1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
|
/* SImode div/mod functions for the GCC support library for the Renesas RL78 processors.
Copyright (C) 2012-2016 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "vregs.h"
#if defined __RL78_MUL_G14__
START_FUNC ___divsi3
;; r8,r10 = 4[sp],6[sp] / 8[sp],10[sp]
;; Load and test for a negative denumerator.
movw ax, [sp+8]
movw de, ax
movw ax, [sp+10]
mov1 cy, a.7
movw hl, ax
bc $__div_neg_den
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw bc, ax
movw ax, [sp+4]
bc $__div_neg_num
;; Neither are negative - we can use the unsigned divide instruction.
__div_no_convert:
push psw
di
divwu
pop psw
movw r8, ax
movw ax, bc
movw r10, ax
ret
__div_neg_den:
;; Negate the denumerator (which is in HLDE)
clrw ax
subw ax, de
movw de, ax
clrw ax
sknc
decw ax
subw ax, hl
movw hl, ax
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw bc, ax
movw ax, [sp+4]
;; If it is not negative then we perform the division and then negate the result.
bnc $__div_then_convert
;; Otherwise we negate the numerator and then go with a straightforward unsigned division.
;; The negation is complicated because AX, BC, DE and HL are already in use.
;; ax: numL bc: numH r8: r10:
xchw ax, bc
;; ax: numH bc: numL r8: r10:
movw r8, ax
;; ax: bc: numL r8: numH r10:
clrw ax
;; ax: 0 bc: numL r8: numH r10:
subw ax, bc
;; ax: -numL bc: r8: numH r10:
movw r10, ax
;; ax: bc: r8: numH r10: -numL
movw ax, r8
;; ax: numH bc: r8: r10: -numL
movw bc, ax
;; ax: bc: numH r8: r10: -numL
clrw ax
;; ax: 0 bc: numH r8: r10: -numL
sknc
decw ax
;; ax: -1 bc: numH r8: r10: -numL
subw ax, bc
;; ax: -numH bc: r8: r10: -numL
movw bc, ax
;; ax: bc: -numH r8: r10: -numL
movw ax, r10
;; ax: -numL bc: -numH r8: r10:
br $!__div_no_convert
__div_neg_num:
;; Negate the numerator (which is in BCAX)
;; We know that the denumerator is positive.
;; Note - we temporarily overwrite DE. We know that we can safely load it again off the stack again.
movw de, ax
clrw ax
subw ax, de
movw de, ax
clrw ax
sknc
decw ax
subw ax, bc
movw bc, ax
movw ax, [sp+8]
xchw ax, de
__div_then_convert:
push psw
di
divwu
pop psw
;; Negate result (in BCAX) and transfer into r8,r10
movw de, ax
clrw ax
subw ax, de
movw r8, ax
clrw ax
sknc
decw ax
subw ax, bc
movw r10, ax
ret
END_FUNC ___divsi3
;----------------------------------------------------------------------
START_FUNC ___udivsi3
;; r8,r10 = 4[sp],6[sp] / 8[sp],10[sp]
;; Used when compiling with -Os specified.
movw ax, [sp+10]
movw hl, ax
movw ax, [sp+8]
movw de, ax
movw ax, [sp+6]
movw bc, ax
movw ax, [sp+4]
push psw ; Save the current interrupt status
di ; Disable interrupts. See Renesas Technical update TN-RL*-A025B/E
divwu ; bcax = bcax / hlde
pop psw ; Restore saved interrupt status
movw r8, ax
movw ax, bc
movw r10, ax
ret
END_FUNC ___udivsi3
;----------------------------------------------------------------------
START_FUNC ___modsi3
;; r8,r10 = 4[sp],6[sp] % 8[sp],10[sp]
;; Load and test for a negative denumerator.
movw ax, [sp+8]
movw de, ax
movw ax, [sp+10]
mov1 cy, a.7
movw hl, ax
bc $__mod_neg_den
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw bc, ax
movw ax, [sp+4]
bc $__mod_neg_num
;; Neither are negative - we can use the unsigned divide instruction.
__mod_no_convert:
push psw
di
divwu
pop psw
movw ax, de
movw r8, ax
movw ax, hl
movw r10, ax
ret
__mod_neg_den:
;; Negate the denumerator (which is in HLDE)
clrw ax
subw ax, de
movw de, ax
clrw ax
sknc
decw ax
subw ax, hl
movw hl, ax
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw bc, ax
movw ax, [sp+4]
;; If it is not negative then we perform the modulo operation without conversion
bnc $__mod_no_convert
;; Otherwise we negate the numerator and then go with a modulo followed by negation.
;; The negation is complicated because AX, BC, DE and HL are already in use.
xchw ax, bc
movw r8, ax
clrw ax
subw ax, bc
movw r10, ax
movw ax, r8
movw bc, ax
clrw ax
sknc
decw ax
subw ax, bc
movw bc, ax
movw ax, r10
br $!__mod_then_convert
__mod_neg_num:
;; Negate the numerator (which is in BCAX)
;; We know that the denumerator is positive.
;; Note - we temporarily overwrite DE. We know that we can safely load it again off the stack again.
movw de, ax
clrw ax
subw ax, de
movw de, ax
clrw ax
sknc
decw ax
subw ax, bc
movw bc, ax
movw ax, [sp+8]
xchw ax, de
__mod_then_convert:
push psw
di
divwu
pop psw
;; Negate result (in HLDE) and transfer into r8,r10
clrw ax
subw ax, de
movw r8, ax
clrw ax
sknc
decw ax
subw ax, hl
movw r10, ax
ret
END_FUNC ___modsi3
;----------------------------------------------------------------------
START_FUNC ___umodsi3
;; r8,r10 = 4[sp],6[sp] % 8[sp],10[sp]
;; Used when compiling with -Os specified.
movw ax, [sp+10]
movw hl, ax
movw ax, [sp+8]
movw de, ax
movw ax, [sp+6]
movw bc, ax
movw ax, [sp+4]
push psw ; Save the current interrupt status
di ; Disable interrupts. See Renesas Technical update TN-RL*-A025B/E
divwu ; hlde = bcax %% hlde
pop psw ; Restore saved interrupt status
movw ax, de
movw r8, ax
movw ax, hl
movw r10, ax
ret
END_FUNC ___umodsi3
;----------------------------------------------------------------------
#elif defined __RL78_MUL_G13__
;----------------------------------------------------------------------
;; Hardware registers. Note - these values match the silicon, not the documentation.
MDAL = 0xffff0
MDAH = 0xffff2
MDBL = 0xffff6
MDBH = 0xffff4
MDCL = 0xf00e0
MDCH = 0xf00e2
MDUC = 0xf00e8
.macro _Negate low, high
movw ax, \low
movw bc, ax
clrw ax
subw ax, bc
movw \low, ax
movw ax, \high
movw bc, ax
clrw ax
sknc
decw ax
subw ax, bc
movw \high, ax
.endm
;----------------------------------------------------------------------
START_FUNC ___divsi3
;; r8,r10 = 4[sp],6[sp] / 8[sp],10[sp]
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
;; Load and test for a negative denumerator.
movw ax, [sp+8]
movw MDBL, ax
movw ax, [sp+10]
mov1 cy, a.7
movw MDBH, ax
bc $__div_neg_den
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw MDAH, ax
movw ax, [sp+4]
movw MDAL, ax
bc $__div_neg_num
;; Neither are negative - we can use the unsigned divide hardware.
__div_no_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, MDAL ; Read the result
movw r8, ax
movw ax, MDAH
movw r10, ax
ret
__div_neg_den:
;; Negate the denumerator (which is in MDBL/MDBH)
_Negate MDBL MDBH
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw MDAH, ax
movw ax, [sp+4]
movw MDAL, ax
;; If it is not negative then we perform the division and then negate the result.
bnc $__div_then_convert
;; Otherwise we negate the numerator and then go with a straightforward unsigned division.
_Negate MDAL MDAH
br $!__div_no_convert
__div_neg_num:
;; Negate the numerator (which is in MDAL/MDAH)
;; We know that the denumerator is positive.
_Negate MDAL MDAH
__div_then_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
;; Negate result and transfer into r8,r10
_Negate MDAL MDAH ; FIXME: This could be coded more efficiently.
movw r10, ax
movw ax, MDAL
movw r8, ax
ret
END_FUNC ___divsi3
;----------------------------------------------------------------------
START_FUNC ___modsi3
;; r8,r10 = 4[sp],6[sp] % 8[sp],10[sp]
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
;; Load and test for a negative denumerator.
movw ax, [sp+8]
movw MDBL, ax
movw ax, [sp+10]
mov1 cy, a.7
movw MDBH, ax
bc $__mod_neg_den
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw MDAH, ax
movw ax, [sp+4]
movw MDAL, ax
bc $__mod_neg_num
;; Neither are negative - we can use the unsigned divide hardware
__mod_no_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDCL ; Read the remainder
movw r8, ax
movw ax, !MDCH
movw r10, ax
ret
__mod_neg_den:
;; Negate the denumerator (which is in MDBL/MDBH)
_Negate MDBL MDBH
;; Load and test for a negative numerator.
movw ax, [sp+6]
mov1 cy, a.7
movw MDAH, ax
movw ax, [sp+4]
movw MDAL, ax
;; If it is not negative then we perform the modulo operation without conversion
bnc $__mod_no_convert
;; Otherwise we negate the numerator and then go with a modulo followed by negation.
_Negate MDAL MDAH
br $!__mod_then_convert
__mod_neg_num:
;; Negate the numerator (which is in MDAL/MDAH)
;; We know that the denumerator is positive.
_Negate MDAL MDAH
__mod_then_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDCL
movw bc, ax
clrw ax
subw ax, bc
movw r8, ax
movw ax, !MDCH
movw bc, ax
clrw ax
sknc
decw ax
subw ax, bc
movw r10, ax
ret
END_FUNC ___modsi3
;----------------------------------------------------------------------
START_FUNC ___udivsi3
;; r8,r10 = 4[sp],6[sp] / 8[sp],10[sp]
;; Used when compilng with -Os specified.
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
movw ax, [sp+4] ; Load the divisor
movw MDAL, ax
movw ax, [sp+6]
movw MDAH, ax
movw ax, [sp+8] ; Load the dividend
movw MDBL, ax
movw ax, [sp+10]
movw MDBH, ax
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDAL ; Read the result
movw r8, ax
movw ax, !MDAH
movw r10, ax
ret
END_FUNC ___udivsi3
;----------------------------------------------------------------------
START_FUNC ___umodsi3
;; r8,r10 = 4[sp],6[sp] % 8[sp],10[sp]
;; Used when compilng with -Os specified.
;; Note - hardware address match the silicon, not the documentation
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
movw ax, [sp+4] ; Load the divisor
movw MDAL, ax
movw ax, [sp+6]
movw MDAH, ax
movw ax, [sp+8] ; Load the dividend
movw MDBL, ax
movw ax, [sp+10]
movw MDBH, ax
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDCL ; Read the remainder
movw r8, ax
movw ax, !MDCH
movw r10, ax
ret
END_FUNC ___umodsi3
;----------------------------------------------------------------------
#elif defined __RL78_MUL_NONE__
.macro MAKE_GENERIC which,need_result
.if \need_result
quot = r8
num = r12
den = r16
bit = r20
.else
num = r8
quot = r12
den = r16
bit = r20
.endif
quotH = quot+2
quotL = quot
quotB0 = quot
quotB1 = quot+1
quotB2 = quot+2
quotB3 = quot+3
numH = num+2
numL = num
numB0 = num
numB1 = num+1
numB2 = num+2
numB3 = num+3
#define denH bc
denL = den
denB0 = den
denB1 = den+1
#define denB2 c
#define denB3 b
bitH = bit+2
bitL = bit
bitB0 = bit
bitB1 = bit+1
bitB2 = bit+2
bitB3 = bit+3
;----------------------------------------------------------------------
START_FUNC __generic_sidivmod\which
num_lt_den\which:
.if \need_result
movw r8, #0
movw r10, #0
.else
movw ax, [sp+8]
movw r8, ax
movw ax, [sp+10]
movw r10, ax
.endif
ret
shift_den_bit16\which:
movw ax, denL
movw denH, ax
movw denL, #0
.if \need_result
movw ax, bitL
movw bitH, ax
movw bitL, #0
.else
mov a, bit
add a, #16
mov bit, a
.endif
br $shift_den_bit\which
;; These routines leave DE alone - the signed functions use DE
;; to store sign information that must remain intact
.if \need_result
.global __generic_sidiv
__generic_sidiv:
.else
.global __generic_simod
__generic_simod:
.endif
;; (quot,rem) = 8[sp] /% 12[sp]
movw hl, sp
movw ax, [hl+14] ; denH
cmpw ax, [hl+10] ; numH
movw ax, [hl+12] ; denL
sknz
cmpw ax, [hl+8] ; numL
bh $num_lt_den\which
#ifdef __RL78_G10__
movw ax, denL
push ax
movw ax, bitL
push ax
movw ax, bitH
push ax
#else
sel rb2
push ax ; denL
; push bc ; denH
push de ; bitL
push hl ; bitH - stored in BC
sel rb0
#endif
;; (quot,rem) = 16[sp] /% 20[sp]
;; copy numerator
movw ax, [hl+8]
movw numL, ax
movw ax, [hl+10]
movw numH, ax
;; copy denomonator
movw ax, [hl+12]
movw denL, ax
movw ax, [hl+14]
movw denH, ax
movw ax, denL
or a, denB2
or a, denB3 ; not x
cmpw ax, #0
bnz $den_not_zero\which
.if \need_result
movw quotL, #0
movw quotH, #0
.else
movw numL, #0
movw numH, #0
.endif
br $!main_loop_done_himode\which
den_not_zero\which:
.if \need_result
;; zero out quot
movw quotL, #0
movw quotH, #0
.endif
;; initialize bit to 1
movw bitL, #1
movw bitH, #0
; while (den < num && !(den & (1L << BITS_MINUS_1)))
.if 1
;; see if we can short-circuit a bunch of shifts
movw ax, denH
cmpw ax, #0
bnz $shift_den_bit\which
movw ax, denL
cmpw ax, numH
bnh $shift_den_bit16\which
.endif
shift_den_bit\which:
movw ax, denH
mov1 cy,a.7
bc $enter_main_loop\which
cmpw ax, numH
movw ax, denL ; we re-use this below
sknz
cmpw ax, numL
bh $enter_main_loop\which
;; den <<= 1
; movw ax, denL ; already has it from the cmpw above
shlw ax, 1
movw denL, ax
; movw ax, denH
rolwc denH, 1
; movw denH, ax
;; bit <<= 1
.if \need_result
movw ax, bitL
shlw ax, 1
movw bitL, ax
movw ax, bitH
rolwc ax, 1
movw bitH, ax
.else
;; if we don't need to compute the quotent, we don't need an
;; actual bit *mask*, we just need to keep track of which bit
inc bitB0
.endif
br $shift_den_bit\which
;; while (bit)
main_loop\which:
;; if (num >= den) (cmp den > num)
movw ax, numH
cmpw ax, denH
movw ax, numL
sknz
cmpw ax, denL
skz
bnh $next_loop\which
;; num -= den
; movw ax, numL ; already has it from the cmpw above
subw ax, denL
movw numL, ax
movw ax, numH
sknc
decw ax
subw ax, denH
movw numH, ax
.if \need_result
;; res |= bit
mov a, quotB0
or a, bitB0
mov quotB0, a
mov a, quotB1
or a, bitB1
mov quotB1, a
mov a, quotB2
or a, bitB2
mov quotB2, a
mov a, quotB3
or a, bitB3
mov quotB3, a
.endif
next_loop\which:
;; den >>= 1
movw ax, denH
shrw ax, 1
movw denH, ax
mov a, denB1
rorc a, 1
mov denB1, a
mov a, denB0
rorc a, 1
mov denB0, a
;; bit >>= 1
.if \need_result
movw ax, bitH
shrw ax, 1
movw bitH, ax
mov a, bitB1
rorc a, 1
mov bitB1, a
mov a, bitB0
rorc a, 1
mov bitB0, a
.else
dec bitB0
.endif
enter_main_loop\which:
.if \need_result
movw ax, bitH
cmpw ax, #0
bnz $main_loop\which
.else
cmp bitB0, #15
bh $main_loop\which
.endif
;; bit is HImode now; check others
movw ax, numH ; numerator
cmpw ax, #0
bnz $bit_high_set\which
movw ax, denH ; denominator
cmpw ax, #0
bz $switch_to_himode\which
bit_high_set\which:
.if \need_result
movw ax, bitL
cmpw ax, #0
.else
cmp0 bitB0
.endif
bnz $main_loop\which
switch_to_himode\which:
.if \need_result
movw ax, bitL
cmpw ax, #0
.else
cmp0 bitB0
.endif
bz $main_loop_done_himode\which
;; From here on in, r22, r14, and r18 are all zero
;; while (bit)
main_loop_himode\which:
;; if (num >= den) (cmp den > num)
movw ax, denL
cmpw ax, numL
bh $next_loop_himode\which
;; num -= den
movw ax, numL
subw ax, denL
movw numL, ax
movw ax, numH
sknc
decw ax
subw ax, denH
movw numH, ax
.if \need_result
;; res |= bit
mov a, quotB0
or a, bitB0
mov quotB0, a
mov a, quotB1
or a, bitB1
mov quotB1, a
.endif
next_loop_himode\which:
;; den >>= 1
movw ax, denL
shrw ax, 1
movw denL, ax
.if \need_result
;; bit >>= 1
movw ax, bitL
shrw ax, 1
movw bitL, ax
.else
dec bitB0
.endif
.if \need_result
movw ax, bitL
cmpw ax, #0
.else
cmp0 bitB0
.endif
bnz $main_loop_himode\which
main_loop_done_himode\which:
#ifdef __RL78_G10__
pop ax
movw bitH, ax
pop ax
movw bitL, ax
pop ax
movw denL, ax
#else
sel rb2
pop hl ; bitH - stored in BC
pop de ; bitL
; pop bc ; denH
pop ax ; denL
sel rb0
#endif
ret
END_FUNC __generic_sidivmod\which
.endm
;----------------------------------------------------------------------
MAKE_GENERIC _d 1
MAKE_GENERIC _m 0
;----------------------------------------------------------------------
START_FUNC ___udivsi3
;; r8 = 4[sp] / 8[sp]
call $!__generic_sidiv
ret
END_FUNC ___udivsi3
START_FUNC ___umodsi3
;; r8 = 4[sp] % 8[sp]
call $!__generic_simod
ret
END_FUNC ___umodsi3
;----------------------------------------------------------------------
.macro NEG_AX
movw hl, ax
movw ax, #0
subw ax, [hl]
movw [hl], ax
movw ax, #0
sknc
decw ax
subw ax, [hl+2]
movw [hl+2], ax
.endm
;----------------------------------------------------------------------
START_FUNC ___divsi3
;; r8 = 4[sp] / 8[sp]
movw de, #0
mov a, [sp+7]
mov1 cy, a.7
bc $div_signed_num
mov a, [sp+11]
mov1 cy, a.7
bc $div_signed_den
call $!__generic_sidiv
ret
div_signed_num:
;; neg [sp+4]
movw ax, sp
addw ax, #4
NEG_AX
mov d, #1
mov a, [sp+11]
mov1 cy, a.7
bnc $div_unsigned_den
div_signed_den:
;; neg [sp+8]
movw ax, sp
addw ax, #8
NEG_AX
mov e, #1
div_unsigned_den:
call $!__generic_sidiv
mov a, d
cmp0 a
bz $div_skip_restore_num
;; We have to restore the numerator [sp+4]
movw ax, sp
addw ax, #4
NEG_AX
mov a, d
div_skip_restore_num:
xor a, e
bz $div_no_neg
movw ax, #r8
NEG_AX
div_no_neg:
mov a, e
cmp0 a
bz $div_skip_restore_den
;; We have to restore the denominator [sp+8]
movw ax, sp
addw ax, #8
NEG_AX
div_skip_restore_den:
ret
END_FUNC ___divsi3
START_FUNC ___modsi3
;; r8 = 4[sp] % 8[sp]
movw de, #0
mov a, [sp+7]
mov1 cy, a.7
bc $mod_signed_num
mov a, [sp+11]
mov1 cy, a.7
bc $mod_signed_den
call $!__generic_simod
ret
mod_signed_num:
;; neg [sp+4]
movw ax, sp
addw ax, #4
NEG_AX
mov d, #1
mov a, [sp+11]
mov1 cy, a.7
bnc $mod_unsigned_den
mod_signed_den:
;; neg [sp+8]
movw ax, sp
addw ax, #8
NEG_AX
mov e, #1
mod_unsigned_den:
call $!__generic_simod
mov a, d
cmp0 a
bz $mod_no_neg
movw ax, #r8
NEG_AX
;; We have to restore [sp+4] as well.
movw ax, sp
addw ax, #4
NEG_AX
mod_no_neg:
.if 1
mov a, e
cmp0 a
bz $mod_skip_restore_den
movw ax, sp
addw ax, #8
NEG_AX
mod_skip_restore_den:
.endif
ret
END_FUNC ___modsi3
;----------------------------------------------------------------------
#else
#error "Unknown RL78 hardware multiply/divide support"
#endif
|