs_with_ops (gsi,
				    need_conversion
				    ? NOP_EXPR : TREE_CODE (op0), op0);
  /* For A != B we substitute A ^ B.  Either with conversion.  */
  else if (need_conversion)
    {
      tree tem = make_ssa_name (TREE_TYPE (op0));
      gassign *newop
	= gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
      gsi_insert_before (gsi, newop, GSI_SAME_STMT);
      if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
	  && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
	set_range_info (tem, VR_RANGE,
			wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
			wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
      gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
    }
  /* Or without.  */
  else
    gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
  update_stmt (gsi_stmt (*gsi));
  fold_stmt (gsi, follow_single_use_edges);

  return true;
}

/* Simplify a division or modulo operator to a right shift or bitwise and
   if the first operand is unsigned or is greater than zero and the second
   operand is an exact power of two.  For TRUNC_MOD_EXPR op0 % op1 with
   constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
   optimize it into just op0 if op0's range is known to be a subset of
   [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
   modulo.  */

bool
simplify_using_ranges::simplify_div_or_mod_using_ranges
					(gimple_stmt_iterator *gsi,
					 gimple *stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  tree val = NULL;
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
  tree op0min = NULL_TREE, op0max = NULL_TREE;
  tree op1min = op1;
  const value_range *vr = NULL;

  if (TREE_CODE (op0) == INTEGER_CST)
    {
      op0min = op0;
      op0max = op0;
    }
  else
    {
      vr = query->get_value_range (op0, stmt);
      if (range_int_cst_p (vr))
	{
	  op0min = vr->min ();
	  op0max = vr->max ();
	}
    }

  if (rhs_code == TRUNC_MOD_EXPR
      && TREE_CODE (op1) == SSA_NAME)
    {
      const value_range_equiv *vr1 = query->get_value_range (op1, stmt);
      if (range_int_cst_p (vr1))
	op1min = vr1->min ();
    }
  if (rhs_code == TRUNC_MOD_EXPR
      && TREE_CODE (op1min) == INTEGER_CST
      && tree_int_cst_sgn (op1min) == 1
      && op0max
      && tree_int_cst_lt (op0max, op1min))
    {
      if (TYPE_UNSIGNED (TREE_TYPE (op0))
	  || tree_int_cst_sgn (op0min) >= 0
	  || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
			      op0min))
	{
	  /* If op0 already has the range op0 % op1 has,
	     then TRUNC_MOD_EXPR won't change anything.  */
	  gimple_assign_set_rhs_from_tree (gsi, op0);
	  return true;
	}
    }

  if (TREE_CODE (op0) != SSA_NAME)
    return false;

  if (!integer_pow2p (op1))
    {
      /* X % -Y can be only optimized into X % Y either if
	 X is not INT_MIN, or Y is not -1.  Fold it now, as after
	 remove_range_assertions the range info might be not available
	 anymore.  */
      if (rhs_code == TRUNC_MOD_EXPR
	  && fold_stmt (gsi, follow_single_use_edges))
	return true;
      return false;
    }

  if (TYPE_UNSIGNED (TREE_TYPE (op0)))
    val = integer_one_node;
  else
    {
      bool sop = false;

      val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);

      if (val
	  && sop
	  && integer_onep (val)
	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
	{
	  location_t location;

	  if (!gimple_has_location (stmt))
	    location = input_location;
	  else
	    location = gimple_location (stmt);
	  warning_at (location, OPT_Wstrict_overflow,
		      "assuming signed overflow does not occur when "
		      "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
	}
    }

  if (val && integer_onep (val))
    {
      tree t;

      if (rhs_code == TRUNC_DIV_EXPR)
	{
	  t = build_int_cst (integer_type_node, tree_log2 (op1));
	  gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
	  gimple_assign_set_rhs1 (stmt, op0);
	  gimple_assign_set_rhs2 (stmt, t);
	}
      else
	{
	  t = build_int_cst (TREE_TYPE (op1), 1);
	  t = int_const_binop (MINUS_EXPR, op1, t);
	  t = fold_convert (TREE_TYPE (op0), t);

	  gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
	  gimple_assign_set_rhs1 (stmt, op0);
	  gimple_assign_set_rhs2 (stmt, t);
	}

      update_stmt (stmt);
      fold_stmt (gsi, follow_single_use_edges);
      return true;
    }

  return false;
}

/* Simplify a min or max if the ranges of the two operands are
   disjoint.   Return true if we do simplify.  */

bool
simplify_using_ranges::simplify_min_or_max_using_ranges
				(gimple_stmt_iterator *gsi,
				 gimple *stmt)
{
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
  bool sop = false;
  tree val;

  val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
	 (LE_EXPR, op0, op1, &sop));
  if (!val)
    {
      sop = false;
      val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
	     (LT_EXPR, op0, op1, &sop));
    }

  if (val)
    {
      if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
	{
	  location_t location;

	  if (!gimple_has_location (stmt))
	    location = input_location;
	  else
	    location = gimple_location (stmt);
	  warning_at (location, OPT_Wstrict_overflow,
		      "assuming signed overflow does not occur when "
		      "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
	}

      /* VAL == TRUE -> OP0 < or <= op1
	 VAL == FALSE -> OP0 > or >= op1.  */
      tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
		  == integer_zerop (val)) ? op0 : op1;
      gimple_assign_set_rhs_from_tree (gsi, res);
      return true;
    }

  return false;
}

/* If the operand to an ABS_EXPR is >= 0, then eliminate the
   ABS_EXPR.  If the operand is <= 0, then simplify the
   ABS_EXPR into a NEGATE_EXPR.  */

bool
simplify_using_ranges::simplify_abs_using_ranges (gimple_stmt_iterator *gsi,
						  gimple *stmt)
{
  tree op = gimple_assign_rhs1 (stmt);
  const value_range *vr = query->get_value_range (op, stmt);

  if (vr)
    {
      tree val = NULL;
      bool sop = false;

      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
      if (!val)
	{
	  /* The range is neither <= 0 nor > 0.  Now see if it is
	     either < 0 or >= 0.  */
	  sop = false;
	  val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
					  &sop);
	}

      if (val)
	{
	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
	    {
	      location_t location;

	      if (!gimple_has_location (stmt))
		location = input_location;
	      else
		location = gimple_location (stmt);
	      warning_at (location, OPT_Wstrict_overflow,
			  "assuming signed overflow does not occur when "
			  "simplifying %<abs (X)%> to %<X%> or %<-X%>");
	    }

	  gimple_assign_set_rhs1 (stmt, op);
	  if (integer_zerop (val))
	    gimple_assign_set_rhs_code (stmt, SSA_NAME);
	  else
	    gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
	  update_stmt (stmt);
	  fold_stmt (gsi, follow_single_use_edges);
	  return true;
	}
    }

  return false;
}

/* value_range wrapper for wi_set_zero_nonzero_bits.

   Return TRUE if VR was a constant range and we were able to compute
   the bit masks.  */

static bool
vr_set_zero_nonzero_bits (const tree expr_type,
			  const value_range *vr,
			  wide_int *may_be_nonzero,
			  wide_int *must_be_nonzero)
{
  if (range_int_cst_p (vr))
    {
      wi_set_zero_nonzero_bits (expr_type,
				wi::to_wide (vr->min ()),
				wi::to_wide (vr->max ()),
				*may_be_nonzero, *must_be_nonzero);
      return true;
    }
  *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
  *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
  return false;
}

/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
   If all the bits that are being cleared by & are already
   known to be zero from VR, or all the bits that are being
   set by | are already known to be one from VR, the bit
   operation is redundant.  */

bool
simplify_using_ranges::simplify_bit_ops_using_ranges
				(gimple_stmt_iterator *gsi,
				 gimple *stmt)
{
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
  tree op = NULL_TREE;
  value_range vr0, vr1;
  wide_int may_be_nonzero0, may_be_nonzero1;
  wide_int must_be_nonzero0, must_be_nonzero1;
  wide_int mask;

  if (TREE_CODE (op0) == SSA_NAME)
    vr0 = *(query->get_value_range (op0, stmt));
  else if (is_gimple_min_invariant (op0))
    vr0.set (op0);
  else
    return false;

  if (TREE_CODE (op1) == SSA_NAME)
    vr1 = *(query->get_value_range (op1, stmt));
  else if (is_gimple_min_invariant (op1))
    vr1.set (op1);
  else
    return false;

  if (!vr_set_zero_nonzero_bits (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
				 &must_be_nonzero0))
    return false;
  if (!vr_set_zero_nonzero_bits (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
				 &must_be_nonzero1))
    return false;

  switch (gimple_assign_rhs_code (stmt))
    {
    case BIT_AND_EXPR:
      mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
      if (mask == 0)
	{
	  op = op0;
	  break;
	}
      mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
      if (mask == 0)
	{
	  op = op1;
	  break;
	}
      break;
    case BIT_IOR_EXPR:
      mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
      if (mask == 0)
	{
	  op = op1;
	  break;
	}
      mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
      if (mask == 0)
	{
	  op = op0;
	  break;
	}
      break;
    default:
      gcc_unreachable ();
    }

  if (op == NULL_TREE)
    return false;

  gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
  update_stmt (gsi_stmt (*gsi));
  return true;
}

/* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
   a known value range VR.

   If there is one and only one value which will satisfy the
   conditional, then return that value.  Else return NULL.

   If signed overflow must be undefined for the value to satisfy
   the conditional, then set *STRICT_OVERFLOW_P to true.  */

static tree
test_for_singularity (enum tree_code cond_code, tree op0,
		      tree op1, const value_range *vr)
{
  tree min = NULL;
  tree max = NULL;

  /* Extract minimum/maximum values which satisfy the conditional as it was
     written.  */
  if (cond_code == LE_EXPR || cond_code == LT_EXPR)
    {
      min = TYPE_MIN_VALUE (TREE_TYPE (op0));

      max = op1;
      if (cond_code == LT_EXPR)
	{
	  tree one = build_int_cst (TREE_TYPE (op0), 1);
	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
	  /* Signal to compare_values_warnv this expr doesn't overflow.  */
	  if (EXPR_P (max))
	    TREE_NO_WARNING (max) = 1;
	}
    }
  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
    {
      max = TYPE_MAX_VALUE (TREE_TYPE (op0));

      min = op1;
      if (cond_code == GT_EXPR)
	{
	  tree one = build_int_cst (TREE_TYPE (op0), 1);
	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
	  /* Signal to compare_values_warnv this expr doesn't overflow.  */
	  if (EXPR_P (min))
	    TREE_NO_WARNING (min) = 1;
	}
    }

  /* Now refine the minimum and maximum values using any
     value range information we have for op0.  */
  if (min && max)
    {
      tree type = TREE_TYPE (op0);
      tree tmin = wide_int_to_tree (type, vr->lower_bound ());
      tree tmax = wide_int_to_tree (type, vr->upper_bound ());
      if (compare_values (tmin, min) == 1)
	min = tmin;
      if (compare_values (tmax, max) == -1)
	max = tmax;

      /* If the new min/max values have converged to a single value,
	 then there is only one value which can satisfy the condition,
	 return that value.  */
      if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
	return min;
    }
  return NULL;
}

/* Return whether the value range *VR fits in an integer type specified
   by PRECISION and UNSIGNED_P.  */

bool
range_fits_type_p (const value_range *vr,
		   unsigned dest_precision, signop dest_sgn)
{
  tree src_type;
  unsigned src_precision;
  widest_int tem;
  signop src_sgn;

  /* We can only handle integral and pointer types.  */
  src_type = vr->type ();
  if (!INTEGRAL_TYPE_P (src_type)
      && !POINTER_TYPE_P (src_type))
    return false;

  /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
     and so is an identity transform.  */
  src_precision = TYPE_PRECISION (vr->type ());
  src_sgn = TYPE_SIGN (src_type);
  if ((src_precision < dest_precision
       && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
      || (src_precision == dest_precision && src_sgn == dest_sgn))
    return true;

  /* Now we can only handle ranges with constant bounds.  */
  if (!range_int_cst_p (vr))
    return false;

  /* For sign changes, the MSB of the wide_int has to be clear.
     An unsigned value with its MSB set cannot be represented by
     a signed wide_int, while a negative value cannot be represented
     by an unsigned wide_int.  */
  if (src_sgn != dest_sgn
      && (wi::lts_p (wi::to_wide (vr->min ()), 0)
	  || wi::lts_p (wi::to_wide (vr->max ()), 0)))
    return false;

  /* Then we can perform the conversion on both ends and compare
     the result for equality.  */
  tem = wi::ext (wi::to_widest (vr->min ()), dest_precision, dest_sgn);
  if (tem != wi::to_widest (vr->min ()))
    return false;
  tem = wi::ext (wi::to_widest (vr->max ()), dest_precision, dest_sgn);
  if (tem != wi::to_widest (vr->max ()))
    return false;

  return true;
}

/* If COND can be folded entirely as TRUE or FALSE, rewrite the
   conditional as such, and return TRUE.  */

bool
simplify_using_ranges::fold_cond (gcond *cond)
{
  /* ?? vrp_folder::fold_predicate_in() is a superset of this.  At
     some point we should merge all variants of this code.  */
  edge taken_edge;
  vrp_visit_cond_stmt (cond, &taken_edge);

  int_range_max r;
  if (query->range_of_stmt (r, cond) && r.singleton_p ())
    {
      // COND has already been folded if arguments are constant.
      if (TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
	  && TREE_CODE (gimple_cond_rhs (cond)) != SSA_NAME)
	return false;

      if (r.zero_p ())
	{
	  gcc_checking_assert (!taken_edge
			       || taken_edge->flags & EDGE_FALSE_VALUE);
	  if (dump_file && (dump_flags & TDF_DETAILS) && !taken_edge)
	    fprintf (dump_file, "\nPredicate evaluates to: 0\n");
	  gimple_cond_make_false (cond);
	}
      else
	{
	  gcc_checking_assert (!taken_edge
			       || taken_edge->flags & EDGE_TRUE_VALUE);
	  if (dump_file && (dump_flags & TDF_DETAILS) && !taken_edge)
	    fprintf (dump_file, "\nPredicate evaluates to: 1\n");
	  gimple_cond_make_true (cond);
	}
      update_stmt (cond);
      return true;
    }

  if (taken_edge)
    {
      if (taken_edge->flags & EDGE_TRUE_VALUE)
       gimple_cond_make_true (cond);
      else if (taken_edge->flags & EDGE_FALSE_VALUE)
       gimple_cond_make_false (cond);
      else
       gcc_unreachable ();
      update_stmt (cond);
      return true;
    }
  return false;
}

/* Simplify a conditional using a relational operator to an equality
   test if the range information indicates only one value can satisfy
   the original conditional.  */

bool
simplify_using_ranges::simplify_cond_using_ranges_1 (gcond *stmt)
{
  tree op0 = gimple_cond_lhs (stmt);
  tree op1 = gimple_cond_rhs (stmt);
  enum tree_code cond_code = gimple_cond_code (stmt);

  if (fold_cond (stmt))
    return true;

  if (cond_code != NE_EXPR
      && cond_code != EQ_EXPR
      && TREE_CODE (op0) == SSA_NAME
      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
      && is_gimple_min_invariant (op1))
    {
      const value_range *vr = query->get_value_range (op0, stmt);

      /* If we have range information for OP0, then we might be
	 able to simplify this conditional. */
      if (!vr->undefined_p () && !vr->varying_p ())
	{
	  tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
	  if (new_tree)
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "Simplified relational ");
		  print_gimple_stmt (dump_file, stmt, 0);
		  fprintf (dump_file, " into ");
		}

	      gimple_cond_set_code (stmt, EQ_EXPR);
	      gimple_cond_set_lhs (stmt, op0);
	      gimple_cond_set_rhs (stmt, new_tree);

	      update_stmt (stmt);

	      if (dump_file)
		{
		  print_gimple_stmt (dump_file, stmt, 0);
		  fprintf (dump_file, "\n");
		}

	      return true;
	    }

	  /* Try again after inverting the condition.  We only deal
	     with integral types here, so no need to worry about
	     issues with inverting FP comparisons.  */
	  new_tree = test_for_singularity
		       (invert_tree_comparison (cond_code, false),
			op0, op1, vr);
	  if (new_tree)
	    {
	      if (dump_file)
		{
		  fprintf (dump_file, "Simplified relational ");
		  print_gimple_stmt (dump_file, stmt, 0);
		  fprintf (dump_file, " into ");
		}

	      gimple_cond_set_code (stmt, NE_EXPR);
	      gimple_cond_set_lhs (stmt, op0);
	      gimple_cond_set_rhs (stmt, new_tree);

	      update_stmt (stmt);

	      if (dump_file)
		{
		  print_gimple_stmt (dump_file, stmt, 0);
		  fprintf (dump_file, "\n");
		}

	      return true;
	    }
	}
    }
  return false;
}

/* Simplify a switch statement using the value range of the switch
   argument.  */

bool
simplify_using_ranges::simplify_switch_using_ranges (gswitch *stmt)
{
  tree op = gimple_switch_index (stmt);
  const value_range *vr = NULL;
  bool take_default;
  edge e;
  edge_iterator ei;
  size_t i = 0, j = 0, n, n2;
  tree vec2;
  switch_update su;
  size_t k = 1, l = 0;

  if (TREE_CODE (op) == SSA_NAME)
    {
      vr = query->get_value_range (op, stmt);

      /* We can only handle integer ranges.  */
      if (vr->varying_p ()
	  || vr->undefined_p ()
	  || vr->symbolic_p ())
	return false;

      /* Find case label for min/max of the value range.  */
      take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
    }
  else if (TREE_CODE (op) == INTEGER_CST)
    {
      take_default = !find_case_label_index (stmt, 1, op, &i);
      if (take_default)
	{
	  i = 1;
	  j = 0;
	}
      else
	{
	  j = i;
	}
    }
  else
    return false;

  n = gimple_switch_num_labels (stmt);

  /* We can truncate the case label ranges that partially overlap with OP's
     value range.  */
  size_t min_idx = 1, max_idx = 0;
  if (vr != NULL)
    find_case_label_range (stmt, vr->min (), vr->max (), &min_idx, &max_idx);
  if (min_idx <= max_idx)
    {
      tree min_label = gimple_switch_label (stmt, min_idx);
      tree max_label = gimple_switch_label (stmt, max_idx);

      /* Avoid changing the type of the case labels when truncating.  */
      tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
      tree vr_min = fold_convert (case_label_type, vr->min ());
      tree vr_max = fold_convert (case_label_type, vr->max ());

      if (vr->kind () == VR_RANGE)
	{
	  /* If OP's value range is [2,8] and the low label range is
	     0 ... 3, truncate the label's range to 2 .. 3.  */
	  if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
	      && CASE_HIGH (min_label) != NULL_TREE
	      && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
	    CASE_LOW (min_label) = vr_min;

	  /* If OP's value range is [2,8] and the high label range is
	     7 ... 10, truncate the label's range to 7 .. 8.  */
	  if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
	      && CASE_HIGH (max_label) != NULL_TREE
	      && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
	    CASE_HIGH (max_label) = vr_max;
	}
      else if (vr->kind () == VR_ANTI_RANGE)
	{
	  tree one_cst = build_one_cst (case_label_type);

	  if (min_label == max_label)
	    {
	      /* If OP's value range is ~[7,8] and the label's range is
		 7 ... 10, truncate the label's range to 9 ... 10.  */
	      if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
		  && CASE_HIGH (min_label) != NULL_TREE
		  && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
		CASE_LOW (min_label)
		  = int_const_binop (PLUS_EXPR, vr_max, one_cst);

	      /* If OP's value range is ~[7,8] and the label's range is
		 5 ... 8, truncate the label's range to 5 ... 6.  */
	      if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
		  && CASE_HIGH (min_label) != NULL_TREE
		  && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
		CASE_HIGH (min_label)
		  = int_const_binop (MINUS_EXPR, vr_min, one_cst);
	    }
	  else
	    {
	      /* If OP's value range is ~[2,8] and the low label range is
		 0 ... 3, truncate the label's range to 0 ... 1.  */
	      if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
		  && CASE_HIGH (min_label) != NULL_TREE
		  && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
		CASE_HIGH (min_label)
		  = int_const_binop (MINUS_EXPR, vr_min, one_cst);

	      /* If OP's value range is ~[2,8] and the high label range is
		 7 ... 10, truncate the label's range to 9 ... 10.  */
	      if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
		  && CASE_HIGH (max_label) != NULL_TREE
		  && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
		CASE_LOW (max_label)
		  = int_const_binop (PLUS_EXPR, vr_max, one_cst);
	    }
	}

      /* Canonicalize singleton case ranges.  */
      if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
	CASE_HIGH (min_label) = NULL_TREE;
      if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
	CASE_HIGH (max_label) = NULL_TREE;
    }

  /* We can also eliminate case labels that lie completely outside OP's value
     range.  */

  /* Bail out if this is just all edges taken.  */
  if (i == 1
      && j == n - 1
      && take_default)
    return false;

  /* Build a new vector of taken case labels.  */
  vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
  n2 = 0;

  /* Add the default edge, if necessary.  */
  if (take_default)
    TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);

  for (; i <= j; ++i, ++n2)
    TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);

  for (; k <= l; ++k, ++n2)
    TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);

  /* Mark needed edges.  */
  for (i = 0; i < n2; ++i)
    {
      e = find_edge (gimple_bb (stmt),
		     label_to_block (cfun,
				     CASE_LABEL (TREE_VEC_ELT (vec2, i))));
      e->aux = (void *)-1;
    }

  /* Queue not needed edges for later removal.  */
  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
    {
      if (e->aux == (void *)-1)
	{
	  e->aux = NULL;
	  continue;
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "removing unreachable case label\n");
	}
      to_remove_edges.safe_push (e);
      e->flags &= ~EDGE_EXECUTABLE;
      e->flags |= EDGE_IGNORE;
    }

  /* And queue an update for the stmt.  */
  su.stmt = stmt;
  su.vec = vec2;
  to_update_switch_stmts.safe_push (su);
  return true;
}

void
simplify_using_ranges::cleanup_edges_and_switches (void)
{
  int i;
  edge e;
  switch_update *su;

  /* Remove dead edges from SWITCH_EXPR optimization.  This leaves the
     CFG in a broken state and requires a cfg_cleanup run.  */
  FOR_EACH_VEC_ELT (to_remove_edges, i, e)
    remove_edge (e);

  /* Update SWITCH_EXPR case label vector.  */
  FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
    {
      size_t j;
      size_t n = TREE_VEC_LENGTH (su->vec);
      tree label;
      gimple_switch_set_num_labels (su->stmt, n);
      for (j = 0; j < n; j++)
	gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
      /* As we may have replaced the default label with a regular one
	 make sure to make it a real default label again.  This ensures
	 optimal expansion.  */
      label = gimple_switch_label (su->stmt, 0);
      CASE_LOW (label) = NULL_TREE;
      CASE_HIGH (label) = NULL_TREE;
    }

  if (!to_remove_edges.is_empty ())
    {
      free_dominance_info (CDI_DOMINATORS);
      loops_state_set (LOOPS_NEED_FIXUP);
    }

  to_remove_edges.release ();
  to_update_switch_stmts.release ();
}

/* Simplify an integral conversion from an SSA name in STMT.  */

static bool
simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
{
  tree innerop, middleop, finaltype;
  gimple *def_stmt;
  signop inner_sgn, middle_sgn, final_sgn;
  unsigned inner_prec, middle_prec, final_prec;
  widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;

  finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
  if (!INTEGRAL_TYPE_P (finaltype))
    return false;
  middleop = gimple_assign_rhs1 (stmt);
  def_stmt = SSA_NAME_DEF_STMT (middleop);
  if (!is_gimple_assign (def_stmt)
      || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
    return false;
  innerop = gimple_assign_rhs1 (def_stmt);
  if (TREE_CODE (innerop) != SSA_NAME
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
    return false;

  /* Get the value-range of the inner operand.  Use get_range_info in
     case innerop was created during substitute-and-fold.  */
  wide_int imin, imax;
  value_range vr;
  if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop)))
    return false;
  get_range_info (innerop, vr);
  if (vr.undefined_p () || vr.varying_p ())
    return false;
  innermin = widest_int::from (vr.lower_bound (), TYPE_SIGN (TREE_TYPE (innerop)));
  innermax = widest_int::from (vr.upper_bound (), TYPE_SIGN (TREE_TYPE (innerop)));

  /* Simulate the conversion chain to check if the result is equal if
     the middle conversion is removed.  */
  inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
  middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
  final_prec = TYPE_PRECISION (finaltype);

  /* If the first conversion is not injective, the second must not
     be widening.  */
  if (wi::gtu_p (innermax - innermin,
		 wi::mask <widest_int> (middle_prec, false))
      && middle_prec < final_prec)
    return false;
  /* We also want a medium value so that we can track the effect that
     narrowing conversions with sign change have.  */
  inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
  if (inner_sgn == UNSIGNED)
    innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
  else
    innermed = 0;
  if (wi::cmp (innermin, innermed, inner_sgn) >= 0
      || wi::cmp (innermed, innermax, inner_sgn) >= 0)
    innermed = innermin;

  middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
  middlemin = wi::ext (innermin, middle_prec, middle_sgn);
  middlemed = wi::ext (innermed, middle_prec, middle_sgn);
  middlemax = wi::ext (innermax, middle_prec, middle_sgn);

  /* Require that the final conversion applied to both the original
     and the intermediate range produces the same result.  */
  final_sgn = TYPE_SIGN (finaltype);
  if (wi::ext (middlemin, final_prec, final_sgn)
	 != wi::ext (innermin, final_prec, final_sgn)
      || wi::ext (middlemed, final_prec, final_sgn)
	 != wi::ext (innermed, final_prec, final_sgn)
      || wi::ext (middlemax, final_prec, final_sgn)
	 != wi::ext (innermax, final_prec, final_sgn))
    return false;

  gimple_assign_set_rhs1 (stmt, innerop);
  fold_stmt (gsi, follow_single_use_edges);
  return true;
}

/* Simplify a conversion from integral SSA name to float in STMT.  */

bool
simplify_using_ranges::simplify_float_conversion_using_ranges
					(gimple_stmt_iterator *gsi,
					 gimple *stmt)
{
  tree rhs1 = gimple_assign_rhs1 (stmt);
  const value_range *vr = query->get_value_range (rhs1, stmt);
  scalar_float_mode fltmode
    = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
  scalar_int_mode mode;
  tree tem;
  gassign *conv;

  /* We can only handle constant ranges.  */
  if (!range_int_cst_p (vr))
    return false;

  /* First check if we can use a signed type in place of an unsigned.  */
  scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1));
  if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
      && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing
      && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
    mode = rhs_mode;
  /* If we can do the conversion in the current input mode do nothing.  */
  else if (can_float_p (fltmode, rhs_mode,
			TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
    return false;
  /* Otherwise search for a mode we can use, starting from the narrowest
     integer mode available.  */
  else
    {
      mode = NARROWEST_INT_MODE;
      for (;;)
	{
	  /* If we cannot do a signed conversion to float from mode
	     or if the value-range does not fit in the signed type
	     try with a wider mode.  */
	  if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
	      && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
	    break;

	  /* But do not widen the input.  Instead leave that to the
	     optabs expansion code.  */
	  if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
	      || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
	    return false;
	}
    }

  /* It works, insert a truncation or sign-change before the
     float conversion.  */
  tem = make_ssa_name (build_nonstandard_integer_type
			  (GET_MODE_PRECISION (mode), 0));
  conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
  gsi_insert_before (gsi, conv, GSI_SAME_STMT);
  gimple_assign_set_rhs1 (stmt, tem);
  fold_stmt (gsi, follow_single_use_edges);

  return true;
}

/* Simplify an internal fn call using ranges if possible.  */

bool
simplify_using_ranges::simplify_internal_call_using_ranges
					(gimple_stmt_iterator *gsi,
					 gimple *stmt)
{
  enum tree_code subcode;
  bool is_ubsan = false;
  bool ovf = false;
  switch (gimple_call_internal_fn (stmt))
    {
    case IFN_UBSAN_CHECK_ADD:
      subcode = PLUS_EXPR;
      is_ubsan = true;
      break;
    case IFN_UBSAN_CHECK_SUB:
      subcode = MINUS_EXPR;
      is_ubsan = true;
      break;
    case IFN_UBSAN_CHECK_MUL:
      subcode = MULT_EXPR;
      is_ubsan = true;
      break;
    case IFN_ADD_OVERFLOW:
      subcode = PLUS_EXPR;
      break;
    case IFN_SUB_OVERFLOW:
      subcode = MINUS_EXPR;
      break;
    case IFN_MUL_OVERFLOW:
      subcode = MULT_EXPR;
      break;
    default:
      return false;
    }

  tree op0 = gimple_call_arg (stmt, 0);
  tree op1 = gimple_call_arg (stmt, 1);
  tree type;
  if (is_ubsan)
    {
      type = TREE_TYPE (op0);
      if (VECTOR_TYPE_P (type))
	return false;
    }
  else if (gimple_call_lhs (stmt) == NULL_TREE)
    return false;
  else
    type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
  if (!check_for_binary_op_overflow (query, subcode, type, op0, op1, &ovf)
      || (is_ubsan && ovf))
    return false;

  gimple *g;
  location_t loc = gimple_location (stmt);
  if (is_ubsan)
    g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
  else
    {
      int prec = TYPE_PRECISION (type);
      tree utype = type;
      if (ovf
	  || !useless_type_conversion_p (type, TREE_TYPE (op0))
	  || !useless_type_conversion_p (type, TREE_TYPE (op1)))
	utype = build_nonstandard_integer_type (prec, 1);
      if (TREE_CODE (op0) == INTEGER_CST)
	op0 = fold_convert (utype, op0);
      else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
	{
	  g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
	  gimple_set_location (g, loc);
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	  op0 = gimple_assign_lhs (g);
	}
      if (TREE_CODE (op1) == INTEGER_CST)
	op1 = fold_convert (utype, op1);
      else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
	{
	  g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
	  gimple_set_location (g, loc);
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	  op1 = gimple_assign_lhs (g);
	}
      g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
      gimple_set_location (g, loc);
      gsi_insert_before (gsi, g, GSI_SAME_STMT);
      if (utype != type)
	{
	  g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
				   gimple_assign_lhs (g));
	  gimple_set_location (g, loc);
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	}
      g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
			       gimple_assign_lhs (g),
			       build_int_cst (type, ovf));
    }
  gimple_set_location (g, loc);
  gsi_replace (gsi, g, false);
  return true;
}

/* Return true if VAR is a two-valued variable.  Set a and b with the
   two-values when it is true.  Return false otherwise.  */

bool
simplify_using_ranges::two_valued_val_range_p (tree var, tree *a, tree *b)
{
  value_range vr = *query->get_value_range (var);
  vr.normalize_symbolics ();
  if (vr.varying_p () || vr.undefined_p ())
    return false;

  if ((vr.num_pairs () == 1 && vr.upper_bound () - vr.lower_bound () == 1)
      || (vr.num_pairs () == 2
	  && vr.lower_bound (0) == vr.upper_bound (0)
	  && vr.lower_bound (1) == vr.upper_bound (1)))
    {
      *a = wide_int_to_tree (TREE_TYPE (var), vr.lower_bound ());
      *b = wide_int_to_tree (TREE_TYPE (var), vr.upper_bound ());
      return true;
    }
  return false;
}

simplify_using_ranges::simplify_using_ranges (range_query *query)
  : query (query)
{
  to_remove_edges = vNULL;
  to_update_switch_stmts = vNULL;
}

simplify_using_ranges::~simplify_using_ranges ()
{
  cleanup_edges_and_switches ();
}

/* Simplify STMT using ranges if possible.  */

bool
simplify_using_ranges::simplify (gimple_stmt_iterator *gsi)
{
  gcc_checking_assert (query);

  gimple *stmt = gsi_stmt (*gsi);
  if (is_gimple_assign (stmt))
    {
      enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
      tree rhs1 = gimple_assign_rhs1 (stmt);
      tree rhs2 = gimple_assign_rhs2 (stmt);
      tree lhs = gimple_assign_lhs (stmt);
      tree val1 = NULL_TREE, val2 = NULL_TREE;
      use_operand_p use_p;
      gimple *use_stmt;

      /* Convert:
	 LHS = CST BINOP VAR
	 Where VAR is two-valued and LHS is used in GIMPLE_COND only
	 To:
	 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)

	 Also handles:
	 LHS = VAR BINOP CST
	 Where VAR is two-valued and LHS is used in GIMPLE_COND only
	 To:
	 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */

      if (TREE_CODE_CLASS (rhs_code) == tcc_binary
	  && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
	  && ((TREE_CODE (rhs1) == INTEGER_CST
	       && TREE_CODE (rhs2) == SSA_NAME)
	      || (TREE_CODE (rhs2) == INTEGER_CST
		  && TREE_CODE (rhs1) == SSA_NAME))
	  && single_imm_use (lhs, &use_p, &use_stmt)
	  && gimple_code (use_stmt) == GIMPLE_COND)

	{
	  tree new_rhs1 = NULL_TREE;
	  tree new_rhs2 = NULL_TREE;
	  tree cmp_var = NULL_TREE;

	  if (TREE_CODE (rhs2) == SSA_NAME
	      && two_valued_val_range_p (rhs2, &val1, &val2))
	    {
	      /* Optimize RHS1 OP [VAL1, VAL2].  */
	      new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
	      new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
	      cmp_var = rhs2;
	    }
	  else if (TREE_CODE (rhs1) == SSA_NAME
		   && two_valued_val_range_p (rhs1, &val1, &val2))
	    {
	      /* Optimize [VAL1, VAL2] OP RHS2.  */
	      new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
	      new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
	      cmp_var = rhs1;
	    }

	  /* If we could not find two-vals or the optimzation is invalid as
	     in divide by zero, new_rhs1 / new_rhs will be NULL_TREE.  */
	  if (new_rhs1 && new_rhs2)
	    {
	      tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
	      gimple_assign_set_rhs_with_ops (gsi,
					      COND_EXPR, cond,
					      new_rhs1,
					      new_rhs2);
	      update_stmt (gsi_stmt (*gsi));
	      fold_stmt (gsi, follow_single_use_edges);
	      return true;
	    }
	}

      switch (rhs_code)
	{
	case EQ_EXPR:
	case NE_EXPR:
          /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
	     if the RHS is zero or one, and the LHS are known to be boolean
	     values.  */
	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
	    return simplify_truth_ops_using_ranges (gsi, stmt);
	  break;

      /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
	 and BIT_AND_EXPR respectively if the first operand is greater
	 than zero and the second operand is an exact power of two.
	 Also optimize TRUNC_MOD_EXPR away if the second operand is
	 constant and the first operand already has the right value
	 range.  */
	case TRUNC_DIV_EXPR:
	case TRUNC_MOD_EXPR:
	  if ((TREE_CODE (rhs1) == SSA_NAME
	       || TREE_CODE (rhs1) == INTEGER_CST)
	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
	    return simplify_div_or_mod_using_ranges (gsi, stmt);
	  break;

      /* Transform ABS (X) into X or -X as appropriate.  */
	case ABS_EXPR:
	  if (TREE_CODE (rhs1) == SSA_NAME
	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
	    return simplify_abs_using_ranges (gsi, stmt);
	  break;

	case BIT_AND_EXPR:
	case BIT_IOR_EXPR:
	  /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
	     if all the bits being cleared are already cleared or
	     all the bits being set are already set.  */
	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
	    return simplify_bit_ops_using_ranges (gsi, stmt);
	  break;

	CASE_CONVERT:
	  if (TREE_CODE (rhs1) == SSA_NAME
	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
	    return simplify_conversion_using_ranges (gsi, stmt);
	  break;

	case FLOAT_EXPR:
	  if (TREE_CODE (rhs1) == SSA_NAME
	      && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
	    return simplify_float_conversion_using_ranges (gsi, stmt);
	  break;

	case MIN_EXPR:
	case MAX_EXPR:
	  return simplify_min_or_max_using_ranges (gsi, stmt);

	default:
	  break;
	}
    }
  else if (gimple_code (stmt) == GIMPLE_COND)
    return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
  else if (gimple_code (stmt) == GIMPLE_SWITCH)
    return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
  else if (is_gimple_call (stmt)
	   && gimple_call_internal_p (stmt))
    return simplify_internal_call_using_ranges (gsi, stmt);

  return false;
}

/* Set the lattice entry for VAR to VR.  */

void
vr_values::set_vr_value (tree var, value_range_equiv *vr)
{
  if (SSA_NAME_VERSION (var) >= num_vr_values)
    return;
  vr_value[SSA_NAME_VERSION (var)] = vr;
}

/* Swap the lattice entry for VAR with VR and return the old entry.  */

value_range_equiv *
vr_values::swap_vr_value (tree var, value_range_equiv *vr)
{
  if (SSA_NAME_VERSION (var) >= num_vr_values)
    return NULL;
  std::swap (vr_value[SSA_NAME_VERSION (var)], vr);
  return vr;
}