summaryrefslogtreecommitdiff
path: root/libgcc/config/xtensa/ieee754-sf.S
blob: e96785c3f298fba8144430715a12f824e13464ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
/* IEEE-754 single-precision functions for Xtensa
   Copyright (C) 2006-2014 Free Software Foundation, Inc.
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   Under Section 7 of GPL version 3, you are granted additional
   permissions described in the GCC Runtime Library Exception, version
   3.1, as published by the Free Software Foundation.

   You should have received a copy of the GNU General Public License and
   a copy of the GCC Runtime Library Exception along with this program;
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
   <http://www.gnu.org/licenses/>.  */

#ifdef __XTENSA_EB__
#define xh a2
#define xl a3
#define yh a4
#define yl a5
#else
#define xh a3
#define xl a2
#define yh a5
#define yl a4
#endif

/*  Warning!  The branch displacements for some Xtensa branch instructions
    are quite small, and this code has been carefully laid out to keep
    branch targets in range.  If you change anything, be sure to check that
    the assembler is not relaxing anything to branch over a jump.  */

#ifdef L_negsf2

	.align	4
	.global	__negsf2
	.type	__negsf2, @function
__negsf2:
	leaf_entry sp, 16
	movi	a4, 0x80000000
	xor	a2, a2, a4
	leaf_return

#endif /* L_negsf2 */

#ifdef L_addsubsf3

	/* Addition */
__addsf3_aux:

	/* Handle NaNs and Infinities.  (This code is placed before the
	   start of the function just to keep it in range of the limited
	   branch displacements.)  */

.Ladd_xnan_or_inf:
	/* If y is neither Infinity nor NaN, return x.  */
	bnall	a3, a6, 1f
	/* If x is a NaN, return it.  Otherwise, return y.  */
	slli	a7, a2, 9
	beqz	a7, .Ladd_ynan_or_inf
1:	leaf_return

.Ladd_ynan_or_inf:
	/* Return y.  */
	mov	a2, a3
	leaf_return

.Ladd_opposite_signs:
	/* Operand signs differ.  Do a subtraction.  */
	slli	a7, a6, 8
	xor	a3, a3, a7
	j	.Lsub_same_sign

	.align	4
	.global	__addsf3
	.type	__addsf3, @function
__addsf3:
	leaf_entry sp, 16
	movi	a6, 0x7f800000

	/* Check if the two operands have the same sign.  */
	xor	a7, a2, a3
	bltz	a7, .Ladd_opposite_signs

.Ladd_same_sign:	
	/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity).  */
	ball	a2, a6, .Ladd_xnan_or_inf
	ball	a3, a6, .Ladd_ynan_or_inf

	/* Compare the exponents.  The smaller operand will be shifted
	   right by the exponent difference and added to the larger
	   one.  */
	extui	a7, a2, 23, 9
	extui	a8, a3, 23, 9
	bltu	a7, a8, .Ladd_shiftx

.Ladd_shifty:
	/* Check if the smaller (or equal) exponent is zero.  */
	bnone	a3, a6, .Ladd_yexpzero

	/* Replace y sign/exponent with 0x008.  */
	or	a3, a3, a6
	slli	a3, a3, 8
	srli	a3, a3, 8

.Ladd_yexpdiff:
	/* Compute the exponent difference.  */
	sub	a10, a7, a8

	/* Exponent difference > 32 -- just return the bigger value.  */
	bgeui	a10, 32, 1f
	
	/* Shift y right by the exponent difference.  Any bits that are
	   shifted out of y are saved in a9 for rounding the result.  */
	ssr	a10
	movi	a9, 0
	src	a9, a3, a9
	srl	a3, a3

	/* Do the addition.  */
	add	a2, a2, a3

	/* Check if the add overflowed into the exponent.  */
	extui	a10, a2, 23, 9
	beq	a10, a7, .Ladd_round
	mov	a8, a7
	j	.Ladd_carry

.Ladd_yexpzero:
	/* y is a subnormal value.  Replace its sign/exponent with zero,
	   i.e., no implicit "1.0", and increment the apparent exponent
	   because subnormals behave as if they had the minimum (nonzero)
	   exponent.  Test for the case when both exponents are zero.  */
	slli	a3, a3, 9
	srli	a3, a3, 9
	bnone	a2, a6, .Ladd_bothexpzero
	addi	a8, a8, 1
	j	.Ladd_yexpdiff

.Ladd_bothexpzero:
	/* Both exponents are zero.  Handle this as a special case.  There
	   is no need to shift or round, and the normal code for handling
	   a carry into the exponent field will not work because it
	   assumes there is an implicit "1.0" that needs to be added.  */
	add	a2, a2, a3
1:	leaf_return

.Ladd_xexpzero:
	/* Same as "yexpzero" except skip handling the case when both
	   exponents are zero.  */
	slli	a2, a2, 9
	srli	a2, a2, 9
	addi	a7, a7, 1
	j	.Ladd_xexpdiff

.Ladd_shiftx:
	/* Same thing as the "shifty" code, but with x and y swapped.  Also,
	   because the exponent difference is always nonzero in this version,
	   the shift sequence can use SLL and skip loading a constant zero.  */
	bnone	a2, a6, .Ladd_xexpzero

	or	a2, a2, a6
	slli	a2, a2, 8
	srli	a2, a2, 8

.Ladd_xexpdiff:
	sub	a10, a8, a7
	bgeui	a10, 32, .Ladd_returny
	
	ssr	a10
	sll	a9, a2
	srl	a2, a2

	add	a2, a2, a3

	/* Check if the add overflowed into the exponent.  */
	extui	a10, a2, 23, 9
	bne	a10, a8, .Ladd_carry

.Ladd_round:
	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a9, 1f
	addi	a2, a2, 1

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a9, a9, 1
	beqz	a9, .Ladd_exactlyhalf
1:	leaf_return

.Ladd_returny:
	mov	a2, a3
	leaf_return

.Ladd_carry:	
	/* The addition has overflowed into the exponent field, so the
	   value needs to be renormalized.  The mantissa of the result
	   can be recovered by subtracting the original exponent and
	   adding 0x800000 (which is the explicit "1.0" for the
	   mantissa of the non-shifted operand -- the "1.0" for the
	   shifted operand was already added).  The mantissa can then
	   be shifted right by one bit.  The explicit "1.0" of the
	   shifted mantissa then needs to be replaced by the exponent,
	   incremented by one to account for the normalizing shift.
	   It is faster to combine these operations: do the shift first
	   and combine the additions and subtractions.  If x is the
	   original exponent, the result is:
	       shifted mantissa - (x << 22) + (1 << 22) + (x << 23)
	   or:
	       shifted mantissa + ((x + 1) << 22)
	   Note that the exponent is incremented here by leaving the
	   explicit "1.0" of the mantissa in the exponent field.  */

	/* Shift x right by one bit.  Save the lsb.  */
	mov	a10, a2
	srli	a2, a2, 1

	/* See explanation above.  The original exponent is in a8.  */
	addi	a8, a8, 1
	slli	a8, a8, 22
	add	a2, a2, a8

	/* Return an Infinity if the exponent overflowed.  */
	ball	a2, a6, .Ladd_infinity
	
	/* Same thing as the "round" code except the msb of the leftover
	   fraction is bit 0 of a10, with the rest of the fraction in a9.  */
	bbci.l	a10, 0, 1f
	addi	a2, a2, 1
	beqz	a9, .Ladd_exactlyhalf
1:	leaf_return

.Ladd_infinity:
	/* Clear the mantissa.  */
	srli	a2, a2, 23
	slli	a2, a2, 23

	/* The sign bit may have been lost in a carry-out.  Put it back.  */
	slli	a8, a8, 1
	or	a2, a2, a8
	leaf_return

.Ladd_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	a2, a2, 1
	slli	a2, a2, 1
	leaf_return


	/* Subtraction */
__subsf3_aux:
	
	/* Handle NaNs and Infinities.  (This code is placed before the
	   start of the function just to keep it in range of the limited
	   branch displacements.)  */

.Lsub_xnan_or_inf:
	/* If y is neither Infinity nor NaN, return x.  */
	bnall	a3, a6, 1f
	/* Both x and y are either NaN or Inf, so the result is NaN.  */
	movi	a4, 0x400000	/* make it a quiet NaN */
	or	a2, a2, a4
1:	leaf_return

.Lsub_ynan_or_inf:
	/* Negate y and return it.  */
	slli	a7, a6, 8
	xor	a2, a3, a7
	leaf_return

.Lsub_opposite_signs:
	/* Operand signs differ.  Do an addition.  */
	slli	a7, a6, 8
	xor	a3, a3, a7
	j	.Ladd_same_sign

	.align	4
	.global	__subsf3
	.type	__subsf3, @function
__subsf3:
	leaf_entry sp, 16
	movi	a6, 0x7f800000

	/* Check if the two operands have the same sign.  */
	xor	a7, a2, a3
	bltz	a7, .Lsub_opposite_signs

.Lsub_same_sign:	
	/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity).  */
	ball	a2, a6, .Lsub_xnan_or_inf
	ball	a3, a6, .Lsub_ynan_or_inf

	/* Compare the operands.  In contrast to addition, the entire
	   value matters here.  */
	extui	a7, a2, 23, 8
	extui	a8, a3, 23, 8
	bltu	a2, a3, .Lsub_xsmaller

.Lsub_ysmaller:
	/* Check if the smaller (or equal) exponent is zero.  */
	bnone	a3, a6, .Lsub_yexpzero

	/* Replace y sign/exponent with 0x008.  */
	or	a3, a3, a6
	slli	a3, a3, 8
	srli	a3, a3, 8

.Lsub_yexpdiff:
	/* Compute the exponent difference.  */
	sub	a10, a7, a8

	/* Exponent difference > 32 -- just return the bigger value.  */
	bgeui	a10, 32, 1f
	
	/* Shift y right by the exponent difference.  Any bits that are
	   shifted out of y are saved in a9 for rounding the result.  */
	ssr	a10
	movi	a9, 0
	src	a9, a3, a9
	srl	a3, a3

	sub	a2, a2, a3

	/* Subtract the leftover bits in a9 from zero and propagate any
	   borrow from a2.  */
	neg	a9, a9
	addi	a10, a2, -1
	movnez	a2, a10, a9

	/* Check if the subtract underflowed into the exponent.  */
	extui	a10, a2, 23, 8
	beq	a10, a7, .Lsub_round
	j	.Lsub_borrow

.Lsub_yexpzero:
	/* Return zero if the inputs are equal.  (For the non-subnormal
	   case, subtracting the "1.0" will cause a borrow from the exponent
	   and this case can be detected when handling the borrow.)  */
	beq	a2, a3, .Lsub_return_zero

	/* y is a subnormal value.  Replace its sign/exponent with zero,
	   i.e., no implicit "1.0".  Unless x is also a subnormal, increment
	   y's apparent exponent because subnormals behave as if they had
	   the minimum (nonzero) exponent.  */
	slli	a3, a3, 9
	srli	a3, a3, 9
	bnone	a2, a6, .Lsub_yexpdiff
	addi	a8, a8, 1
	j	.Lsub_yexpdiff

.Lsub_returny:
	/* Negate and return y.  */
	slli	a7, a6, 8
	xor	a2, a3, a7
1:	leaf_return

.Lsub_xsmaller:
	/* Same thing as the "ysmaller" code, but with x and y swapped and
	   with y negated.  */
	bnone	a2, a6, .Lsub_xexpzero

	or	a2, a2, a6
	slli	a2, a2, 8
	srli	a2, a2, 8

.Lsub_xexpdiff:
	sub	a10, a8, a7
	bgeui	a10, 32, .Lsub_returny
	
	ssr	a10
	movi	a9, 0
	src	a9, a2, a9
	srl	a2, a2

	/* Negate y.  */
	slli	a11, a6, 8
	xor	a3, a3, a11

	sub	a2, a3, a2

	neg	a9, a9
	addi	a10, a2, -1
	movnez	a2, a10, a9

	/* Check if the subtract underflowed into the exponent.  */
	extui	a10, a2, 23, 8
	bne	a10, a8, .Lsub_borrow

.Lsub_round:
	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a9, 1f
	addi	a2, a2, 1

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a9, a9, 1
	beqz	a9, .Lsub_exactlyhalf
1:	leaf_return

.Lsub_xexpzero:
	/* Same as "yexpzero".  */
	beq	a2, a3, .Lsub_return_zero
	slli	a2, a2, 9
	srli	a2, a2, 9
	bnone	a3, a6, .Lsub_xexpdiff
	addi	a7, a7, 1
	j	.Lsub_xexpdiff

.Lsub_return_zero:
	movi	a2, 0
	leaf_return

.Lsub_borrow:	
	/* The subtraction has underflowed into the exponent field, so the
	   value needs to be renormalized.  Shift the mantissa left as
	   needed to remove any leading zeros and adjust the exponent
	   accordingly.  If the exponent is not large enough to remove
	   all the leading zeros, the result will be a subnormal value.  */

	slli	a8, a2, 9
	beqz	a8, .Lsub_xzero
	do_nsau	a6, a8, a7, a11
	srli	a8, a8, 9
	bge	a6, a10, .Lsub_subnormal
	addi	a6, a6, 1

.Lsub_normalize_shift:
	/* Shift the mantissa (a8/a9) left by a6.  */
	ssl	a6
	src	a8, a8, a9
	sll	a9, a9

	/* Combine the shifted mantissa with the sign and exponent,
	   decrementing the exponent by a6.  (The exponent has already
	   been decremented by one due to the borrow from the subtraction,
	   but adding the mantissa will increment the exponent by one.)  */
	srli	a2, a2, 23
	sub	a2, a2, a6
	slli	a2, a2, 23
	add	a2, a2, a8
	j	.Lsub_round

.Lsub_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	a2, a2, 1
	slli	a2, a2, 1
	leaf_return

.Lsub_xzero:
	/* If there was a borrow from the exponent, and the mantissa and
	   guard digits are all zero, then the inputs were equal and the
	   result should be zero.  */
	beqz	a9, .Lsub_return_zero

	/* Only the guard digit is nonzero.  Shift by min(24, a10).  */
	addi	a11, a10, -24
	movi	a6, 24
	movltz	a6, a10, a11
	j	.Lsub_normalize_shift

.Lsub_subnormal:
	/* The exponent is too small to shift away all the leading zeros.
	   Set a6 to the current exponent (which has already been
	   decremented by the borrow) so that the exponent of the result
	   will be zero.  Do not add 1 to a6 in this case, because: (1)
	   adding the mantissa will not increment the exponent, so there is
	   no need to subtract anything extra from the exponent to
	   compensate, and (2) the effective exponent of a subnormal is 1
	   not 0 so the shift amount must be 1 smaller than normal. */
	mov	a6, a10
	j	.Lsub_normalize_shift

#endif /* L_addsubsf3 */

#ifdef L_mulsf3

	/* Multiplication */
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
#define XCHAL_NO_MUL 1
#endif

__mulsf3_aux:

	/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
	   (This code is placed before the start of the function just to
	   keep it in range of the limited branch displacements.)  */

.Lmul_xexpzero:
	/* Clear the sign bit of x.  */
	slli	a2, a2, 1
	srli	a2, a2, 1

	/* If x is zero, return zero.  */
	beqz	a2, .Lmul_return_zero

	/* Normalize x.  Adjust the exponent in a8.  */
	do_nsau	a10, a2, a11, a12
	addi	a10, a10, -8
	ssl	a10
	sll	a2, a2 
	movi	a8, 1
	sub	a8, a8, a10
	j	.Lmul_xnormalized	
	
.Lmul_yexpzero:
	/* Clear the sign bit of y.  */
	slli	a3, a3, 1
	srli	a3, a3, 1

	/* If y is zero, return zero.  */
	beqz	a3, .Lmul_return_zero

	/* Normalize y.  Adjust the exponent in a9.  */
	do_nsau	a10, a3, a11, a12
	addi	a10, a10, -8
	ssl	a10
	sll	a3, a3
	movi	a9, 1
	sub	a9, a9, a10
	j	.Lmul_ynormalized	

.Lmul_return_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	a2, a7, 31
	slli	a2, a2, 31
	j	.Lmul_done

.Lmul_xnan_or_inf:
	/* If y is zero, return NaN.  */
	slli	a8, a3, 1
	bnez	a8, 1f
	movi	a4, 0x400000	/* make it a quiet NaN */
	or	a2, a2, a4
	j	.Lmul_done
1:
	/* If y is NaN, return y.  */
	bnall	a3, a6, .Lmul_returnx
	slli	a8, a3, 9
	beqz	a8, .Lmul_returnx

.Lmul_returny:
	mov	a2, a3

.Lmul_returnx:
	/* Set the sign bit and return.  */
	extui	a7, a7, 31, 1
	slli	a2, a2, 1
	ssai	1
	src	a2, a7, a2
	j	.Lmul_done

.Lmul_ynan_or_inf:
	/* If x is zero, return NaN.  */
	slli	a8, a2, 1
	bnez	a8, .Lmul_returny
	movi	a7, 0x400000	/* make it a quiet NaN */
	or	a2, a3, a7
	j	.Lmul_done

	.align	4
	.global	__mulsf3
	.type	__mulsf3, @function
__mulsf3:
#if __XTENSA_CALL0_ABI__
	leaf_entry sp, 32
	addi	sp, sp, -32
	s32i	a12, sp, 16
	s32i	a13, sp, 20
	s32i	a14, sp, 24
	s32i	a15, sp, 28
#elif XCHAL_NO_MUL
	/* This is not really a leaf function; allocate enough stack space
	   to allow CALL12s to a helper function.  */
	leaf_entry sp, 64
#else
	leaf_entry sp, 32
#endif
	movi	a6, 0x7f800000

	/* Get the sign of the result.  */
	xor	a7, a2, a3

	/* Check for NaN and infinity.  */
	ball	a2, a6, .Lmul_xnan_or_inf
	ball	a3, a6, .Lmul_ynan_or_inf

	/* Extract the exponents.  */
	extui	a8, a2, 23, 8
	extui	a9, a3, 23, 8

	beqz	a8, .Lmul_xexpzero
.Lmul_xnormalized:	
	beqz	a9, .Lmul_yexpzero
.Lmul_ynormalized:	

	/* Add the exponents.  */
	add	a8, a8, a9

	/* Replace sign/exponent fields with explicit "1.0".  */
	movi	a10, 0xffffff
	or	a2, a2, a6
	and	a2, a2, a10
	or	a3, a3, a6
	and	a3, a3, a10

	/* Multiply 32x32 to 64 bits.  The result ends up in a2/a6.  */

#if XCHAL_HAVE_MUL32_HIGH

	mull	a6, a2, a3
	muluh	a2, a2, a3

#else

	/* Break the inputs into 16-bit chunks and compute 4 32-bit partial
	   products.  These partial products are:

		0 xl * yl

		1 xl * yh
		2 xh * yl

		3 xh * yh

	   If using the Mul16 or Mul32 multiplier options, these input
	   chunks must be stored in separate registers.  For Mac16, the
	   UMUL.AA.* opcodes can specify that the inputs come from either
	   half of the registers, so there is no need to shift them out
	   ahead of time.  If there is no multiply hardware, the 16-bit
	   chunks can be extracted when setting up the arguments to the
	   separate multiply function.  */

#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
	/* Calling a separate multiply function will clobber a0 and requires
	   use of a8 as a temporary, so save those values now.  (The function
	   uses a custom ABI so nothing else needs to be saved.)  */
	s32i	a0, sp, 0
	s32i	a8, sp, 4
#endif

#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32

#define a2h a4
#define a3h a5

	/* Get the high halves of the inputs into registers.  */
	srli	a2h, a2, 16
	srli	a3h, a3, 16

#define a2l a2
#define a3l a3

#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
	/* Clear the high halves of the inputs.  This does not matter
	   for MUL16 because the high bits are ignored.  */
	extui	a2, a2, 0, 16
	extui	a3, a3, 0, 16
#endif
#endif /* MUL16 || MUL32 */


#if XCHAL_HAVE_MUL16

#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	mul16u	dst, xreg ## xhalf, yreg ## yhalf

#elif XCHAL_HAVE_MUL32

#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	mull	dst, xreg ## xhalf, yreg ## yhalf

#elif XCHAL_HAVE_MAC16

/* The preprocessor insists on inserting a space when concatenating after
   a period in the definition of do_mul below.  These macros are a workaround
   using underscores instead of periods when doing the concatenation.  */
#define umul_aa_ll umul.aa.ll
#define umul_aa_lh umul.aa.lh
#define umul_aa_hl umul.aa.hl
#define umul_aa_hh umul.aa.hh

#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	umul_aa_ ## xhalf ## yhalf	xreg, yreg; \
	rsr	dst, ACCLO

#else /* no multiply hardware */
	
#define set_arg_l(dst, src) \
	extui	dst, src, 0, 16
#define set_arg_h(dst, src) \
	srli	dst, src, 16

#if __XTENSA_CALL0_ABI__
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	set_arg_ ## xhalf (a13, xreg); \
	set_arg_ ## yhalf (a14, yreg); \
	call0	.Lmul_mulsi3; \
	mov	dst, a12
#else
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
	set_arg_ ## xhalf (a14, xreg); \
	set_arg_ ## yhalf (a15, yreg); \
	call12	.Lmul_mulsi3; \
	mov	dst, a14
#endif /* __XTENSA_CALL0_ABI__ */

#endif /* no multiply hardware */

	/* Add pp1 and pp2 into a6 with carry-out in a9.  */
	do_mul(a6, a2, l, a3, h)	/* pp 1 */
	do_mul(a11, a2, h, a3, l)	/* pp 2 */
	movi	a9, 0
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a9, a9, 1
1:
	/* Shift the high half of a9/a6 into position in a9.  Note that
	   this value can be safely incremented without any carry-outs.  */
	ssai	16
	src	a9, a9, a6

	/* Compute the low word into a6.  */
	do_mul(a11, a2, l, a3, l)	/* pp 0 */
	sll	a6, a6
	add	a6, a6, a11
	bgeu	a6, a11, 1f
	addi	a9, a9, 1
1:
	/* Compute the high word into a2.  */
	do_mul(a2, a2, h, a3, h)	/* pp 3 */
	add	a2, a2, a9
	
#if __XTENSA_CALL0_ABI__ && XCHAL_NO_MUL
	/* Restore values saved on the stack during the multiplication.  */
	l32i	a0, sp, 0
	l32i	a8, sp, 4
#endif
#endif /* ! XCHAL_HAVE_MUL32_HIGH */

	/* Shift left by 9 bits, unless there was a carry-out from the
	   multiply, in which case, shift by 8 bits and increment the
	   exponent.  */
	movi	a4, 9
	srli	a5, a2, 24 - 9
	beqz	a5, 1f
	addi	a4, a4, -1
	addi	a8, a8, 1
1:	ssl	a4
	src	a2, a2, a6
	sll	a6, a6

	/* Subtract the extra bias from the exponent sum (plus one to account
	   for the explicit "1.0" of the mantissa that will be added to the
	   exponent in the final result).  */
	movi	a4, 0x80
	sub	a8, a8, a4
	
	/* Check for over/underflow.  The value in a8 is one less than the
	   final exponent, so values in the range 0..fd are OK here.  */
	movi	a4, 0xfe
	bgeu	a8, a4, .Lmul_overflow
	
.Lmul_round:
	/* Round.  */
	bgez	a6, .Lmul_rounded
	addi	a2, a2, 1
	slli	a6, a6, 1
	beqz	a6, .Lmul_exactlyhalf

.Lmul_rounded:
	/* Add the exponent to the mantissa.  */
	slli	a8, a8, 23
	add	a2, a2, a8

.Lmul_addsign:
	/* Add the sign bit.  */
	srli	a7, a7, 31
	slli	a7, a7, 31
	or	a2, a2, a7

.Lmul_done:
#if __XTENSA_CALL0_ABI__
	l32i	a12, sp, 16
	l32i	a13, sp, 20
	l32i	a14, sp, 24
	l32i	a15, sp, 28
	addi	sp, sp, 32
#endif
	leaf_return

.Lmul_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	a2, a2, 1
	slli	a2, a2, 1
	j	.Lmul_rounded

.Lmul_overflow:
	bltz	a8, .Lmul_underflow
	/* Return +/- Infinity.  */
	movi	a8, 0xff
	slli	a2, a8, 23
	j	.Lmul_addsign

.Lmul_underflow:
	/* Create a subnormal value, where the exponent field contains zero,
	   but the effective exponent is 1.  The value of a8 is one less than
	   the actual exponent, so just negate it to get the shift amount.  */
	neg	a8, a8
	mov	a9, a6
	ssr	a8
	bgeui	a8, 32, .Lmul_flush_to_zero
	
	/* Shift a2 right.  Any bits that are shifted out of a2 are saved
	   in a6 (combined with the shifted-out bits currently in a6) for
	   rounding the result.  */
	sll	a6, a2
	srl	a2, a2

	/* Set the exponent to zero.  */
	movi	a8, 0

	/* Pack any nonzero bits shifted out into a6.  */
	beqz	a9, .Lmul_round
	movi	a9, 1
	or	a6, a6, a9
	j	.Lmul_round
	
.Lmul_flush_to_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	a2, a7, 31
	slli	a2, a2, 31
	j	.Lmul_done

#if XCHAL_NO_MUL
	
	/* For Xtensa processors with no multiply hardware, this simplified
	   version of _mulsi3 is used for multiplying 16-bit chunks of
	   the floating-point mantissas.  When using CALL0, this function
	   uses a custom ABI: the inputs are passed in a13 and a14, the
	   result is returned in a12, and a8 and a15 are clobbered.  */
	.align	4
.Lmul_mulsi3:
	leaf_entry sp, 16
	.macro mul_mulsi3_body dst, src1, src2, tmp1, tmp2
	movi	\dst, 0
1:	add	\tmp1, \src2, \dst
	extui	\tmp2, \src1, 0, 1
	movnez	\dst, \tmp1, \tmp2

	do_addx2 \tmp1, \src2, \dst, \tmp1
	extui	\tmp2, \src1, 1, 1
	movnez	\dst, \tmp1, \tmp2

	do_addx4 \tmp1, \src2, \dst, \tmp1
	extui	\tmp2, \src1, 2, 1
	movnez	\dst, \tmp1, \tmp2

	do_addx8 \tmp1, \src2, \dst, \tmp1
	extui	\tmp2, \src1, 3, 1
	movnez	\dst, \tmp1, \tmp2

	srli	\src1, \src1, 4
	slli	\src2, \src2, 4
	bnez	\src1, 1b
	.endm
#if __XTENSA_CALL0_ABI__
	mul_mulsi3_body a12, a13, a14, a15, a8
#else
	/* The result will be written into a2, so save that argument in a4.  */
	mov	a4, a2
	mul_mulsi3_body a2, a4, a3, a5, a6
#endif
	leaf_return
#endif /* XCHAL_NO_MUL */
#endif /* L_mulsf3 */

#ifdef L_divsf3

	/* Division */
__divsf3_aux:

	/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
	   (This code is placed before the start of the function just to
	   keep it in range of the limited branch displacements.)  */

.Ldiv_yexpzero:
	/* Clear the sign bit of y.  */
	slli	a3, a3, 1
	srli	a3, a3, 1

	/* Check for division by zero.  */
	beqz	a3, .Ldiv_yzero

	/* Normalize y.  Adjust the exponent in a9.  */
	do_nsau	a10, a3, a4, a5
	addi	a10, a10, -8
	ssl	a10
	sll	a3, a3
	movi	a9, 1
	sub	a9, a9, a10
	j	.Ldiv_ynormalized	

.Ldiv_yzero:
	/* y is zero.  Return NaN if x is also zero; otherwise, infinity.  */
	slli	a4, a2, 1
	srli	a4, a4, 1
	srli	a2, a7, 31
	slli	a2, a2, 31
	or	a2, a2, a6
	bnez	a4, 1f
	movi	a4, 0x400000	/* make it a quiet NaN */
	or	a2, a2, a4
1:	leaf_return

.Ldiv_xexpzero:
	/* Clear the sign bit of x.  */
	slli	a2, a2, 1
	srli	a2, a2, 1

	/* If x is zero, return zero.  */
	beqz	a2, .Ldiv_return_zero

	/* Normalize x.  Adjust the exponent in a8.  */
	do_nsau	a10, a2, a4, a5
	addi	a10, a10, -8
	ssl	a10
	sll	a2, a2
	movi	a8, 1
	sub	a8, a8, a10
	j	.Ldiv_xnormalized	
	
.Ldiv_return_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	a2, a7, 31
	slli	a2, a2, 31
	leaf_return

.Ldiv_xnan_or_inf:
	/* Set the sign bit of the result.  */
	srli	a7, a3, 31
	slli	a7, a7, 31
	xor	a2, a2, a7
	/* If y is NaN or Inf, return NaN.  */
	bnall	a3, a6, 1f
	movi	a4, 0x400000	/* make it a quiet NaN */
	or	a2, a2, a4
1:	leaf_return

.Ldiv_ynan_or_inf:
	/* If y is Infinity, return zero.  */
	slli	a8, a3, 9
	beqz	a8, .Ldiv_return_zero
	/* y is NaN; return it.  */
	mov	a2, a3
	leaf_return

	.align	4
	.global	__divsf3
	.type	__divsf3, @function
__divsf3:
	leaf_entry sp, 16
	movi	a6, 0x7f800000

	/* Get the sign of the result.  */
	xor	a7, a2, a3

	/* Check for NaN and infinity.  */
	ball	a2, a6, .Ldiv_xnan_or_inf
	ball	a3, a6, .Ldiv_ynan_or_inf

	/* Extract the exponents.  */
	extui	a8, a2, 23, 8
	extui	a9, a3, 23, 8

	beqz	a9, .Ldiv_yexpzero
.Ldiv_ynormalized:	
	beqz	a8, .Ldiv_xexpzero
.Ldiv_xnormalized:	

	/* Subtract the exponents.  */
	sub	a8, a8, a9

	/* Replace sign/exponent fields with explicit "1.0".  */
	movi	a10, 0xffffff
	or	a2, a2, a6
	and	a2, a2, a10
	or	a3, a3, a6
	and	a3, a3, a10

	/* The first digit of the mantissa division must be a one.
	   Shift x (and adjust the exponent) as needed to make this true.  */
	bltu	a3, a2, 1f
	slli	a2, a2, 1
	addi	a8, a8, -1
1:
	/* Do the first subtraction and shift.  */
	sub	a2, a2, a3
	slli	a2, a2, 1

	/* Put the quotient into a10.  */
	movi	a10, 1

	/* Divide one bit at a time for 23 bits.  */
	movi	a9, 23
#if XCHAL_HAVE_LOOPS
	loop	a9, .Ldiv_loopend
#endif
.Ldiv_loop:
	/* Shift the quotient << 1.  */
	slli	a10, a10, 1

	/* Is this digit a 0 or 1?  */
	bltu	a2, a3, 1f

	/* Output a 1 and subtract.  */
	addi	a10, a10, 1
	sub	a2, a2, a3

	/* Shift the dividend << 1.  */
1:	slli	a2, a2, 1

#if !XCHAL_HAVE_LOOPS
	addi	a9, a9, -1
	bnez	a9, .Ldiv_loop
#endif
.Ldiv_loopend:

	/* Add the exponent bias (less one to account for the explicit "1.0"
	   of the mantissa that will be added to the exponent in the final
	   result).  */
	addi	a8, a8, 0x7e
	
	/* Check for over/underflow.  The value in a8 is one less than the
	   final exponent, so values in the range 0..fd are OK here.  */
	movi	a4, 0xfe
	bgeu	a8, a4, .Ldiv_overflow
	
.Ldiv_round:
	/* Round.  The remainder (<< 1) is in a2.  */
	bltu	a2, a3, .Ldiv_rounded
	addi	a10, a10, 1
	beq	a2, a3, .Ldiv_exactlyhalf

.Ldiv_rounded:
	/* Add the exponent to the mantissa.  */
	slli	a8, a8, 23
	add	a2, a10, a8

.Ldiv_addsign:
	/* Add the sign bit.  */
	srli	a7, a7, 31
	slli	a7, a7, 31
	or	a2, a2, a7
	leaf_return

.Ldiv_overflow:
	bltz	a8, .Ldiv_underflow
	/* Return +/- Infinity.  */
	addi	a8, a4, 1	/* 0xff */
	slli	a2, a8, 23
	j	.Ldiv_addsign

.Ldiv_exactlyhalf:
	/* Remainder is exactly half the divisor.  Round even.  */
	srli	a10, a10, 1
	slli	a10, a10, 1
	j	.Ldiv_rounded

.Ldiv_underflow:
	/* Create a subnormal value, where the exponent field contains zero,
	   but the effective exponent is 1.  The value of a8 is one less than
	   the actual exponent, so just negate it to get the shift amount.  */
	neg	a8, a8
	ssr	a8
	bgeui	a8, 32, .Ldiv_flush_to_zero
	
	/* Shift a10 right.  Any bits that are shifted out of a10 are
	   saved in a6 for rounding the result.  */
	sll	a6, a10
	srl	a10, a10

	/* Set the exponent to zero.  */
	movi	a8, 0

	/* Pack any nonzero remainder (in a2) into a6.  */
	beqz	a2, 1f
	movi	a9, 1
	or	a6, a6, a9
	
	/* Round a10 based on the bits shifted out into a6.  */
1:	bgez	a6, .Ldiv_rounded
	addi	a10, a10, 1
	slli	a6, a6, 1
	bnez	a6, .Ldiv_rounded
	srli	a10, a10, 1
	slli	a10, a10, 1
	j	.Ldiv_rounded

.Ldiv_flush_to_zero:
	/* Return zero with the appropriate sign bit.  */
	srli	a2, a7, 31
	slli	a2, a2, 31
	leaf_return

#endif /* L_divsf3 */

#ifdef L_cmpsf2

	/* Equal and Not Equal */

	.align	4
	.global	__eqsf2
	.global	__nesf2
	.set	__nesf2, __eqsf2
	.type	__eqsf2, @function
__eqsf2:
	leaf_entry sp, 16
	bne	a2, a3, 4f

	/* The values are equal but NaN != NaN.  Check the exponent.  */
	movi	a6, 0x7f800000
	ball	a2, a6, 3f

	/* Equal.  */
	movi	a2, 0
	leaf_return

	/* Not equal.  */
2:	movi	a2, 1
	leaf_return

	/* Check if the mantissas are nonzero.  */
3:	slli	a7, a2, 9
	j	5f

	/* Check if x and y are zero with different signs.  */
4:	or	a7, a2, a3
	slli	a7, a7, 1

	/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
	   or x when exponent(x) = 0x7f8 and x == y.  */
5:	movi	a2, 0
	movi	a3, 1
	movnez	a2, a3, a7	
	leaf_return


	/* Greater Than */

	.align	4
	.global	__gtsf2
	.type	__gtsf2, @function
__gtsf2:
	leaf_entry sp, 16
	movi	a6, 0x7f800000
	ball	a2, a6, 2f
1:	bnall	a3, a6, .Lle_cmp

	/* Check if y is a NaN.  */
	slli	a7, a3, 9
	beqz	a7, .Lle_cmp
	movi	a2, 0
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, a2, 9
	beqz	a7, 1b
	movi	a2, 0
	leaf_return


	/* Less Than or Equal */

	.align	4
	.global	__lesf2
	.type	__lesf2, @function
__lesf2:
	leaf_entry sp, 16
	movi	a6, 0x7f800000
	ball	a2, a6, 2f
1:	bnall	a3, a6, .Lle_cmp

	/* Check if y is a NaN.  */
	slli	a7, a3, 9
	beqz	a7, .Lle_cmp
	movi	a2, 1
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, a2, 9
	beqz	a7, 1b
	movi	a2, 1
	leaf_return

.Lle_cmp:
	/* Check if x and y have different signs.  */
	xor	a7, a2, a3
	bltz	a7, .Lle_diff_signs

	/* Check if x is negative.  */
	bltz	a2, .Lle_xneg

	/* Check if x <= y.  */
	bltu	a3, a2, 5f
4:	movi	a2, 0
	leaf_return

.Lle_xneg:
	/* Check if y <= x.  */
	bgeu	a2, a3, 4b
5:	movi	a2, 1
	leaf_return

.Lle_diff_signs:
	bltz	a2, 4b

	/* Check if both x and y are zero.  */
	or	a7, a2, a3
	slli	a7, a7, 1
	movi	a2, 1
	movi	a3, 0
	moveqz	a2, a3, a7
	leaf_return


	/* Greater Than or Equal */

	.align	4
	.global	__gesf2
	.type	__gesf2, @function
__gesf2:
	leaf_entry sp, 16
	movi	a6, 0x7f800000
	ball	a2, a6, 2f
1:	bnall	a3, a6, .Llt_cmp

	/* Check if y is a NaN.  */
	slli	a7, a3, 9
	beqz	a7, .Llt_cmp
	movi	a2, -1
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, a2, 9
	beqz	a7, 1b
	movi	a2, -1
	leaf_return


	/* Less Than */

	.align	4
	.global	__ltsf2
	.type	__ltsf2, @function
__ltsf2:
	leaf_entry sp, 16
	movi	a6, 0x7f800000
	ball	a2, a6, 2f
1:	bnall	a3, a6, .Llt_cmp

	/* Check if y is a NaN.  */
	slli	a7, a3, 9
	beqz	a7, .Llt_cmp
	movi	a2, 0
	leaf_return

	/* Check if x is a NaN.  */
2:	slli	a7, a2, 9
	beqz	a7, 1b
	movi	a2, 0
	leaf_return

.Llt_cmp:
	/* Check if x and y have different signs.  */
	xor	a7, a2, a3
	bltz	a7, .Llt_diff_signs

	/* Check if x is negative.  */
	bltz	a2, .Llt_xneg

	/* Check if x < y.  */
	bgeu	a2, a3, 5f
4:	movi	a2, -1
	leaf_return

.Llt_xneg:
	/* Check if y < x.  */
	bltu	a3, a2, 4b
5:	movi	a2, 0
	leaf_return

.Llt_diff_signs:
	bgez	a2, 5b

	/* Check if both x and y are nonzero.  */
	or	a7, a2, a3
	slli	a7, a7, 1
	movi	a2, 0
	movi	a3, -1
	movnez	a2, a3, a7
	leaf_return


	/* Unordered */

	.align	4
	.global	__unordsf2
	.type	__unordsf2, @function
__unordsf2:
	leaf_entry sp, 16
	movi	a6, 0x7f800000
	ball	a2, a6, 3f
1:	ball	a3, a6, 4f
2:	movi	a2, 0
	leaf_return

3:	slli	a7, a2, 9
	beqz	a7, 1b
	movi	a2, 1
	leaf_return

4:	slli	a7, a3, 9
	beqz	a7, 2b
	movi	a2, 1
	leaf_return

#endif /* L_cmpsf2 */

#ifdef L_fixsfsi

	.align	4
	.global	__fixsfsi
	.type	__fixsfsi, @function
__fixsfsi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7f800000
	ball	a2, a6, .Lfixsfsi_nan_or_inf

	/* Extract the exponent and check if 0 < (exp - 0x7e) < 32.  */
	extui	a4, a2, 23, 8
	addi	a4, a4, -0x7e
	bgei	a4, 32, .Lfixsfsi_maxint
	blti	a4, 1, .Lfixsfsi_zero

	/* Add explicit "1.0" and shift << 8.  */
	or	a7, a2, a6
	slli	a5, a7, 8

	/* Shift back to the right, based on the exponent.  */
	ssl	a4		/* shift by 32 - a4 */
	srl	a5, a5

	/* Negate the result if sign != 0.  */
	neg	a2, a5
	movgez	a2, a5, a7
	leaf_return

.Lfixsfsi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, a2, 9
	beqz	a4, .Lfixsfsi_maxint

	/* Translate NaN to +maxint.  */
	movi	a2, 0

.Lfixsfsi_maxint:
	slli	a4, a6, 8	/* 0x80000000 */
	addi	a5, a4, -1	/* 0x7fffffff */
	movgez	a4, a5, a2
	mov	a2, a4
	leaf_return

.Lfixsfsi_zero:
	movi	a2, 0
	leaf_return

#endif /* L_fixsfsi */

#ifdef L_fixsfdi

	.align	4
	.global	__fixsfdi
	.type	__fixsfdi, @function
__fixsfdi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7f800000
	ball	a2, a6, .Lfixsfdi_nan_or_inf

	/* Extract the exponent and check if 0 < (exp - 0x7e) < 64.  */
	extui	a4, a2, 23, 8
	addi	a4, a4, -0x7e
	bgei	a4, 64, .Lfixsfdi_maxint
	blti	a4, 1, .Lfixsfdi_zero

	/* Add explicit "1.0" and shift << 8.  */
	or	a7, a2, a6
	slli	xh, a7, 8

	/* Shift back to the right, based on the exponent.  */
	ssl	a4		/* shift by 64 - a4 */
	bgei	a4, 32, .Lfixsfdi_smallshift
	srl	xl, xh
	movi	xh, 0

.Lfixsfdi_shifted:	
	/* Negate the result if sign != 0.  */
	bgez	a7, 1f
	neg	xl, xl
	neg	xh, xh
	beqz	xl, 1f
	addi	xh, xh, -1
1:	leaf_return

.Lfixsfdi_smallshift:
	movi	xl, 0
	sll	xl, xh
	srl	xh, xh
	j	.Lfixsfdi_shifted

.Lfixsfdi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, a2, 9
	beqz	a4, .Lfixsfdi_maxint

	/* Translate NaN to +maxint.  */
	movi	a2, 0

.Lfixsfdi_maxint:
	slli	a7, a6, 8	/* 0x80000000 */
	bgez	a2, 1f
	mov	xh, a7
	movi	xl, 0
	leaf_return

1:	addi	xh, a7, -1	/* 0x7fffffff */
	movi	xl, -1
	leaf_return

.Lfixsfdi_zero:
	movi	xh, 0
	movi	xl, 0
	leaf_return

#endif /* L_fixsfdi */

#ifdef L_fixunssfsi

	.align	4
	.global	__fixunssfsi
	.type	__fixunssfsi, @function
__fixunssfsi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7f800000
	ball	a2, a6, .Lfixunssfsi_nan_or_inf

	/* Extract the exponent and check if 0 <= (exp - 0x7f) < 32.  */
	extui	a4, a2, 23, 8
	addi	a4, a4, -0x7f
	bgei	a4, 32, .Lfixunssfsi_maxint
	bltz	a4, .Lfixunssfsi_zero

	/* Add explicit "1.0" and shift << 8.  */
	or	a7, a2, a6
	slli	a5, a7, 8

	/* Shift back to the right, based on the exponent.  */
	addi	a4, a4, 1
	beqi	a4, 32, .Lfixunssfsi_bigexp
	ssl	a4		/* shift by 32 - a4 */
	srl	a5, a5

	/* Negate the result if sign != 0.  */
	neg	a2, a5
	movgez	a2, a5, a7
	leaf_return

.Lfixunssfsi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, a2, 9
	beqz	a4, .Lfixunssfsi_maxint

	/* Translate NaN to 0xffffffff.  */
	movi	a2, -1
	leaf_return

.Lfixunssfsi_maxint:
	slli	a4, a6, 8	/* 0x80000000 */
	movi	a5, -1		/* 0xffffffff */
	movgez	a4, a5, a2
	mov	a2, a4
	leaf_return

.Lfixunssfsi_zero:
	movi	a2, 0
	leaf_return

.Lfixunssfsi_bigexp:
	/* Handle unsigned maximum exponent case.  */
	bltz	a2, 1f
	mov	a2, a5		/* no shift needed */
	leaf_return

	/* Return 0x80000000 if negative.  */
1:	slli	a2, a6, 8
	leaf_return

#endif /* L_fixunssfsi */

#ifdef L_fixunssfdi

	.align	4
	.global	__fixunssfdi
	.type	__fixunssfdi, @function
__fixunssfdi:
	leaf_entry sp, 16

	/* Check for NaN and Infinity.  */
	movi	a6, 0x7f800000
	ball	a2, a6, .Lfixunssfdi_nan_or_inf

	/* Extract the exponent and check if 0 <= (exp - 0x7f) < 64.  */
	extui	a4, a2, 23, 8
	addi	a4, a4, -0x7f
	bgei	a4, 64, .Lfixunssfdi_maxint
	bltz	a4, .Lfixunssfdi_zero

	/* Add explicit "1.0" and shift << 8.  */
	or	a7, a2, a6
	slli	xh, a7, 8

	/* Shift back to the right, based on the exponent.  */
	addi	a4, a4, 1
	beqi	a4, 64, .Lfixunssfdi_bigexp
	ssl	a4		/* shift by 64 - a4 */
	bgei	a4, 32, .Lfixunssfdi_smallshift
	srl	xl, xh
	movi	xh, 0

.Lfixunssfdi_shifted:
	/* Negate the result if sign != 0.  */
	bgez	a7, 1f
	neg	xl, xl
	neg	xh, xh
	beqz	xl, 1f
	addi	xh, xh, -1
1:	leaf_return

.Lfixunssfdi_smallshift:
	movi	xl, 0
	src	xl, xh, xl
	srl	xh, xh
	j	.Lfixunssfdi_shifted

.Lfixunssfdi_nan_or_inf:
	/* Handle Infinity and NaN.  */
	slli	a4, a2, 9
	beqz	a4, .Lfixunssfdi_maxint

	/* Translate NaN to 0xffffffff.... */
1:	movi	xh, -1
	movi	xl, -1
	leaf_return

.Lfixunssfdi_maxint:
	bgez	a2, 1b
2:	slli	xh, a6, 8	/* 0x80000000 */
	movi	xl, 0
	leaf_return

.Lfixunssfdi_zero:
	movi	xh, 0
	movi	xl, 0
	leaf_return

.Lfixunssfdi_bigexp:
	/* Handle unsigned maximum exponent case.  */
	bltz	a7, 2b
	movi	xl, 0
	leaf_return		/* no shift needed */

#endif /* L_fixunssfdi */

#ifdef L_floatsisf

	.align	4
	.global	__floatunsisf
	.type	__floatunsisf, @function
__floatunsisf:
	leaf_entry sp, 16
	beqz	a2, .Lfloatsisf_return

	/* Set the sign to zero and jump to the floatsisf code.  */
	movi	a7, 0
	j	.Lfloatsisf_normalize

	.align	4
	.global	__floatsisf
	.type	__floatsisf, @function
__floatsisf:
	leaf_entry sp, 16

	/* Check for zero.  */
	beqz	a2, .Lfloatsisf_return

	/* Save the sign.  */
	extui	a7, a2, 31, 1

	/* Get the absolute value.  */
#if XCHAL_HAVE_ABS
	abs	a2, a2
#else
	neg	a4, a2
	movltz	a2, a4, a2
#endif

.Lfloatsisf_normalize:
	/* Normalize with the first 1 bit in the msb.  */
	do_nsau	a4, a2, a5, a6
	ssl	a4
	sll	a5, a2

	/* Shift the mantissa into position, with rounding bits in a6.  */
	srli	a2, a5, 8
	slli	a6, a5, (32 - 8)

	/* Set the exponent.  */
	movi	a5, 0x9d	/* 0x7e + 31 */
	sub	a5, a5, a4
	slli	a5, a5, 23
	add	a2, a2, a5

	/* Add the sign.  */
	slli	a7, a7, 31
	or	a2, a2, a7

	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a6, .Lfloatsisf_return
	addi	a2, a2, 1	/* Overflow to the exponent is OK.  */

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a6, a6, 1
	beqz	a6, .Lfloatsisf_exactlyhalf

.Lfloatsisf_return:
	leaf_return

.Lfloatsisf_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	a2, a2, 1
	slli	a2, a2, 1
	leaf_return

#endif /* L_floatsisf */

#ifdef L_floatdisf

	.align	4
	.global	__floatundisf
	.type	__floatundisf, @function
__floatundisf:
	leaf_entry sp, 16

	/* Check for zero.  */
	or	a4, xh, xl
	beqz	a4, 2f

	/* Set the sign to zero and jump to the floatdisf code.  */
	movi	a7, 0
	j	.Lfloatdisf_normalize

	.align	4
	.global	__floatdisf
	.type	__floatdisf, @function
__floatdisf:
	leaf_entry sp, 16

	/* Check for zero.  */
	or	a4, xh, xl
	beqz	a4, 2f

	/* Save the sign.  */
	extui	a7, xh, 31, 1

	/* Get the absolute value.  */
	bgez	xh, .Lfloatdisf_normalize
	neg	xl, xl
	neg	xh, xh
	beqz	xl, .Lfloatdisf_normalize
	addi	xh, xh, -1

.Lfloatdisf_normalize:
	/* Normalize with the first 1 bit in the msb of xh.  */
	beqz	xh, .Lfloatdisf_bigshift
	do_nsau	a4, xh, a5, a6
	ssl	a4
	src	xh, xh, xl
	sll	xl, xl

.Lfloatdisf_shifted:
	/* Shift the mantissa into position, with rounding bits in a6.  */
	ssai	8
	sll	a5, xl
	src	a6, xh, xl
	srl	xh, xh
	beqz	a5, 1f
	movi	a5, 1
	or	a6, a6, a5
1:
	/* Set the exponent.  */
	movi	a5, 0xbd	/* 0x7e + 63 */
	sub	a5, a5, a4
	slli	a5, a5, 23
	add	a2, xh, a5

	/* Add the sign.  */
	slli	a7, a7, 31
	or	a2, a2, a7

	/* Round up if the leftover fraction is >= 1/2.  */
	bgez	a6, 2f
	addi	a2, a2, 1	/* Overflow to the exponent is OK.  */

	/* Check if the leftover fraction is exactly 1/2.  */
	slli	a6, a6, 1
	beqz	a6, .Lfloatdisf_exactlyhalf
2:	leaf_return

.Lfloatdisf_bigshift:
	/* xh is zero.  Normalize with first 1 bit of xl in the msb of xh.  */
	do_nsau	a4, xl, a5, a6
	ssl	a4
	sll	xh, xl
	movi	xl, 0
	addi	a4, a4, 32
	j	.Lfloatdisf_shifted

.Lfloatdisf_exactlyhalf:
	/* Round down to the nearest even value.  */
	srli	a2, a2, 1
	slli	a2, a2, 1
	leaf_return

#endif /* L_floatdisf */