1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
|
/* CPP Library - charsets
Copyright (C) 1998-2020 Free Software Foundation, Inc.
Broken out of c-lex.c Apr 2003, adding valid C99 UCN ranges.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "cpplib.h"
#include "internal.h"
/* Character set handling for C-family languages.
Terminological note: In what follows, "charset" or "character set"
will be taken to mean both an abstract set of characters and an
encoding for that set.
The C99 standard discusses two character sets: source and execution.
The source character set is used for internal processing in translation
phases 1 through 4; the execution character set is used thereafter.
Both are required by 5.2.1.2p1 to be multibyte encodings, not wide
character encodings (see 3.7.2, 3.7.3 for the standardese meanings
of these terms). Furthermore, the "basic character set" (listed in
5.2.1p3) is to be encoded in each with values one byte wide, and is
to appear in the initial shift state.
It is not explicitly mentioned, but there is also a "wide execution
character set" used to encode wide character constants and wide
string literals; this is supposed to be the result of applying the
standard library function mbstowcs() to an equivalent narrow string
(6.4.5p5). However, the behavior of hexadecimal and octal
\-escapes is at odds with this; they are supposed to be translated
directly to wchar_t values (6.4.4.4p5,6).
The source character set is not necessarily the character set used
to encode physical source files on disk; translation phase 1 converts
from whatever that encoding is to the source character set.
The presence of universal character names in C99 (6.4.3 et seq.)
forces the source character set to be isomorphic to ISO 10646,
that is, Unicode. There is no such constraint on the execution
character set; note also that the conversion from source to
execution character set does not occur for identifiers (5.1.1.2p1#5).
For convenience of implementation, the source character set's
encoding of the basic character set should be identical to the
execution character set OF THE HOST SYSTEM's encoding of the basic
character set, and it should not be a state-dependent encoding.
cpplib uses UTF-8 or UTF-EBCDIC for the source character set,
depending on whether the host is based on ASCII or EBCDIC (see
respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode
Technical Report #16). With limited exceptions, it relies on the
system library's iconv() primitive to do charset conversion
(specified in SUSv2). */
#if !HAVE_ICONV
/* Make certain that the uses of iconv(), iconv_open(), iconv_close()
below, which are guarded only by if statements with compile-time
constant conditions, do not cause link errors. */
#define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1)
#define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1)
#define iconv_close(x) (void)0
#define ICONV_CONST
#endif
#if HOST_CHARSET == HOST_CHARSET_ASCII
#define SOURCE_CHARSET "UTF-8"
#define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e
#elif HOST_CHARSET == HOST_CHARSET_EBCDIC
#define SOURCE_CHARSET "UTF-EBCDIC"
#define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF
#else
#error "Unrecognized basic host character set"
#endif
#ifndef EILSEQ
#define EILSEQ EINVAL
#endif
/* This structure is used for a resizable string buffer throughout. */
/* Don't call it strbuf, as that conflicts with unistd.h on systems
such as DYNIX/ptx where unistd.h includes stropts.h. */
struct _cpp_strbuf
{
uchar *text;
size_t asize;
size_t len;
};
/* This is enough to hold any string that fits on a single 80-column
line, even if iconv quadruples its size (e.g. conversion from
ASCII to UTF-32) rounded up to a power of two. */
#define OUTBUF_BLOCK_SIZE 256
/* Conversions between UTF-8 and UTF-16/32 are implemented by custom
logic. This is because a depressing number of systems lack iconv,
or have have iconv libraries that do not do these conversions, so
we need a fallback implementation for them. To ensure the fallback
doesn't break due to neglect, it is used on all systems.
UTF-32 encoding is nice and simple: a four-byte binary number,
constrained to the range 00000000-7FFFFFFF to avoid questions of
signedness. We do have to cope with big- and little-endian
variants.
UTF-16 encoding uses two-byte binary numbers, again in big- and
little-endian variants, for all values in the 00000000-0000FFFF
range. Values in the 00010000-0010FFFF range are encoded as pairs
of two-byte numbers, called "surrogate pairs": given a number S in
this range, it is mapped to a pair (H, L) as follows:
H = (S - 0x10000) / 0x400 + 0xD800
L = (S - 0x10000) % 0x400 + 0xDC00
Two-byte values in the D800...DFFF range are ill-formed except as a
component of a surrogate pair. Even if the encoding within a
two-byte value is little-endian, the H member of the surrogate pair
comes first.
There is no way to encode values in the 00110000-7FFFFFFF range,
which is not currently a problem as there are no assigned code
points in that range; however, the author expects that it will
eventually become necessary to abandon UTF-16 due to this
limitation. Note also that, because of these pairs, UTF-16 does
not meet the requirements of the C standard for a wide character
encoding (see 3.7.3 and 6.4.4.4p11).
UTF-8 encoding looks like this:
value range encoded as
00000000-0000007F 0xxxxxxx
00000080-000007FF 110xxxxx 10xxxxxx
00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid,
which means that three-byte sequences ED xx yy, with A0 <= xx <= BF,
never occur. Note also that any value that can be encoded by a
given row of the table can also be encoded by all successive rows,
but this is not done; only the shortest possible encoding for any
given value is valid. For instance, the character 07C0 could be
encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or
FC 80 80 80 9F 80. Only the first is valid.
An implementation note: the transformation from UTF-16 to UTF-8, or
vice versa, is easiest done by using UTF-32 as an intermediary. */
/* Internal primitives which go from an UTF-8 byte stream to native-endian
UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal
operation in several places below. */
static inline int
one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp,
cppchar_t *cp)
{
static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 };
static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
cppchar_t c;
const uchar *inbuf = *inbufp;
size_t nbytes, i;
if (*inbytesleftp < 1)
return EINVAL;
c = *inbuf;
if (c < 0x80)
{
*cp = c;
*inbytesleftp -= 1;
*inbufp += 1;
return 0;
}
/* The number of leading 1-bits in the first byte indicates how many
bytes follow. */
for (nbytes = 2; nbytes < 7; nbytes++)
if ((c & ~masks[nbytes-1]) == patns[nbytes-1])
goto found;
return EILSEQ;
found:
if (*inbytesleftp < nbytes)
return EINVAL;
c = (c & masks[nbytes-1]);
inbuf++;
for (i = 1; i < nbytes; i++)
{
cppchar_t n = *inbuf++;
if ((n & 0xC0) != 0x80)
return EILSEQ;
c = ((c << 6) + (n & 0x3F));
}
/* Make sure the shortest possible encoding was used. */
if (c <= 0x7F && nbytes > 1) return EILSEQ;
if (c <= 0x7FF && nbytes > 2) return EILSEQ;
if (c <= 0xFFFF && nbytes > 3) return EILSEQ;
if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ;
if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ;
/* Make sure the character is valid. */
if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ;
*cp = c;
*inbufp = inbuf;
*inbytesleftp -= nbytes;
return 0;
}
static inline int
one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp)
{
static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
size_t nbytes;
uchar buf[6], *p = &buf[6];
uchar *outbuf = *outbufp;
nbytes = 1;
if (c < 0x80)
*--p = c;
else
{
do
{
*--p = ((c & 0x3F) | 0x80);
c >>= 6;
nbytes++;
}
while (c >= 0x3F || (c & limits[nbytes-1]));
*--p = (c | masks[nbytes-1]);
}
if (*outbytesleftp < nbytes)
return E2BIG;
while (p < &buf[6])
*outbuf++ = *p++;
*outbytesleftp -= nbytes;
*outbufp = outbuf;
return 0;
}
/* The following four functions transform one character between the two
encodings named in the function name. All have the signature
int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
uchar **outbufp, size_t *outbytesleftp)
BIGEND must have the value 0 or 1, coerced to (iconv_t); it is
interpreted as a boolean indicating whether big-endian or
little-endian encoding is to be used for the member of the pair
that is not UTF-8.
INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they
do for iconv.
The return value is either 0 for success, or an errno value for
failure, which may be E2BIG (need more space), EILSEQ (ill-formed
input sequence), ir EINVAL (incomplete input sequence). */
static inline int
one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
uchar **outbufp, size_t *outbytesleftp)
{
uchar *outbuf;
cppchar_t s = 0;
int rval;
/* Check for space first, since we know exactly how much we need. */
if (*outbytesleftp < 4)
return E2BIG;
rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
if (rval)
return rval;
outbuf = *outbufp;
outbuf[bigend ? 3 : 0] = (s & 0x000000FF);
outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8;
outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16;
outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24;
*outbufp += 4;
*outbytesleftp -= 4;
return 0;
}
static inline int
one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
uchar **outbufp, size_t *outbytesleftp)
{
cppchar_t s;
int rval;
const uchar *inbuf;
if (*inbytesleftp < 4)
return EINVAL;
inbuf = *inbufp;
s = inbuf[bigend ? 0 : 3] << 24;
s += inbuf[bigend ? 1 : 2] << 16;
s += inbuf[bigend ? 2 : 1] << 8;
s += inbuf[bigend ? 3 : 0];
if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF))
return EILSEQ;
rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
if (rval)
return rval;
*inbufp += 4;
*inbytesleftp -= 4;
return 0;
}
static inline int
one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
uchar **outbufp, size_t *outbytesleftp)
{
int rval;
cppchar_t s = 0;
const uchar *save_inbuf = *inbufp;
size_t save_inbytesleft = *inbytesleftp;
uchar *outbuf = *outbufp;
rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
if (rval)
return rval;
if (s > 0x0010FFFF)
{
*inbufp = save_inbuf;
*inbytesleftp = save_inbytesleft;
return EILSEQ;
}
if (s <= 0xFFFF)
{
if (*outbytesleftp < 2)
{
*inbufp = save_inbuf;
*inbytesleftp = save_inbytesleft;
return E2BIG;
}
outbuf[bigend ? 1 : 0] = (s & 0x00FF);
outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8;
*outbufp += 2;
*outbytesleftp -= 2;
return 0;
}
else
{
cppchar_t hi, lo;
if (*outbytesleftp < 4)
{
*inbufp = save_inbuf;
*inbytesleftp = save_inbytesleft;
return E2BIG;
}
hi = (s - 0x10000) / 0x400 + 0xD800;
lo = (s - 0x10000) % 0x400 + 0xDC00;
/* Even if we are little-endian, put the high surrogate first.
??? Matches practice? */
outbuf[bigend ? 1 : 0] = (hi & 0x00FF);
outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8;
outbuf[bigend ? 3 : 2] = (lo & 0x00FF);
outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8;
*outbufp += 4;
*outbytesleftp -= 4;
return 0;
}
}
static inline int
one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
uchar **outbufp, size_t *outbytesleftp)
{
cppchar_t s;
const uchar *inbuf = *inbufp;
int rval;
if (*inbytesleftp < 2)
return EINVAL;
s = inbuf[bigend ? 0 : 1] << 8;
s += inbuf[bigend ? 1 : 0];
/* Low surrogate without immediately preceding high surrogate is invalid. */
if (s >= 0xDC00 && s <= 0xDFFF)
return EILSEQ;
/* High surrogate must have a following low surrogate. */
else if (s >= 0xD800 && s <= 0xDBFF)
{
cppchar_t hi = s, lo;
if (*inbytesleftp < 4)
return EINVAL;
lo = inbuf[bigend ? 2 : 3] << 8;
lo += inbuf[bigend ? 3 : 2];
if (lo < 0xDC00 || lo > 0xDFFF)
return EILSEQ;
s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000;
}
rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
if (rval)
return rval;
/* Success - update the input pointers (one_cppchar_to_utf8 has done
the output pointers for us). */
if (s <= 0xFFFF)
{
*inbufp += 2;
*inbytesleftp -= 2;
}
else
{
*inbufp += 4;
*inbytesleftp -= 4;
}
return 0;
}
/* Helper routine for the next few functions. The 'const' on
one_conversion means that we promise not to modify what function is
pointed to, which lets the inliner see through it. */
static inline bool
conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *,
uchar **, size_t *),
iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to)
{
const uchar *inbuf;
uchar *outbuf;
size_t inbytesleft, outbytesleft;
int rval;
inbuf = from;
inbytesleft = flen;
outbuf = to->text + to->len;
outbytesleft = to->asize - to->len;
for (;;)
{
do
rval = one_conversion (cd, &inbuf, &inbytesleft,
&outbuf, &outbytesleft);
while (inbytesleft && !rval);
if (__builtin_expect (inbytesleft == 0, 1))
{
to->len = to->asize - outbytesleft;
return true;
}
if (rval != E2BIG)
{
errno = rval;
return false;
}
outbytesleft += OUTBUF_BLOCK_SIZE;
to->asize += OUTBUF_BLOCK_SIZE;
to->text = XRESIZEVEC (uchar, to->text, to->asize);
outbuf = to->text + to->asize - outbytesleft;
}
}
/* These functions convert entire strings between character sets.
They all have the signature
bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to);
The input string FROM is converted as specified by the function
name plus the iconv descriptor CD (which may be fake), and the
result appended to TO. On any error, false is returned, otherwise true. */
/* These four use the custom conversion code above. */
static bool
convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen,
struct _cpp_strbuf *to)
{
return conversion_loop (one_utf8_to_utf16, cd, from, flen, to);
}
static bool
convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen,
struct _cpp_strbuf *to)
{
return conversion_loop (one_utf8_to_utf32, cd, from, flen, to);
}
static bool
convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen,
struct _cpp_strbuf *to)
{
return conversion_loop (one_utf16_to_utf8, cd, from, flen, to);
}
static bool
convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen,
struct _cpp_strbuf *to)
{
return conversion_loop (one_utf32_to_utf8, cd, from, flen, to);
}
/* Identity conversion, used when we have no alternative. */
static bool
convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED,
const uchar *from, size_t flen, struct _cpp_strbuf *to)
{
if (to->len + flen > to->asize)
{
to->asize = to->len + flen;
to->asize += to->asize / 4;
to->text = XRESIZEVEC (uchar, to->text, to->asize);
}
memcpy (to->text + to->len, from, flen);
to->len += flen;
return true;
}
/* And this one uses the system iconv primitive. It's a little
different, since iconv's interface is a little different. */
#if HAVE_ICONV
#define CONVERT_ICONV_GROW_BUFFER \
do { \
outbytesleft += OUTBUF_BLOCK_SIZE; \
to->asize += OUTBUF_BLOCK_SIZE; \
to->text = XRESIZEVEC (uchar, to->text, to->asize); \
outbuf = (char *)to->text + to->asize - outbytesleft; \
} while (0)
static bool
convert_using_iconv (iconv_t cd, const uchar *from, size_t flen,
struct _cpp_strbuf *to)
{
ICONV_CONST char *inbuf;
char *outbuf;
size_t inbytesleft, outbytesleft;
/* Reset conversion descriptor and check that it is valid. */
if (iconv (cd, 0, 0, 0, 0) == (size_t)-1)
return false;
inbuf = (ICONV_CONST char *)from;
inbytesleft = flen;
outbuf = (char *)to->text + to->len;
outbytesleft = to->asize - to->len;
for (;;)
{
iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft);
if (__builtin_expect (inbytesleft == 0, 1))
{
/* Close out any shift states, returning to the initial state. */
if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
{
if (errno != E2BIG)
return false;
CONVERT_ICONV_GROW_BUFFER;
if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
return false;
}
to->len = to->asize - outbytesleft;
return true;
}
if (errno != E2BIG)
return false;
CONVERT_ICONV_GROW_BUFFER;
}
}
#else
#define convert_using_iconv 0 /* prevent undefined symbol error below */
#endif
/* Arrange for the above custom conversion logic to be used automatically
when conversion between a suitable pair of character sets is requested. */
#define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \
CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO)
struct cpp_conversion
{
const char *pair;
convert_f func;
iconv_t fake_cd;
};
static const struct cpp_conversion conversion_tab[] = {
{ "UTF-8/UTF-32LE", convert_utf8_utf32, (iconv_t)0 },
{ "UTF-8/UTF-32BE", convert_utf8_utf32, (iconv_t)1 },
{ "UTF-8/UTF-16LE", convert_utf8_utf16, (iconv_t)0 },
{ "UTF-8/UTF-16BE", convert_utf8_utf16, (iconv_t)1 },
{ "UTF-32LE/UTF-8", convert_utf32_utf8, (iconv_t)0 },
{ "UTF-32BE/UTF-8", convert_utf32_utf8, (iconv_t)1 },
{ "UTF-16LE/UTF-8", convert_utf16_utf8, (iconv_t)0 },
{ "UTF-16BE/UTF-8", convert_utf16_utf8, (iconv_t)1 },
};
/* Subroutine of cpp_init_iconv: initialize and return a
cset_converter structure for conversion from FROM to TO. If
iconv_open() fails, issue an error and return an identity
converter. Silently return an identity converter if FROM and TO
are identical. */
static struct cset_converter
init_iconv_desc (cpp_reader *pfile, const char *to, const char *from)
{
struct cset_converter ret;
char *pair;
size_t i;
ret.to = to;
ret.from = from;
if (!strcasecmp (to, from))
{
ret.func = convert_no_conversion;
ret.cd = (iconv_t) -1;
ret.width = -1;
return ret;
}
pair = (char *) alloca(strlen(to) + strlen(from) + 2);
strcpy(pair, from);
strcat(pair, "/");
strcat(pair, to);
for (i = 0; i < ARRAY_SIZE (conversion_tab); i++)
if (!strcasecmp (pair, conversion_tab[i].pair))
{
ret.func = conversion_tab[i].func;
ret.cd = conversion_tab[i].fake_cd;
ret.width = -1;
return ret;
}
/* No custom converter - try iconv. */
if (HAVE_ICONV)
{
ret.func = convert_using_iconv;
ret.cd = iconv_open (to, from);
ret.width = -1;
if (ret.cd == (iconv_t) -1)
{
if (errno == EINVAL)
cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */
"conversion from %s to %s not supported by iconv",
from, to);
else
cpp_errno (pfile, CPP_DL_ERROR, "iconv_open");
ret.func = convert_no_conversion;
}
}
else
{
cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */
"no iconv implementation, cannot convert from %s to %s",
from, to);
ret.func = convert_no_conversion;
ret.cd = (iconv_t) -1;
ret.width = -1;
}
return ret;
}
/* If charset conversion is requested, initialize iconv(3) descriptors
for conversion from the source character set to the execution
character sets. If iconv is not present in the C library, and
conversion is requested, issue an error. */
void
cpp_init_iconv (cpp_reader *pfile)
{
const char *ncset = CPP_OPTION (pfile, narrow_charset);
const char *wcset = CPP_OPTION (pfile, wide_charset);
const char *default_wcset;
bool be = CPP_OPTION (pfile, bytes_big_endian);
if (CPP_OPTION (pfile, wchar_precision) >= 32)
default_wcset = be ? "UTF-32BE" : "UTF-32LE";
else if (CPP_OPTION (pfile, wchar_precision) >= 16)
default_wcset = be ? "UTF-16BE" : "UTF-16LE";
else
/* This effectively means that wide strings are not supported,
so don't do any conversion at all. */
default_wcset = SOURCE_CHARSET;
if (!ncset)
ncset = SOURCE_CHARSET;
if (!wcset)
wcset = default_wcset;
pfile->narrow_cset_desc = init_iconv_desc (pfile, ncset, SOURCE_CHARSET);
pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
pfile->utf8_cset_desc = init_iconv_desc (pfile, "UTF-8", SOURCE_CHARSET);
pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision);
pfile->char16_cset_desc = init_iconv_desc (pfile,
be ? "UTF-16BE" : "UTF-16LE",
SOURCE_CHARSET);
pfile->char16_cset_desc.width = 16;
pfile->char32_cset_desc = init_iconv_desc (pfile,
be ? "UTF-32BE" : "UTF-32LE",
SOURCE_CHARSET);
pfile->char32_cset_desc.width = 32;
pfile->wide_cset_desc = init_iconv_desc (pfile, wcset, SOURCE_CHARSET);
pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision);
}
/* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */
void
_cpp_destroy_iconv (cpp_reader *pfile)
{
if (HAVE_ICONV)
{
if (pfile->narrow_cset_desc.func == convert_using_iconv)
iconv_close (pfile->narrow_cset_desc.cd);
if (pfile->utf8_cset_desc.func == convert_using_iconv)
iconv_close (pfile->utf8_cset_desc.cd);
if (pfile->char16_cset_desc.func == convert_using_iconv)
iconv_close (pfile->char16_cset_desc.cd);
if (pfile->char32_cset_desc.func == convert_using_iconv)
iconv_close (pfile->char32_cset_desc.cd);
if (pfile->wide_cset_desc.func == convert_using_iconv)
iconv_close (pfile->wide_cset_desc.cd);
}
}
/* Utility routine for use by a full compiler. C is a character taken
from the *basic* source character set, encoded in the host's
execution encoding. Convert it to (the target's) execution
encoding, and return that value.
Issues an internal error if C's representation in the narrow
execution character set fails to be a single-byte value (C99
5.2.1p3: "The representation of each member of the source and
execution character sets shall fit in a byte.") May also issue an
internal error if C fails to be a member of the basic source
character set (testing this exactly is too hard, especially when
the host character set is EBCDIC). */
cppchar_t
cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c)
{
uchar sbuf[1];
struct _cpp_strbuf tbuf;
/* This test is merely an approximation, but it suffices to catch
the most important thing, which is that we don't get handed a
character outside the unibyte range of the host character set. */
if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR)
{
cpp_error (pfile, CPP_DL_ICE,
"character 0x%lx is not in the basic source character set\n",
(unsigned long)c);
return 0;
}
/* Being a character in the unibyte range of the host character set,
we can safely splat it into a one-byte buffer and trust that that
is a well-formed string. */
sbuf[0] = c;
/* This should never need to reallocate, but just in case... */
tbuf.asize = 1;
tbuf.text = XNEWVEC (uchar, tbuf.asize);
tbuf.len = 0;
if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf))
{
cpp_errno (pfile, CPP_DL_ICE, "converting to execution character set");
return 0;
}
if (tbuf.len != 1)
{
cpp_error (pfile, CPP_DL_ICE,
"character 0x%lx is not unibyte in execution character set",
(unsigned long)c);
return 0;
}
c = tbuf.text[0];
free(tbuf.text);
return c;
}
/* cpp_substring_ranges's constructor. */
cpp_substring_ranges::cpp_substring_ranges () :
m_ranges (NULL),
m_num_ranges (0),
m_alloc_ranges (8)
{
m_ranges = XNEWVEC (source_range, m_alloc_ranges);
}
/* cpp_substring_ranges's destructor. */
cpp_substring_ranges::~cpp_substring_ranges ()
{
free (m_ranges);
}
/* Add RANGE to the vector of source_range information. */
void
cpp_substring_ranges::add_range (source_range range)
{
if (m_num_ranges >= m_alloc_ranges)
{
m_alloc_ranges *= 2;
m_ranges
= (source_range *)xrealloc (m_ranges,
sizeof (source_range) * m_alloc_ranges);
}
m_ranges[m_num_ranges++] = range;
}
/* Read NUM ranges from LOC_READER, adding them to the vector of source_range
information. */
void
cpp_substring_ranges::add_n_ranges (int num,
cpp_string_location_reader &loc_reader)
{
for (int i = 0; i < num; i++)
add_range (loc_reader.get_next ());
}
/* Utility routine that computes a mask of the form 0000...111... with
WIDTH 1-bits. */
static inline size_t
width_to_mask (size_t width)
{
width = MIN (width, BITS_PER_CPPCHAR_T);
if (width >= CHAR_BIT * sizeof (size_t))
return ~(size_t) 0;
else
return ((size_t) 1 << width) - 1;
}
/* A large table of unicode character information. */
enum {
/* Valid in a C99 identifier? */
C99 = 1,
/* Valid in a C99 identifier, but not as the first character? */
N99 = 2,
/* Valid in a C++ identifier? */
CXX = 4,
/* Valid in a C11/C++11 identifier? */
C11 = 8,
/* Valid in a C11/C++11 identifier, but not as the first character? */
N11 = 16,
/* NFC representation is not valid in an identifier? */
CID = 32,
/* Might be valid NFC form? */
NFC = 64,
/* Might be valid NFKC form? */
NKC = 128,
/* Certain preceding characters might make it not valid NFC/NKFC form? */
CTX = 256
};
struct ucnrange {
/* Bitmap of flags above. */
unsigned short flags;
/* Combining class of the character. */
unsigned char combine;
/* Last character in the range described by this entry. */
unsigned int end;
};
#include "ucnid.h"
/* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */
#define UCS_LIMIT 0x10FFFF
/* Returns 1 if C is valid in an identifier, 2 if C is valid except at
the start of an identifier, and 0 if C is not valid in an
identifier. We assume C has already gone through the checks of
_cpp_valid_ucn. Also update NST for C if returning nonzero. The
algorithm is a simple binary search on the table defined in
ucnid.h. */
static int
ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c,
struct normalize_state *nst)
{
int mn, mx, md;
unsigned short valid_flags, invalid_start_flags;
if (c > UCS_LIMIT)
return 0;
mn = 0;
mx = ARRAY_SIZE (ucnranges) - 1;
while (mx != mn)
{
md = (mn + mx) / 2;
if (c <= ucnranges[md].end)
mx = md;
else
mn = md + 1;
}
/* When -pedantic, we require the character to have been listed by
the standard for the current language. Otherwise, we accept the
union of the acceptable sets for all supported language versions. */
valid_flags = C99 | CXX | C11;
if (CPP_PEDANTIC (pfile))
{
if (CPP_OPTION (pfile, c11_identifiers))
valid_flags = C11;
else if (CPP_OPTION (pfile, c99))
valid_flags = C99;
else if (CPP_OPTION (pfile, cplusplus))
valid_flags = CXX;
}
if (! (ucnranges[mn].flags & valid_flags))
return 0;
if (CPP_OPTION (pfile, c11_identifiers))
invalid_start_flags = N11;
else if (CPP_OPTION (pfile, c99))
invalid_start_flags = N99;
else
invalid_start_flags = 0;
/* Update NST. */
if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class)
nst->level = normalized_none;
else if (ucnranges[mn].flags & CTX)
{
bool safe;
cppchar_t p = nst->previous;
/* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC,
and are combined algorithmically from a sequence of the form
1100-1112 1161-1175 11A8-11C2
(if the third is not present, it is treated as 11A7, which is not
really a valid character).
Unfortunately, C99 allows (only) the NFC form, but C++ allows
only the combining characters. */
if (c >= 0x1161 && c <= 0x1175)
safe = p < 0x1100 || p > 0x1112;
else if (c >= 0x11A8 && c <= 0x11C2)
safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0);
else
safe = check_nfc (pfile, c, p);
if (!safe)
{
if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2))
nst->level = MAX (nst->level, normalized_identifier_C);
else
nst->level = normalized_none;
}
}
else if (ucnranges[mn].flags & NKC)
;
else if (ucnranges[mn].flags & NFC)
nst->level = MAX (nst->level, normalized_C);
else if (ucnranges[mn].flags & CID)
nst->level = MAX (nst->level, normalized_identifier_C);
else
nst->level = normalized_none;
if (ucnranges[mn].combine == 0)
nst->previous = c;
nst->prev_class = ucnranges[mn].combine;
/* In C99, UCN digits may not begin identifiers. In C11 and C++11,
UCN combining characters may not begin identifiers. */
if (ucnranges[mn].flags & invalid_start_flags)
return 2;
return 1;
}
/* [lex.charset]: The character designated by the universal character
name \UNNNNNNNN is that character whose character short name in
ISO/IEC 10646 is NNNNNNNN; the character designated by the
universal character name \uNNNN is that character whose character
short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value
for a universal character name corresponds to a surrogate code point
(in the range 0xD800-0xDFFF, inclusive), the program is ill-formed.
Additionally, if the hexadecimal value for a universal-character-name
outside a character or string literal corresponds to a control character
(in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a
character in the basic source character set, the program is ill-formed.
C99 6.4.3: A universal character name shall not specify a character
whose short identifier is less than 00A0 other than 0024 ($), 0040 (@),
or 0060 (`), nor one in the range D800 through DFFF inclusive.
If the hexadecimal value is larger than the upper bound of the UCS
codespace specified in ISO/IEC 10646, a pedantic warning is issued
in all versions of C and in the C++20 or later versions of C++.
*PSTR must be preceded by "\u" or "\U"; it is assumed that the
buffer end is delimited by a non-hex digit. Returns false if the
UCN has not been consumed, true otherwise.
The value of the UCN, whether valid or invalid, is returned in *CP.
Diagnostics are emitted for invalid values. PSTR is updated to point
one beyond the UCN, or to the syntactically invalid character.
IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of
an identifier, or 2 otherwise.
If LOC_READER is non-NULL, then position information is
read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */
bool
_cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr,
const uchar *limit, int identifier_pos,
struct normalize_state *nst, cppchar_t *cp,
source_range *char_range,
cpp_string_location_reader *loc_reader)
{
cppchar_t result, c;
unsigned int length;
const uchar *str = *pstr;
const uchar *base = str - 2;
if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99))
cpp_error (pfile, CPP_DL_WARNING,
"universal character names are only valid in C++ and C99");
else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0
&& !CPP_OPTION (pfile, cplusplus))
cpp_error (pfile, CPP_DL_WARNING,
"C99's universal character names are incompatible with C90");
else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0)
cpp_warning (pfile, CPP_W_TRADITIONAL,
"the meaning of '\\%c' is different in traditional C",
(int) str[-1]);
if (str[-1] == 'u')
length = 4;
else if (str[-1] == 'U')
length = 8;
else
{
cpp_error (pfile, CPP_DL_ICE, "In _cpp_valid_ucn but not a UCN");
length = 4;
}
result = 0;
do
{
c = *str;
if (!ISXDIGIT (c))
break;
str++;
if (loc_reader)
{
gcc_assert (char_range);
char_range->m_finish = loc_reader->get_next ().m_finish;
}
result = (result << 4) + hex_value (c);
}
while (--length && str < limit);
/* Partial UCNs are not valid in strings, but decompose into
multiple tokens in identifiers, so we can't give a helpful
error message in that case. */
if (length && identifier_pos)
{
*cp = 0;
return false;
}
*pstr = str;
if (length)
{
cpp_error (pfile, CPP_DL_ERROR,
"incomplete universal character name %.*s",
(int) (str - base), base);
result = 1;
}
/* The C99 standard permits $, @ and ` to be specified as UCNs. We use
hex escapes so that this also works with EBCDIC hosts.
C++0x permits everything below 0xa0 within literals;
ucn_valid_in_identifier will complain about identifiers. */
else if ((result < 0xa0
&& !CPP_OPTION (pfile, cplusplus)
&& (result != 0x24 && result != 0x40 && result != 0x60))
|| (result & 0x80000000)
|| (result >= 0xD800 && result <= 0xDFFF))
{
cpp_error (pfile, CPP_DL_ERROR,
"%.*s is not a valid universal character",
(int) (str - base), base);
result = 1;
}
else if (identifier_pos && result == 0x24
&& CPP_OPTION (pfile, dollars_in_ident))
{
if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping)
{
CPP_OPTION (pfile, warn_dollars) = 0;
cpp_error (pfile, CPP_DL_PEDWARN, "'$' in identifier or number");
}
NORMALIZE_STATE_UPDATE_IDNUM (nst, result);
}
else if (identifier_pos)
{
int validity = ucn_valid_in_identifier (pfile, result, nst);
if (validity == 0)
cpp_error (pfile, CPP_DL_ERROR,
"universal character %.*s is not valid in an identifier",
(int) (str - base), base);
else if (validity == 2 && identifier_pos == 1)
cpp_error (pfile, CPP_DL_ERROR,
"universal character %.*s is not valid at the start of an identifier",
(int) (str - base), base);
}
else if (result > UCS_LIMIT
&& (!CPP_OPTION (pfile, cplusplus)
|| CPP_OPTION (pfile, lang) > CLK_CXX17))
cpp_error (pfile, CPP_DL_PEDWARN,
"%.*s is outside the UCS codespace",
(int) (str - base), base);
*cp = result;
return true;
}
/* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate
it to the execution character set and write the result into TBUF,
if TBUF is non-NULL.
An advanced pointer is returned. Issues all relevant diagnostics.
If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
contains the location of the character so far: location information
is read from *LOC_READER, and *RANGES is updated accordingly. */
static const uchar *
convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit,
struct _cpp_strbuf *tbuf, struct cset_converter cvt,
source_range char_range,
cpp_string_location_reader *loc_reader,
cpp_substring_ranges *ranges)
{
cppchar_t ucn;
uchar buf[6];
uchar *bufp = buf;
size_t bytesleft = 6;
int rval;
struct normalize_state nst = INITIAL_NORMALIZE_STATE;
/* loc_reader and ranges must either be both NULL, or both be non-NULL. */
gcc_assert ((loc_reader != NULL) == (ranges != NULL));
from++; /* Skip u/U. */
if (loc_reader)
/* The u/U is part of the spelling of this character. */
char_range.m_finish = loc_reader->get_next ().m_finish;
_cpp_valid_ucn (pfile, &from, limit, 0, &nst,
&ucn, &char_range, loc_reader);
rval = one_cppchar_to_utf8 (ucn, &bufp, &bytesleft);
if (rval)
{
errno = rval;
cpp_errno (pfile, CPP_DL_ERROR,
"converting UCN to source character set");
}
else
{
if (tbuf)
if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf))
cpp_errno (pfile, CPP_DL_ERROR,
"converting UCN to execution character set");
if (loc_reader)
{
int num_encoded_bytes = 6 - bytesleft;
for (int i = 0; i < num_encoded_bytes; i++)
ranges->add_range (char_range);
}
}
return from;
}
/* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded
extended characters rather than UCNs. If the return value is TRUE, then a
character was successfully decoded and stored in *CP; *PSTR has been
updated to point one past the valid UTF-8 sequence. Diagnostics may have
been emitted if the character parsed is not allowed in the current context.
If the return value is FALSE, then *PSTR has not been modified and *CP may
equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it
may, when processing an identifier in C mode, equal a codepoint that was
validly encoded but is not allowed to appear in an identifier. In either
case, no diagnostic is emitted, and the return value of FALSE should cause
a new token to be formed.
Unlike _cpp_valid_ucn, this will never be called when lexing a string; only
a potential identifier, or a CPP_OTHER token. NST is unused in the latter
case.
As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for
the start of an identifier, or 2 otherwise. */
extern bool
_cpp_valid_utf8 (cpp_reader *pfile,
const uchar **pstr,
const uchar *limit,
int identifier_pos,
struct normalize_state *nst,
cppchar_t *cp)
{
const uchar *base = *pstr;
size_t inbytesleft = limit - base;
if (one_utf8_to_cppchar (pstr, &inbytesleft, cp))
{
/* No diagnostic here as this byte will rather become a
new token. */
*cp = 0;
return false;
}
if (identifier_pos)
{
switch (ucn_valid_in_identifier (pfile, *cp, nst))
{
case 0:
/* In C++, this is an error for invalid character in an identifier
because logically, the UTF-8 was converted to a UCN during
translation phase 1 (even though we don't physically do it that
way). In C, this byte rather becomes grammatically a separate
token. */
if (CPP_OPTION (pfile, cplusplus))
cpp_error (pfile, CPP_DL_ERROR,
"extended character %.*s is not valid in an identifier",
(int) (*pstr - base), base);
else
{
*pstr = base;
return false;
}
break;
case 2:
if (identifier_pos == 1)
{
/* This is treated the same way in C++ or C99 -- lexed as an
identifier which is then invalid because an identifier is
not allowed to start with this character. */
cpp_error (pfile, CPP_DL_ERROR,
"extended character %.*s is not valid at the start of an identifier",
(int) (*pstr - base), base);
}
break;
}
}
return true;
}
/* Subroutine of convert_hex and convert_oct. N is the representation
in the execution character set of a numeric escape; write it into the
string buffer TBUF and update the end-of-string pointer therein. WIDE
is true if it's a wide string that's being assembled in TBUF. This
function issues no diagnostics and never fails. */
static void
emit_numeric_escape (cpp_reader *pfile, cppchar_t n,
struct _cpp_strbuf *tbuf, struct cset_converter cvt)
{
size_t width = cvt.width;
if (width != CPP_OPTION (pfile, char_precision))
{
/* We have to render this into the target byte order, which may not
be our byte order. */
bool bigend = CPP_OPTION (pfile, bytes_big_endian);
size_t cwidth = CPP_OPTION (pfile, char_precision);
size_t cmask = width_to_mask (cwidth);
size_t nbwc = width / cwidth;
size_t i;
size_t off = tbuf->len;
cppchar_t c;
if (tbuf->len + nbwc > tbuf->asize)
{
tbuf->asize += OUTBUF_BLOCK_SIZE;
tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
}
for (i = 0; i < nbwc; i++)
{
c = n & cmask;
n >>= cwidth;
tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c;
}
tbuf->len += nbwc;
}
else
{
/* Note: this code does not handle the case where the target
and host have a different number of bits in a byte. */
if (tbuf->len + 1 > tbuf->asize)
{
tbuf->asize += OUTBUF_BLOCK_SIZE;
tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
}
tbuf->text[tbuf->len++] = n;
}
}
/* Convert a hexadecimal escape, pointed to by FROM, to the execution
character set and write it into the string buffer TBUF (if non-NULL).
Returns an advanced pointer, and issues diagnostics as necessary.
No character set translation occurs; this routine always produces the
execution-set character with numeric value equal to the given hex
number. You can, e.g. generate surrogate pairs this way.
If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
contains the location of the character so far: location information
is read from *LOC_READER, and *RANGES is updated accordingly. */
static const uchar *
convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit,
struct _cpp_strbuf *tbuf, struct cset_converter cvt,
source_range char_range,
cpp_string_location_reader *loc_reader,
cpp_substring_ranges *ranges)
{
cppchar_t c, n = 0, overflow = 0;
int digits_found = 0;
size_t width = cvt.width;
size_t mask = width_to_mask (width);
/* loc_reader and ranges must either be both NULL, or both be non-NULL. */
gcc_assert ((loc_reader != NULL) == (ranges != NULL));
if (CPP_WTRADITIONAL (pfile))
cpp_warning (pfile, CPP_W_TRADITIONAL,
"the meaning of '\\x' is different in traditional C");
/* Skip 'x'. */
from++;
/* The 'x' is part of the spelling of this character. */
if (loc_reader)
char_range.m_finish = loc_reader->get_next ().m_finish;
while (from < limit)
{
c = *from;
if (! hex_p (c))
break;
from++;
if (loc_reader)
char_range.m_finish = loc_reader->get_next ().m_finish;
overflow |= n ^ (n << 4 >> 4);
n = (n << 4) + hex_value (c);
digits_found = 1;
}
if (!digits_found)
{
cpp_error (pfile, CPP_DL_ERROR,
"\\x used with no following hex digits");
return from;
}
if (overflow | (n != (n & mask)))
{
cpp_error (pfile, CPP_DL_PEDWARN,
"hex escape sequence out of range");
n &= mask;
}
if (tbuf)
emit_numeric_escape (pfile, n, tbuf, cvt);
if (ranges)
ranges->add_range (char_range);
return from;
}
/* Convert an octal escape, pointed to by FROM, to the execution
character set and write it into the string buffer TBUF. Returns an
advanced pointer, and issues diagnostics as necessary.
No character set translation occurs; this routine always produces the
execution-set character with numeric value equal to the given octal
number.
If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
contains the location of the character so far: location information
is read from *LOC_READER, and *RANGES is updated accordingly. */
static const uchar *
convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit,
struct _cpp_strbuf *tbuf, struct cset_converter cvt,
source_range char_range,
cpp_string_location_reader *loc_reader,
cpp_substring_ranges *ranges)
{
size_t count = 0;
cppchar_t c, n = 0;
size_t width = cvt.width;
size_t mask = width_to_mask (width);
bool overflow = false;
/* loc_reader and ranges must either be both NULL, or both be non-NULL. */
gcc_assert ((loc_reader != NULL) == (ranges != NULL));
while (from < limit && count++ < 3)
{
c = *from;
if (c < '0' || c > '7')
break;
from++;
if (loc_reader)
char_range.m_finish = loc_reader->get_next ().m_finish;
overflow |= n ^ (n << 3 >> 3);
n = (n << 3) + c - '0';
}
if (n != (n & mask))
{
cpp_error (pfile, CPP_DL_PEDWARN,
"octal escape sequence out of range");
n &= mask;
}
if (tbuf)
emit_numeric_escape (pfile, n, tbuf, cvt);
if (ranges)
ranges->add_range (char_range);
return from;
}
/* Convert an escape sequence (pointed to by FROM) to its value on
the target, and to the execution character set. Do not scan past
LIMIT. Write the converted value into TBUF, if TBUF is non-NULL.
Returns an advanced pointer. Handles all relevant diagnostics.
If LOC_READER is non-NULL, then RANGES must be non-NULL: location
information is read from *LOC_READER, and *RANGES is updated
accordingly. */
static const uchar *
convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit,
struct _cpp_strbuf *tbuf, struct cset_converter cvt,
cpp_string_location_reader *loc_reader,
cpp_substring_ranges *ranges)
{
/* Values of \a \b \e \f \n \r \t \v respectively. */
#if HOST_CHARSET == HOST_CHARSET_ASCII
static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 };
#elif HOST_CHARSET == HOST_CHARSET_EBCDIC
static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 };
#else
#error "unknown host character set"
#endif
uchar c;
/* Record the location of the backslash. */
source_range char_range;
if (loc_reader)
char_range = loc_reader->get_next ();
c = *from;
switch (c)
{
/* UCNs, hex escapes, and octal escapes are processed separately. */
case 'u': case 'U':
return convert_ucn (pfile, from, limit, tbuf, cvt,
char_range, loc_reader, ranges);
case 'x':
return convert_hex (pfile, from, limit, tbuf, cvt,
char_range, loc_reader, ranges);
break;
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
return convert_oct (pfile, from, limit, tbuf, cvt,
char_range, loc_reader, ranges);
/* Various letter escapes. Get the appropriate host-charset
value into C. */
case '\\': case '\'': case '"': case '?': break;
case '(': case '{': case '[': case '%':
/* '\(', etc, can be used at the beginning of a line in a long
string split onto multiple lines with \-newline, to prevent
Emacs or other text editors from getting confused. '\%' can
be used to prevent SCCS from mangling printf format strings. */
if (CPP_PEDANTIC (pfile))
goto unknown;
break;
case 'b': c = charconsts[1]; break;
case 'f': c = charconsts[3]; break;
case 'n': c = charconsts[4]; break;
case 'r': c = charconsts[5]; break;
case 't': c = charconsts[6]; break;
case 'v': c = charconsts[7]; break;
case 'a':
if (CPP_WTRADITIONAL (pfile))
cpp_warning (pfile, CPP_W_TRADITIONAL,
"the meaning of '\\a' is different in traditional C");
c = charconsts[0];
break;
case 'e': case 'E':
if (CPP_PEDANTIC (pfile))
cpp_error (pfile, CPP_DL_PEDWARN,
"non-ISO-standard escape sequence, '\\%c'", (int) c);
c = charconsts[2];
break;
default:
unknown:
if (ISGRAPH (c))
cpp_error (pfile, CPP_DL_PEDWARN,
"unknown escape sequence: '\\%c'", (int) c);
else
{
/* diagnostic.c does not support "%03o". When it does, this
code can use %03o directly in the diagnostic again. */
char buf[32];
sprintf(buf, "%03o", (int) c);
cpp_error (pfile, CPP_DL_PEDWARN,
"unknown escape sequence: '\\%s'", buf);
}
}
if (tbuf)
/* Now convert what we have to the execution character set. */
if (!APPLY_CONVERSION (cvt, &c, 1, tbuf))
cpp_errno (pfile, CPP_DL_ERROR,
"converting escape sequence to execution character set");
if (loc_reader)
{
char_range.m_finish = loc_reader->get_next ().m_finish;
ranges->add_range (char_range);
}
return from + 1;
}
/* TYPE is a token type. The return value is the conversion needed to
convert from source to execution character set for the given type. */
static struct cset_converter
converter_for_type (cpp_reader *pfile, enum cpp_ttype type)
{
switch (type)
{
default:
return pfile->narrow_cset_desc;
case CPP_UTF8CHAR:
case CPP_UTF8STRING:
return pfile->utf8_cset_desc;
case CPP_CHAR16:
case CPP_STRING16:
return pfile->char16_cset_desc;
case CPP_CHAR32:
case CPP_STRING32:
return pfile->char32_cset_desc;
case CPP_WCHAR:
case CPP_WSTRING:
return pfile->wide_cset_desc;
}
}
/* FROM is an array of cpp_string structures of length COUNT. These
are to be converted from the source to the execution character set,
escape sequences translated, and finally all are to be
concatenated. WIDE indicates whether or not to produce a wide
string. If TO is non-NULL, the result is written into TO.
If LOC_READERS and OUT are non-NULL, then location information
is read from LOC_READERS (which must be an array of length COUNT),
and location information is written to *RANGES.
Returns true for success, false for failure. */
static bool
cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count,
cpp_string *to, enum cpp_ttype type,
cpp_string_location_reader *loc_readers,
cpp_substring_ranges *out)
{
struct _cpp_strbuf tbuf;
const uchar *p, *base, *limit;
size_t i;
struct cset_converter cvt = converter_for_type (pfile, type);
/* loc_readers and out must either be both NULL, or both be non-NULL. */
gcc_assert ((loc_readers != NULL) == (out != NULL));
if (to)
{
tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len);
tbuf.text = XNEWVEC (uchar, tbuf.asize);
tbuf.len = 0;
}
cpp_string_location_reader *loc_reader = NULL;
for (i = 0; i < count; i++)
{
if (loc_readers)
loc_reader = &loc_readers[i];
p = from[i].text;
if (*p == 'u')
{
p++;
if (loc_reader)
loc_reader->get_next ();
if (*p == '8')
{
p++;
if (loc_reader)
loc_reader->get_next ();
}
}
else if (*p == 'L' || *p == 'U') p++;
if (*p == 'R')
{
const uchar *prefix;
/* Skip over 'R"'. */
p += 2;
if (loc_reader)
{
loc_reader->get_next ();
loc_reader->get_next ();
}
prefix = p;
while (*p != '(')
{
p++;
if (loc_reader)
loc_reader->get_next ();
}
p++;
if (loc_reader)
loc_reader->get_next ();
limit = from[i].text + from[i].len;
if (limit >= p + (p - prefix) + 1)
limit -= (p - prefix) + 1;
/* Raw strings are all normal characters; these can be fed
directly to convert_cset. */
if (to)
if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf))
goto fail;
if (loc_reader)
{
/* If generating source ranges, assume we have a 1:1
correspondence between bytes in the source encoding and bytes
in the execution encoding (e.g. if we have a UTF-8 to UTF-8
conversion), so that this run of bytes in the source file
corresponds to a run of bytes in the execution string.
This requirement is guaranteed by an early-reject in
cpp_interpret_string_ranges. */
gcc_assert (cvt.func == convert_no_conversion);
out->add_n_ranges (limit - p, *loc_reader);
}
continue;
}
/* If we don't now have a leading quote, something has gone wrong.
This can occur if cpp_interpret_string_ranges is handling a
stringified macro argument, but should not be possible otherwise. */
if (*p != '"' && *p != '\'')
{
gcc_assert (out != NULL);
cpp_error (pfile, CPP_DL_ERROR, "missing open quote");
if (to)
free (tbuf.text);
return false;
}
/* Skip leading quote. */
p++;
if (loc_reader)
loc_reader->get_next ();
limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */
for (;;)
{
base = p;
while (p < limit && *p != '\\')
p++;
if (p > base)
{
/* We have a run of normal characters; these can be fed
directly to convert_cset. */
if (to)
if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf))
goto fail;
/* Similar to above: assumes we have a 1:1 correspondence
between bytes in the source encoding and bytes in the
execution encoding. */
if (loc_reader)
{
gcc_assert (cvt.func == convert_no_conversion);
out->add_n_ranges (p - base, *loc_reader);
}
}
if (p >= limit)
break;
struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL;
p = convert_escape (pfile, p + 1, limit, tbuf_ptr, cvt,
loc_reader, out);
}
}
if (to)
{
/* NUL-terminate the 'to' buffer and translate it to a cpp_string
structure. */
emit_numeric_escape (pfile, 0, &tbuf, cvt);
tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len);
to->text = tbuf.text;
to->len = tbuf.len;
}
/* Use the location of the trailing quote as the location of the
NUL-terminator. */
if (loc_reader)
{
source_range range = loc_reader->get_next ();
out->add_range (range);
}
return true;
fail:
cpp_errno (pfile, CPP_DL_ERROR, "converting to execution character set");
if (to)
free (tbuf.text);
return false;
}
/* FROM is an array of cpp_string structures of length COUNT. These
are to be converted from the source to the execution character set,
escape sequences translated, and finally all are to be
concatenated. WIDE indicates whether or not to produce a wide
string. The result is written into TO. Returns true for success,
false for failure. */
bool
cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count,
cpp_string *to, enum cpp_ttype type)
{
return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL);
}
/* A "do nothing" diagnostic-handling callback for use by
cpp_interpret_string_ranges, so that it can temporarily suppress
diagnostic-handling. */
static bool
noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level,
enum cpp_warning_reason, rich_location *,
const char *, va_list *)
{
/* no-op. */
return true;
}
/* This function mimics the behavior of cpp_interpret_string, but
rather than generating a string in the execution character set,
*OUT is written to with the source code ranges of the characters
in such a string.
FROM and LOC_READERS should both be arrays of length COUNT.
Returns NULL for success, or an error message for failure. */
const char *
cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from,
cpp_string_location_reader *loc_readers,
size_t count,
cpp_substring_ranges *out,
enum cpp_ttype type)
{
/* There are a couple of cases in the range-handling in
cpp_interpret_string_1 that rely on there being a 1:1 correspondence
between bytes in the source encoding and bytes in the execution
encoding, so that each byte in the execution string can correspond
to the location of a byte in the source string.
This holds for the typical case of a UTF-8 to UTF-8 conversion.
Enforce this requirement by only attempting to track substring
locations if we have source encoding == execution encoding.
This is a stronger condition than we need, since we could e.g.
have ASCII to EBCDIC (with 1 byte per character before and after),
but it seems to be a reasonable restriction. */
struct cset_converter cvt = converter_for_type (pfile, type);
if (cvt.func != convert_no_conversion)
return "execution character set != source character set";
/* For on-demand strings we have already lexed the strings, so there
should be no diagnostics. However, if we have bogus source location
data (or stringified macro arguments), the attempt to lex the
strings could fail with an diagnostic. Temporarily install an
diagnostic-handler to catch the diagnostic, so that it can lead to this call
failing, rather than being emitted as a user-visible diagnostic.
If an diagnostic does occur, we should see it via the return value of
cpp_interpret_string_1. */
bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level,
enum cpp_warning_reason, rich_location *,
const char *, va_list *)
ATTRIBUTE_FPTR_PRINTF(5,0);
saved_diagnostic_handler = pfile->cb.diagnostic;
pfile->cb.diagnostic = noop_diagnostic_cb;
bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type,
loc_readers, out);
/* Restore the saved diagnostic-handler. */
pfile->cb.diagnostic = saved_diagnostic_handler;
if (!result)
return "cpp_interpret_string_1 failed";
/* Success. */
return NULL;
}
/* Subroutine of do_line and do_linemarker. Convert escape sequences
in a string, but do not perform character set conversion. */
bool
cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from,
size_t count, cpp_string *to,
enum cpp_ttype type ATTRIBUTE_UNUSED)
{
struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc;
bool retval;
pfile->narrow_cset_desc.func = convert_no_conversion;
pfile->narrow_cset_desc.cd = (iconv_t) -1;
pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
retval = cpp_interpret_string (pfile, from, count, to, CPP_STRING);
pfile->narrow_cset_desc = save_narrow_cset_desc;
return retval;
}
/* Subroutine of cpp_interpret_charconst which performs the conversion
to a number, for narrow strings. STR is the string structure returned
by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
cpp_interpret_charconst. TYPE is the token type. */
static cppchar_t
narrow_str_to_charconst (cpp_reader *pfile, cpp_string str,
unsigned int *pchars_seen, int *unsignedp,
enum cpp_ttype type)
{
size_t width = CPP_OPTION (pfile, char_precision);
size_t max_chars = CPP_OPTION (pfile, int_precision) / width;
size_t mask = width_to_mask (width);
size_t i;
cppchar_t result, c;
bool unsigned_p;
/* The value of a multi-character character constant, or a
single-character character constant whose representation in the
execution character set is more than one byte long, is
implementation defined. This implementation defines it to be the
number formed by interpreting the byte sequence in memory as a
big-endian binary number. If overflow occurs, the high bytes are
lost, and a warning is issued.
We don't want to process the NUL terminator handed back by
cpp_interpret_string. */
result = 0;
for (i = 0; i < str.len - 1; i++)
{
c = str.text[i] & mask;
if (width < BITS_PER_CPPCHAR_T)
result = (result << width) | c;
else
result = c;
}
if (type == CPP_UTF8CHAR)
max_chars = 1;
if (i > max_chars)
{
i = max_chars;
cpp_error (pfile, type == CPP_UTF8CHAR ? CPP_DL_ERROR : CPP_DL_WARNING,
"character constant too long for its type");
}
else if (i > 1 && CPP_OPTION (pfile, warn_multichar))
cpp_warning (pfile, CPP_W_MULTICHAR, "multi-character character constant");
/* Multichar constants are of type int and therefore signed. */
if (i > 1)
unsigned_p = 0;
else if (type == CPP_UTF8CHAR && !CPP_OPTION (pfile, cplusplus))
unsigned_p = 1;
else
unsigned_p = CPP_OPTION (pfile, unsigned_char);
/* Truncate the constant to its natural width, and simultaneously
sign- or zero-extend to the full width of cppchar_t.
For single-character constants, the value is WIDTH bits wide.
For multi-character constants, the value is INT_PRECISION bits wide. */
if (i > 1)
width = CPP_OPTION (pfile, int_precision);
if (width < BITS_PER_CPPCHAR_T)
{
mask = ((cppchar_t) 1 << width) - 1;
if (unsigned_p || !(result & (1 << (width - 1))))
result &= mask;
else
result |= ~mask;
}
*pchars_seen = i;
*unsignedp = unsigned_p;
return result;
}
/* Subroutine of cpp_interpret_charconst which performs the conversion
to a number, for wide strings. STR is the string structure returned
by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
cpp_interpret_charconst. TYPE is the token type. */
static cppchar_t
wide_str_to_charconst (cpp_reader *pfile, cpp_string str,
unsigned int *pchars_seen, int *unsignedp,
enum cpp_ttype type)
{
bool bigend = CPP_OPTION (pfile, bytes_big_endian);
size_t width = converter_for_type (pfile, type).width;
size_t cwidth = CPP_OPTION (pfile, char_precision);
size_t mask = width_to_mask (width);
size_t cmask = width_to_mask (cwidth);
size_t nbwc = width / cwidth;
size_t off, i;
cppchar_t result = 0, c;
if (str.len <= nbwc)
{
/* Error recovery, if no errors have been diagnosed previously,
there should be at least two wide characters. Empty literals
are diagnosed earlier and we can get just the zero terminator
only if there were errors diagnosed during conversion. */
*pchars_seen = 0;
*unsignedp = 0;
return 0;
}
/* This is finicky because the string is in the target's byte order,
which may not be our byte order. Only the last character, ignoring
the NUL terminator, is relevant. */
off = str.len - (nbwc * 2);
result = 0;
for (i = 0; i < nbwc; i++)
{
c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1];
result = (result << cwidth) | (c & cmask);
}
/* Wide character constants have type wchar_t, and a single
character exactly fills a wchar_t, so a multi-character wide
character constant is guaranteed to overflow. */
if (str.len > nbwc * 2)
cpp_error (pfile, (CPP_OPTION (pfile, cplusplus)
&& (type == CPP_CHAR16 || type == CPP_CHAR32))
? CPP_DL_ERROR : CPP_DL_WARNING,
"character constant too long for its type");
/* Truncate the constant to its natural width, and simultaneously
sign- or zero-extend to the full width of cppchar_t. */
if (width < BITS_PER_CPPCHAR_T)
{
if (type == CPP_CHAR16 || type == CPP_CHAR32
|| CPP_OPTION (pfile, unsigned_wchar)
|| !(result & (1 << (width - 1))))
result &= mask;
else
result |= ~mask;
}
if (type == CPP_CHAR16 || type == CPP_CHAR32
|| CPP_OPTION (pfile, unsigned_wchar))
*unsignedp = 1;
else
*unsignedp = 0;
*pchars_seen = 1;
return result;
}
/* Interpret a (possibly wide) character constant in TOKEN.
PCHARS_SEEN points to a variable that is filled in with the number
of characters seen, and UNSIGNEDP to a variable that indicates
whether the result has signed type. */
cppchar_t
cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token,
unsigned int *pchars_seen, int *unsignedp)
{
cpp_string str = { 0, 0 };
bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR);
int u8 = 2 * int(token->type == CPP_UTF8CHAR);
cppchar_t result;
/* An empty constant will appear as L'', u'', U'', u8'', or '' */
if (token->val.str.len == (size_t) (2 + wide + u8))
{
cpp_error (pfile, CPP_DL_ERROR, "empty character constant");
*pchars_seen = 0;
*unsignedp = 0;
return 0;
}
else if (!cpp_interpret_string (pfile, &token->val.str, 1, &str,
token->type))
{
*pchars_seen = 0;
*unsignedp = 0;
return 0;
}
if (wide)
result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp,
token->type);
else
result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp,
token->type);
if (str.text != token->val.str.text)
free ((void *)str.text);
return result;
}
/* Convert an identifier denoted by ID and LEN, which might contain
UCN escapes or UTF-8 multibyte chars, to the source character set,
either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually
a valid identifier. */
cpp_hashnode *
_cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len)
{
/* It turns out that a UCN escape always turns into fewer characters
than the escape itself, so we can allocate a temporary in advance. */
uchar * buf = (uchar *) alloca (len + 1);
uchar * bufp = buf;
size_t idp;
for (idp = 0; idp < len; idp++)
if (id[idp] != '\\')
*bufp++ = id[idp];
else
{
unsigned length = id[idp+1] == 'u' ? 4 : 8;
cppchar_t value = 0;
size_t bufleft = len - (bufp - buf);
int rval;
idp += 2;
while (length && idp < len && ISXDIGIT (id[idp]))
{
value = (value << 4) + hex_value (id[idp]);
idp++;
length--;
}
idp--;
/* Special case for EBCDIC: if the identifier contains
a '$' specified using a UCN, translate it to EBCDIC. */
if (value == 0x24)
{
*bufp++ = '$';
continue;
}
rval = one_cppchar_to_utf8 (value, &bufp, &bufleft);
if (rval)
{
errno = rval;
cpp_errno (pfile, CPP_DL_ERROR,
"converting UCN to source character set");
break;
}
}
return CPP_HASHNODE (ht_lookup (pfile->hash_table,
buf, bufp - buf, HT_ALLOC));
}
/* Convert an input buffer (containing the complete contents of one
source file) from INPUT_CHARSET to the source character set. INPUT
points to the input buffer, SIZE is its allocated size, and LEN is
the length of the meaningful data within the buffer. The
translated buffer is returned, *ST_SIZE is set to the length of
the meaningful data within the translated buffer, and *BUFFER_START
is set to the start of the returned buffer. *BUFFER_START may
differ from the return value in the case of a BOM or other ignored
marker information.
INPUT is expected to have been allocated with xmalloc. This
function will either set *BUFFER_START to INPUT, or free it and set
*BUFFER_START to a pointer to another xmalloc-allocated block of
memory. */
uchar *
_cpp_convert_input (cpp_reader *pfile, const char *input_charset,
uchar *input, size_t size, size_t len,
const unsigned char **buffer_start, off_t *st_size)
{
struct cset_converter input_cset;
struct _cpp_strbuf to;
unsigned char *buffer;
input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, input_charset);
if (input_cset.func == convert_no_conversion)
{
to.text = input;
to.asize = size;
to.len = len;
}
else
{
to.asize = MAX (65536, len);
to.text = XNEWVEC (uchar, to.asize);
to.len = 0;
if (!APPLY_CONVERSION (input_cset, input, len, &to))
cpp_error (pfile, CPP_DL_ERROR,
"failure to convert %s to %s",
CPP_OPTION (pfile, input_charset), SOURCE_CHARSET);
free (input);
}
/* Clean up the mess. */
if (input_cset.func == convert_using_iconv)
iconv_close (input_cset.cd);
/* Resize buffer if we allocated substantially too much, or if we
haven't enough space for the \n-terminator or following
15 bytes of padding (used to quiet warnings from valgrind or
Address Sanitizer, when the optimized lexer accesses aligned
16-byte memory chunks, including the bytes after the malloced,
area, and stops lexing on '\n'). */
if (to.len + 4096 < to.asize || to.len + 16 > to.asize)
to.text = XRESIZEVEC (uchar, to.text, to.len + 16);
memset (to.text + to.len, '\0', 16);
/* If the file is using old-school Mac line endings (\r only),
terminate with another \r, not an \n, so that we do not mistake
the \r\n sequence for a single DOS line ending and erroneously
issue the "No newline at end of file" diagnostic. */
if (to.len && to.text[to.len - 1] == '\r')
to.text[to.len] = '\r';
else
to.text[to.len] = '\n';
buffer = to.text;
*st_size = to.len;
#if HOST_CHARSET == HOST_CHARSET_ASCII
/* The HOST_CHARSET test just above ensures that the source charset
is UTF-8. So, ignore a UTF-8 BOM if we see one. Note that
glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a
BOM -- however, even if it did, we would still need this code due
to the 'convert_no_conversion' case. */
if (to.len >= 3 && to.text[0] == 0xef && to.text[1] == 0xbb
&& to.text[2] == 0xbf)
{
*st_size -= 3;
buffer += 3;
}
#endif
*buffer_start = to.text;
return buffer;
}
/* Decide on the default encoding to assume for input files. */
const char *
_cpp_default_encoding (void)
{
const char *current_encoding = NULL;
/* We disable this because the default codeset is 7-bit ASCII on
most platforms, and this causes conversion failures on every
file in GCC that happens to have one of the upper 128 characters
in it -- most likely, as part of the name of a contributor.
We should definitely recognize in-band markers of file encoding,
like:
- the appropriate Unicode byte-order mark (FE FF) to recognize
UTF16 and UCS4 (in both big-endian and little-endian flavors)
and UTF8
- a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to
distinguish ASCII and EBCDIC.
- now we can parse something like "#pragma GCC encoding <xyz>
on the first line, or even Emacs/VIM's mode line tags (there's
a problem here in that VIM uses the last line, and Emacs has
its more elaborate "local variables" convention).
- investigate whether Java has another common convention, which
would be friendly to support.
(Zack Weinberg and Paolo Bonzini, May 20th 2004) */
#if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0
setlocale (LC_CTYPE, "");
current_encoding = nl_langinfo (CODESET);
#endif
if (current_encoding == NULL || *current_encoding == '\0')
current_encoding = SOURCE_CHARSET;
return current_encoding;
}
/* Implementation of class cpp_string_location_reader. */
/* Constructor for cpp_string_location_reader. */
cpp_string_location_reader::
cpp_string_location_reader (location_t src_loc,
line_maps *line_table)
{
src_loc = get_range_from_loc (line_table, src_loc).m_start;
/* SRC_LOC might be a macro location. It only makes sense to do
column-by-column calculations on ordinary maps, so get the
corresponding location in an ordinary map. */
m_loc
= linemap_resolve_location (line_table, src_loc,
LRK_SPELLING_LOCATION, NULL);
const line_map_ordinary *map
= linemap_check_ordinary (linemap_lookup (line_table, m_loc));
m_offset_per_column = (1 << map->m_range_bits);
}
/* Get the range of the next source byte. */
source_range
cpp_string_location_reader::get_next ()
{
source_range result;
result.m_start = m_loc;
result.m_finish = m_loc;
if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS)
m_loc += m_offset_per_column;
return result;
}
cpp_display_width_computation::
cpp_display_width_computation (const char *data, int data_length, int tabstop) :
m_begin (data),
m_next (m_begin),
m_bytes_left (data_length),
m_tabstop (tabstop),
m_display_cols (0)
{
gcc_assert (m_tabstop > 0);
}
/* The main implementation function for class cpp_display_width_computation.
m_next points on entry to the start of the UTF-8 encoding of the next
character, and is updated to point just after the last byte of the encoding.
m_bytes_left contains on entry the remaining size of the buffer into which
m_next points, and this is also updated accordingly. If m_next does not
point to a valid UTF-8-encoded sequence, then it will be treated as a single
byte with display width 1. m_cur_display_col is the current display column,
relative to which tab stops should be expanded. Returns the display width of
the codepoint just processed. */
int
cpp_display_width_computation::process_next_codepoint ()
{
cppchar_t c;
int next_width;
if (*m_next == '\t')
{
++m_next;
--m_bytes_left;
next_width = m_tabstop - (m_display_cols % m_tabstop);
}
else if (one_utf8_to_cppchar ((const uchar **) &m_next, &m_bytes_left, &c)
!= 0)
{
/* Input is not convertible to UTF-8. This could be fine, e.g. in a
string literal, so don't complain. Just treat it as if it has a width
of one. */
++m_next;
--m_bytes_left;
next_width = 1;
}
else
{
/* one_utf8_to_cppchar() has updated m_next and m_bytes_left for us. */
next_width = cpp_wcwidth (c);
}
m_display_cols += next_width;
return next_width;
}
/* Utility to advance the byte stream by the minimum amount needed to consume
N display columns. Returns the number of display columns that were
actually skipped. This could be less than N, if there was not enough data,
or more than N, if the last character to be skipped had a sufficiently large
display width. */
int
cpp_display_width_computation::advance_display_cols (int n)
{
const int start = m_display_cols;
const int target = start + n;
while (m_display_cols < target && !done ())
process_next_codepoint ();
return m_display_cols - start;
}
/* For the string of length DATA_LENGTH bytes that begins at DATA, compute
how many display columns are occupied by the first COLUMN bytes. COLUMN
may exceed DATA_LENGTH, in which case the phantom bytes at the end are
treated as if they have display width 1. Tabs are expanded to the next tab
stop, relative to the start of DATA. */
int
cpp_byte_column_to_display_column (const char *data, int data_length,
int column, int tabstop)
{
const int offset = MAX (0, column - data_length);
cpp_display_width_computation dw (data, column - offset, tabstop);
while (!dw.done ())
dw.process_next_codepoint ();
return dw.display_cols_processed () + offset;
}
/* For the string of length DATA_LENGTH bytes that begins at DATA, compute
the least number of bytes that will result in at least DISPLAY_COL display
columns. The return value may exceed DATA_LENGTH if the entire string does
not occupy enough display columns. */
int
cpp_display_column_to_byte_column (const char *data, int data_length,
int display_col, int tabstop)
{
cpp_display_width_computation dw (data, data_length, tabstop);
const int avail_display = dw.advance_display_cols (display_col);
return dw.bytes_processed () + MAX (0, display_col - avail_display);
}
/* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc,
because that will inspect the user's locale, and in particular in an ASCII
locale, it will not return anything useful for extended characters. But GCC
in other respects (see e.g. _cpp_default_encoding()) behaves as if
everything is UTF-8. We also make some tweaks that are useful for the way
GCC needs to use this data, e.g. tabs and other control characters should be
treated as having width 1. The lookup tables are generated from
contrib/unicode/gen_wcwidth.py and were made by simply calling glibc
wcwidth() on all codepoints, then applying the small tweaks. These tables
are not highly optimized, but for the present purpose of outputting
diagnostics, they are sufficient. */
#include "generated_cpp_wcwidth.h"
int cpp_wcwidth (cppchar_t c)
{
if (__builtin_expect (c <= wcwidth_range_ends[0], true))
return wcwidth_widths[0];
/* Binary search the tables. */
int begin = 1;
static const int end
= sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends);
int len = end - begin;
do
{
int half = len/2;
int middle = begin + half;
if (c > wcwidth_range_ends[middle])
{
begin = middle + 1;
len -= half + 1;
}
else
len = half;
} while (len);
if (__builtin_expect (begin != end, true))
return wcwidth_widths[begin];
return 1;
}
|