summaryrefslogtreecommitdiff
path: root/libgo/go/encoding/gob/decode.go
blob: 750d623cde20c4ed71094a11cd3a53a7787e4fad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gob

// TODO(rsc): When garbage collector changes, revisit
// the allocations in this file that use unsafe.Pointer.

import (
	"bytes"
	"errors"
	"io"
	"math"
	"reflect"
	"unsafe"
)

var (
	errBadUint = errors.New("gob: encoded unsigned integer out of range")
	errBadType = errors.New("gob: unknown type id or corrupted data")
	errRange   = errors.New("gob: bad data: field numbers out of bounds")
)

// decoderState is the execution state of an instance of the decoder. A new state
// is created for nested objects.
type decoderState struct {
	dec *Decoder
	// The buffer is stored with an extra indirection because it may be replaced
	// if we load a type during decode (when reading an interface value).
	b        *bytes.Buffer
	fieldnum int // the last field number read.
	buf      []byte
	next     *decoderState // for free list
}

// We pass the bytes.Buffer separately for easier testing of the infrastructure
// without requiring a full Decoder.
func (dec *Decoder) newDecoderState(buf *bytes.Buffer) *decoderState {
	d := dec.freeList
	if d == nil {
		d = new(decoderState)
		d.dec = dec
		d.buf = make([]byte, uint64Size)
	} else {
		dec.freeList = d.next
	}
	d.b = buf
	return d
}

func (dec *Decoder) freeDecoderState(d *decoderState) {
	d.next = dec.freeList
	dec.freeList = d
}

func overflow(name string) error {
	return errors.New(`value for "` + name + `" out of range`)
}

// decodeUintReader reads an encoded unsigned integer from an io.Reader.
// Used only by the Decoder to read the message length.
func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) {
	width = 1
	_, err = r.Read(buf[0:width])
	if err != nil {
		return
	}
	b := buf[0]
	if b <= 0x7f {
		return uint64(b), width, nil
	}
	n := -int(int8(b))
	if n > uint64Size {
		err = errBadUint
		return
	}
	width, err = io.ReadFull(r, buf[0:n])
	if err != nil {
		if err == io.EOF {
			err = io.ErrUnexpectedEOF
		}
		return
	}
	// Could check that the high byte is zero but it's not worth it.
	for _, b := range buf[0:width] {
		x = x<<8 | uint64(b)
	}
	width++ // +1 for length byte
	return
}

// decodeUint reads an encoded unsigned integer from state.r.
// Does not check for overflow.
func (state *decoderState) decodeUint() (x uint64) {
	b, err := state.b.ReadByte()
	if err != nil {
		error_(err)
	}
	if b <= 0x7f {
		return uint64(b)
	}
	n := -int(int8(b))
	if n > uint64Size {
		error_(errBadUint)
	}
	width, err := state.b.Read(state.buf[0:n])
	if err != nil {
		error_(err)
	}
	// Don't need to check error; it's safe to loop regardless.
	// Could check that the high byte is zero but it's not worth it.
	for _, b := range state.buf[0:width] {
		x = x<<8 | uint64(b)
	}
	return x
}

// decodeInt reads an encoded signed integer from state.r.
// Does not check for overflow.
func (state *decoderState) decodeInt() int64 {
	x := state.decodeUint()
	if x&1 != 0 {
		return ^int64(x >> 1)
	}
	return int64(x >> 1)
}

// decOp is the signature of a decoding operator for a given type.
type decOp func(i *decInstr, state *decoderState, p unsafe.Pointer)

// The 'instructions' of the decoding machine
type decInstr struct {
	op     decOp
	field  int     // field number of the wire type
	indir  int     // how many pointer indirections to reach the value in the struct
	offset uintptr // offset in the structure of the field to encode
	ovfl   error   // error message for overflow/underflow (for arrays, of the elements)
}

// Since the encoder writes no zeros, if we arrive at a decoder we have
// a value to extract and store.  The field number has already been read
// (it's how we knew to call this decoder).
// Each decoder is responsible for handling any indirections associated
// with the data structure.  If any pointer so reached is nil, allocation must
// be done.

// Walk the pointer hierarchy, allocating if we find a nil.  Stop one before the end.
func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
	for ; indir > 1; indir-- {
		if *(*unsafe.Pointer)(p) == nil {
			// Allocation required
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer))
		}
		p = *(*unsafe.Pointer)(p)
	}
	return p
}

// ignoreUint discards a uint value with no destination.
func ignoreUint(i *decInstr, state *decoderState, p unsafe.Pointer) {
	state.decodeUint()
}

// ignoreTwoUints discards a uint value with no destination. It's used to skip
// complex values.
func ignoreTwoUints(i *decInstr, state *decoderState, p unsafe.Pointer) {
	state.decodeUint()
	state.decodeUint()
}

// decBool decodes a uint and stores it as a boolean through p.
func decBool(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool))
		}
		p = *(*unsafe.Pointer)(p)
	}
	*(*bool)(p) = state.decodeUint() != 0
}

// decInt8 decodes an integer and stores it as an int8 through p.
func decInt8(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8))
		}
		p = *(*unsafe.Pointer)(p)
	}
	v := state.decodeInt()
	if v < math.MinInt8 || math.MaxInt8 < v {
		error_(i.ovfl)
	} else {
		*(*int8)(p) = int8(v)
	}
}

// decUint8 decodes an unsigned integer and stores it as a uint8 through p.
func decUint8(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8))
		}
		p = *(*unsafe.Pointer)(p)
	}
	v := state.decodeUint()
	if math.MaxUint8 < v {
		error_(i.ovfl)
	} else {
		*(*uint8)(p) = uint8(v)
	}
}

// decInt16 decodes an integer and stores it as an int16 through p.
func decInt16(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16))
		}
		p = *(*unsafe.Pointer)(p)
	}
	v := state.decodeInt()
	if v < math.MinInt16 || math.MaxInt16 < v {
		error_(i.ovfl)
	} else {
		*(*int16)(p) = int16(v)
	}
}

// decUint16 decodes an unsigned integer and stores it as a uint16 through p.
func decUint16(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16))
		}
		p = *(*unsafe.Pointer)(p)
	}
	v := state.decodeUint()
	if math.MaxUint16 < v {
		error_(i.ovfl)
	} else {
		*(*uint16)(p) = uint16(v)
	}
}

// decInt32 decodes an integer and stores it as an int32 through p.
func decInt32(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32))
		}
		p = *(*unsafe.Pointer)(p)
	}
	v := state.decodeInt()
	if v < math.MinInt32 || math.MaxInt32 < v {
		error_(i.ovfl)
	} else {
		*(*int32)(p) = int32(v)
	}
}

// decUint32 decodes an unsigned integer and stores it as a uint32 through p.
func decUint32(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32))
		}
		p = *(*unsafe.Pointer)(p)
	}
	v := state.decodeUint()
	if math.MaxUint32 < v {
		error_(i.ovfl)
	} else {
		*(*uint32)(p) = uint32(v)
	}
}

// decInt64 decodes an integer and stores it as an int64 through p.
func decInt64(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64))
		}
		p = *(*unsafe.Pointer)(p)
	}
	*(*int64)(p) = int64(state.decodeInt())
}

// decUint64 decodes an unsigned integer and stores it as a uint64 through p.
func decUint64(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64))
		}
		p = *(*unsafe.Pointer)(p)
	}
	*(*uint64)(p) = uint64(state.decodeUint())
}

// Floating-point numbers are transmitted as uint64s holding the bits
// of the underlying representation.  They are sent byte-reversed, with
// the exponent end coming out first, so integer floating point numbers
// (for example) transmit more compactly.  This routine does the
// unswizzling.
func floatFromBits(u uint64) float64 {
	var v uint64
	for i := 0; i < 8; i++ {
		v <<= 8
		v |= u & 0xFF
		u >>= 8
	}
	return math.Float64frombits(v)
}

// storeFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
// number, and stores it through p. It's a helper function for float32 and complex64.
func storeFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) {
	v := floatFromBits(state.decodeUint())
	av := v
	if av < 0 {
		av = -av
	}
	// +Inf is OK in both 32- and 64-bit floats.  Underflow is always OK.
	if math.MaxFloat32 < av && av <= math.MaxFloat64 {
		error_(i.ovfl)
	} else {
		*(*float32)(p) = float32(v)
	}
}

// decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
// number, and stores it through p.
func decFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32))
		}
		p = *(*unsafe.Pointer)(p)
	}
	storeFloat32(i, state, p)
}

// decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point
// number, and stores it through p.
func decFloat64(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64))
		}
		p = *(*unsafe.Pointer)(p)
	}
	*(*float64)(p) = floatFromBits(uint64(state.decodeUint()))
}

// decComplex64 decodes a pair of unsigned integers, treats them as a
// pair of floating point numbers, and stores them as a complex64 through p.
// The real part comes first.
func decComplex64(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64))
		}
		p = *(*unsafe.Pointer)(p)
	}
	storeFloat32(i, state, p)
	storeFloat32(i, state, unsafe.Pointer(uintptr(p)+unsafe.Sizeof(float32(0))))
}

// decComplex128 decodes a pair of unsigned integers, treats them as a
// pair of floating point numbers, and stores them as a complex128 through p.
// The real part comes first.
func decComplex128(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128))
		}
		p = *(*unsafe.Pointer)(p)
	}
	real := floatFromBits(uint64(state.decodeUint()))
	imag := floatFromBits(uint64(state.decodeUint()))
	*(*complex128)(p) = complex(real, imag)
}

// decUint8Slice decodes a byte slice and stores through p a slice header
// describing the data.
// uint8 slices are encoded as an unsigned count followed by the raw bytes.
func decUint8Slice(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8))
		}
		p = *(*unsafe.Pointer)(p)
	}
	n := int(state.decodeUint())
	if n < 0 {
		errorf("negative length decoding []byte")
	}
	slice := (*[]uint8)(p)
	if cap(*slice) < n {
		*slice = make([]uint8, n)
	} else {
		*slice = (*slice)[0:n]
	}
	if _, err := state.b.Read(*slice); err != nil {
		errorf("error decoding []byte: %s", err)
	}
}

// decString decodes byte array and stores through p a string header
// describing the data.
// Strings are encoded as an unsigned count followed by the raw bytes.
func decString(i *decInstr, state *decoderState, p unsafe.Pointer) {
	if i.indir > 0 {
		if *(*unsafe.Pointer)(p) == nil {
			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(string))
		}
		p = *(*unsafe.Pointer)(p)
	}
	b := make([]byte, state.decodeUint())
	state.b.Read(b)
	// It would be a shame to do the obvious thing here,
	//	*(*string)(p) = string(b)
	// because we've already allocated the storage and this would
	// allocate again and copy.  So we do this ugly hack, which is even
	// even more unsafe than it looks as it depends the memory
	// representation of a string matching the beginning of the memory
	// representation of a byte slice (a byte slice is longer).
	*(*string)(p) = *(*string)(unsafe.Pointer(&b))
}

// ignoreUint8Array skips over the data for a byte slice value with no destination.
func ignoreUint8Array(i *decInstr, state *decoderState, p unsafe.Pointer) {
	b := make([]byte, state.decodeUint())
	state.b.Read(b)
}

// Execution engine

// The encoder engine is an array of instructions indexed by field number of the incoming
// decoder.  It is executed with random access according to field number.
type decEngine struct {
	instr    []decInstr
	numInstr int // the number of active instructions
}

// allocate makes sure storage is available for an object of underlying type rtyp
// that is indir levels of indirection through p.
func allocate(rtyp reflect.Type, p uintptr, indir int) uintptr {
	if indir == 0 {
		return p
	}
	up := unsafe.Pointer(p)
	if indir > 1 {
		up = decIndirect(up, indir)
	}
	if *(*unsafe.Pointer)(up) == nil {
		// Allocate object.
		*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.New(rtyp).Pointer())
	}
	return *(*uintptr)(up)
}

// decodeSingle decodes a top-level value that is not a struct and stores it through p.
// Such values are preceded by a zero, making them have the memory layout of a
// struct field (although with an illegal field number).
func (dec *Decoder) decodeSingle(engine *decEngine, ut *userTypeInfo, basep uintptr) (err error) {
	state := dec.newDecoderState(&dec.buf)
	state.fieldnum = singletonField
	delta := int(state.decodeUint())
	if delta != 0 {
		errorf("decode: corrupted data: non-zero delta for singleton")
	}
	instr := &engine.instr[singletonField]
	if instr.indir != ut.indir {
		return errors.New("gob: internal error: inconsistent indirection")
	}
	ptr := unsafe.Pointer(basep) // offset will be zero
	if instr.indir > 1 {
		ptr = decIndirect(ptr, instr.indir)
	}
	instr.op(instr, state, ptr)
	dec.freeDecoderState(state)
	return nil
}

// decodeSingle decodes a top-level struct and stores it through p.
// Indir is for the value, not the type.  At the time of the call it may
// differ from ut.indir, which was computed when the engine was built.
// This state cannot arise for decodeSingle, which is called directly
// from the user's value, not from the innards of an engine.
func (dec *Decoder) decodeStruct(engine *decEngine, ut *userTypeInfo, p uintptr, indir int) {
	p = allocate(ut.base, p, indir)
	state := dec.newDecoderState(&dec.buf)
	state.fieldnum = -1
	basep := p
	for state.b.Len() > 0 {
		delta := int(state.decodeUint())
		if delta < 0 {
			errorf("decode: corrupted data: negative delta")
		}
		if delta == 0 { // struct terminator is zero delta fieldnum
			break
		}
		fieldnum := state.fieldnum + delta
		if fieldnum >= len(engine.instr) {
			error_(errRange)
			break
		}
		instr := &engine.instr[fieldnum]
		p := unsafe.Pointer(basep + instr.offset)
		if instr.indir > 1 {
			p = decIndirect(p, instr.indir)
		}
		instr.op(instr, state, p)
		state.fieldnum = fieldnum
	}
	dec.freeDecoderState(state)
}

// ignoreStruct discards the data for a struct with no destination.
func (dec *Decoder) ignoreStruct(engine *decEngine) {
	state := dec.newDecoderState(&dec.buf)
	state.fieldnum = -1
	for state.b.Len() > 0 {
		delta := int(state.decodeUint())
		if delta < 0 {
			errorf("ignore decode: corrupted data: negative delta")
		}
		if delta == 0 { // struct terminator is zero delta fieldnum
			break
		}
		fieldnum := state.fieldnum + delta
		if fieldnum >= len(engine.instr) {
			error_(errRange)
		}
		instr := &engine.instr[fieldnum]
		instr.op(instr, state, unsafe.Pointer(nil))
		state.fieldnum = fieldnum
	}
	dec.freeDecoderState(state)
}

// ignoreSingle discards the data for a top-level non-struct value with no
// destination. It's used when calling Decode with a nil value.
func (dec *Decoder) ignoreSingle(engine *decEngine) {
	state := dec.newDecoderState(&dec.buf)
	state.fieldnum = singletonField
	delta := int(state.decodeUint())
	if delta != 0 {
		errorf("decode: corrupted data: non-zero delta for singleton")
	}
	instr := &engine.instr[singletonField]
	instr.op(instr, state, unsafe.Pointer(nil))
	dec.freeDecoderState(state)
}

// decodeArrayHelper does the work for decoding arrays and slices.
func (dec *Decoder) decodeArrayHelper(state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl error) {
	instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl}
	for i := 0; i < length; i++ {
		up := unsafe.Pointer(p)
		if elemIndir > 1 {
			up = decIndirect(up, elemIndir)
		}
		elemOp(instr, state, up)
		p += uintptr(elemWid)
	}
}

// decodeArray decodes an array and stores it through p, that is, p points to the zeroth element.
// The length is an unsigned integer preceding the elements.  Even though the length is redundant
// (it's part of the type), it's a useful check and is included in the encoding.
func (dec *Decoder) decodeArray(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl error) {
	if indir > 0 {
		p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect
	}
	if n := state.decodeUint(); n != uint64(length) {
		errorf("length mismatch in decodeArray")
	}
	dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl)
}

// decodeIntoValue is a helper for map decoding.  Since maps are decoded using reflection,
// unlike the other items we can't use a pointer directly.
func decodeIntoValue(state *decoderState, op decOp, indir int, v reflect.Value, ovfl error) reflect.Value {
	instr := &decInstr{op, 0, indir, 0, ovfl}
	up := unsafe.Pointer(unsafeAddr(v))
	if indir > 1 {
		up = decIndirect(up, indir)
	}
	op(instr, state, up)
	return v
}

// decodeMap decodes a map and stores its header through p.
// Maps are encoded as a length followed by key:value pairs.
// Because the internals of maps are not visible to us, we must
// use reflection rather than pointer magic.
func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, p uintptr, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl error) {
	if indir > 0 {
		p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect
	}
	up := unsafe.Pointer(p)
	if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime
		// Allocate map.
		*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Pointer())
	}
	// Maps cannot be accessed by moving addresses around the way
	// that slices etc. can.  We must recover a full reflection value for
	// the iteration.
	v := reflect.NewAt(mtyp, unsafe.Pointer(p)).Elem()
	n := int(state.decodeUint())
	for i := 0; i < n; i++ {
		key := decodeIntoValue(state, keyOp, keyIndir, allocValue(mtyp.Key()), ovfl)
		elem := decodeIntoValue(state, elemOp, elemIndir, allocValue(mtyp.Elem()), ovfl)
		v.SetMapIndex(key, elem)
	}
}

// ignoreArrayHelper does the work for discarding arrays and slices.
func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) {
	instr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")}
	for i := 0; i < length; i++ {
		elemOp(instr, state, nil)
	}
}

// ignoreArray discards the data for an array value with no destination.
func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) {
	if n := state.decodeUint(); n != uint64(length) {
		errorf("length mismatch in ignoreArray")
	}
	dec.ignoreArrayHelper(state, elemOp, length)
}

// ignoreMap discards the data for a map value with no destination.
func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) {
	n := int(state.decodeUint())
	keyInstr := &decInstr{keyOp, 0, 0, 0, errors.New("no error")}
	elemInstr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")}
	for i := 0; i < n; i++ {
		keyOp(keyInstr, state, nil)
		elemOp(elemInstr, state, nil)
	}
}

// decodeSlice decodes a slice and stores the slice header through p.
// Slices are encoded as an unsigned length followed by the elements.
func (dec *Decoder) decodeSlice(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl error) {
	n := int(uintptr(state.decodeUint()))
	if indir > 0 {
		up := unsafe.Pointer(p)
		if *(*unsafe.Pointer)(up) == nil {
			// Allocate the slice header.
			*(*unsafe.Pointer)(up) = unsafe.Pointer(new([]unsafe.Pointer))
		}
		p = *(*uintptr)(up)
	}
	// Allocate storage for the slice elements, that is, the underlying array,
	// if the existing slice does not have the capacity.
	// Always write a header at p.
	hdrp := (*reflect.SliceHeader)(unsafe.Pointer(p))
	if hdrp.Cap < n {
		hdrp.Data = reflect.MakeSlice(atyp, n, n).Pointer()
		hdrp.Cap = n
	}
	hdrp.Len = n
	dec.decodeArrayHelper(state, hdrp.Data, elemOp, elemWid, n, elemIndir, ovfl)
}

// ignoreSlice skips over the data for a slice value with no destination.
func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) {
	dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint()))
}

// setInterfaceValue sets an interface value to a concrete value,
// but first it checks that the assignment will succeed.
func setInterfaceValue(ivalue reflect.Value, value reflect.Value) {
	if !value.Type().AssignableTo(ivalue.Type()) {
		errorf("cannot assign value of type %s to %s", value.Type(), ivalue.Type())
	}
	ivalue.Set(value)
}

// decodeInterface decodes an interface value and stores it through p.
// Interfaces are encoded as the name of a concrete type followed by a value.
// If the name is empty, the value is nil and no value is sent.
func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, p uintptr, indir int) {
	// Create a writable interface reflect.Value.  We need one even for the nil case.
	ivalue := allocValue(ityp)
	// Read the name of the concrete type.
	nr := state.decodeUint()
	if nr < 0 || nr > 1<<31 { // zero is permissible for anonymous types
		errorf("invalid type name length %d", nr)
	}
	b := make([]byte, nr)
	state.b.Read(b)
	name := string(b)
	if name == "" {
		// Copy the representation of the nil interface value to the target.
		// This is horribly unsafe and special.
		*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData()
		return
	}
	// The concrete type must be registered.
	typ, ok := nameToConcreteType[name]
	if !ok {
		errorf("name not registered for interface: %q", name)
	}
	// Read the type id of the concrete value.
	concreteId := dec.decodeTypeSequence(true)
	if concreteId < 0 {
		error_(dec.err)
	}
	// Byte count of value is next; we don't care what it is (it's there
	// in case we want to ignore the value by skipping it completely).
	state.decodeUint()
	// Read the concrete value.
	value := allocValue(typ)
	dec.decodeValue(concreteId, value)
	if dec.err != nil {
		error_(dec.err)
	}
	// Allocate the destination interface value.
	if indir > 0 {
		p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect
	}
	// Assign the concrete value to the interface.
	// Tread carefully; it might not satisfy the interface.
	setInterfaceValue(ivalue, value)
	// Copy the representation of the interface value to the target.
	// This is horribly unsafe and special.
	*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData()
}

// ignoreInterface discards the data for an interface value with no destination.
func (dec *Decoder) ignoreInterface(state *decoderState) {
	// Read the name of the concrete type.
	b := make([]byte, state.decodeUint())
	_, err := state.b.Read(b)
	if err != nil {
		error_(err)
	}
	id := dec.decodeTypeSequence(true)
	if id < 0 {
		error_(dec.err)
	}
	// At this point, the decoder buffer contains a delimited value. Just toss it.
	state.b.Next(int(state.decodeUint()))
}

// decodeGobDecoder decodes something implementing the GobDecoder interface.
// The data is encoded as a byte slice.
func (dec *Decoder) decodeGobDecoder(state *decoderState, v reflect.Value) {
	// Read the bytes for the value.
	b := make([]byte, state.decodeUint())
	_, err := state.b.Read(b)
	if err != nil {
		error_(err)
	}
	// We know it's a GobDecoder, so just call the method directly.
	err = v.Interface().(GobDecoder).GobDecode(b)
	if err != nil {
		error_(err)
	}
}

// ignoreGobDecoder discards the data for a GobDecoder value with no destination.
func (dec *Decoder) ignoreGobDecoder(state *decoderState) {
	// Read the bytes for the value.
	b := make([]byte, state.decodeUint())
	_, err := state.b.Read(b)
	if err != nil {
		error_(err)
	}
}

// Index by Go types.
var decOpTable = [...]decOp{
	reflect.Bool:       decBool,
	reflect.Int8:       decInt8,
	reflect.Int16:      decInt16,
	reflect.Int32:      decInt32,
	reflect.Int64:      decInt64,
	reflect.Uint8:      decUint8,
	reflect.Uint16:     decUint16,
	reflect.Uint32:     decUint32,
	reflect.Uint64:     decUint64,
	reflect.Float32:    decFloat32,
	reflect.Float64:    decFloat64,
	reflect.Complex64:  decComplex64,
	reflect.Complex128: decComplex128,
	reflect.String:     decString,
}

// Indexed by gob types.  tComplex will be added during type.init().
var decIgnoreOpMap = map[typeId]decOp{
	tBool:    ignoreUint,
	tInt:     ignoreUint,
	tUint:    ignoreUint,
	tFloat:   ignoreUint,
	tBytes:   ignoreUint8Array,
	tString:  ignoreUint8Array,
	tComplex: ignoreTwoUints,
}

// decOpFor returns the decoding op for the base type under rt and
// the indirection count to reach it.
func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) (*decOp, int) {
	ut := userType(rt)
	// If the type implements GobEncoder, we handle it without further processing.
	if ut.isGobDecoder {
		return dec.gobDecodeOpFor(ut)
	}
	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
	// Return the pointer to the op we're already building.
	if opPtr := inProgress[rt]; opPtr != nil {
		return opPtr, ut.indir
	}
	typ := ut.base
	indir := ut.indir
	var op decOp
	k := typ.Kind()
	if int(k) < len(decOpTable) {
		op = decOpTable[k]
	}
	if op == nil {
		inProgress[rt] = &op
		// Special cases
		switch t := typ; t.Kind() {
		case reflect.Array:
			name = "element of " + name
			elemId := dec.wireType[wireId].ArrayT.Elem
			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
			ovfl := overflow(name)
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.decodeArray(t, state, uintptr(p), *elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl)
			}

		case reflect.Map:
			name = "element of " + name
			keyId := dec.wireType[wireId].MapT.Key
			elemId := dec.wireType[wireId].MapT.Elem
			keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), name, inProgress)
			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
			ovfl := overflow(name)
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				up := unsafe.Pointer(p)
				state.dec.decodeMap(t, state, uintptr(up), *keyOp, *elemOp, i.indir, keyIndir, elemIndir, ovfl)
			}

		case reflect.Slice:
			name = "element of " + name
			if t.Elem().Kind() == reflect.Uint8 {
				op = decUint8Slice
				break
			}
			var elemId typeId
			if tt, ok := builtinIdToType[wireId]; ok {
				elemId = tt.(*sliceType).Elem
			} else {
				elemId = dec.wireType[wireId].SliceT.Elem
			}
			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
			ovfl := overflow(name)
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.decodeSlice(t, state, uintptr(p), *elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl)
			}

		case reflect.Struct:
			// Generate a closure that calls out to the engine for the nested type.
			enginePtr, err := dec.getDecEnginePtr(wireId, userType(typ))
			if err != nil {
				error_(err)
			}
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				// indirect through enginePtr to delay evaluation for recursive structs.
				dec.decodeStruct(*enginePtr, userType(typ), uintptr(p), i.indir)
			}
		case reflect.Interface:
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.decodeInterface(t, state, uintptr(p), i.indir)
			}
		}
	}
	if op == nil {
		errorf("decode can't handle type %s", rt)
	}
	return &op, indir
}

// decIgnoreOpFor returns the decoding op for a field that has no destination.
func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp {
	op, ok := decIgnoreOpMap[wireId]
	if !ok {
		if wireId == tInterface {
			// Special case because it's a method: the ignored item might
			// define types and we need to record their state in the decoder.
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.ignoreInterface(state)
			}
			return op
		}
		// Special cases
		wire := dec.wireType[wireId]
		switch {
		case wire == nil:
			errorf("bad data: undefined type %s", wireId.string())
		case wire.ArrayT != nil:
			elemId := wire.ArrayT.Elem
			elemOp := dec.decIgnoreOpFor(elemId)
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.ignoreArray(state, elemOp, wire.ArrayT.Len)
			}

		case wire.MapT != nil:
			keyId := dec.wireType[wireId].MapT.Key
			elemId := dec.wireType[wireId].MapT.Elem
			keyOp := dec.decIgnoreOpFor(keyId)
			elemOp := dec.decIgnoreOpFor(elemId)
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.ignoreMap(state, keyOp, elemOp)
			}

		case wire.SliceT != nil:
			elemId := wire.SliceT.Elem
			elemOp := dec.decIgnoreOpFor(elemId)
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.ignoreSlice(state, elemOp)
			}

		case wire.StructT != nil:
			// Generate a closure that calls out to the engine for the nested type.
			enginePtr, err := dec.getIgnoreEnginePtr(wireId)
			if err != nil {
				error_(err)
			}
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				// indirect through enginePtr to delay evaluation for recursive structs
				state.dec.ignoreStruct(*enginePtr)
			}

		case wire.GobEncoderT != nil:
			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
				state.dec.ignoreGobDecoder(state)
			}
		}
	}
	if op == nil {
		errorf("bad data: ignore can't handle type %s", wireId.string())
	}
	return op
}

// gobDecodeOpFor returns the op for a type that is known to implement
// GobDecoder.
func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) (*decOp, int) {
	rcvrType := ut.user
	if ut.decIndir == -1 {
		rcvrType = reflect.PtrTo(rcvrType)
	} else if ut.decIndir > 0 {
		for i := int8(0); i < ut.decIndir; i++ {
			rcvrType = rcvrType.Elem()
		}
	}
	var op decOp
	op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
		// Caller has gotten us to within one indirection of our value.
		if i.indir > 0 {
			if *(*unsafe.Pointer)(p) == nil {
				*(*unsafe.Pointer)(p) = unsafe.Pointer(reflect.New(ut.base).Pointer())
			}
		}
		// Now p is a pointer to the base type.  Do we need to climb out to
		// get to the receiver type?
		var v reflect.Value
		if ut.decIndir == -1 {
			v = reflect.NewAt(rcvrType, unsafe.Pointer(&p)).Elem()
		} else {
			v = reflect.NewAt(rcvrType, p).Elem()
		}
		state.dec.decodeGobDecoder(state, v)
	}
	return &op, int(ut.indir)

}

// compatibleType asks: Are these two gob Types compatible?
// Answers the question for basic types, arrays, maps and slices, plus
// GobEncoder/Decoder pairs.
// Structs are considered ok; fields will be checked later.
func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool {
	if rhs, ok := inProgress[fr]; ok {
		return rhs == fw
	}
	inProgress[fr] = fw
	ut := userType(fr)
	wire, ok := dec.wireType[fw]
	// If fr is a GobDecoder, the wire type must be GobEncoder.
	// And if fr is not a GobDecoder, the wire type must not be either.
	if ut.isGobDecoder != (ok && wire.GobEncoderT != nil) { // the parentheses look odd but are correct.
		return false
	}
	if ut.isGobDecoder { // This test trumps all others.
		return true
	}
	switch t := ut.base; t.Kind() {
	default:
		// chan, etc: cannot handle.
		return false
	case reflect.Bool:
		return fw == tBool
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return fw == tInt
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		return fw == tUint
	case reflect.Float32, reflect.Float64:
		return fw == tFloat
	case reflect.Complex64, reflect.Complex128:
		return fw == tComplex
	case reflect.String:
		return fw == tString
	case reflect.Interface:
		return fw == tInterface
	case reflect.Array:
		if !ok || wire.ArrayT == nil {
			return false
		}
		array := wire.ArrayT
		return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress)
	case reflect.Map:
		if !ok || wire.MapT == nil {
			return false
		}
		MapType := wire.MapT
		return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress)
	case reflect.Slice:
		// Is it an array of bytes?
		if t.Elem().Kind() == reflect.Uint8 {
			return fw == tBytes
		}
		// Extract and compare element types.
		var sw *sliceType
		if tt, ok := builtinIdToType[fw]; ok {
			sw, _ = tt.(*sliceType)
		} else if wire != nil {
			sw = wire.SliceT
		}
		elem := userType(t.Elem()).base
		return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress)
	case reflect.Struct:
		return true
	}
	return true
}

// typeString returns a human-readable description of the type identified by remoteId.
func (dec *Decoder) typeString(remoteId typeId) string {
	if t := idToType[remoteId]; t != nil {
		// globally known type.
		return t.string()
	}
	return dec.wireType[remoteId].string()
}

// compileSingle compiles the decoder engine for a non-struct top-level value, including
// GobDecoders.
func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
	rt := ut.user
	engine = new(decEngine)
	engine.instr = make([]decInstr, 1) // one item
	name := rt.String()                // best we can do
	if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) {
		remoteType := dec.typeString(remoteId)
		// Common confusing case: local interface type, remote concrete type.
		if ut.base.Kind() == reflect.Interface && remoteId != tInterface {
			return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType)
		}
		return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType)
	}
	op, indir := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp))
	ovfl := errors.New(`value for "` + name + `" out of range`)
	engine.instr[singletonField] = decInstr{*op, singletonField, indir, 0, ovfl}
	engine.numInstr = 1
	return
}

// compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded.
func (dec *Decoder) compileIgnoreSingle(remoteId typeId) (engine *decEngine, err error) {
	engine = new(decEngine)
	engine.instr = make([]decInstr, 1) // one item
	op := dec.decIgnoreOpFor(remoteId)
	ovfl := overflow(dec.typeString(remoteId))
	engine.instr[0] = decInstr{op, 0, 0, 0, ovfl}
	engine.numInstr = 1
	return
}

// compileDec compiles the decoder engine for a value.  If the value is not a struct,
// it calls out to compileSingle.
func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
	rt := ut.base
	srt := rt
	if srt.Kind() != reflect.Struct ||
		ut.isGobDecoder {
		return dec.compileSingle(remoteId, ut)
	}
	var wireStruct *structType
	// Builtin types can come from global pool; the rest must be defined by the decoder.
	// Also we know we're decoding a struct now, so the client must have sent one.
	if t, ok := builtinIdToType[remoteId]; ok {
		wireStruct, _ = t.(*structType)
	} else {
		wire := dec.wireType[remoteId]
		if wire == nil {
			error_(errBadType)
		}
		wireStruct = wire.StructT
	}
	if wireStruct == nil {
		errorf("type mismatch in decoder: want struct type %s; got non-struct", rt)
	}
	engine = new(decEngine)
	engine.instr = make([]decInstr, len(wireStruct.Field))
	seen := make(map[reflect.Type]*decOp)
	// Loop over the fields of the wire type.
	for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ {
		wireField := wireStruct.Field[fieldnum]
		if wireField.Name == "" {
			errorf("empty name for remote field of type %s", wireStruct.Name)
		}
		ovfl := overflow(wireField.Name)
		// Find the field of the local type with the same name.
		localField, present := srt.FieldByName(wireField.Name)
		// TODO(r): anonymous names
		if !present || !isExported(wireField.Name) {
			op := dec.decIgnoreOpFor(wireField.Id)
			engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl}
			continue
		}
		if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) {
			errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name)
		}
		op, indir := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen)
		engine.instr[fieldnum] = decInstr{*op, fieldnum, indir, uintptr(localField.Offset), ovfl}
		engine.numInstr++
	}
	return
}

// getDecEnginePtr returns the engine for the specified type.
func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) {
	rt := ut.base
	decoderMap, ok := dec.decoderCache[rt]
	if !ok {
		decoderMap = make(map[typeId]**decEngine)
		dec.decoderCache[rt] = decoderMap
	}
	if enginePtr, ok = decoderMap[remoteId]; !ok {
		// To handle recursive types, mark this engine as underway before compiling.
		enginePtr = new(*decEngine)
		decoderMap[remoteId] = enginePtr
		*enginePtr, err = dec.compileDec(remoteId, ut)
		if err != nil {
			delete(decoderMap, remoteId)
		}
	}
	return
}

// emptyStruct is the type we compile into when ignoring a struct value.
type emptyStruct struct{}

var emptyStructType = reflect.TypeOf(emptyStruct{})

// getDecEnginePtr returns the engine for the specified type when the value is to be discarded.
func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) {
	var ok bool
	if enginePtr, ok = dec.ignorerCache[wireId]; !ok {
		// To handle recursive types, mark this engine as underway before compiling.
		enginePtr = new(*decEngine)
		dec.ignorerCache[wireId] = enginePtr
		wire := dec.wireType[wireId]
		if wire != nil && wire.StructT != nil {
			*enginePtr, err = dec.compileDec(wireId, userType(emptyStructType))
		} else {
			*enginePtr, err = dec.compileIgnoreSingle(wireId)
		}
		if err != nil {
			delete(dec.ignorerCache, wireId)
		}
	}
	return
}

// decodeValue decodes the data stream representing a value and stores it in val.
func (dec *Decoder) decodeValue(wireId typeId, val reflect.Value) {
	defer catchError(&dec.err)
	// If the value is nil, it means we should just ignore this item.
	if !val.IsValid() {
		dec.decodeIgnoredValue(wireId)
		return
	}
	// Dereference down to the underlying type.
	ut := userType(val.Type())
	base := ut.base
	var enginePtr **decEngine
	enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut)
	if dec.err != nil {
		return
	}
	engine := *enginePtr
	if st := base; st.Kind() == reflect.Struct && !ut.isGobDecoder {
		if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].StructT.Field) > 0 {
			name := base.Name()
			errorf("type mismatch: no fields matched compiling decoder for %s", name)
		}
		dec.decodeStruct(engine, ut, uintptr(unsafeAddr(val)), ut.indir)
	} else {
		dec.decodeSingle(engine, ut, uintptr(unsafeAddr(val)))
	}
}

// decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it.
func (dec *Decoder) decodeIgnoredValue(wireId typeId) {
	var enginePtr **decEngine
	enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId)
	if dec.err != nil {
		return
	}
	wire := dec.wireType[wireId]
	if wire != nil && wire.StructT != nil {
		dec.ignoreStruct(*enginePtr)
	} else {
		dec.ignoreSingle(*enginePtr)
	}
}

func init() {
	var iop, uop decOp
	switch reflect.TypeOf(int(0)).Bits() {
	case 32:
		iop = decInt32
		uop = decUint32
	case 64:
		iop = decInt64
		uop = decUint64
	default:
		panic("gob: unknown size of int/uint")
	}
	decOpTable[reflect.Int] = iop
	decOpTable[reflect.Uint] = uop

	// Finally uintptr
	switch reflect.TypeOf(uintptr(0)).Bits() {
	case 32:
		uop = decUint32
	case 64:
		uop = decUint64
	default:
		panic("gob: unknown size of uintptr")
	}
	decOpTable[reflect.Uintptr] = uop
}

// Gob assumes it can call UnsafeAddr on any Value
// in order to get a pointer it can copy data from.
// Values that have just been created and do not point
// into existing structs or slices cannot be addressed,
// so simulate it by returning a pointer to a copy.
// Each call allocates once.
func unsafeAddr(v reflect.Value) uintptr {
	if v.CanAddr() {
		return v.UnsafeAddr()
	}
	x := reflect.New(v.Type()).Elem()
	x.Set(v)
	return x.UnsafeAddr()
}

// Gob depends on being able to take the address
// of zeroed Values it creates, so use this wrapper instead
// of the standard reflect.Zero.
// Each call allocates once.
func allocValue(t reflect.Type) reflect.Value {
	return reflect.New(t).Elem()
}