1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
/* Generic implementation of the RESHAPE intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfor).
Libgfor is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Ligbfor is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "libgfortran.h"
extern void __spread (const gfc_array_char *, const gfc_array_char *,
const index_type *, const index_type *);
export_proto_np(__spread);
void
__spread (const gfc_array_char * ret, const gfc_array_char * source,
const index_type * along, const index_type * pncopies)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS - 1];
index_type rstride0;
index_type rdelta;
char *rptr;
char *dest;
/* s.* indicates the source array. */
index_type sstride[GFC_MAX_DIMENSIONS - 1];
index_type sstride0;
const char *sptr;
index_type count[GFC_MAX_DIMENSIONS - 1];
index_type extent[GFC_MAX_DIMENSIONS - 1];
index_type n;
index_type dim;
index_type size;
index_type ncopies;
size = GFC_DESCRIPTOR_SIZE (source);
dim = 0;
for (n = 0; n < GFC_DESCRIPTOR_RANK (ret); n++)
{
if (n == *along - 1)
{
rdelta = ret->dim[n].stride * size;
}
else
{
count[dim] = 0;
extent[dim] = source->dim[dim].ubound + 1 - source->dim[dim].lbound;
sstride[dim] = source->dim[dim].stride * size;
rstride[dim] = ret->dim[n].stride * size;
dim++;
}
}
dim = GFC_DESCRIPTOR_RANK (source);
if (sstride[0] == 0)
sstride[0] = size;
if (rstride[0] == 0)
rstride[0] = size;
sstride0 = sstride[0];
rstride0 = rstride[0];
rptr = ret->data;
sptr = source->data;
ncopies = *pncopies;
while (sptr)
{
/* Spread this element. */
dest = rptr;
for (n = 0; n < ncopies; n++)
{
memcpy (dest, sptr, size);
dest += rdelta;
}
/* Advance to the next element. */
sptr += sstride0;
rptr += rstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
sptr -= sstride[n] * extent[n];
rptr -= rstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
sptr = NULL;
break;
}
else
{
count[n]++;
sptr += sstride[n];
rptr += rstride[n];
}
}
}
}
|