summaryrefslogtreecommitdiff
path: root/libgfortran/intrinsics/pack_generic.c
blob: 4c89dad31f8f6c5beb7ac911c7d9d5c40e964a83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/* Generic implementation of the PACK intrinsic
   Copyright (C) 2002, 2004, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>

/* PACK is specified as follows:

   13.14.80 PACK (ARRAY, MASK, [VECTOR])

   Description: Pack an array into an array of rank one under the
   control of a mask.

   Class: Transformational function.

   Arguments:
      ARRAY   may be of any type. It shall not be scalar.
      MASK    shall be of type LOGICAL. It shall be conformable with ARRAY.
      VECTOR  (optional) shall be of the same type and type parameters
              as ARRAY. VECTOR shall have at least as many elements as
              there are true elements in MASK. If MASK is a scalar
              with the value true, VECTOR shall have at least as many
              elements as there are in ARRAY.

   Result Characteristics: The result is an array of rank one with the
   same type and type parameters as ARRAY. If VECTOR is present, the
   result size is that of VECTOR; otherwise, the result size is the
   number /t/ of true elements in MASK unless MASK is scalar with the
   value true, in which case the result size is the size of ARRAY.

   Result Value: Element /i/ of the result is the element of ARRAY
   that corresponds to the /i/th true element of MASK, taking elements
   in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
   present and has size /n/ > /t/, element /i/ of the result has the
   value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.

   Examples: The nonzero elements of an array M with the value
   | 0 0 0 |
   | 9 0 0 | may be "gathered" by the function PACK. The result of
   | 0 0 7 |
   PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
   VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].

There are two variants of the PACK intrinsic: one, where MASK is
array valued, and the other one where MASK is scalar.  */

static void
pack_internal (gfc_array_char *ret, const gfc_array_char *array,
	       const gfc_array_l1 *mask, const gfc_array_char *vector,
	       index_type size)
{
  /* r.* indicates the return array.  */
  index_type rstride0;
  char * restrict rptr;
  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  const char *sptr;
  /* m.* indicates the mask array.  */
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride0;
  const GFC_LOGICAL_1 *mptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  int zero_sized;
  index_type n;
  index_type dim;
  index_type nelem;
  index_type total;
  int mask_kind;

  dim = GFC_DESCRIPTOR_RANK (array);

  sptr = array->data;
  mptr = mask->data;

  /* Use the same loop for all logical types, by using GFC_LOGICAL_1
     and using shifting to address size and endian issues.  */

  mask_kind = GFC_DESCRIPTOR_SIZE (mask);

  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
#endif
      )
    {
      /*  Don't convert a NULL pointer as we use test for NULL below.  */
      if (mptr)
	mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
    }
  else
    runtime_error ("Funny sized logical array");

  zero_sized = 0;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
      if (extent[n] <= 0)
       zero_sized = 1;
      sstride[n] = array->dim[n].stride * size;
      mstride[n] = mask->dim[n].stride * mask_kind;
    }
  if (sstride[0] == 0)
    sstride[0] = size;
  if (mstride[0] == 0)
    mstride[0] = mask_kind;

  if (ret->data == NULL || compile_options.bounds_check)
    {
      /* Count the elements, either for allocating memory or
	 for bounds checking.  */

      if (vector != NULL)
	{
	  /* The return array will have as many
	     elements as there are in VECTOR.  */
	  total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
	}
      else
	{
	  /* We have to count the true elements in MASK.  */

	  /* TODO: We could speed up pack easily in the case of only
	     few .TRUE. entries in MASK, by keeping track of where we
	     would be in the source array during the initial traversal
	     of MASK, and caching the pointers to those elements. Then,
	     supposed the number of elements is small enough, we would
	     only have to traverse the list, and copy those elements
	     into the result array. In the case of datatypes which fit
	     in one of the integer types we could also cache the
	     value instead of a pointer to it.
	     This approach might be bad from the point of view of
	     cache behavior in the case where our cache is not big
	     enough to hold all elements that have to be copied.  */

	  const GFC_LOGICAL_1 *m = mptr;

	  total = 0;
	  if (zero_sized)
	    m = NULL;

	  while (m)
	    {
	      /* Test this element.  */
	      if (*m)
		total++;

	      /* Advance to the next element.  */
	      m += mstride[0];
	      count[0]++;
	      n = 0;
	      while (count[n] == extent[n])
		{
		  /* When we get to the end of a dimension, reset it
		     and increment the next dimension.  */
		  count[n] = 0;
		  /* We could precalculate this product, but this is a
		     less frequently used path so probably not worth
		     it.  */
		  m -= mstride[n] * extent[n];
		  n++;
		  if (n >= dim)
		    {
		      /* Break out of the loop.  */
		      m = NULL;
		      break;
		    }
		  else
		    {
		      count[n]++;
		      m += mstride[n];
		    }
		}
	    }
	}

      if (ret->data == NULL)
	{
	  /* Setup the array descriptor.  */
	  ret->dim[0].lbound = 0;
	  ret->dim[0].ubound = total - 1;
	  ret->dim[0].stride = 1;

	  ret->offset = 0;
	  if (total == 0)
	    {
	      /* In this case, nothing remains to be done.  */
	      ret->data = internal_malloc_size (1);
	      return;
	    }
	  else
	    ret->data = internal_malloc_size (size * total);
	}
      else 
	{
	  /* We come here because of range checking.  */
	  index_type ret_extent;

	  ret_extent = ret->dim[0].ubound + 1 - ret->dim[0].lbound;
	  if (total != ret_extent)
	    runtime_error ("Incorrect extent in return value of PACK intrinsic;"
			   " is %ld, should be %ld", (long int) total,
			   (long int) ret_extent);
	}
    }

  rstride0 = ret->dim[0].stride * size;
  if (rstride0 == 0)
    rstride0 = size;
  sstride0 = sstride[0];
  mstride0 = mstride[0];
  rptr = ret->data;

  while (sptr && mptr)
    {
      /* Test this element.  */
      if (*mptr)
        {
          /* Add it.  */
          memcpy (rptr, sptr, size);
          rptr += rstride0;
        }
      /* Advance to the next element.  */
      sptr += sstride0;
      mptr += mstride0;
      count[0]++;
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          sptr -= sstride[n] * extent[n];
          mptr -= mstride[n] * extent[n];
          n++;
          if (n >= dim)
            {
              /* Break out of the loop.  */
              sptr = NULL;
              break;
            }
          else
            {
              count[n]++;
              sptr += sstride[n];
              mptr += mstride[n];
            }
        }
    }

  /* Add any remaining elements from VECTOR.  */
  if (vector)
    {
      n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
      nelem = ((rptr - ret->data) / rstride0);
      if (n > nelem)
        {
          sstride0 = vector->dim[0].stride * size;
          if (sstride0 == 0)
            sstride0 = size;

          sptr = vector->data + sstride0 * nelem;
          n -= nelem;
          while (n--)
            {
              memcpy (rptr, sptr, size);
              rptr += rstride0;
              sptr += sstride0;
            }
        }
    }
}

extern void pack (gfc_array_char *, const gfc_array_char *,
		  const gfc_array_l1 *, const gfc_array_char *);
export_proto(pack);

void
pack (gfc_array_char *ret, const gfc_array_char *array,
      const gfc_array_l1 *mask, const gfc_array_char *vector)
{
  index_type type_size;
  index_type size;

  type_size = GFC_DTYPE_TYPE_SIZE(array);

  switch(type_size)
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
      pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i1 *) vector);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:

      pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:

      pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:

      pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
		(gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
      return;
#endif
    case GFC_DTYPE_REAL_4:
      pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_r4 *) vector);
      return;

    case GFC_DTYPE_REAL_8:
      pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_r8 *) vector);
      return;

#ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array,
		(gfc_array_l1 *) mask, (gfc_array_r10 *) vector);
      return;
#endif

#ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array,
		(gfc_array_l1 *) mask, (gfc_array_r16 *) vector);
      return;
#endif
    case GFC_DTYPE_COMPLEX_4:
      pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_c4 *) vector);
      return;

    case GFC_DTYPE_COMPLEX_8:
      pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_c8 *) vector);
      return;

#ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array,
		(gfc_array_l1 *) mask, (gfc_array_c10 *) vector);
      return;
#endif

#ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array,
		(gfc_array_l1 *) mask, (gfc_array_c16 *) vector);
      return;
#endif

      /* For derived types, let's check the actual alignment of the
	 data pointers.  If they are aligned, we can safely call
	 the unpack functions.  */

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(array->data)
	  || GFC_UNALIGNED_2(vector->data))
	break;
      else
	{
	  pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(array->data)
	  || GFC_UNALIGNED_4(vector->data))
	break;
      else
	{
	  pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(array->data)
	  || GFC_UNALIGNED_8(vector->data))
	break;
      else
	{
	  pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
	}

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(array->data)
	  || GFC_UNALIGNED_16(vector->data))
	break;
      else
	{
	  pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
	  return;
	}
#endif

    }

  size = GFC_DESCRIPTOR_SIZE (array);
  pack_internal (ret, array, mask, vector, size);
}


extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
		       const gfc_array_l1 *, const gfc_array_char *,
		       GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(pack_char);

void
pack_char (gfc_array_char *ret,
	   GFC_INTEGER_4 ret_length __attribute__((unused)),
	   const gfc_array_char *array, const gfc_array_l1 *mask,
	   const gfc_array_char *vector, GFC_INTEGER_4 array_length,
	   GFC_INTEGER_4 vector_length __attribute__((unused)))
{
  pack_internal (ret, array, mask, vector, array_length);
}


extern void pack_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *,
			const gfc_array_l1 *, const gfc_array_char *,
			GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(pack_char4);

void
pack_char4 (gfc_array_char *ret,
	    GFC_INTEGER_4 ret_length __attribute__((unused)),
	    const gfc_array_char *array, const gfc_array_l1 *mask,
	    const gfc_array_char *vector, GFC_INTEGER_4 array_length,
	    GFC_INTEGER_4 vector_length __attribute__((unused)))
{
  pack_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t));
}


static void
pack_s_internal (gfc_array_char *ret, const gfc_array_char *array,
		 const GFC_LOGICAL_4 *mask, const gfc_array_char *vector,
		 index_type size)
{
  /* r.* indicates the return array.  */
  index_type rstride0;
  char *rptr;
  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  const char *sptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type n;
  index_type dim;
  index_type ssize;
  index_type nelem;
  index_type total;

  dim = GFC_DESCRIPTOR_RANK (array);
  ssize = 1;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
      if (extent[n] < 0)
	extent[n] = 0;

      sstride[n] = array->dim[n].stride * size;
      ssize *= extent[n];
    }
  if (sstride[0] == 0)
    sstride[0] = size;

  sstride0 = sstride[0];

  if (ssize != 0)
    sptr = array->data;
  else
    sptr = NULL;

  if (ret->data == NULL)
    {
      /* Allocate the memory for the result.  */

      if (vector != NULL)
	{
	  /* The return array will have as many elements as there are
	     in vector.  */
	  total = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
	  if (total <= 0)
	    {
	      total = 0;
	      vector = NULL;
	    }
	}
      else
	{
	  if (*mask)
	    {
	      /* The result array will have as many elements as the input
		 array.  */
	      total = extent[0];
	      for (n = 1; n < dim; n++)
		total *= extent[n];
	    }
	  else
	    /* The result array will be empty.  */
	    total = 0;
	}

      /* Setup the array descriptor.  */
      ret->dim[0].lbound = 0;
      ret->dim[0].ubound = total - 1;
      ret->dim[0].stride = 1;
      ret->offset = 0;

      if (total == 0)
	{
	  ret->data = internal_malloc_size (1);
	  return;
	}
      else
	ret->data = internal_malloc_size (size * total);
    }

  rstride0 = ret->dim[0].stride * size;
  if (rstride0 == 0)
    rstride0 = size;
  rptr = ret->data;

  /* The remaining possibilities are now:
       If MASK is .TRUE., we have to copy the source array into the
     result array. We then have to fill it up with elements from VECTOR.
       If MASK is .FALSE., we have to copy VECTOR into the result
     array. If VECTOR were not present we would have already returned.  */

  if (*mask && ssize != 0)
    {
      while (sptr)
	{
	  /* Add this element.  */
	  memcpy (rptr, sptr, size);
	  rptr += rstride0;

	  /* Advance to the next element.  */
	  sptr += sstride0;
	  count[0]++;
	  n = 0;
	  while (count[n] == extent[n])
	    {
	      /* When we get to the end of a dimension, reset it and
		 increment the next dimension.  */
	      count[n] = 0;
	      /* We could precalculate these products, but this is a
		 less frequently used path so probably not worth it.  */
	      sptr -= sstride[n] * extent[n];
	      n++;
	      if (n >= dim)
		{
		  /* Break out of the loop.  */
		  sptr = NULL;
		  break;
		}
	      else
		{
		  count[n]++;
		  sptr += sstride[n];
		}
	    }
	}
    }

  /* Add any remaining elements from VECTOR.  */
  if (vector)
    {
      n = vector->dim[0].ubound + 1 - vector->dim[0].lbound;
      nelem = ((rptr - ret->data) / rstride0);
      if (n > nelem)
        {
          sstride0 = vector->dim[0].stride * size;
          if (sstride0 == 0)
            sstride0 = size;

          sptr = vector->data + sstride0 * nelem;
          n -= nelem;
          while (n--)
            {
              memcpy (rptr, sptr, size);
              rptr += rstride0;
              sptr += sstride0;
            }
        }
    }
}

extern void pack_s (gfc_array_char *ret, const gfc_array_char *array,
		    const GFC_LOGICAL_4 *, const gfc_array_char *);
export_proto(pack_s);

void
pack_s (gfc_array_char *ret, const gfc_array_char *array,
	const GFC_LOGICAL_4 *mask, const gfc_array_char *vector)
{
  pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array));
}


extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4,
			 const gfc_array_char *array, const GFC_LOGICAL_4 *,
			 const gfc_array_char *, GFC_INTEGER_4,
			 GFC_INTEGER_4);
export_proto(pack_s_char);

void
pack_s_char (gfc_array_char *ret,
	     GFC_INTEGER_4 ret_length __attribute__((unused)),
	     const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
	     const gfc_array_char *vector, GFC_INTEGER_4 array_length,
	     GFC_INTEGER_4 vector_length __attribute__((unused)))
{
  pack_s_internal (ret, array, mask, vector, array_length);
}


extern void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4,
			  const gfc_array_char *array, const GFC_LOGICAL_4 *,
			  const gfc_array_char *, GFC_INTEGER_4,
			  GFC_INTEGER_4);
export_proto(pack_s_char4);

void
pack_s_char4 (gfc_array_char *ret,
	      GFC_INTEGER_4 ret_length __attribute__((unused)),
	      const gfc_array_char *array, const GFC_LOGICAL_4 *mask,
	      const gfc_array_char *vector, GFC_INTEGER_4 array_length,
	      GFC_INTEGER_4 vector_length __attribute__((unused)))
{
  pack_s_internal (ret, array, mask, vector,
		   array_length * sizeof (gfc_char4_t));
}