1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
const MaxSegmentSize = maxByteBufferSize
// An Iter iterates over a string or byte slice, while normalizing it
// to a given Form.
type Iter struct {
rb reorderBuffer
info Properties // first character saved from previous iteration
next iterFunc // implementation of next depends on form
p int // current position in input source
outStart int // start of current segment in output buffer
inStart int // start of current segment in input source
maxp int // position in output buffer after which not to start a new segment
maxseg int // for tracking an excess of combining characters
tccc uint8
done bool
}
type iterFunc func(*Iter, []byte) int
// SetInput initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) SetInput(f Form, src []byte) {
i.rb.init(f, src)
if i.rb.f.composing {
i.next = nextComposed
} else {
i.next = nextDecomposed
}
i.p = 0
if i.done = len(src) == 0; !i.done {
i.info = i.rb.f.info(i.rb.src, i.p)
}
}
// SetInputString initializes i to iterate over src after normalizing it to Form f.
func (i *Iter) SetInputString(f Form, src string) {
i.rb.initString(f, src)
if i.rb.f.composing {
i.next = nextComposed
} else {
i.next = nextDecomposed
}
i.p = 0
if i.done = len(src) == 0; !i.done {
i.info = i.rb.f.info(i.rb.src, i.p)
}
}
// Pos returns the byte position at which the next call to Next will commence processing.
func (i *Iter) Pos() int {
return i.p
}
// Done returns true if there is no more input to process.
func (i *Iter) Done() bool {
return i.done
}
// Next writes f(i.input[i.Pos():n]...) to buffer buf, where n is the
// largest boundary of i.input such that the result fits in buf.
// It returns the number of bytes written to buf.
// len(buf) should be at least MaxSegmentSize.
// Done must be false before calling Next.
func (i *Iter) Next(buf []byte) int {
return i.next(i, buf)
}
func (i *Iter) initNext(outn, inStart int) {
i.outStart = 0
i.inStart = inStart
i.maxp = outn - MaxSegmentSize
i.maxseg = MaxSegmentSize
}
// setStart resets the start of the new segment to the given position.
// It returns true if there is not enough room for the new segment.
func (i *Iter) setStart(outp, inp int) bool {
if outp > i.maxp {
return true
}
i.outStart = outp
i.inStart = inp
i.maxseg = outp + MaxSegmentSize
return false
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// nextDecomposed is the implementation of Next for forms NFD and NFKD.
func nextDecomposed(i *Iter, out []byte) int {
var outp int
i.initNext(len(out), i.p)
doFast:
inCopyStart, outCopyStart := i.p, outp // invariant xCopyStart <= i.xStart
for {
if sz := int(i.info.size); sz <= 1 {
// ASCII or illegal byte. Either way, advance by 1.
i.p++
outp++
max := min(i.rb.nsrc, len(out)-outp+i.p)
if np := i.rb.src.skipASCII(i.p, max); np > i.p {
outp += np - i.p
i.p = np
if i.p >= i.rb.nsrc {
break
}
// ASCII may combine with consecutive runes.
if i.setStart(outp-1, i.p-1) {
i.p--
outp--
i.info.size = 1
break
}
}
} else if d := i.info.Decomposition(); d != nil {
i.rb.src.copySlice(out[outCopyStart:], inCopyStart, i.p)
p := outp + len(d)
if p > i.maxseg && i.setStart(outp, i.p) {
return outp
}
copy(out[outp:], d)
outp = p
i.p += sz
inCopyStart, outCopyStart = i.p, outp
} else if r := i.rb.src.hangul(i.p); r != 0 {
i.rb.src.copySlice(out[outCopyStart:], inCopyStart, i.p)
for {
outp += decomposeHangul(out[outp:], r)
i.p += hangulUTF8Size
if r = i.rb.src.hangul(i.p); r == 0 {
break
}
if i.setStart(outp, i.p) {
return outp
}
}
inCopyStart, outCopyStart = i.p, outp
} else {
p := outp + sz
if p > i.maxseg && i.setStart(outp, i.p) {
break
}
outp = p
i.p += sz
}
if i.p >= i.rb.nsrc {
break
}
prevCC := i.info.tccc
i.info = i.rb.f.info(i.rb.src, i.p)
if cc := i.info.ccc; cc == 0 {
if i.setStart(outp, i.p) {
break
}
} else if cc < prevCC {
goto doNorm
}
}
if inCopyStart != i.p {
i.rb.src.copySlice(out[outCopyStart:], inCopyStart, i.p)
}
i.done = i.p >= i.rb.nsrc
return outp
doNorm:
// Insert what we have decomposed so far in the reorderBuffer.
// As we will only reorder, there will always be enough room.
i.rb.src.copySlice(out[outCopyStart:], inCopyStart, i.p)
if !i.rb.insertDecomposed(out[i.outStart:outp]) {
// Start over to prevent decompositions from crossing segment boundaries.
// This is a rare occurrence.
i.p = i.inStart
i.info = i.rb.f.info(i.rb.src, i.p)
}
outp = i.outStart
for {
if !i.rb.insert(i.rb.src, i.p, i.info) {
break
}
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
outp += i.rb.flushCopy(out[outp:])
i.done = true
return outp
}
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.ccc == 0 {
break
}
}
// new segment or too many combining characters: exit normalization
if outp += i.rb.flushCopy(out[outp:]); i.setStart(outp, i.p) {
return outp
}
goto doFast
}
// nextComposed is the implementation of Next for forms NFC and NFKC.
func nextComposed(i *Iter, out []byte) int {
var outp int
i.initNext(len(out), i.p)
doFast:
inCopyStart, outCopyStart := i.p, outp // invariant xCopyStart <= i.xStart
var prevCC uint8
for {
if !i.info.isYesC() {
goto doNorm
}
if cc := i.info.ccc; cc == 0 {
if i.setStart(outp, i.p) {
break
}
} else if cc < prevCC {
goto doNorm
}
prevCC = i.info.tccc
sz := int(i.info.size)
if sz == 0 {
sz = 1 // illegal rune: copy byte-by-byte
}
p := outp + sz
if p > i.maxseg && i.setStart(outp, i.p) {
break
}
outp = p
i.p += sz
max := min(i.rb.nsrc, len(out)-outp+i.p)
if np := i.rb.src.skipASCII(i.p, max); np > i.p {
outp += np - i.p
i.p = np
if i.p >= i.rb.nsrc {
break
}
// ASCII may combine with consecutive runes.
if i.setStart(outp-1, i.p-1) {
i.p--
outp--
i.info = Properties{size: 1}
break
}
}
if i.p >= i.rb.nsrc {
break
}
i.info = i.rb.f.info(i.rb.src, i.p)
}
if inCopyStart != i.p {
i.rb.src.copySlice(out[outCopyStart:], inCopyStart, i.p)
}
i.done = i.p >= i.rb.nsrc
return outp
doNorm:
i.rb.src.copySlice(out[outCopyStart:], inCopyStart, i.inStart)
outp, i.p = i.outStart, i.inStart
i.info = i.rb.f.info(i.rb.src, i.p)
for {
if !i.rb.insert(i.rb.src, i.p, i.info) {
break
}
if i.p += int(i.info.size); i.p >= i.rb.nsrc {
i.rb.compose()
outp += i.rb.flushCopy(out[outp:])
i.done = true
return outp
}
i.info = i.rb.f.info(i.rb.src, i.p)
if i.info.BoundaryBefore() {
break
}
}
i.rb.compose()
if outp += i.rb.flushCopy(out[outp:]); i.setStart(outp, i.p) {
return outp
}
goto doFast
}
|