summaryrefslogtreecommitdiff
path: root/libgcc/config/arm/ieee754-sf.S
blob: bc44d4e289bc5a24f9961e96f27800d94a97cdfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
/* ieee754-sf.S single-precision floating point support for ARM

   Copyright (C) 2003-2015 Free Software Foundation, Inc.
   Contributed by Nicolas Pitre (nico@cam.org)

   This file is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 3, or (at your option) any
   later version.

   This file is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   Under Section 7 of GPL version 3, you are granted additional
   permissions described in the GCC Runtime Library Exception, version
   3.1, as published by the Free Software Foundation.

   You should have received a copy of the GNU General Public License and
   a copy of the GCC Runtime Library Exception along with this program;
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
   <http://www.gnu.org/licenses/>.  */

/*
 * Notes:
 *
 * The goal of this code is to be as fast as possible.  This is
 * not meant to be easy to understand for the casual reader.
 *
 * Only the default rounding mode is intended for best performances.
 * Exceptions aren't supported yet, but that can be added quite easily
 * if necessary without impacting performances.
 */

#ifdef L_arm_negsf2
	
ARM_FUNC_START negsf2
ARM_FUNC_ALIAS aeabi_fneg negsf2

	eor	r0, r0, #0x80000000	@ flip sign bit
	RET

	FUNC_END aeabi_fneg
	FUNC_END negsf2

#endif

#ifdef L_arm_addsubsf3

ARM_FUNC_START aeabi_frsub

	eor	r0, r0, #0x80000000	@ flip sign bit of first arg
	b	1f

ARM_FUNC_START subsf3
ARM_FUNC_ALIAS aeabi_fsub subsf3

	eor	r1, r1, #0x80000000	@ flip sign bit of second arg
#if defined(__INTERWORKING_STUBS__)
	b	1f			@ Skip Thumb-code prologue
#endif

ARM_FUNC_START addsf3
ARM_FUNC_ALIAS aeabi_fadd addsf3

1:	@ Look for zeroes, equal values, INF, or NAN.
	movs	r2, r0, lsl #1
	do_it	ne, ttt
	COND(mov,s,ne)	r3, r1, lsl #1
	teqne	r2, r3
	COND(mvn,s,ne)	ip, r2, asr #24
	COND(mvn,s,ne)	ip, r3, asr #24
	beq	LSYM(Lad_s)

	@ Compute exponent difference.  Make largest exponent in r2,
	@ corresponding arg in r0, and positive exponent difference in r3.
	mov	r2, r2, lsr #24
	rsbs	r3, r2, r3, lsr #24
	do_it	gt, ttt
	addgt	r2, r2, r3
	eorgt	r1, r0, r1
	eorgt	r0, r1, r0
	eorgt	r1, r0, r1
	do_it	lt
	rsblt	r3, r3, #0

	@ If exponent difference is too large, return largest argument
	@ already in r0.  We need up to 25 bit to handle proper rounding
	@ of 0x1p25 - 1.1.
	cmp	r3, #25
	do_it	hi
	RETc(hi)

	@ Convert mantissa to signed integer.
	tst	r0, #0x80000000
	orr	r0, r0, #0x00800000
	bic	r0, r0, #0xff000000
	do_it	ne
	rsbne	r0, r0, #0
	tst	r1, #0x80000000
	orr	r1, r1, #0x00800000
	bic	r1, r1, #0xff000000
	do_it	ne
	rsbne	r1, r1, #0

	@ If exponent == difference, one or both args were denormalized.
	@ Since this is not common case, rescale them off line.
	teq	r2, r3
	beq	LSYM(Lad_d)
LSYM(Lad_x):

	@ Compensate for the exponent overlapping the mantissa MSB added later
	sub	r2, r2, #1

	@ Shift and add second arg to first arg in r0.
	@ Keep leftover bits into r1.
	shiftop adds r0 r0 r1 asr r3 ip
	rsb	r3, r3, #32
	shift1	lsl, r1, r1, r3

	@ Keep absolute value in r0-r1, sign in r3 (the n bit was set above)
	and	r3, r0, #0x80000000
	bpl	LSYM(Lad_p)
#if defined(__thumb2__)
	negs	r1, r1
	sbc	r0, r0, r0, lsl #1
#else
	rsbs	r1, r1, #0
	rsc	r0, r0, #0
#endif

	@ Determine how to normalize the result.
LSYM(Lad_p):
	cmp	r0, #0x00800000
	bcc	LSYM(Lad_a)
	cmp	r0, #0x01000000
	bcc	LSYM(Lad_e)

	@ Result needs to be shifted right.
	movs	r0, r0, lsr #1
	mov	r1, r1, rrx
	add	r2, r2, #1

	@ Make sure we did not bust our exponent.
	cmp	r2, #254
	bhs	LSYM(Lad_o)

	@ Our result is now properly aligned into r0, remaining bits in r1.
	@ Pack final result together.
	@ Round with MSB of r1. If halfway between two numbers, round towards
	@ LSB of r0 = 0. 
LSYM(Lad_e):
	cmp	r1, #0x80000000
	adc	r0, r0, r2, lsl #23
	do_it	eq
	biceq	r0, r0, #1
	orr	r0, r0, r3
	RET

	@ Result must be shifted left and exponent adjusted.
LSYM(Lad_a):
	movs	r1, r1, lsl #1
	adc	r0, r0, r0
	tst	r0, #0x00800000
	sub	r2, r2, #1
	bne	LSYM(Lad_e)
	
	@ No rounding necessary since r1 will always be 0 at this point.
LSYM(Lad_l):

#if __ARM_ARCH__ < 5

	movs	ip, r0, lsr #12
	moveq	r0, r0, lsl #12
	subeq	r2, r2, #12
	tst	r0, #0x00ff0000
	moveq	r0, r0, lsl #8
	subeq	r2, r2, #8
	tst	r0, #0x00f00000
	moveq	r0, r0, lsl #4
	subeq	r2, r2, #4
	tst	r0, #0x00c00000
	moveq	r0, r0, lsl #2
	subeq	r2, r2, #2
	cmp	r0, #0x00800000
	movcc	r0, r0, lsl #1
	sbcs	r2, r2, #0

#else

	clz	ip, r0
	sub	ip, ip, #8
	subs	r2, r2, ip
	shift1	lsl, r0, r0, ip

#endif

	@ Final result with sign
	@ If exponent negative, denormalize result.
	do_it	ge, et
	addge	r0, r0, r2, lsl #23
	rsblt	r2, r2, #0
	orrge	r0, r0, r3
#if defined(__thumb2__)
	do_it	lt, t
	lsrlt	r0, r0, r2
	orrlt	r0, r3, r0
#else
	orrlt	r0, r3, r0, lsr r2
#endif
	RET

	@ Fixup and adjust bit position for denormalized arguments.
	@ Note that r2 must not remain equal to 0.
LSYM(Lad_d):
	teq	r2, #0
	eor	r1, r1, #0x00800000
	do_it	eq, te
	eoreq	r0, r0, #0x00800000
	addeq	r2, r2, #1
	subne	r3, r3, #1
	b	LSYM(Lad_x)

LSYM(Lad_s):
	mov	r3, r1, lsl #1

	mvns	ip, r2, asr #24
	do_it	ne
	COND(mvn,s,ne)	ip, r3, asr #24
	beq	LSYM(Lad_i)

	teq	r2, r3
	beq	1f

	@ Result is x + 0.0 = x or 0.0 + y = y.
	teq	r2, #0
	do_it	eq
	moveq	r0, r1
	RET

1:	teq	r0, r1

	@ Result is x - x = 0.
	do_it	ne, t
	movne	r0, #0
	RETc(ne)

	@ Result is x + x = 2x.
	tst	r2, #0xff000000
	bne	2f
	movs	r0, r0, lsl #1
	do_it	cs
	orrcs	r0, r0, #0x80000000
	RET
2:	adds	r2, r2, #(2 << 24)
	do_it	cc, t
	addcc	r0, r0, #(1 << 23)
	RETc(cc)
	and	r3, r0, #0x80000000

	@ Overflow: return INF.
LSYM(Lad_o):
	orr	r0, r3, #0x7f000000
	orr	r0, r0, #0x00800000
	RET

	@ At least one of r0/r1 is INF/NAN.
	@   if r0 != INF/NAN: return r1 (which is INF/NAN)
	@   if r1 != INF/NAN: return r0 (which is INF/NAN)
	@   if r0 or r1 is NAN: return NAN
	@   if opposite sign: return NAN
	@   otherwise return r0 (which is INF or -INF)
LSYM(Lad_i):
	mvns	r2, r2, asr #24
	do_it	ne, et
	movne	r0, r1
	COND(mvn,s,eq)	r3, r3, asr #24
	movne	r1, r0
	movs	r2, r0, lsl #9
	do_it	eq, te
	COND(mov,s,eq)	r3, r1, lsl #9
	teqeq	r0, r1
	orrne	r0, r0, #0x00400000	@ quiet NAN
	RET

	FUNC_END aeabi_frsub
	FUNC_END aeabi_fadd
	FUNC_END addsf3
	FUNC_END aeabi_fsub
	FUNC_END subsf3

ARM_FUNC_START floatunsisf
ARM_FUNC_ALIAS aeabi_ui2f floatunsisf
		
	mov	r3, #0
	b	1f

ARM_FUNC_START floatsisf
ARM_FUNC_ALIAS aeabi_i2f floatsisf
	
	ands	r3, r0, #0x80000000
	do_it	mi
	rsbmi	r0, r0, #0

1:	movs	ip, r0
	do_it	eq
	RETc(eq)

	@ Add initial exponent to sign
	orr	r3, r3, #((127 + 23) << 23)

	.ifnc	ah, r0
	mov	ah, r0
	.endif
	mov	al, #0
	b	2f

	FUNC_END aeabi_i2f
	FUNC_END floatsisf
	FUNC_END aeabi_ui2f
	FUNC_END floatunsisf

ARM_FUNC_START floatundisf
ARM_FUNC_ALIAS aeabi_ul2f floatundisf

	orrs	r2, r0, r1
	do_it	eq
	RETc(eq)

	mov	r3, #0
	b	1f

ARM_FUNC_START floatdisf
ARM_FUNC_ALIAS aeabi_l2f floatdisf

	orrs	r2, r0, r1
	do_it	eq
	RETc(eq)

	ands	r3, ah, #0x80000000	@ sign bit in r3
	bpl	1f
#if defined(__thumb2__)
	negs	al, al
	sbc	ah, ah, ah, lsl #1
#else
	rsbs	al, al, #0
	rsc	ah, ah, #0
#endif
1:
	movs	ip, ah
	do_it	eq, tt
	moveq	ip, al
	moveq	ah, al
	moveq	al, #0

	@ Add initial exponent to sign
	orr	r3, r3, #((127 + 23 + 32) << 23)
	do_it	eq
	subeq	r3, r3, #(32 << 23)
2:	sub	r3, r3, #(1 << 23)

#if __ARM_ARCH__ < 5

	mov	r2, #23
	cmp	ip, #(1 << 16)
	do_it	hs, t
	movhs	ip, ip, lsr #16
	subhs	r2, r2, #16
	cmp	ip, #(1 << 8)
	do_it	hs, t
	movhs	ip, ip, lsr #8
	subhs	r2, r2, #8
	cmp	ip, #(1 << 4)
	do_it	hs, t
	movhs	ip, ip, lsr #4
	subhs	r2, r2, #4
	cmp	ip, #(1 << 2)
	do_it	hs, e
	subhs	r2, r2, #2
	sublo	r2, r2, ip, lsr #1
	subs	r2, r2, ip, lsr #3

#else

	clz	r2, ip
	subs	r2, r2, #8

#endif

	sub	r3, r3, r2, lsl #23
	blt	3f

	shiftop add r3 r3 ah lsl r2 ip
	shift1	lsl, ip, al, r2
	rsb	r2, r2, #32
	cmp	ip, #0x80000000
	shiftop adc r0 r3 al lsr r2 r2
	do_it	eq
	biceq	r0, r0, #1
	RET

3:	add	r2, r2, #32
	shift1	lsl, ip, ah, r2
	rsb	r2, r2, #32
	orrs	al, al, ip, lsl #1
	shiftop adc r0 r3 ah lsr r2 r2
	do_it	eq
	biceq	r0, r0, ip, lsr #31
	RET

	FUNC_END floatdisf
	FUNC_END aeabi_l2f
	FUNC_END floatundisf
	FUNC_END aeabi_ul2f

#endif /* L_addsubsf3 */

#ifdef L_arm_muldivsf3

ARM_FUNC_START mulsf3
ARM_FUNC_ALIAS aeabi_fmul mulsf3

	@ Mask out exponents, trap any zero/denormal/INF/NAN.
	mov	ip, #0xff
	ands	r2, ip, r0, lsr #23
	do_it	ne, tt
	COND(and,s,ne)	r3, ip, r1, lsr #23
	teqne	r2, ip
	teqne	r3, ip
	beq	LSYM(Lml_s)
LSYM(Lml_x):

	@ Add exponents together
	add	r2, r2, r3

	@ Determine final sign.
	eor	ip, r0, r1

	@ Convert mantissa to unsigned integer.
	@ If power of two, branch to a separate path.
	@ Make up for final alignment.
	movs	r0, r0, lsl #9
	do_it	ne
	COND(mov,s,ne)	r1, r1, lsl #9
	beq	LSYM(Lml_1)
	mov	r3, #0x08000000
	orr	r0, r3, r0, lsr #5
	orr	r1, r3, r1, lsr #5

#if __ARM_ARCH__ < 4

	@ Put sign bit in r3, which will be restored into r0 later.
	and	r3, ip, #0x80000000

	@ Well, no way to make it shorter without the umull instruction.
	do_push	{r3, r4, r5}
	mov	r4, r0, lsr #16
	mov	r5, r1, lsr #16
	bic	r0, r0, r4, lsl #16
	bic	r1, r1, r5, lsl #16
	mul	ip, r4, r5
	mul	r3, r0, r1
	mul	r0, r5, r0
	mla	r0, r4, r1, r0
	adds	r3, r3, r0, lsl #16
	adc	r1, ip, r0, lsr #16
	do_pop	{r0, r4, r5}

#else

	@ The actual multiplication.
	umull	r3, r1, r0, r1

	@ Put final sign in r0.
	and	r0, ip, #0x80000000

#endif

	@ Adjust result upon the MSB position.
	cmp	r1, #(1 << 23)
	do_it	cc, tt
	movcc	r1, r1, lsl #1
	orrcc	r1, r1, r3, lsr #31
	movcc	r3, r3, lsl #1

	@ Add sign to result.
	orr	r0, r0, r1

	@ Apply exponent bias, check for under/overflow.
	sbc	r2, r2, #127
	cmp	r2, #(254 - 1)
	bhi	LSYM(Lml_u)

	@ Round the result, merge final exponent.
	cmp	r3, #0x80000000
	adc	r0, r0, r2, lsl #23
	do_it	eq
	biceq	r0, r0, #1
	RET

	@ Multiplication by 0x1p*: let''s shortcut a lot of code.
LSYM(Lml_1):
	teq	r0, #0
	and	ip, ip, #0x80000000
	do_it	eq
	moveq	r1, r1, lsl #9
	orr	r0, ip, r0, lsr #9
	orr	r0, r0, r1, lsr #9
	subs	r2, r2, #127
	do_it	gt, tt
	COND(rsb,s,gt)	r3, r2, #255
	orrgt	r0, r0, r2, lsl #23
	RETc(gt)

	@ Under/overflow: fix things up for the code below.
	orr	r0, r0, #0x00800000
	mov	r3, #0
	subs	r2, r2, #1

LSYM(Lml_u):
	@ Overflow?
	bgt	LSYM(Lml_o)

	@ Check if denormalized result is possible, otherwise return signed 0.
	cmn	r2, #(24 + 1)
	do_it	le, t
	bicle	r0, r0, #0x7fffffff
	RETc(le)

	@ Shift value right, round, etc.
	rsb	r2, r2, #0
	movs	r1, r0, lsl #1
	shift1	lsr, r1, r1, r2
	rsb	r2, r2, #32
	shift1	lsl, ip, r0, r2
	movs	r0, r1, rrx
	adc	r0, r0, #0
	orrs	r3, r3, ip, lsl #1
	do_it	eq
	biceq	r0, r0, ip, lsr #31
	RET

	@ One or both arguments are denormalized.
	@ Scale them leftwards and preserve sign bit.
LSYM(Lml_d):
	teq	r2, #0
	and	ip, r0, #0x80000000
1:	do_it	eq, tt
	moveq	r0, r0, lsl #1
	tsteq	r0, #0x00800000
	subeq	r2, r2, #1
	beq	1b
	orr	r0, r0, ip
	teq	r3, #0
	and	ip, r1, #0x80000000
2:	do_it	eq, tt
	moveq	r1, r1, lsl #1
	tsteq	r1, #0x00800000
	subeq	r3, r3, #1
	beq	2b
	orr	r1, r1, ip
	b	LSYM(Lml_x)

LSYM(Lml_s):
	@ Isolate the INF and NAN cases away
	and	r3, ip, r1, lsr #23
	teq	r2, ip
	do_it	ne
	teqne	r3, ip
	beq	1f

	@ Here, one or more arguments are either denormalized or zero.
	bics	ip, r0, #0x80000000
	do_it	ne
	COND(bic,s,ne)	ip, r1, #0x80000000
	bne	LSYM(Lml_d)

	@ Result is 0, but determine sign anyway.
LSYM(Lml_z):
	eor	r0, r0, r1
	bic	r0, r0, #0x7fffffff
	RET

1:	@ One or both args are INF or NAN.
	teq	r0, #0x0
	do_it	ne, ett
	teqne	r0, #0x80000000
	moveq	r0, r1
	teqne	r1, #0x0
	teqne	r1, #0x80000000
	beq	LSYM(Lml_n)		@ 0 * INF or INF * 0 -> NAN
	teq	r2, ip
	bne	1f
	movs	r2, r0, lsl #9
	bne	LSYM(Lml_n)		@ NAN * <anything> -> NAN
1:	teq	r3, ip
	bne	LSYM(Lml_i)
	movs	r3, r1, lsl #9
	do_it	ne
	movne	r0, r1
	bne	LSYM(Lml_n)		@ <anything> * NAN -> NAN

	@ Result is INF, but we need to determine its sign.
LSYM(Lml_i):
	eor	r0, r0, r1

	@ Overflow: return INF (sign already in r0).
LSYM(Lml_o):
	and	r0, r0, #0x80000000
	orr	r0, r0, #0x7f000000
	orr	r0, r0, #0x00800000
	RET

	@ Return a quiet NAN.
LSYM(Lml_n):
	orr	r0, r0, #0x7f000000
	orr	r0, r0, #0x00c00000
	RET

	FUNC_END aeabi_fmul
	FUNC_END mulsf3

ARM_FUNC_START divsf3
ARM_FUNC_ALIAS aeabi_fdiv divsf3

	@ Mask out exponents, trap any zero/denormal/INF/NAN.
	mov	ip, #0xff
	ands	r2, ip, r0, lsr #23
	do_it	ne, tt
	COND(and,s,ne)	r3, ip, r1, lsr #23
	teqne	r2, ip
	teqne	r3, ip
	beq	LSYM(Ldv_s)
LSYM(Ldv_x):

	@ Subtract divisor exponent from dividend''s
	sub	r2, r2, r3

	@ Preserve final sign into ip.
	eor	ip, r0, r1

	@ Convert mantissa to unsigned integer.
	@ Dividend -> r3, divisor -> r1.
	movs	r1, r1, lsl #9
	mov	r0, r0, lsl #9
	beq	LSYM(Ldv_1)
	mov	r3, #0x10000000
	orr	r1, r3, r1, lsr #4
	orr	r3, r3, r0, lsr #4

	@ Initialize r0 (result) with final sign bit.
	and	r0, ip, #0x80000000

	@ Ensure result will land to known bit position.
	@ Apply exponent bias accordingly.
	cmp	r3, r1
	do_it	cc
	movcc	r3, r3, lsl #1
	adc	r2, r2, #(127 - 2)

	@ The actual division loop.
	mov	ip, #0x00800000
1:	cmp	r3, r1
	do_it	cs, t
	subcs	r3, r3, r1
	orrcs	r0, r0, ip
	cmp	r3, r1, lsr #1
	do_it	cs, t
	subcs	r3, r3, r1, lsr #1
	orrcs	r0, r0, ip, lsr #1
	cmp	r3, r1, lsr #2
	do_it	cs, t
	subcs	r3, r3, r1, lsr #2
	orrcs	r0, r0, ip, lsr #2
	cmp	r3, r1, lsr #3
	do_it	cs, t
	subcs	r3, r3, r1, lsr #3
	orrcs	r0, r0, ip, lsr #3
	movs	r3, r3, lsl #4
	do_it	ne
	COND(mov,s,ne)	ip, ip, lsr #4
	bne	1b

	@ Check exponent for under/overflow.
	cmp	r2, #(254 - 1)
	bhi	LSYM(Lml_u)

	@ Round the result, merge final exponent.
	cmp	r3, r1
	adc	r0, r0, r2, lsl #23
	do_it	eq
	biceq	r0, r0, #1
	RET

	@ Division by 0x1p*: let''s shortcut a lot of code.
LSYM(Ldv_1):
	and	ip, ip, #0x80000000
	orr	r0, ip, r0, lsr #9
	adds	r2, r2, #127
	do_it	gt, tt
	COND(rsb,s,gt)	r3, r2, #255
	orrgt	r0, r0, r2, lsl #23
	RETc(gt)

	orr	r0, r0, #0x00800000
	mov	r3, #0
	subs	r2, r2, #1
	b	LSYM(Lml_u)

	@ One or both arguments are denormalized.
	@ Scale them leftwards and preserve sign bit.
LSYM(Ldv_d):
	teq	r2, #0
	and	ip, r0, #0x80000000
1:	do_it	eq, tt
	moveq	r0, r0, lsl #1
	tsteq	r0, #0x00800000
	subeq	r2, r2, #1
	beq	1b
	orr	r0, r0, ip
	teq	r3, #0
	and	ip, r1, #0x80000000
2:	do_it	eq, tt
	moveq	r1, r1, lsl #1
	tsteq	r1, #0x00800000
	subeq	r3, r3, #1
	beq	2b
	orr	r1, r1, ip
	b	LSYM(Ldv_x)

	@ One or both arguments are either INF, NAN, zero or denormalized.
LSYM(Ldv_s):
	and	r3, ip, r1, lsr #23
	teq	r2, ip
	bne	1f
	movs	r2, r0, lsl #9
	bne	LSYM(Lml_n)		@ NAN / <anything> -> NAN
	teq	r3, ip
	bne	LSYM(Lml_i)		@ INF / <anything> -> INF
	mov	r0, r1
	b	LSYM(Lml_n)		@ INF / (INF or NAN) -> NAN
1:	teq	r3, ip
	bne	2f
	movs	r3, r1, lsl #9
	beq	LSYM(Lml_z)		@ <anything> / INF -> 0
	mov	r0, r1
	b	LSYM(Lml_n)		@ <anything> / NAN -> NAN
2:	@ If both are nonzero, we need to normalize and resume above.
	bics	ip, r0, #0x80000000
	do_it	ne
	COND(bic,s,ne)	ip, r1, #0x80000000
	bne	LSYM(Ldv_d)
	@ One or both arguments are zero.
	bics	r2, r0, #0x80000000
	bne	LSYM(Lml_i)		@ <non_zero> / 0 -> INF
	bics	r3, r1, #0x80000000
	bne	LSYM(Lml_z)		@ 0 / <non_zero> -> 0
	b	LSYM(Lml_n)		@ 0 / 0 -> NAN

	FUNC_END aeabi_fdiv
	FUNC_END divsf3

#endif /* L_muldivsf3 */

#ifdef L_arm_cmpsf2

	@ The return value in r0 is
	@
	@   0  if the operands are equal
	@   1  if the first operand is greater than the second, or
	@      the operands are unordered and the operation is
	@      CMP, LT, LE, NE, or EQ.
	@   -1 if the first operand is less than the second, or
	@      the operands are unordered and the operation is GT
	@      or GE.
	@
	@ The Z flag will be set iff the operands are equal.
	@
	@ The following registers are clobbered by this function:
	@   ip, r0, r1, r2, r3

ARM_FUNC_START gtsf2
ARM_FUNC_ALIAS gesf2 gtsf2
	mov	ip, #-1
	b	1f

ARM_FUNC_START ltsf2
ARM_FUNC_ALIAS lesf2 ltsf2
	mov	ip, #1
	b	1f

ARM_FUNC_START cmpsf2
ARM_FUNC_ALIAS nesf2 cmpsf2
ARM_FUNC_ALIAS eqsf2 cmpsf2
	mov	ip, #1			@ how should we specify unordered here?

1:	str	ip, [sp, #-4]!

	@ Trap any INF/NAN first.
	mov	r2, r0, lsl #1
	mov	r3, r1, lsl #1
	mvns	ip, r2, asr #24
	do_it	ne
	COND(mvn,s,ne)	ip, r3, asr #24
	beq	3f

	@ Compare values.
	@ Note that 0.0 is equal to -0.0.
2:	add	sp, sp, #4
	orrs	ip, r2, r3, lsr #1	@ test if both are 0, clear C flag
	do_it	ne
	teqne	r0, r1			@ if not 0 compare sign
	do_it	pl
	COND(sub,s,pl)	r0, r2, r3		@ if same sign compare values, set r0

	@ Result:
	do_it	hi
	movhi	r0, r1, asr #31
	do_it	lo
	mvnlo	r0, r1, asr #31
	do_it	ne
	orrne	r0, r0, #1
	RET

	@ Look for a NAN. 
3:	mvns	ip, r2, asr #24
	bne	4f
	movs	ip, r0, lsl #9
	bne	5f			@ r0 is NAN
4:	mvns	ip, r3, asr #24
	bne	2b
	movs	ip, r1, lsl #9
	beq	2b			@ r1 is not NAN
5:	ldr	r0, [sp], #4		@ return unordered code.
	RET

	FUNC_END gesf2
	FUNC_END gtsf2
	FUNC_END lesf2
	FUNC_END ltsf2
	FUNC_END nesf2
	FUNC_END eqsf2
	FUNC_END cmpsf2

ARM_FUNC_START aeabi_cfrcmple

	mov	ip, r0
	mov	r0, r1
	mov	r1, ip
	b	6f

ARM_FUNC_START aeabi_cfcmpeq
ARM_FUNC_ALIAS aeabi_cfcmple aeabi_cfcmpeq

	@ The status-returning routines are required to preserve all
	@ registers except ip, lr, and cpsr.
6:	do_push	{r0, r1, r2, r3, lr}
	ARM_CALL cmpsf2
	@ Set the Z flag correctly, and the C flag unconditionally.
	cmp	r0, #0
	@ Clear the C flag if the return value was -1, indicating
	@ that the first operand was smaller than the second.
	do_it	mi
	cmnmi	r0, #0
	RETLDM	"r0, r1, r2, r3"

	FUNC_END aeabi_cfcmple
	FUNC_END aeabi_cfcmpeq
	FUNC_END aeabi_cfrcmple

ARM_FUNC_START	aeabi_fcmpeq

	str	lr, [sp, #-8]!
	ARM_CALL aeabi_cfcmple
	do_it	eq, e
	moveq	r0, #1	@ Equal to.
	movne	r0, #0	@ Less than, greater than, or unordered.
	RETLDM

	FUNC_END aeabi_fcmpeq

ARM_FUNC_START	aeabi_fcmplt

	str	lr, [sp, #-8]!
	ARM_CALL aeabi_cfcmple
	do_it	cc, e
	movcc	r0, #1	@ Less than.
	movcs	r0, #0	@ Equal to, greater than, or unordered.
	RETLDM

	FUNC_END aeabi_fcmplt

ARM_FUNC_START	aeabi_fcmple

	str	lr, [sp, #-8]!
	ARM_CALL aeabi_cfcmple
	do_it	ls, e
	movls	r0, #1  @ Less than or equal to.
	movhi	r0, #0	@ Greater than or unordered.
	RETLDM

	FUNC_END aeabi_fcmple

ARM_FUNC_START	aeabi_fcmpge

	str	lr, [sp, #-8]!
	ARM_CALL aeabi_cfrcmple
	do_it	ls, e
	movls	r0, #1	@ Operand 2 is less than or equal to operand 1.
	movhi	r0, #0	@ Operand 2 greater than operand 1, or unordered.
	RETLDM

	FUNC_END aeabi_fcmpge

ARM_FUNC_START	aeabi_fcmpgt

	str	lr, [sp, #-8]!
	ARM_CALL aeabi_cfrcmple
	do_it	cc, e
	movcc	r0, #1	@ Operand 2 is less than operand 1.
	movcs	r0, #0  @ Operand 2 is greater than or equal to operand 1,
			@ or they are unordered.
	RETLDM

	FUNC_END aeabi_fcmpgt

#endif /* L_cmpsf2 */

#ifdef L_arm_unordsf2

ARM_FUNC_START unordsf2
ARM_FUNC_ALIAS aeabi_fcmpun unordsf2

	mov	r2, r0, lsl #1
	mov	r3, r1, lsl #1
	mvns	ip, r2, asr #24
	bne	1f
	movs	ip, r0, lsl #9
	bne	3f			@ r0 is NAN
1:	mvns	ip, r3, asr #24
	bne	2f
	movs	ip, r1, lsl #9
	bne	3f			@ r1 is NAN
2:	mov	r0, #0			@ arguments are ordered.
	RET
3:	mov	r0, #1			@ arguments are unordered.
	RET

	FUNC_END aeabi_fcmpun
	FUNC_END unordsf2

#endif /* L_unordsf2 */

#ifdef L_arm_fixsfsi

ARM_FUNC_START fixsfsi
ARM_FUNC_ALIAS aeabi_f2iz fixsfsi

	@ check exponent range.
	mov	r2, r0, lsl #1
	cmp	r2, #(127 << 24)
	bcc	1f			@ value is too small
	mov	r3, #(127 + 31)
	subs	r2, r3, r2, lsr #24
	bls	2f			@ value is too large

	@ scale value
	mov	r3, r0, lsl #8
	orr	r3, r3, #0x80000000
	tst	r0, #0x80000000		@ the sign bit
	shift1	lsr, r0, r3, r2
	do_it	ne
	rsbne	r0, r0, #0
	RET

1:	mov	r0, #0
	RET

2:	cmp	r2, #(127 + 31 - 0xff)
	bne	3f
	movs	r2, r0, lsl #9
	bne	4f			@ r0 is NAN.
3:	ands	r0, r0, #0x80000000	@ the sign bit
	do_it	eq
	moveq	r0, #0x7fffffff		@ the maximum signed positive si
	RET

4:	mov	r0, #0			@ What should we convert NAN to?
	RET

	FUNC_END aeabi_f2iz
	FUNC_END fixsfsi

#endif /* L_fixsfsi */

#ifdef L_arm_fixunssfsi

ARM_FUNC_START fixunssfsi
ARM_FUNC_ALIAS aeabi_f2uiz fixunssfsi

	@ check exponent range.
	movs	r2, r0, lsl #1
	bcs	1f			@ value is negative
	cmp	r2, #(127 << 24)
	bcc	1f			@ value is too small
	mov	r3, #(127 + 31)
	subs	r2, r3, r2, lsr #24
	bmi	2f			@ value is too large

	@ scale the value
	mov	r3, r0, lsl #8
	orr	r3, r3, #0x80000000
	shift1	lsr, r0, r3, r2
	RET

1:	mov	r0, #0
	RET

2:	cmp	r2, #(127 + 31 - 0xff)
	bne	3f
	movs	r2, r0, lsl #9
	bne	4f			@ r0 is NAN.
3:	mov	r0, #0xffffffff		@ maximum unsigned si
	RET

4:	mov	r0, #0			@ What should we convert NAN to?
	RET

	FUNC_END aeabi_f2uiz
	FUNC_END fixunssfsi

#endif /* L_fixunssfsi */