1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
/* Copyright (C) 2002-2014 Free Software Foundation, Inc.
Contributed by Zack Weinberg <zack@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Threads compatibility routines for libgcc2 for VxWorks.
These are out-of-line routines called from gthr-vxworks.h.
This file provides the TLS related support routines, calling specific
VxWorks kernel entry points for this purpose. The base VxWorks 5.x kernels
don't feature these entry points, and we provide gthr_supp_vxw_5x.c as an
option to fill this gap. Asking users to rebuild a kernel is not to be
taken lightly, still, so we have isolated these routines from the rest of
vxlib to ensure that the kernel dependencies are only dragged when really
necessary. */
#include "tconfig.h"
#include "tsystem.h"
#include "gthr.h"
#if defined(__GTHREADS)
#include <vxWorks.h>
#ifndef __RTP__
#include <vxLib.h>
#endif
#include <taskLib.h>
#ifndef __RTP__
#include <taskHookLib.h>
#else
# include <errno.h>
#endif
/* Thread-local storage.
We reserve a field in the TCB to point to a dynamically allocated
array which is used to store TLS values. A TLS key is simply an
offset in this array. The exact location of the TCB field is not
known to this code nor to vxlib.c -- all access to it indirects
through the routines __gthread_get_tls_data and
__gthread_set_tls_data, which are provided by the VxWorks kernel.
There is also a global array which records which keys are valid and
which have destructors.
A task delete hook is installed to execute key destructors. The
routines __gthread_enter_tls_dtor_context and
__gthread_leave_tls_dtor_context, which are also provided by the
kernel, ensure that it is safe to call free() on memory allocated
by the task being deleted. (This is a no-op on VxWorks 5, but
a major undertaking on AE.)
The task delete hook is only installed when at least one thread
has TLS data. This is a necessary precaution, to allow this module
to be unloaded - a module with a hook can not be removed.
Since this interface is used to allocate only a small number of
keys, the table size is small and static, which simplifies the
code quite a bit. Revisit this if and when it becomes necessary. */
#define MAX_KEYS 4
/* This is the structure pointed to by the pointer returned
by __gthread_get_tls_data. */
struct tls_data
{
int *owner;
void *values[MAX_KEYS];
unsigned int generation[MAX_KEYS];
};
/* To make sure we only delete TLS data associated with this object,
include a pointer to a local variable in the TLS data object. */
static int self_owner;
/* Flag to check whether the delete hook is installed. Once installed
it is only removed when unloading this module. */
static volatile int delete_hook_installed;
/* kernel provided routines */
extern void *__gthread_get_tls_data (void);
extern void __gthread_set_tls_data (void *data);
extern void __gthread_enter_tls_dtor_context (void);
extern void __gthread_leave_tls_dtor_context (void);
#ifndef __RTP__
extern void *__gthread_get_tsd_data (WIND_TCB *tcb);
extern void __gthread_set_tsd_data (WIND_TCB *tcb, void *data);
extern void __gthread_enter_tsd_dtor_context (WIND_TCB *tcb);
extern void __gthread_leave_tsd_dtor_context (WIND_TCB *tcb);
#endif /* __RTP__ */
/* This is a global structure which records all of the active keys.
A key is potentially valid (i.e. has been handed out by
__gthread_key_create) iff its generation count in this structure is
even. In that case, the matching entry in the dtors array is a
routine to be called when a thread terminates with a valid,
non-NULL specific value for that key.
A key is actually valid in a thread T iff the generation count
stored in this structure is equal to the generation count stored in
T's specific-value structure. */
typedef void (*tls_dtor) (void *);
struct tls_keys
{
tls_dtor dtor[MAX_KEYS];
unsigned int generation[MAX_KEYS];
};
#define KEY_VALID_P(key) !(tls_keys.generation[key] & 1)
/* Note: if MAX_KEYS is increased, this initializer must be updated
to match. All the generation counts begin at 1, which means no
key is valid. */
static struct tls_keys tls_keys =
{
{ 0, 0, 0, 0 },
{ 1, 1, 1, 1 }
};
/* This lock protects the tls_keys structure. */
static __gthread_mutex_t tls_lock;
static __gthread_once_t tls_init_guard = __GTHREAD_ONCE_INIT;
/* Internal routines. */
/* The task TCB has just been deleted. Call the destructor
function for each TLS key that has both a destructor and
a non-NULL specific value in this thread.
This routine does not need to take tls_lock; the generation
count protects us from calling a stale destructor. It does
need to read tls_keys.dtor[key] atomically. */
static void
tls_delete_hook (void *tcb ATTRIBUTE_UNUSED)
{
struct tls_data *data;
__gthread_key_t key;
#ifdef __RTP__
data = __gthread_get_tls_data ();
#else
/* In kernel mode, we can be called in the context of the thread
doing the killing, so must use the TCB to determine the data of
the thread being killed. */
data = __gthread_get_tsd_data (tcb);
#endif
if (data && data->owner == &self_owner)
{
#ifdef __RTP__
__gthread_enter_tls_dtor_context ();
#else
__gthread_enter_tsd_dtor_context (tcb);
#endif
for (key = 0; key < MAX_KEYS; key++)
{
if (data->generation[key] == tls_keys.generation[key])
{
tls_dtor dtor = tls_keys.dtor[key];
if (dtor)
dtor (data->values[key]);
}
}
free (data);
#ifdef __RTP__
__gthread_leave_tls_dtor_context ();
#else
__gthread_leave_tsd_dtor_context (tcb);
#endif
#ifdef __RTP__
__gthread_set_tls_data (0);
#else
__gthread_set_tsd_data (tcb, 0);
#endif
}
}
/* Initialize global data used by the TLS system. */
static void
tls_init (void)
{
__GTHREAD_MUTEX_INIT_FUNCTION (&tls_lock);
}
static void tls_destructor (void) __attribute__ ((destructor));
static void
tls_destructor (void)
{
#ifdef __RTP__
/* All threads but this one should have exited by now. */
tls_delete_hook (NULL);
#endif
/* Unregister the hook. */
if (delete_hook_installed)
taskDeleteHookDelete ((FUNCPTR)tls_delete_hook);
if (tls_init_guard.done && __gthread_mutex_lock (&tls_lock) != ERROR)
semDelete (tls_lock);
}
/* External interface */
/* Store in KEYP a value which can be passed to __gthread_setspecific/
__gthread_getspecific to store and retrieve a value which is
specific to each calling thread. If DTOR is not NULL, it will be
called when a thread terminates with a non-NULL specific value for
this key, with the value as its sole argument. */
int
__gthread_key_create (__gthread_key_t *keyp, tls_dtor dtor)
{
__gthread_key_t key;
__gthread_once (&tls_init_guard, tls_init);
if (__gthread_mutex_lock (&tls_lock) == ERROR)
return errno;
for (key = 0; key < MAX_KEYS; key++)
if (!KEY_VALID_P (key))
goto found_slot;
/* no room */
__gthread_mutex_unlock (&tls_lock);
return EAGAIN;
found_slot:
tls_keys.generation[key]++; /* making it even */
tls_keys.dtor[key] = dtor;
*keyp = key;
__gthread_mutex_unlock (&tls_lock);
return 0;
}
/* Invalidate KEY; it can no longer be used as an argument to
setspecific/getspecific. Note that this does NOT call destructor
functions for any live values for this key. */
int
__gthread_key_delete (__gthread_key_t key)
{
if (key >= MAX_KEYS)
return EINVAL;
__gthread_once (&tls_init_guard, tls_init);
if (__gthread_mutex_lock (&tls_lock) == ERROR)
return errno;
if (!KEY_VALID_P (key))
{
__gthread_mutex_unlock (&tls_lock);
return EINVAL;
}
tls_keys.generation[key]++; /* making it odd */
tls_keys.dtor[key] = 0;
__gthread_mutex_unlock (&tls_lock);
return 0;
}
/* Retrieve the thread-specific value for KEY. If it has never been
set in this thread, or KEY is invalid, returns NULL.
It does not matter if this function races with key_create or
key_delete; the worst that can happen is you get a value other than
the one that a serialized implementation would have provided. */
void *
__gthread_getspecific (__gthread_key_t key)
{
struct tls_data *data;
if (key >= MAX_KEYS)
return 0;
data = __gthread_get_tls_data ();
if (!data)
return 0;
if (data->generation[key] != tls_keys.generation[key])
return 0;
return data->values[key];
}
/* Set the thread-specific value for KEY. If KEY is invalid, or
memory allocation fails, returns -1, otherwise 0.
The generation count protects this function against races with
key_create/key_delete; the worst thing that can happen is that a
value is successfully stored into a dead generation (and then
immediately becomes invalid). However, we do have to make sure
to read tls_keys.generation[key] atomically. */
int
__gthread_setspecific (__gthread_key_t key, void *value)
{
struct tls_data *data;
unsigned int generation;
if (key >= MAX_KEYS)
return EINVAL;
data = __gthread_get_tls_data ();
if (!data)
{
if (!delete_hook_installed)
{
/* Install the delete hook. */
if (__gthread_mutex_lock (&tls_lock) == ERROR)
return ENOMEM;
if (!delete_hook_installed)
{
taskDeleteHookAdd ((FUNCPTR)tls_delete_hook);
delete_hook_installed = 1;
}
__gthread_mutex_unlock (&tls_lock);
}
data = malloc (sizeof (struct tls_data));
if (!data)
return ENOMEM;
memset (data, 0, sizeof (struct tls_data));
data->owner = &self_owner;
__gthread_set_tls_data (data);
}
generation = tls_keys.generation[key];
if (generation & 1)
return EINVAL;
data->generation[key] = generation;
data->values[key] = value;
return 0;
}
#endif /* __GTHREADS */
|