1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/* Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#ifndef _SQRT_MACROS_H_
#define _SQRT_MACROS_H_
#define FENCE __fence
#if DOUBLE_EXTENDED_ON
extern BINARY80 SQRT80 (BINARY80);
__BID_INLINE__ UINT64
short_sqrt128 (UINT128 A10) {
BINARY80 lx, ly, l64;
int_float f64;
// 2^64
f64.i = 0x5f800000;
l64 = (BINARY80) f64.d;
lx = (BINARY80) A10.w[1] * l64 + (BINARY80) A10.w[0];
ly = SQRT80 (lx);
return (UINT64) ly;
}
__BID_INLINE__ void
long_sqrt128 (UINT128 * pCS, UINT256 C256) {
UINT256 C4;
UINT128 CS;
UINT64 X;
SINT64 SE;
BINARY80 l64, lm64, l128, lxL, lx, ly, lS, lSH, lSL, lE, l3, l2,
l1, l0, lp, lCl;
int_float fx, f64, fm64;
int *ple = (int *) &lx;
// 2^64
f64.i = 0x5f800000;
l64 = (BINARY80) f64.d;
l128 = l64 * l64;
lx = l3 = (BINARY80) C256.w[3] * l64 * l128;
l2 = (BINARY80) C256.w[2] * l128;
lx = FENCE (lx + l2);
l1 = (BINARY80) C256.w[1] * l64;
lx = FENCE (lx + l1);
l0 = (BINARY80) C256.w[0];
lx = FENCE (lx + l0);
// sqrt(C256)
lS = SQRT80 (lx);
// get coefficient
// 2^(-64)
fm64.i = 0x1f800000;
lm64 = (BINARY80) fm64.d;
CS.w[1] = (UINT64) (lS * lm64);
CS.w[0] = (UINT64) (lS - (BINARY80) CS.w[1] * l64);
///////////////////////////////////////
// CAUTION!
// little endian code only
// add solution for big endian
//////////////////////////////////////
lSH = lS;
*((UINT64 *) & lSH) &= 0xffffffff00000000ull;
// correction for C256 rounding
lCl = FENCE (l3 - lx);
lCl = FENCE (lCl + l2);
lCl = FENCE (lCl + l1);
lCl = FENCE (lCl + l0);
lSL = lS - lSH;
//////////////////////////////////////////
// Watch for compiler re-ordering
//
/////////////////////////////////////////
// C256-S^2
lxL = FENCE (lx - lSH * lSH);
lp = lSH * lSL;
lp += lp;
lxL = FENCE (lxL - lp);
lSL *= lSL;
lxL = FENCE (lxL - lSL);
lCl += lxL;
// correction term
lE = lCl / (lS + lS);
// get low part of coefficient
X = CS.w[0];
if (lCl >= 0) {
SE = (SINT64) (lE);
CS.w[0] += SE;
if (CS.w[0] < X)
CS.w[1]++;
} else {
SE = (SINT64) (-lE);
CS.w[0] -= SE;
if (CS.w[0] > X)
CS.w[1]--;
}
pCS->w[0] = CS.w[0];
pCS->w[1] = CS.w[1];
}
#else
extern double sqrt (double);
__BID_INLINE__ UINT64
short_sqrt128 (UINT128 A10) {
UINT256 ARS, ARS0, AE0, AE, S;
UINT64 MY, ES, CY;
double lx, l64;
int_double f64, ly;
int ey, k;
// 2^64
f64.i = 0x43f0000000000000ull;
l64 = f64.d;
lx = (double) A10.w[1] * l64 + (double) A10.w[0];
ly.d = 1.0 / sqrt (lx);
MY = (ly.i & 0x000fffffffffffffull) | 0x0010000000000000ull;
ey = 0x3ff - (ly.i >> 52);
// A10*RS^2
__mul_64x128_to_192 (ARS0, MY, A10);
__mul_64x192_to_256 (ARS, MY, ARS0);
// shr by 2*ey+40, to get a 64-bit value
k = (ey << 1) + 104 - 64;
if (k >= 128) {
if (k > 128)
ES = (ARS.w[2] >> (k - 128)) | (ARS.w[3] << (192 - k));
else
ES = ARS.w[2];
} else {
if (k >= 64) {
ARS.w[0] = ARS.w[1];
ARS.w[1] = ARS.w[2];
k -= 64;
}
if (k) {
__shr_128 (ARS, ARS, k);
}
ES = ARS.w[0];
}
ES = ((SINT64) ES) >> 1;
if (((SINT64) ES) < 0) {
ES = -ES;
// A*RS*eps (scaled by 2^64)
__mul_64x192_to_256 (AE0, ES, ARS0);
AE.w[0] = AE0.w[1];
AE.w[1] = AE0.w[2];
AE.w[2] = AE0.w[3];
__add_carry_out (S.w[0], CY, ARS0.w[0], AE.w[0]);
__add_carry_in_out (S.w[1], CY, ARS0.w[1], AE.w[1], CY);
S.w[2] = ARS0.w[2] + AE.w[2] + CY;
} else {
// A*RS*eps (scaled by 2^64)
__mul_64x192_to_256 (AE0, ES, ARS0);
AE.w[0] = AE0.w[1];
AE.w[1] = AE0.w[2];
AE.w[2] = AE0.w[3];
__sub_borrow_out (S.w[0], CY, ARS0.w[0], AE.w[0]);
__sub_borrow_in_out (S.w[1], CY, ARS0.w[1], AE.w[1], CY);
S.w[2] = ARS0.w[2] - AE.w[2] - CY;
}
k = ey + 51;
if (k >= 64) {
if (k >= 128) {
S.w[0] = S.w[2];
S.w[1] = 0;
k -= 128;
} else {
S.w[0] = S.w[1];
S.w[1] = S.w[2];
}
k -= 64;
}
if (k) {
__shr_128 (S, S, k);
}
return (UINT64) ((S.w[0] + 1) >> 1);
}
__BID_INLINE__ void
long_sqrt128 (UINT128 * pCS, UINT256 C256) {
UINT512 ARS0, ARS;
UINT256 ARS00, AE, AE2, S;
UINT128 ES, ES2, ARS1;
UINT64 ES32, CY, MY;
double l64, l128, lx, l2, l1, l0;
int_double f64, ly;
int ey, k, k2;
// 2^64
f64.i = 0x43f0000000000000ull;
l64 = f64.d;
l128 = l64 * l64;
lx = (double) C256.w[3] * l64 * l128;
l2 = (double) C256.w[2] * l128;
lx = FENCE (lx + l2);
l1 = (double) C256.w[1] * l64;
lx = FENCE (lx + l1);
l0 = (double) C256.w[0];
lx = FENCE (lx + l0);
// sqrt(C256)
ly.d = 1.0 / sqrt (lx);
MY = (ly.i & 0x000fffffffffffffull) | 0x0010000000000000ull;
ey = 0x3ff - (ly.i >> 52);
// A10*RS^2, scaled by 2^(2*ey+104)
__mul_64x256_to_320 (ARS0, MY, C256);
__mul_64x320_to_384 (ARS, MY, ARS0);
// shr by k=(2*ey+104)-128
// expect k is in the range (192, 256) if result in [10^33, 10^34)
// apply an additional signed shift by 1 at the same time (to get eps=eps0/2)
k = (ey << 1) + 104 - 128 - 192;
k2 = 64 - k;
ES.w[0] = (ARS.w[3] >> (k + 1)) | (ARS.w[4] << (k2 - 1));
ES.w[1] = (ARS.w[4] >> k) | (ARS.w[5] << k2);
ES.w[1] = ((SINT64) ES.w[1]) >> 1;
// A*RS >> 192 (for error term computation)
ARS1.w[0] = ARS0.w[3];
ARS1.w[1] = ARS0.w[4];
// A*RS>>64
ARS00.w[0] = ARS0.w[1];
ARS00.w[1] = ARS0.w[2];
ARS00.w[2] = ARS0.w[3];
ARS00.w[3] = ARS0.w[4];
if (((SINT64) ES.w[1]) < 0) {
ES.w[0] = -ES.w[0];
ES.w[1] = -ES.w[1];
if (ES.w[0])
ES.w[1]--;
// A*RS*eps
__mul_128x128_to_256 (AE, ES, ARS1);
__add_carry_out (S.w[0], CY, ARS00.w[0], AE.w[0]);
__add_carry_in_out (S.w[1], CY, ARS00.w[1], AE.w[1], CY);
__add_carry_in_out (S.w[2], CY, ARS00.w[2], AE.w[2], CY);
S.w[3] = ARS00.w[3] + AE.w[3] + CY;
} else {
// A*RS*eps
__mul_128x128_to_256 (AE, ES, ARS1);
__sub_borrow_out (S.w[0], CY, ARS00.w[0], AE.w[0]);
__sub_borrow_in_out (S.w[1], CY, ARS00.w[1], AE.w[1], CY);
__sub_borrow_in_out (S.w[2], CY, ARS00.w[2], AE.w[2], CY);
S.w[3] = ARS00.w[3] - AE.w[3] - CY;
}
// 3/2*eps^2, scaled by 2^128
ES32 = ES.w[1] + (ES.w[1] >> 1);
__mul_64x64_to_128 (ES2, ES32, ES.w[1]);
// A*RS*3/2*eps^2
__mul_128x128_to_256 (AE2, ES2, ARS1);
// result, scaled by 2^(ey+52-64)
__add_carry_out (S.w[0], CY, S.w[0], AE2.w[0]);
__add_carry_in_out (S.w[1], CY, S.w[1], AE2.w[1], CY);
__add_carry_in_out (S.w[2], CY, S.w[2], AE2.w[2], CY);
S.w[3] = S.w[3] + AE2.w[3] + CY;
// k in (0, 64)
k = ey + 51 - 128;
k2 = 64 - k;
S.w[0] = (S.w[1] >> k) | (S.w[2] << k2);
S.w[1] = (S.w[2] >> k) | (S.w[3] << k2);
// round to nearest
S.w[0]++;
if (!S.w[0])
S.w[1]++;
pCS->w[0] = (S.w[1] << 63) | (S.w[0] >> 1);
pCS->w[1] = S.w[1] >> 1;
}
#endif
#endif
|