summaryrefslogtreecommitdiff
path: root/libgfortran/intrinsics/erfc_scaled_inc.c
blob: c003c667e60a783b3f3bacdd547bf7e58bcb2315 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
   Copyright (c) 2008 Free Software Foundation, Inc.

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* This implementation of ERFC_SCALED is based on the netlib algorithm
   available at http://www.netlib.org/specfun/erf  */

#define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
#define CONCAT(x,y) x ## y
#define KIND_SUFFIX(x,y) CONCAT(x,y)

#if (KIND == 4)

# define EXP(x) expf(x)
# define TRUNC(x) truncf(x)

#elif (KIND == 8)

# define EXP(x) exp(x)
# define TRUNC(x) trunc(x)

#elif (KIND == 10) || (KIND == 16 && defined(GFC_REAL_16_IS_LONG_DOUBLE))

# ifdef HAVE_EXPL
#  define EXP(x) expl(x)
# endif
# ifdef HAVE_TRUNCL
#  define TRUNC(x) truncl(x)
# endif

#elif (KIND == 16 && defined(GFC_REAL_16_IS_FLOAT128))

#  define EXP(x) expq(x)
#  define TRUNC(x) truncq(x)

#else

# error "What exactly is it that you want me to do?"

#endif

#if defined(EXP) && defined(TRUNC)

extern TYPE KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE);
export_proto(KIND_SUFFIX(erfc_scaled_r,KIND));

TYPE
KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE x)
{
  /* The main computation evaluates near-minimax approximations
     from "Rational Chebyshev approximations for the error function"
     by W. J. Cody, Math. Comp., 1969, PP. 631-638.  This
     transportable program uses rational functions that theoretically
     approximate  erf(x)  and  erfc(x)  to at least 18 significant
     decimal digits.  The accuracy achieved depends on the arithmetic
     system, the compiler, the intrinsic functions, and proper
     selection of the machine-dependent constants.  */

  int i;
  TYPE del, res, xden, xnum, y, ysq;

#if (KIND == 4)
  static TYPE xneg = -9.382, xsmall = 5.96e-8,
	      xbig = 9.194, xhuge = 2.90e+3, xmax = 4.79e+37;
#else
  static TYPE xneg = -26.628, xsmall = 1.11e-16,
	      xbig = 26.543, xhuge = 6.71e+7, xmax = 2.53e+307;
#endif

#define SQRPI ((TYPE) 0.56418958354775628695L)
#define THRESH ((TYPE) 0.46875L)

  static TYPE a[5] = { 3.16112374387056560l, 113.864154151050156l,
    377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };

  static TYPE b[4] = { 23.6012909523441209l, 244.024637934444173l,
    1282.61652607737228l, 2844.23683343917062l };

  static TYPE c[9] = { 0.564188496988670089l, 8.88314979438837594l,
    66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
    1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
    2.15311535474403846e-8l };

  static TYPE d[8] = { 15.7449261107098347l, 117.693950891312499l,
    537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
    4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };

  static TYPE p[6] = { 0.305326634961232344l, 0.360344899949804439l,
    0.125781726111229246l, 0.0160837851487422766l,
    0.000658749161529837803l, 0.0163153871373020978l };

  static TYPE q[5] = { 2.56852019228982242l, 1.87295284992346047l,
    0.527905102951428412l, 0.0605183413124413191l,
    0.00233520497626869185l };

  y = (x > 0 ? x : -x);
  if (y <= THRESH)
    {
      ysq = 0;
      if (y > xsmall)
	ysq = y * y;
      xnum = a[4]*ysq;
      xden = ysq;
      for (i = 0; i <= 2; i++)
	{
          xnum = (xnum + a[i]) * ysq;
          xden = (xden + b[i]) * ysq;
	}
      res = x * (xnum + a[3]) / (xden + b[3]);
      res = 1 - res;
      res = EXP(ysq) * res;
      return res;
    }
  else if (y <= 4)
    {
      xnum = c[8]*y;
      xden = y;
      for (i = 0; i <= 6; i++)
	{
	  xnum = (xnum + c[i]) * y;
	  xden = (xden + d[i]) * y;
	}
      res = (xnum + c[7]) / (xden + d[7]);
    }
  else
    {
      res = 0;
      if (y >= xbig)
	{
          if (y >= xmax)
	    goto finish;
          if (y >= xhuge)
	    {
	      res = SQRPI / y;
	      goto finish;
	    }
	}
      ysq = ((TYPE) 1) / (y * y);
      xnum = p[5]*ysq;
      xden = ysq;
      for (i = 0; i <= 3; i++)
	{
          xnum = (xnum + p[i]) * ysq;
          xden = (xden + q[i]) * ysq;
	}
      res = ysq *(xnum + p[4]) / (xden + q[4]);
      res = (SQRPI -  res) / y;
    }

finish:
  if (x < 0)
    {
      if (x < xneg)
	res = __builtin_inf ();
      else
	{
	  ysq = TRUNC (x*((TYPE) 16))/((TYPE) 16);
	  del = (x-ysq)*(x+ysq);
	  y = EXP(ysq*ysq) * EXP(del);
	  res = (y+y) - res;
	}
    }
  return res;
}

#endif

#undef EXP
#undef TRUNC

#undef CONCAT
#undef TYPE
#undef KIND_SUFFIX