summaryrefslogtreecommitdiff
path: root/libgfortran/generated/pack_i1.c
blob: 25d7f569de51b3d4cb6757e38fd2bd07c20c7988 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/* Specific implementation of the PACK intrinsic
   Copyright (C) 2002, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING.  If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>


#if defined (HAVE_GFC_INTEGER_1)

/* PACK is specified as follows:

   13.14.80 PACK (ARRAY, MASK, [VECTOR])

   Description: Pack an array into an array of rank one under the
   control of a mask.

   Class: Transformational function.

   Arguments:
      ARRAY   may be of any type. It shall not be scalar.
      MASK    shall be of type LOGICAL. It shall be conformable with ARRAY.
      VECTOR  (optional) shall be of the same type and type parameters
              as ARRAY. VECTOR shall have at least as many elements as
              there are true elements in MASK. If MASK is a scalar
              with the value true, VECTOR shall have at least as many
              elements as there are in ARRAY.

   Result Characteristics: The result is an array of rank one with the
   same type and type parameters as ARRAY. If VECTOR is present, the
   result size is that of VECTOR; otherwise, the result size is the
   number /t/ of true elements in MASK unless MASK is scalar with the
   value true, in which case the result size is the size of ARRAY.

   Result Value: Element /i/ of the result is the element of ARRAY
   that corresponds to the /i/th true element of MASK, taking elements
   in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
   present and has size /n/ > /t/, element /i/ of the result has the
   value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.

   Examples: The nonzero elements of an array M with the value
   | 0 0 0 |
   | 9 0 0 | may be "gathered" by the function PACK. The result of
   | 0 0 7 |
   PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
   VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].

There are two variants of the PACK intrinsic: one, where MASK is
array valued, and the other one where MASK is scalar.  */

void
pack_i1 (gfc_array_i1 *ret, const gfc_array_i1 *array,
	       const gfc_array_l1 *mask, const gfc_array_i1 *vector)
{
  /* r.* indicates the return array.  */
  index_type rstride0;
  GFC_INTEGER_1 *rptr;
  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  const GFC_INTEGER_1 *sptr;
  /* m.* indicates the mask array.  */
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride0;
  const GFC_LOGICAL_1 *mptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  int zero_sized;
  index_type n;
  index_type dim;
  index_type nelem;
  index_type total;
  int mask_kind;

  dim = GFC_DESCRIPTOR_RANK (array);

  sptr = array->data;
  mptr = mask->data;

  /* Use the same loop for all logical types, by using GFC_LOGICAL_1
     and using shifting to address size and endian issues.  */

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    {
      /*  Do not convert a NULL pointer as we use test for NULL below.  */
      if (mptr)
	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
    }
  else
    runtime_error ("Funny sized logical array");

  zero_sized = 0;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
      if (extent[n] <= 0)
       zero_sized = 1;
      sstride[n] = array->dim[n].stride;
      mstride[n] = mask->dim[n].stride * mask_kind;
    }
  if (sstride[0] == 0)
    sstride[0] = 1;
  if (mstride[0] == 0)
    mstride[0] = mask_kind;

  if (ret->data == NULL || compile_options.bounds_check)
    {
      /* Count the elements, either for allocating memory or
	 for bounds checking.  */

      if (vector != NULL)
	{
	  /* The return array will have as many
	     elements as there are in VECTOR.  */
	  total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
	}
      else
	{
	  /* We have to count the true elements in MASK.  */

	  /* TODO: We could speed up pack easily in the case of only
	     few .TRUE. entries in MASK, by keeping track of where we
	     would be in the source array during the initial traversal
	     of MASK, and caching the pointers to those elements. Then,
	     supposed the number of elements is small enough, we would
	     only have to traverse the list, and copy those elements
	     into the result array. In the case of datatypes which fit
	     in one of the integer types we could also cache the
	     value instead of a pointer to it.
	     This approach might be bad from the point of view of
	     cache behavior in the case where our cache is not big
	     enough to hold all elements that have to be copied.  */

	  const GFC_LOGICAL_1 *m = mptr;

	  total = 0;
	  if (zero_sized)
	    m = NULL;

	  while (m)
	    {
	      /* Test this element.  */
	      if (*m)
		total++;

	      /* Advance to the next element.  */
	      m += mstride[0];
	      count[0]++;
	      n = 0;
	      while (count[n] == extent[n])
		{
		  /* When we get to the end of a dimension, reset it
		     and increment the next dimension.  */
		  count[n] = 0;
		  /* We could precalculate this product, but this is a
		     less frequently used path so probably not worth
		     it.  */
		  m -= mstride[n] * extent[n];
		  n++;
		  if (n >= dim)
		    {
		      /* Break out of the loop.  */
		      m = NULL;
		      break;
		    }
		  else
		    {
		      count[n]++;
		      m += mstride[n];
		    }
		}
	    }
	}

      if (ret->data == NULL)
	{
	  /* Setup the array descriptor.  */
	  ret->dim[0].lbound = 0;
	  ret->dim[0].ubound = total - 1;
	  ret->dim[0].stride = 1;

	  ret->offset = 0;
	  if (total == 0)
	    {
	      /* In this case, nothing remains to be done.  */
	      ret->data = internal_malloc_size (1);
	      return;
	    }
	  else
	    ret->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * total);
	}
      else 
	{
	  /* We come here because of range checking.  */
	  index_type ret_extent;

	  ret_extent = ret->dim[0].ubound + 1 - ret->dim[0].lbound;
	  if (total != ret_extent)
	    runtime_error ("Incorrect extent in return value of PACK intrinsic;"
			   " is %ld, should be %ld", (long int) total,
			   (long int) ret_extent);
	}
    }

  rstride0 = ret->dim[0].stride;
  if (rstride0 == 0)
    rstride0 = 1;
  sstride0 = sstride[0];
  mstride0 = mstride[0];
  rptr = ret->data;

  while (sptr && mptr)
    {
      /* Test this element.  */
      if (*mptr)
        {
          /* Add it.  */
	  *rptr = *sptr;
          rptr += rstride0;
        }
      /* Advance to the next element.  */
      sptr += sstride0;
      mptr += mstride0;
      count[0]++;
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          sptr -= sstride[n] * extent[n];
          mptr -= mstride[n] * extent[n];
          n++;
          if (n >= dim)
            {
              /* Break out of the loop.  */
              sptr = NULL;
              break;
            }
          else
            {
              count[n]++;
              sptr += sstride[n];
              mptr += mstride[n];
            }
        }
    }

  /* Add any remaining elements from VECTOR.  */
  if (vector)
    {
      n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
      nelem = ((rptr - ret->data) / rstride0);
      if (n > nelem)
        {
          sstride0 = vector->dim[0].stride;
          if (sstride0 == 0)
            sstride0 = 1;

          sptr = vector->data + sstride0 * nelem;
          n -= nelem;
          while (n--)
            {
	      *rptr = *sptr;
              rptr += rstride0;
              sptr += sstride0;
            }
        }
    }
}

#endif