1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
;; Copyright (C) 2001-2021 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it under
;; the terms of the GNU General Public License as published by the Free
;; Software Foundation; either version 3, or (at your option) any later
;; version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
;; WARRANTY; without even the implied warranty of MERCHANTABILITY or
;; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
;; for more details.
;;
;; Under Section 7 of GPL version 3, you are granted additional
;; permissions described in the GCC Runtime Library Exception, version
;; 3.1, as published by the Free Software Foundation.
;;
;; You should have received a copy of the GNU General Public License and
;; a copy of the GCC Runtime Library Exception along with this program;
;; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
;; <http://www.gnu.org/licenses/>.
;;
;; This code is derived from mulsi3.S, observing that the mstep*16-based
;; multiplications there, from which it is formed, are actually
;; zero-extending; in gcc-speak "umulhisi3". The difference to *this*
;; function is just a missing top mstep*16 sequence and shifts and 64-bit
;; additions for the high part. Compared to an implementation based on
;; calling __Mul four times (see default implementation of umul_ppmm in
;; longlong.h), this will complete in a time between a fourth and a third
;; of that, assuming the value-based optimizations don't strike. If they
;; all strike there (very often) but none here, we still win, though by a
;; lesser margin, due to lesser total overhead.
#define L(x) .x
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
#ifdef __USER_LABEL_PREFIX__
# define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
#else
# define SYM(x) x
#endif
.global SYM(__umulsidi3)
.type SYM(__umulsidi3),@function
SYM(__umulsidi3):
#if defined (__CRIS_arch_version) && __CRIS_arch_version >= 10
;; Can't have the mulu.d last on a cache-line, due to a hardware bug. See
;; the documentation for -mmul-bug-workaround.
;; Not worthwhile to conditionalize here.
.p2alignw 2,0x050f
mulu.d $r11,$r10
ret
move $mof,$r11
#else
move.d $r11,$r9
bound.d $r10,$r9
cmpu.w 65535,$r9
bls L(L3)
move.d $r10,$r12
move.d $r10,$r13
movu.w $r11,$r9 ; ab*cd = (a*c)<<32 (a*d + b*c)<<16 + b*d
;; We're called for floating point numbers very often with the "low" 16
;; bits zero, so it's worthwhile to optimize for that.
beq L(L6) ; d == 0?
lslq 16,$r13
beq L(L7) ; b == 0?
clear.w $r10
mstep $r9,$r13 ; d*b
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
L(L7):
test.d $r10
mstep $r9,$r10 ; d*a
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
;; d*a in $r10, d*b in $r13, ab in $r12 and cd in $r11
;; $r9 = d, need to do b*c and a*c; we can drop d.
;; so $r9 is up for use and we can shift down $r11 as the mstep
;; source for the next mstep-part.
L(L8):
lsrq 16,$r11
move.d $r12,$r9
lslq 16,$r9
beq L(L9) ; b == 0?
mstep $r11,$r9
mstep $r11,$r9 ; b*c
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
mstep $r11,$r9
L(L9):
;; d*a in $r10, d*b in $r13, c*b in $r9, ab in $r12 and c in $r11,
;; need to do a*c. We want that to end up in $r11, so we shift up $r11 to
;; now use as the destination operand. We'd need a test insn to update N
;; to do it the other way round.
lsrq 16,$r12
lslq 16,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
mstep $r12,$r11
;; d*a in $r10, d*b in $r13, c*b in $r9, a*c in $r11 ($r12 free).
;; Need (a*d + b*c)<<16 + b*d into $r10 and
;; a*c + (a*d + b*c)>>16 plus carry from the additions into $r11.
add.d $r9,$r10 ; (a*d + b*c) - may produce a carry.
scs $r12 ; The carry corresponds to bit 16 of $r11.
lslq 16,$r12
add.d $r12,$r11 ; $r11 = a*c + carry from (a*d + b*c).
#if defined (__CRIS_arch_version) && __CRIS_arch_version >= 8
swapw $r10
addu.w $r10,$r11 ; $r11 = a*c + (a*d + b*c) >> 16 including carry.
clear.w $r10 ; $r10 = (a*d + b*c) << 16
#else
move.d $r10,$r9
lsrq 16,$r9
add.d $r9,$r11 ; $r11 = a*c + (a*d + b*c) >> 16 including carry.
lslq 16,$r10 ; $r10 = (a*d + b*c) << 16
#endif
add.d $r13,$r10 ; $r10 = (a*d + b*c) << 16 + b*d - may produce a carry.
scs $r9
ret
add.d $r9,$r11 ; Last carry added to the high-order 32 bits.
L(L6):
clear.d $r13
ba L(L8)
clear.d $r10
L(L11):
clear.d $r10
ret
clear.d $r11
L(L3):
;; Form the maximum in $r10, by knowing the minimum, $r9.
;; (We don't know which one of $r10 or $r11 it is.)
;; Check if the largest operand is still just 16 bits.
xor $r9,$r10
xor $r11,$r10
cmpu.w 65535,$r10
bls L(L5)
movu.w $r9,$r13
;; We have ab*cd = (a*c)<<32 + (a*d + b*c)<<16 + b*d, but c==0
;; so we only need (a*d)<<16 + b*d with d = $r13, ab = $r10.
;; Remember that the upper part of (a*d)<<16 goes into the lower part
;; of $r11 and there may be a carry from adding the low 32 parts.
beq L(L11) ; d == 0?
move.d $r10,$r9
lslq 16,$r9
beq L(L10) ; b == 0?
clear.w $r10
mstep $r13,$r9 ; b*d
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
L(L10):
test.d $r10
mstep $r13,$r10 ; a*d
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
move.d $r10,$r11
lsrq 16,$r11
lslq 16,$r10
add.d $r9,$r10
scs $r12
ret
add.d $r12,$r11
L(L5):
;; We have ab*cd = (a*c)<<32 + (a*d + b*c)<<16 + b*d, but a and c==0
;; so b*d (with min=b=$r13, max=d=$r10) it is. As it won't overflow the
;; 32-bit part, just set $r11 to 0.
lslq 16,$r10
clear.d $r11
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
ret
mstep $r13,$r10
#endif
L(Lfe1):
.size SYM(__umulsidi3),L(Lfe1)-SYM(__umulsidi3)
|