1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package collate contains types for comparing and sorting Unicode strings
// according to a given collation order. Package locale provides a high-level
// interface to collation. Users should typically use that package instead.
package collate
import (
"bytes"
"exp/norm"
)
// Level identifies the collation comparison level.
// The primary level corresponds to the basic sorting of text.
// The secondary level corresponds to accents and related linguistic elements.
// The tertiary level corresponds to casing and related concepts.
// The quaternary level is derived from the other levels by the
// various algorithms for handling variable elements.
type Level int
const (
Primary Level = iota
Secondary
Tertiary
Quaternary
Identity
)
// AlternateHandling identifies the various ways in which variables are handled.
// A rune with a primary weight lower than the variable top is considered a
// variable.
// See http://www.unicode.org/reports/tr10/#Variable_Weighting for details.
type AlternateHandling int
const (
// AltNonIgnorable turns off special handling of variables.
AltNonIgnorable AlternateHandling = iota
// AltBlanked sets variables and all subsequent primary ignorables to be
// ignorable at all levels. This is identical to removing all variables
// and subsequent primary ignorables from the input.
AltBlanked
// AltShifted sets variables to be ignorable for levels one through three and
// adds a fourth level based on the values of the ignored levels.
AltShifted
// AltShiftTrimmed is a slight variant of AltShifted that is used to
// emulate POSIX.
AltShiftTrimmed
)
// Collator provides functionality for comparing strings for a given
// collation order.
type Collator struct {
// Strength sets the maximum level to use in comparison.
Strength Level
// Alternate specifies an alternative handling of variables.
Alternate AlternateHandling
// Backwards specifies the order of sorting at the secondary level.
// This option exists predominantly to support reverse sorting of accents in French.
Backwards bool
// TODO: implement:
// With HiraganaQuaternary enabled, Hiragana codepoints will get lower values
// than all the other non-variable code points. Strength must be greater or
// equal to Quaternary for this to take effect.
HiraganaQuaternary bool
// If CaseLevel is true, a level consisting only of case characteristics will
// be inserted in front of the tertiary level. To ignore accents but take
// cases into account, set Strength to Primary and CaseLevel to true.
CaseLevel bool
// If Numeric is true, any sequence of decimal digits (category is Nd) is sorted
// at a primary level with its numeric value. For example, "A-21" < "A-123".
Numeric bool
f norm.Form
t *table
}
// Locales returns the list of locales for which collating differs from its parent locale.
func Locales() []string {
return availableLocales
}
// New returns a new Collator initialized for the given locale.
func New(loc string) *Collator {
// TODO: handle locale selection according to spec.
t := &mainTable
if loc != "" {
if idx, ok := locales[loc]; ok {
t = mainTable.indexedTable(idx)
}
}
return &Collator{
Strength: Quaternary,
f: norm.NFD,
t: t,
}
}
// SetVariableTop sets all runes with primary strength less than the primary
// strength of r to be variable and thus affected by alternate handling.
func (c *Collator) SetVariableTop(r rune) {
// TODO: implement
}
// Buffer holds reusable buffers that can be used during collation.
// Reusing a Buffer for the various calls that accept it may avoid
// unnecessary memory allocations.
type Buffer struct {
// TODO: try various parameters and techniques, such as using
// a chan of buffers for a pool.
ba [4096]byte
wa [512]weights
key []byte
ce []weights
}
func (b *Buffer) init() {
if b.ce == nil {
b.ce = b.wa[:0]
b.key = b.ba[:0]
} else {
b.ce = b.ce[:0]
}
}
// ResetKeys clears the buffer used for generated keys. Calling ResetKeys
// invalidates keys previously obtained from Key or KeyFromString.
func (b *Buffer) ResetKeys() {
b.ce = b.ce[:0]
b.key = b.key[:0]
}
// Compare returns an integer comparing the two byte slices.
// The result will be 0 if a==b, -1 if a < b, and +1 if a > b.
// Compare calls ResetKeys, thereby invalidating keys
// previously generated using Key or KeyFromString using buf.
func (c *Collator) Compare(buf *Buffer, a, b []byte) int {
// TODO: for now we simply compute keys and compare. Once we
// have good benchmarks, move to an implementation that works
// incrementally for the majority of cases.
// - Benchmark with long strings that only vary in modifiers.
buf.ResetKeys()
ka := c.Key(buf, a)
kb := c.Key(buf, b)
defer buf.ResetKeys()
return bytes.Compare(ka, kb)
}
// CompareString returns an integer comparing the two strings.
// The result will be 0 if a==b, -1 if a < b, and +1 if a > b.
// CompareString calls ResetKeys, thereby invalidating keys
// previously generated using Key or KeyFromString using buf.
func (c *Collator) CompareString(buf *Buffer, a, b string) int {
buf.ResetKeys()
ka := c.KeyFromString(buf, a)
kb := c.KeyFromString(buf, b)
defer buf.ResetKeys()
return bytes.Compare(ka, kb)
}
func (c *Collator) Prefix(buf *Buffer, s, prefix []byte) int {
// iterate over s, track bytes consumed.
return 0
}
// Key returns the collation key for str.
// Passing the buffer buf may avoid memory allocations.
// The returned slice will point to an allocation in Buffer and will remain
// valid until the next call to buf.ResetKeys().
func (c *Collator) Key(buf *Buffer, str []byte) []byte {
// See http://www.unicode.org/reports/tr10/#Main_Algorithm for more details.
buf.init()
c.getColElems(buf, str)
return c.key(buf, buf.ce)
}
// KeyFromString returns the collation key for str.
// Passing the buffer buf may avoid memory allocations.
// The returned slice will point to an allocation in Buffer and will retain
// valid until the next call to buf.ResetKeys().
func (c *Collator) KeyFromString(buf *Buffer, str string) []byte {
// See http://www.unicode.org/reports/tr10/#Main_Algorithm for more details.
buf.init()
c.getColElemsString(buf, str)
return c.key(buf, buf.ce)
}
func (c *Collator) key(buf *Buffer, w []weights) []byte {
processWeights(c.Alternate, c.t.variableTop, w)
kn := len(buf.key)
c.keyFromElems(buf, w)
return buf.key[kn:]
}
func (c *Collator) getColElems(buf *Buffer, str []byte) {
i := c.iter()
i.src.SetInput(c.f, str)
for !i.done() {
buf.ce = i.next(buf.ce)
}
}
func (c *Collator) getColElemsString(buf *Buffer, str string) {
i := c.iter()
i.src.SetInputString(c.f, str)
for !i.done() {
buf.ce = i.next(buf.ce)
}
}
type iter struct {
src norm.Iter
ba [1024]byte
buf []byte
t *table
p int
minBufSize int
_done, eof bool
}
func (c *Collator) iter() iter {
i := iter{t: c.t, minBufSize: c.t.maxContractLen}
i.buf = i.ba[:0]
return i
}
func (i *iter) done() bool {
return i._done
}
func (i *iter) next(ce []weights) []weights {
if !i.eof && len(i.buf)-i.p < i.minBufSize {
// replenish buffer
n := copy(i.buf, i.buf[i.p:])
n += i.src.Next(i.buf[n:cap(i.buf)])
i.buf = i.buf[:n]
i.p = 0
i.eof = i.src.Done()
}
if i.p == len(i.buf) {
i._done = true
return ce
}
ce, sz := i.t.appendNext(ce, i.buf[i.p:])
i.p += sz
return ce
}
func appendPrimary(key []byte, p uint32) []byte {
// Convert to variable length encoding; supports up to 23 bits.
if p <= 0x7FFF {
key = append(key, uint8(p>>8), uint8(p))
} else {
key = append(key, uint8(p>>16)|0x80, uint8(p>>8), uint8(p))
}
return key
}
// keyFromElems converts the weights ws to a compact sequence of bytes.
// The result will be appended to the byte buffer in buf.
func (c *Collator) keyFromElems(buf *Buffer, ws []weights) {
for _, v := range ws {
if w := v.primary; w > 0 {
buf.key = appendPrimary(buf.key, w)
}
}
if Secondary <= c.Strength {
buf.key = append(buf.key, 0, 0)
// TODO: we can use one 0 if we can guarantee that all non-zero weights are > 0xFF.
if !c.Backwards {
for _, v := range ws {
if w := v.secondary; w > 0 {
buf.key = append(buf.key, uint8(w>>8), uint8(w))
}
}
} else {
for i := len(ws) - 1; i >= 0; i-- {
if w := ws[i].secondary; w > 0 {
buf.key = append(buf.key, uint8(w>>8), uint8(w))
}
}
}
} else if c.CaseLevel {
buf.key = append(buf.key, 0, 0)
}
if Tertiary <= c.Strength || c.CaseLevel {
buf.key = append(buf.key, 0, 0)
for _, v := range ws {
if w := v.tertiary; w > 0 {
buf.key = append(buf.key, w)
}
}
// Derive the quaternary weights from the options and other levels.
// Note that we represent maxQuaternary as 0xFF. The first byte of the
// representation of a a primary weight is always smaller than 0xFF,
// so using this single byte value will compare correctly.
if Quaternary <= c.Strength {
if c.Alternate == AltShiftTrimmed {
lastNonFFFF := len(buf.key)
buf.key = append(buf.key, 0)
for _, v := range ws {
if w := v.quaternary; w == maxQuaternary {
buf.key = append(buf.key, 0xFF)
} else if w > 0 {
buf.key = appendPrimary(buf.key, w)
lastNonFFFF = len(buf.key)
}
}
buf.key = buf.key[:lastNonFFFF]
} else {
buf.key = append(buf.key, 0)
for _, v := range ws {
if w := v.quaternary; w == maxQuaternary {
buf.key = append(buf.key, 0xFF)
} else if w > 0 {
buf.key = appendPrimary(buf.key, w)
}
}
}
}
}
}
func processWeights(vw AlternateHandling, top uint32, wa []weights) {
ignore := false
switch vw {
case AltShifted, AltShiftTrimmed:
for i := range wa {
if p := wa[i].primary; p <= top && p != 0 {
wa[i] = weights{quaternary: p}
ignore = true
} else if p == 0 {
if ignore {
wa[i] = weights{}
} else if wa[i].tertiary != 0 {
wa[i].quaternary = maxQuaternary
}
} else {
wa[i].quaternary = maxQuaternary
ignore = false
}
}
case AltBlanked:
for i := range wa {
if p := wa[i].primary; p <= top && (ignore || p != 0) {
wa[i] = weights{}
ignore = true
} else {
ignore = false
}
}
}
}
|