summaryrefslogtreecommitdiff
path: root/libgfortran/intrinsics/random.c
blob: 0af892c8a2367a5131cabb48acec86550967c8d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/* Implementation of the RANDOM intrinsics
   Copyright (C) 2002-2021 Free Software Foundation, Inc.
   Contributed by Lars Segerlund <seger@linuxmail.org>,
   Steve Kargl and Janne Blomqvist.

This file is part of the GNU Fortran runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* For rand_s.  */
#define _CRT_RAND_S

#include "libgfortran.h"
#include <gthr.h>
#include <string.h>

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <sys/stat.h>
#include <fcntl.h>
#include "time_1.h"
#ifdef HAVE_SYS_RANDOM_H
#include <sys/random.h>
#endif

#ifdef __MINGW32__
#define HAVE_GETPID 1
#include <process.h>
#include <_mingw.h> /* For __MINGW64_VERSION_MAJOR  */
#endif

extern void random_r4 (GFC_REAL_4 *);
iexport_proto(random_r4);

extern void random_r8 (GFC_REAL_8 *);
iexport_proto(random_r8);

extern void arandom_r4 (gfc_array_r4 *);
export_proto(arandom_r4);

extern void arandom_r8 (gfc_array_r8 *);
export_proto(arandom_r8);

#ifdef HAVE_GFC_REAL_10

extern void random_r10 (GFC_REAL_10 *);
iexport_proto(random_r10);

extern void arandom_r10 (gfc_array_r10 *);
export_proto(arandom_r10);

#endif

#ifdef HAVE_GFC_REAL_16

extern void random_r16 (GFC_REAL_16 *);
iexport_proto(random_r16);

extern void arandom_r16 (gfc_array_r16 *);
export_proto(arandom_r16);

#endif

#ifdef __GTHREAD_MUTEX_INIT
static __gthread_mutex_t random_lock = __GTHREAD_MUTEX_INIT;
#else
static __gthread_mutex_t random_lock;
#endif

/* Helper routines to map a GFC_UINTEGER_* to the corresponding
   GFC_REAL_* types in the range of [0,1).  If GFC_REAL_*_RADIX are 2
   or 16, respectively, we mask off the bits that don't fit into the
   correct GFC_REAL_*, convert to the real type, then multiply by the
   correct offset.  */


static void
rnumber_4 (GFC_REAL_4 *f, GFC_UINTEGER_4 v)
{
  GFC_UINTEGER_4 mask;
#if GFC_REAL_4_RADIX == 2
  mask = ~ (GFC_UINTEGER_4) 0u << (32 - GFC_REAL_4_DIGITS);
#elif GFC_REAL_4_RADIX == 16
  mask = ~ (GFC_UINTEGER_4) 0u << ((8 - GFC_REAL_4_DIGITS) * 4);
#else
#error "GFC_REAL_4_RADIX has unknown value"
#endif
  v = v & mask;
  *f = (GFC_REAL_4) v * GFC_REAL_4_LITERAL(0x1.p-32);
}

static void
rnumber_8 (GFC_REAL_8 *f, GFC_UINTEGER_8 v)
{
  GFC_UINTEGER_8 mask;
#if GFC_REAL_8_RADIX == 2
  mask = ~ (GFC_UINTEGER_8) 0u << (64 - GFC_REAL_8_DIGITS);
#elif GFC_REAL_8_RADIX == 16
  mask = ~ (GFC_UINTEGER_8) 0u << (16 - GFC_REAL_8_DIGITS) * 4);
#else
#error "GFC_REAL_8_RADIX has unknown value"
#endif
  v = v & mask;
  *f = (GFC_REAL_8) v * GFC_REAL_8_LITERAL(0x1.p-64);
}

#ifdef HAVE_GFC_REAL_10

static void
rnumber_10 (GFC_REAL_10 *f, GFC_UINTEGER_8 v)
{
  GFC_UINTEGER_8 mask;
#if GFC_REAL_10_RADIX == 2
  mask = ~ (GFC_UINTEGER_8) 0u << (64 - GFC_REAL_10_DIGITS);
#elif GFC_REAL_10_RADIX == 16
  mask = ~ (GFC_UINTEGER_10) 0u << ((16 - GFC_REAL_10_DIGITS) * 4);
#else
#error "GFC_REAL_10_RADIX has unknown value"
#endif
  v = v & mask;
  *f = (GFC_REAL_10) v * GFC_REAL_10_LITERAL(0x1.p-64);
}
#endif

#ifdef HAVE_GFC_REAL_16

/* For REAL(KIND=16), we only need to mask off the lower bits.  */

static void
rnumber_16 (GFC_REAL_16 *f, GFC_UINTEGER_8 v1, GFC_UINTEGER_8 v2)
{
  GFC_UINTEGER_8 mask;
#if GFC_REAL_16_RADIX == 2
  mask = ~ (GFC_UINTEGER_8) 0u << (128 - GFC_REAL_16_DIGITS);
#elif GFC_REAL_16_RADIX == 16
  mask = ~ (GFC_UINTEGER_8) 0u << ((32 - GFC_REAL_16_DIGITS) * 4);
#else
#error "GFC_REAL_16_RADIX has unknown value"
#endif
  v2 = v2 & mask;
  *f = (GFC_REAL_16) v1 * GFC_REAL_16_LITERAL(0x1.p-64)
    + (GFC_REAL_16) v2 * GFC_REAL_16_LITERAL(0x1.p-128);
}
#endif


/*

   We use the xoshiro256** generator, a fast high-quality generator
   that:

   - passes TestU1 without any failures

   - provides a "jump" function making it easy to provide many
     independent parallel streams.

   - Long period of 2**256 - 1

   A description can be found at

   http://prng.di.unimi.it/

   or

   https://arxiv.org/abs/1805.01407

   The paper includes public domain source code which is the basis for
   the implementation below.

*/
typedef struct
{
  bool init;
  uint64_t s[4];
}
prng_state;


/* master_state is the only variable protected by random_lock.  */
static prng_state master_state = { .init = false, .s = {
    0xad63fa1ed3b55f36ULL, 0xd94473e78978b497ULL, 0xbc60592a98172477ULL,
    0xa3de7c6e81265301ULL }
};


static __gthread_key_t rand_state_key;

static prng_state*
get_rand_state (void)
{
  /* For single threaded apps.  */
  static prng_state rand_state;

  if (__gthread_active_p ())
    {
      void* p = __gthread_getspecific (rand_state_key);
      if (!p)
	{
	  p = xcalloc (1, sizeof (prng_state));
	  __gthread_setspecific (rand_state_key, p);
	}
      return p;
    }
  else
    return &rand_state;
}

static inline uint64_t
rotl (const uint64_t x, int k)
{
	return (x << k) | (x >> (64 - k));
}


static uint64_t
prng_next (prng_state* rs)
{
  const uint64_t result = rotl(rs->s[1] * 5, 7) * 9;

  const uint64_t t = rs->s[1] << 17;

  rs->s[2] ^= rs->s[0];
  rs->s[3] ^= rs->s[1];
  rs->s[1] ^= rs->s[2];
  rs->s[0] ^= rs->s[3];

  rs->s[2] ^= t;

  rs->s[3] = rotl(rs->s[3], 45);

  return result;
}


/* This is the jump function for the generator. It is equivalent to
   2^128 calls to prng_next(); it can be used to generate 2^128
   non-overlapping subsequences for parallel computations. */

static void
jump (prng_state* rs)
{
  static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };

  uint64_t s0 = 0;
  uint64_t s1 = 0;
  uint64_t s2 = 0;
  uint64_t s3 = 0;
  for(size_t i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
    for(int b = 0; b < 64; b++) {
      if (JUMP[i] & UINT64_C(1) << b) {
	s0 ^= rs->s[0];
	s1 ^= rs->s[1];
	s2 ^= rs->s[2];
	s3 ^= rs->s[3];
      }
      prng_next (rs);
    }

  rs->s[0] = s0;
  rs->s[1] = s1;
  rs->s[2] = s2;
  rs->s[3] = s3;
}


/* Splitmix64 recommended by xoshiro author for initializing.  After
   getting one uint64_t value from the OS, this is used to fill in the
   rest of the xoshiro state.  */

static uint64_t
splitmix64 (uint64_t x)
{
  uint64_t z = (x += 0x9e3779b97f4a7c15);
  z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
  z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
  return z ^ (z >> 31);
}


/* Get some bytes from the operating system in order to seed
   the PRNG.  */

static int
getosrandom (void *buf, size_t buflen)
{
  /* rand_s is available in MinGW-w64 but not plain MinGW.  */
#if defined(__MINGW64_VERSION_MAJOR)
  unsigned int* b = buf;
  for (size_t i = 0; i < buflen / sizeof (unsigned int); i++)
    rand_s (&b[i]);
  return buflen;
#else
#ifdef HAVE_GETENTROPY
  if (getentropy (buf, buflen) == 0)
    return buflen;
#endif
  int flags = O_RDONLY;
#ifdef O_CLOEXEC
  flags |= O_CLOEXEC;
#endif
  int fd = open("/dev/urandom", flags);
  if (fd != -1)
    {
      int res = read(fd, buf, buflen);
      close (fd);
      return res;
    }
  uint64_t seed = 0x047f7684e9fc949dULL;
  time_t secs;
  long usecs;
  if (gf_gettime (&secs, &usecs) == 0)
    {
      seed ^= secs;
      seed ^= usecs;
    }
#ifdef HAVE_GETPID
  pid_t pid = getpid();
  seed ^= pid;
#endif
  size_t size = buflen < sizeof (uint64_t) ? buflen : sizeof (uint64_t);
  memcpy (buf, &seed, size);
  return size;
#endif /* __MINGW64_VERSION_MAJOR  */
}


/* Initialize the random number generator for the current thread,
   using the master state and the number of times we must jump.  */

static void
init_rand_state (prng_state* rs, const bool locked)
{
  if (!locked)
    __gthread_mutex_lock (&random_lock);
  if (!master_state.init)
    {
      uint64_t os_seed;
      getosrandom (&os_seed, sizeof (os_seed));
      for (uint64_t i = 0; i < sizeof (master_state.s) / sizeof (uint64_t); i++)
	{
          os_seed = splitmix64 (os_seed);
          master_state.s[i] = os_seed;
        }
      master_state.init = true;
    }
  memcpy (&rs->s, master_state.s, sizeof (master_state.s));
  jump (&master_state);
  if (!locked)
    __gthread_mutex_unlock (&random_lock);
  rs->init = true;
}


/*  This function produces a REAL(4) value from the uniform distribution
    with range [0,1).  */

void
random_r4 (GFC_REAL_4 *x)
{
  prng_state* rs = get_rand_state();

  if (unlikely (!rs->init))
    init_rand_state (rs, false);
  uint64_t r = prng_next (rs);
  /* Take the higher bits, ensuring that a stream of real(4), real(8),
     and real(10) will be identical (except for precision).  */
  uint32_t high = (uint32_t) (r >> 32);
  rnumber_4 (x, high);
}
iexport(random_r4);

/*  This function produces a REAL(8) value from the uniform distribution
    with range [0,1).  */

void
random_r8 (GFC_REAL_8 *x)
{
  GFC_UINTEGER_8 r;
  prng_state* rs = get_rand_state();

  if (unlikely (!rs->init))
    init_rand_state (rs, false);
  r = prng_next (rs);
  rnumber_8 (x, r);
}
iexport(random_r8);

#ifdef HAVE_GFC_REAL_10

/*  This function produces a REAL(10) value from the uniform distribution
    with range [0,1).  */

void
random_r10 (GFC_REAL_10 *x)
{
  GFC_UINTEGER_8 r;
  prng_state* rs = get_rand_state();

  if (unlikely (!rs->init))
    init_rand_state (rs, false);
  r = prng_next (rs);
  rnumber_10 (x, r);
}
iexport(random_r10);

#endif

/*  This function produces a REAL(16) value from the uniform distribution
    with range [0,1).  */

#ifdef HAVE_GFC_REAL_16

void
random_r16 (GFC_REAL_16 *x)
{
  GFC_UINTEGER_8 r1, r2;
  prng_state* rs = get_rand_state();

  if (unlikely (!rs->init))
    init_rand_state (rs, false);
  r1 = prng_next (rs);
  r2 = prng_next (rs);
  rnumber_16 (x, r1, r2);
}
iexport(random_r16);


#endif

/*  This function fills a REAL(4) array with values from the uniform
    distribution with range [0,1).  */

void
arandom_r4 (gfc_array_r4 *x)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  GFC_REAL_4 *dest;
  prng_state* rs = get_rand_state();

  dest = x->base_addr;

  dim = GFC_DESCRIPTOR_RANK (x);

  for (index_type n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
      if (extent[n] <= 0)
        return;
    }

  stride0 = stride[0];

  if (unlikely (!rs->init))
    init_rand_state (rs, false);

  while (dest)
    {
      /* random_r4 (dest);  */
      uint64_t r = prng_next (rs);
      uint32_t high = (uint32_t) (r >> 32);
      rnumber_4 (dest, high);

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      index_type n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n];
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n];
            }
        }
    }
}

/*  This function fills a REAL(8) array with values from the uniform
    distribution with range [0,1).  */

void
arandom_r8 (gfc_array_r8 *x)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  GFC_REAL_8 *dest;
  prng_state* rs = get_rand_state();

  dest = x->base_addr;

  dim = GFC_DESCRIPTOR_RANK (x);

  for (index_type n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
      if (extent[n] <= 0)
        return;
    }

  stride0 = stride[0];

  if (unlikely (!rs->init))
    init_rand_state (rs, false);

  while (dest)
    {
      /* random_r8 (dest);  */
      uint64_t r = prng_next (rs);
      rnumber_8 (dest, r);

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      index_type n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n];
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n];
            }
        }
    }
}

#ifdef HAVE_GFC_REAL_10

/*  This function fills a REAL(10) array with values from the uniform
    distribution with range [0,1).  */

void
arandom_r10 (gfc_array_r10 *x)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  GFC_REAL_10 *dest;
  prng_state* rs = get_rand_state();

  dest = x->base_addr;

  dim = GFC_DESCRIPTOR_RANK (x);

  for (index_type n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
      if (extent[n] <= 0)
        return;
    }

  stride0 = stride[0];

  if (unlikely (!rs->init))
    init_rand_state (rs, false);

  while (dest)
    {
      /* random_r10 (dest);  */
      uint64_t r = prng_next (rs);
      rnumber_10 (dest, r);

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      index_type n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n];
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n];
            }
        }
    }
}

#endif

#ifdef HAVE_GFC_REAL_16

/*  This function fills a REAL(16) array with values from the uniform
    distribution with range [0,1).  */

void
arandom_r16 (gfc_array_r16 *x)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  GFC_REAL_16 *dest;
  prng_state* rs = get_rand_state();

  dest = x->base_addr;

  dim = GFC_DESCRIPTOR_RANK (x);

  for (index_type n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
      if (extent[n] <= 0)
        return;
    }

  stride0 = stride[0];

  if (unlikely (!rs->init))
    init_rand_state (rs, false);

  while (dest)
    {
      /* random_r16 (dest);  */
      uint64_t r1 = prng_next (rs);
      uint64_t r2 = prng_next (rs);
      rnumber_16 (dest, r1, r2);

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      index_type n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n];
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n];
            }
        }
    }
}

#endif


/* Number of elements in master_state array.  */
#define SZU64 (sizeof (master_state.s) / sizeof (uint64_t))

/* Equivalent number of elements in an array of GFC_INTEGER_{4,8}.  */
#define SZ_IN_INT_4 (SZU64 * (sizeof (uint64_t) / sizeof (GFC_INTEGER_4)))
#define SZ_IN_INT_8 (SZU64 * (sizeof (uint64_t) / sizeof (GFC_INTEGER_8)))

/* Keys for scrambling the seed in order to avoid poor seeds.  */

static const uint64_t xor_keys[] = {
  0xbd0c5b6e50c2df49ULL, 0xd46061cd46e1df38ULL, 0xbb4f4d4ed6103544ULL,
  0x114a583d0756ad39ULL
};


/* Since a XOR cipher is symmetric, we need only one routine, and we
   can use it both for encryption and decryption.  */

static void
scramble_seed (uint64_t *dest, const uint64_t *src)
{
  for (size_t i = 0; i < SZU64; i++)
    dest[i] = src[i] ^ xor_keys[i];
}


/* random_seed is used to seed the PRNG with either a default
   set of seeds or user specified set of seeds.  random_seed
   must be called with no argument or exactly one argument.  */

void
random_seed_i4 (GFC_INTEGER_4 *size, gfc_array_i4 *put, gfc_array_i4 *get)
{
  uint64_t seed[SZU64];

  /* Check that we only have one argument present.  */
  if ((size ? 1 : 0) + (put ? 1 : 0) + (get ? 1 : 0) > 1)
    runtime_error ("RANDOM_SEED should have at most one argument present.");

  if (size != NULL)
    *size = SZ_IN_INT_4;

  prng_state* rs = get_rand_state();

  /* Return the seed to GET data.  */
  if (get != NULL)
    {
      /* If the rank of the array is not 1, abort.  */
      if (GFC_DESCRIPTOR_RANK (get) != 1)
	runtime_error ("Array rank of GET is not 1.");

      /* If the array is too small, abort.  */
      if (GFC_DESCRIPTOR_EXTENT(get,0) < (index_type) SZ_IN_INT_4)
	runtime_error ("Array size of GET is too small.");

      if (!rs->init)
	init_rand_state (rs, false);

      /* Unscramble the seed.  */
      scramble_seed (seed, rs->s);

      /*  Then copy it back to the user variable.  */
      for (size_t i = 0; i < SZ_IN_INT_4 ; i++)
	memcpy (&(get->base_addr[(SZ_IN_INT_4 - 1 - i) *
				 GFC_DESCRIPTOR_STRIDE(get,0)]),
		(unsigned char*) seed + i * sizeof(GFC_UINTEGER_4),
               sizeof(GFC_UINTEGER_4));
    }

  else
    {
  __gthread_mutex_lock (&random_lock);

  /* From the standard: "If no argument is present, the processor assigns
     a processor-dependent value to the seed."  */
  if (size == NULL && put == NULL && get == NULL)
    {
      master_state.init = false;
      init_rand_state (rs, true);
    }

  if (put != NULL)
    {
      /* If the rank of the array is not 1, abort.  */
      if (GFC_DESCRIPTOR_RANK (put) != 1)
        runtime_error ("Array rank of PUT is not 1.");

      /* If the array is too small, abort.  */
      if (GFC_DESCRIPTOR_EXTENT(put,0) < (index_type) SZ_IN_INT_4)
        runtime_error ("Array size of PUT is too small.");

      /*  We copy the seed given by the user.  */
      for (size_t i = 0; i < SZ_IN_INT_4; i++)
	memcpy ((unsigned char*) seed + i * sizeof(GFC_UINTEGER_4),
		&(put->base_addr[(SZ_IN_INT_4 - 1 - i) *
				 GFC_DESCRIPTOR_STRIDE(put,0)]),
		sizeof(GFC_UINTEGER_4));

      /* We put it after scrambling the bytes, to paper around users who
	 provide seeds with quality only in the lower or upper part.  */
      scramble_seed (master_state.s, seed);
      master_state.init = true;
      init_rand_state (rs, true);
    }

  __gthread_mutex_unlock (&random_lock);
    }
}
iexport(random_seed_i4);


void
random_seed_i8 (GFC_INTEGER_8 *size, gfc_array_i8 *put, gfc_array_i8 *get)
{
  uint64_t seed[SZU64];

  /* Check that we only have one argument present.  */
  if ((size ? 1 : 0) + (put ? 1 : 0) + (get ? 1 : 0) > 1)
    runtime_error ("RANDOM_SEED should have at most one argument present.");

  if (size != NULL)
    *size = SZ_IN_INT_8;

  prng_state* rs = get_rand_state();

  /* Return the seed to GET data.  */
  if (get != NULL)
    {
      /* If the rank of the array is not 1, abort.  */
      if (GFC_DESCRIPTOR_RANK (get) != 1)
	runtime_error ("Array rank of GET is not 1.");

      /* If the array is too small, abort.  */
      if (GFC_DESCRIPTOR_EXTENT(get,0) < (index_type) SZ_IN_INT_8)
	runtime_error ("Array size of GET is too small.");

      if (!rs->init)
	init_rand_state (rs, false);

      /* Unscramble the seed.  */
      scramble_seed (seed, rs->s);

      /*  This code now should do correct strides.  */
      for (size_t i = 0; i < SZ_IN_INT_8; i++)
	memcpy (&(get->base_addr[i * GFC_DESCRIPTOR_STRIDE(get,0)]), &seed[i],
		sizeof (GFC_UINTEGER_8));
    }

  else
    {
  __gthread_mutex_lock (&random_lock);

  /* From the standard: "If no argument is present, the processor assigns
     a processor-dependent value to the seed."  */
  if (size == NULL && put == NULL && get == NULL)
    {
      master_state.init = false;
      init_rand_state (rs, true);
    }

  if (put != NULL)
    {
      /* If the rank of the array is not 1, abort.  */
      if (GFC_DESCRIPTOR_RANK (put) != 1)
        runtime_error ("Array rank of PUT is not 1.");

      /* If the array is too small, abort.  */
      if (GFC_DESCRIPTOR_EXTENT(put,0) < (index_type) SZ_IN_INT_8)
        runtime_error ("Array size of PUT is too small.");

      /*  This code now should do correct strides.  */
      for (size_t i = 0; i < SZ_IN_INT_8; i++)
	memcpy (&seed[i], &(put->base_addr[i * GFC_DESCRIPTOR_STRIDE(put,0)]),
		sizeof (GFC_UINTEGER_8));

      scramble_seed (master_state.s, seed);
      master_state.init = true;
      init_rand_state (rs, true);
     }


  __gthread_mutex_unlock (&random_lock);
    }
}
iexport(random_seed_i8);


#if !defined __GTHREAD_MUTEX_INIT || defined __GTHREADS
static void __attribute__((constructor))
constructor_random (void)
{
#ifndef __GTHREAD_MUTEX_INIT
  __GTHREAD_MUTEX_INIT_FUNCTION (&random_lock);
#endif
  if (__gthread_active_p ())
    __gthread_key_create (&rand_state_key, &free);
}
#endif

#ifdef __GTHREADS
static void __attribute__((destructor))
destructor_random (void)
{
  if (__gthread_active_p ())
    __gthread_key_delete (rand_state_key);
}
#endif