summaryrefslogtreecommitdiff
path: root/libgcc/config/spu/divv2df3.c
blob: 7615516711be8f5b0f14249ab82b689401a6c7dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/* Copyright (C) 2009 Free Software Foundation, Inc.
 
   This file is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3 of the License, or (at your option)
   any later version.
 
   This file is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.
 
   Under Section 7 of GPL version 3, you are granted additional
   permissions described in the GCC Runtime Library Exception, version
   3.1, as published by the Free Software Foundation.

   You should have received a copy of the GNU General Public License and
   a copy of the GCC Runtime Library Exception along with this program;
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
   <http://www.gnu.org/licenses/>.  */

#include <spu_intrinsics.h>

vector double __divv2df3 (vector double a_in, vector double b_in);

/* __divv2df3 divides the vector dividend a by the vector divisor b and 
   returns the resulting vector quotient.  Maximum error about 0.5 ulp 
   over entire double range including denorms, compared to true result
   in round-to-nearest rounding mode.  Handles Inf or NaN operands and 
   results correctly.  */

vector double
__divv2df3 (vector double a_in, vector double b_in)
{
  /* Variables */
  vec_int4    exp, exp_bias;
  vec_uint4   no_underflow, overflow;
  vec_float4  mant_bf, inv_bf;
  vec_ullong2 exp_a, exp_b;
  vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0;
  vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0;
  vec_ullong2 nan;
  vec_uint4   a_exp, b_exp;
  vec_ullong2 a_mant_0, b_mant_0;
  vec_ullong2 a_exp_1s, b_exp_1s;
  vec_ullong2 sign_exp_mask;

  vec_double2 a, b;
  vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;

  /* Constants */
  vec_uint4   exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
  vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3,  8, 9,10,11, 8,9,10,11};
  vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
  vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
  vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
  vec_float4  onef = spu_splats(1.0f);
  vec_double2 one = spu_splats(1.0);
  vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);

  sign_exp_mask = spu_or(sign_mask, exp_mask);

  /* Extract the floating point components from each of the operands including
   * exponent and mantissa.
   */
  a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
  a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
  b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
  b_exp = spu_shuffle(b_exp, b_exp, splat_hi);

  a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
  a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));

  b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
  b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));

  a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
  b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);

  /* Identify all possible special values that must be accommodated including:
   * +-denorm, +-0, +-infinity, and NaNs.
   */
  a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0);
  a_nan    = spu_andc(a_exp_1s, a_mant_0);
  a_zero   = spu_and (a_denorm0, a_mant_0);
  a_inf    = spu_and (a_exp_1s, a_mant_0);
  a_denorm = spu_andc(a_denorm0, a_zero);

  b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0);
  b_nan    = spu_andc(b_exp_1s, b_mant_0);
  b_zero   = spu_and (b_denorm0, b_mant_0);
  b_inf    = spu_and (b_exp_1s, b_mant_0);
  b_denorm = spu_andc(b_denorm0, b_zero);

  /* Scale denorm inputs to into normalized numbers by conditionally scaling the 
   * input parameters.
   */
  a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
  a = spu_sel(a_in, a, a_denorm);

  b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
  b = spu_sel(b_in, b, b_denorm);

  /* Extract the divisor and dividend exponent and force parameters into the signed 
   * range [1.0,2.0) or [-1.0,2.0).
   */
  exp_a = spu_and((vec_ullong2)a, exp_mask);
  exp_b = spu_and((vec_ullong2)b, exp_mask);

  mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
  mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
  
  /* Approximate the single reciprocal of b by using
   * the single precision reciprocal estimate followed by one 
   * single precision iteration of Newton-Raphson.
   */
  mant_bf = spu_roundtf(mant_b);
  inv_bf = spu_re(mant_bf);
  inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);

  /* Perform 2 more Newton-Raphson iterations in double precision. The
   * result (q1) is in the range (0.5, 2.0).
   */
  inv_b = spu_extend(inv_bf);
  inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
  q0 = spu_mul(mant_a, inv_b);
  q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);

  /* Determine the exponent correction factor that must be applied 
   * to q1 by taking into account the exponent of the normalized inputs
   * and the scale factors that were applied to normalize them.
   */
  exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
  exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
  
  /* Bias the quotient exponent depending on the sign of the exponent correction
   * factor so that a single multiplier will ensure the entire double precision
   * domain (including denorms) can be achieved.
   *
   *    exp 	       bias q1     adjust exp
   *   =====	       ========    ==========
   *   positive         2^+65         -65
   *   negative         2^-64         +64
   */
  exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
  exp = spu_sub(exp, exp_bias);

  q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);

  /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the 
   * expected result. On overflow, clamp the multiplier to the maximum non-infinite
   * number in case the rounding mode is not round-to-nearest.
   */
  exp = spu_add(exp, 0x3FF);
  no_underflow = spu_cmpgt(exp, 0);
  overflow = spu_cmpgt(exp, 0x7FE);
  exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
  exp = spu_and(exp, (vec_int4)exp_mask);

  mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow);

  /* Handle special value conditions. These include:
   *
   * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN 
   *    results.
   * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
   * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
   */
  mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
  mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));

  nan = spu_or(a_nan, b_nan);
  nan = spu_or(nan, spu_and(a_zero, b_zero));
  nan = spu_or(nan, spu_and(a_inf, b_inf));

  mult = spu_or(mult, (vec_double2)nan);

  /* Scale the final quotient */

  q2 = spu_mul(q1, mult);

  return (q2);
}


/* We use the same function for vector and scalar division.  Provide the
   scalar entry point as an alias.  */
double __divdf3 (double a, double b)
  __attribute__ ((__alias__ ("__divv2df3")));

/* Some toolchain builds used the __fast_divdf3 name for this helper function.
   Provide this as another alternate entry point for compatibility.  */
double __fast_divdf3 (double a, double b)
  __attribute__ ((__alias__ ("__divv2df3")));