summaryrefslogtreecommitdiff
path: root/libgo/go/go/constant/value.go
blob: 79a80af1ab1474eaaec4b3dfbe9d53b055258888 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package constant implements Values representing untyped
// Go constants and the corresponding operations. Values
// and operations may have arbitrary or unlimited precision.
//
// A special Unknown value may be used when a value
// is unknown due to an error. Operations on unknown
// values produce unknown values unless specified
// otherwise.
//
package constant // import "go/constant"

import (
	"fmt"
	"go/token"
	"math/big"
	"strconv"
)

// Kind specifies the kind of value represented by a Value.
type Kind int

// Implementation note: Kinds must be enumerated in
// order of increasing "complexity" (used by match).

const (
	// unknown values
	Unknown Kind = iota

	// non-numeric values
	Bool
	String

	// numeric values
	Int
	Float
	Complex
)

// A Value represents a mathematically exact value of a given Kind.
type Value interface {
	// Kind returns the value kind; it is always the smallest
	// kind in which the value can be represented exactly.
	Kind() Kind

	// String returns a human-readable form of the value.
	String() string

	// Prevent external implementations.
	implementsValue()
}

// ----------------------------------------------------------------------------
// Implementations

type (
	unknownVal struct{}
	boolVal    bool
	stringVal  string
	int64Val   int64
	intVal     struct{ val *big.Int }
	floatVal   struct{ val *big.Rat }
	complexVal struct{ re, im *big.Rat }
)

func (unknownVal) Kind() Kind { return Unknown }
func (boolVal) Kind() Kind    { return Bool }
func (stringVal) Kind() Kind  { return String }
func (int64Val) Kind() Kind   { return Int }
func (intVal) Kind() Kind     { return Int }
func (floatVal) Kind() Kind   { return Float }
func (complexVal) Kind() Kind { return Complex }

func (unknownVal) String() string   { return "unknown" }
func (x boolVal) String() string    { return fmt.Sprintf("%v", bool(x)) }
func (x stringVal) String() string  { return strconv.Quote(string(x)) }
func (x int64Val) String() string   { return strconv.FormatInt(int64(x), 10) }
func (x intVal) String() string     { return x.val.String() }
func (x floatVal) String() string   { return x.val.String() }
func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) }

func (unknownVal) implementsValue() {}
func (boolVal) implementsValue()    {}
func (stringVal) implementsValue()  {}
func (int64Val) implementsValue()   {}
func (intVal) implementsValue()     {}
func (floatVal) implementsValue()   {}
func (complexVal) implementsValue() {}

// int64 bounds
var (
	minInt64 = big.NewInt(-1 << 63)
	maxInt64 = big.NewInt(1<<63 - 1)
)

func normInt(x *big.Int) Value {
	if minInt64.Cmp(x) <= 0 && x.Cmp(maxInt64) <= 0 {
		return int64Val(x.Int64())
	}
	return intVal{x}
}

func normFloat(x *big.Rat) Value {
	if x.IsInt() {
		return normInt(x.Num())
	}
	return floatVal{x}
}

func normComplex(re, im *big.Rat) Value {
	if im.Sign() == 0 {
		return normFloat(re)
	}
	return complexVal{re, im}
}

// ----------------------------------------------------------------------------
// Factories

// MakeUnknown returns the Unknown value.
func MakeUnknown() Value { return unknownVal{} }

// MakeBool returns the Bool value for x.
func MakeBool(b bool) Value { return boolVal(b) }

// MakeString returns the String value for x.
func MakeString(s string) Value { return stringVal(s) }

// MakeInt64 returns the Int value for x.
func MakeInt64(x int64) Value { return int64Val(x) }

// MakeUint64 returns the Int value for x.
func MakeUint64(x uint64) Value { return normInt(new(big.Int).SetUint64(x)) }

// MakeFloat64 returns the numeric value for x.
// If x is not finite, the result is unknown.
func MakeFloat64(x float64) Value {
	if f := new(big.Rat).SetFloat64(x); f != nil {
		return normFloat(f)
	}
	return unknownVal{}
}

// MakeFromLiteral returns the corresponding integer, floating-point,
// imaginary, character, or string value for a Go literal string.
// If prec > 0, prec specifies an upper limit for the precision of
// a numeric value. If the literal string is invalid, the result is
// nil.
// BUG(gri) Only prec == 0 is supported at the moment.
func MakeFromLiteral(lit string, tok token.Token, prec uint) Value {
	if prec != 0 {
		panic("limited precision not supported")
	}
	switch tok {
	case token.INT:
		if x, err := strconv.ParseInt(lit, 0, 64); err == nil {
			return int64Val(x)
		}
		if x, ok := new(big.Int).SetString(lit, 0); ok {
			return intVal{x}
		}

	case token.FLOAT:
		if x, ok := new(big.Rat).SetString(lit); ok {
			return normFloat(x)
		}

	case token.IMAG:
		if n := len(lit); n > 0 && lit[n-1] == 'i' {
			if im, ok := new(big.Rat).SetString(lit[0 : n-1]); ok {
				return normComplex(big.NewRat(0, 1), im)
			}
		}

	case token.CHAR:
		if n := len(lit); n >= 2 {
			if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil {
				return int64Val(code)
			}
		}

	case token.STRING:
		if s, err := strconv.Unquote(lit); err == nil {
			return stringVal(s)
		}
	}

	return nil
}

// ----------------------------------------------------------------------------
// Accessors
//
// For unknown arguments the result is the zero value for the respective
// accessor type, except for Sign, where the result is 1.

// BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown.
// If x is Unknown, the result is false.
func BoolVal(x Value) bool {
	switch x := x.(type) {
	case boolVal:
		return bool(x)
	case unknownVal:
		return false
	}
	panic(fmt.Sprintf("%v not a Bool", x))
}

// StringVal returns the Go string value of x, which must be a String or an Unknown.
// If x is Unknown, the result is "".
func StringVal(x Value) string {
	switch x := x.(type) {
	case stringVal:
		return string(x)
	case unknownVal:
		return ""
	}
	panic(fmt.Sprintf("%v not a String", x))
}

// Int64Val returns the Go int64 value of x and whether the result is exact;
// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
// If x is Unknown, the result is (0, false).
func Int64Val(x Value) (int64, bool) {
	switch x := x.(type) {
	case int64Val:
		return int64(x), true
	case intVal:
		return x.val.Int64(), x.val.BitLen() <= 63
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not an Int", x))
}

// Uint64Val returns the Go uint64 value of x and whether the result is exact;
// x must be an Int or an Unknown. If the result is not exact, its value is undefined.
// If x is Unknown, the result is (0, false).
func Uint64Val(x Value) (uint64, bool) {
	switch x := x.(type) {
	case int64Val:
		return uint64(x), x >= 0
	case intVal:
		return x.val.Uint64(), x.val.Sign() >= 0 && x.val.BitLen() <= 64
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not an Int", x))
}

// Float32Val is like Float64Val but for float32 instead of float64.
func Float32Val(x Value) (float32, bool) {
	switch x := x.(type) {
	case int64Val:
		f := float32(x)
		return f, int64Val(f) == x
	case intVal:
		return ratToFloat32(new(big.Rat).SetFrac(x.val, int1))
	case floatVal:
		return ratToFloat32(x.val)
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not a Float", x))
}

// Float64Val returns the nearest Go float64 value of x and whether the result is exact;
// x must be numeric but not Complex, or Unknown. For values too small (too close to 0)
// to represent as float64, Float64Val silently underflows to 0. The result sign always
// matches the sign of x, even for 0.
// If x is Unknown, the result is (0, false).
func Float64Val(x Value) (float64, bool) {
	switch x := x.(type) {
	case int64Val:
		f := float64(int64(x))
		return f, int64Val(f) == x
	case intVal:
		return new(big.Rat).SetFrac(x.val, int1).Float64()
	case floatVal:
		return x.val.Float64()
	case unknownVal:
		return 0, false
	}
	panic(fmt.Sprintf("%v not a Float", x))
}

// BitLen returns the number of bits required to represent
// the absolute value x in binary representation; x must be an Int or an Unknown.
// If x is Unknown, the result is 0.
func BitLen(x Value) int {
	switch x := x.(type) {
	case int64Val:
		return new(big.Int).SetInt64(int64(x)).BitLen()
	case intVal:
		return x.val.BitLen()
	case unknownVal:
		return 0
	}
	panic(fmt.Sprintf("%v not an Int", x))
}

// Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0;
// x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0,
// otherwise it is != 0. If x is Unknown, the result is 1.
func Sign(x Value) int {
	switch x := x.(type) {
	case int64Val:
		switch {
		case x < 0:
			return -1
		case x > 0:
			return 1
		}
		return 0
	case intVal:
		return x.val.Sign()
	case floatVal:
		return x.val.Sign()
	case complexVal:
		return x.re.Sign() | x.im.Sign()
	case unknownVal:
		return 1 // avoid spurious division by zero errors
	}
	panic(fmt.Sprintf("%v not numeric", x))
}

// ----------------------------------------------------------------------------
// Support for serializing/deserializing integers

const (
	// Compute the size of a Word in bytes.
	_m       = ^big.Word(0)
	_log     = _m>>8&1 + _m>>16&1 + _m>>32&1
	wordSize = 1 << _log
)

// Bytes returns the bytes for the absolute value of x in little-
// endian binary representation; x must be an Int.
func Bytes(x Value) []byte {
	var val *big.Int
	switch x := x.(type) {
	case int64Val:
		val = new(big.Int).SetInt64(int64(x))
	case intVal:
		val = x.val
	default:
		panic(fmt.Sprintf("%v not an Int", x))
	}

	words := val.Bits()
	bytes := make([]byte, len(words)*wordSize)

	i := 0
	for _, w := range words {
		for j := 0; j < wordSize; j++ {
			bytes[i] = byte(w)
			w >>= 8
			i++
		}
	}
	// remove leading 0's
	for i > 0 && bytes[i-1] == 0 {
		i--
	}

	return bytes[:i]
}

// MakeFromBytes returns the Int value given the bytes of its little-endian
// binary representation. An empty byte slice argument represents 0.
func MakeFromBytes(bytes []byte) Value {
	words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize)

	i := 0
	var w big.Word
	var s uint
	for _, b := range bytes {
		w |= big.Word(b) << s
		if s += 8; s == wordSize*8 {
			words[i] = w
			i++
			w = 0
			s = 0
		}
	}
	// store last word
	if i < len(words) {
		words[i] = w
		i++
	}
	// remove leading 0's
	for i > 0 && words[i-1] == 0 {
		i--
	}

	return normInt(new(big.Int).SetBits(words[:i]))
}

// ----------------------------------------------------------------------------
// Support for disassembling fractions

// Num returns the numerator of x; x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown, otherwise it is an Int
// with the same sign as x.
func Num(x Value) Value {
	switch x := x.(type) {
	case unknownVal, int64Val, intVal:
		return x
	case floatVal:
		return normInt(x.val.Num())
	}
	panic(fmt.Sprintf("%v not Int or Float", x))
}

// Denom returns the denominator of x; x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown, otherwise it is an Int >= 1.
func Denom(x Value) Value {
	switch x := x.(type) {
	case unknownVal:
		return x
	case int64Val, intVal:
		return int64Val(1)
	case floatVal:
		return normInt(x.val.Denom())
	}
	panic(fmt.Sprintf("%v not Int or Float", x))
}

// ----------------------------------------------------------------------------
// Support for assembling/disassembling complex numbers

// MakeImag returns the numeric value x*i (possibly 0);
// x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown.
func MakeImag(x Value) Value {
	var im *big.Rat
	switch x := x.(type) {
	case unknownVal:
		return x
	case int64Val:
		im = big.NewRat(int64(x), 1)
	case intVal:
		im = new(big.Rat).SetFrac(x.val, int1)
	case floatVal:
		im = x.val
	default:
		panic(fmt.Sprintf("%v not Int or Float", x))
	}
	return normComplex(rat0, im)
}

// Real returns the real part of x, which must be a numeric or unknown value.
// If x is Unknown, the result is Unknown.
func Real(x Value) Value {
	switch x := x.(type) {
	case unknownVal, int64Val, intVal, floatVal:
		return x
	case complexVal:
		return normFloat(x.re)
	}
	panic(fmt.Sprintf("%v not numeric", x))
}

// Imag returns the imaginary part of x, which must be a numeric or unknown value.
// If x is Unknown, the result is Unknown.
func Imag(x Value) Value {
	switch x := x.(type) {
	case unknownVal:
		return x
	case int64Val, intVal, floatVal:
		return int64Val(0)
	case complexVal:
		return normFloat(x.im)
	}
	panic(fmt.Sprintf("%v not numeric", x))
}

// ----------------------------------------------------------------------------
// Operations

// is32bit reports whether x can be represented using 32 bits.
func is32bit(x int64) bool {
	const s = 32
	return -1<<(s-1) <= x && x <= 1<<(s-1)-1
}

// is63bit reports whether x can be represented using 63 bits.
func is63bit(x int64) bool {
	const s = 63
	return -1<<(s-1) <= x && x <= 1<<(s-1)-1
}

// UnaryOp returns the result of the unary expression op y.
// The operation must be defined for the operand.
// If prec > 0 it specifies the ^ (xor) result size in bits.
// If y is Unknown, the result is Unknown.
//
func UnaryOp(op token.Token, y Value, prec uint) Value {
	switch op {
	case token.ADD:
		switch y.(type) {
		case unknownVal, int64Val, intVal, floatVal, complexVal:
			return y
		}

	case token.SUB:
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			if z := -y; z != y {
				return z // no overflow
			}
			return normInt(new(big.Int).Neg(big.NewInt(int64(y))))
		case intVal:
			return normInt(new(big.Int).Neg(y.val))
		case floatVal:
			return normFloat(new(big.Rat).Neg(y.val))
		case complexVal:
			return normComplex(new(big.Rat).Neg(y.re), new(big.Rat).Neg(y.im))
		}

	case token.XOR:
		var z big.Int
		switch y := y.(type) {
		case unknownVal:
			return y
		case int64Val:
			z.Not(big.NewInt(int64(y)))
		case intVal:
			z.Not(y.val)
		default:
			goto Error
		}
		// For unsigned types, the result will be negative and
		// thus "too large": We must limit the result precision
		// to the type's precision.
		if prec > 0 {
			z.AndNot(&z, new(big.Int).Lsh(big.NewInt(-1), prec)) // z &^= (-1)<<prec
		}
		return normInt(&z)

	case token.NOT:
		switch y := y.(type) {
		case unknownVal:
			return y
		case boolVal:
			return !y
		}
	}

Error:
	panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
}

var (
	int1 = big.NewInt(1)
	rat0 = big.NewRat(0, 1)
)

func ord(x Value) int {
	switch x.(type) {
	default:
		return 0
	case boolVal, stringVal:
		return 1
	case int64Val:
		return 2
	case intVal:
		return 3
	case floatVal:
		return 4
	case complexVal:
		return 5
	}
}

// match returns the matching representation (same type) with the
// smallest complexity for two values x and y. If one of them is
// numeric, both of them must be numeric. If one of them is Unknown,
// both results are Unknown.
//
func match(x, y Value) (_, _ Value) {
	if ord(x) > ord(y) {
		y, x = match(y, x)
		return x, y
	}
	// ord(x) <= ord(y)

	switch x := x.(type) {
	case unknownVal:
		return x, x

	case boolVal, stringVal, complexVal:
		return x, y

	case int64Val:
		switch y := y.(type) {
		case int64Val:
			return x, y
		case intVal:
			return intVal{big.NewInt(int64(x))}, y
		case floatVal:
			return floatVal{big.NewRat(int64(x), 1)}, y
		case complexVal:
			return complexVal{big.NewRat(int64(x), 1), rat0}, y
		}

	case intVal:
		switch y := y.(type) {
		case intVal:
			return x, y
		case floatVal:
			return floatVal{new(big.Rat).SetFrac(x.val, int1)}, y
		case complexVal:
			return complexVal{new(big.Rat).SetFrac(x.val, int1), rat0}, y
		}

	case floatVal:
		switch y := y.(type) {
		case floatVal:
			return x, y
		case complexVal:
			return complexVal{x.val, rat0}, y
		}
	}

	panic("unreachable")
}

// BinaryOp returns the result of the binary expression x op y.
// The operation must be defined for the operands. If one of the
// operands is Unknown, the result is Unknown.
// To force integer division of Int operands, use op == token.QUO_ASSIGN
// instead of token.QUO; the result is guaranteed to be Int in this case.
// Division by zero leads to a run-time panic.
//
func BinaryOp(x Value, op token.Token, y Value) Value {
	x, y = match(x, y)

	switch x := x.(type) {
	case unknownVal:
		return x

	case boolVal:
		y := y.(boolVal)
		switch op {
		case token.LAND:
			return x && y
		case token.LOR:
			return x || y
		}

	case int64Val:
		a := int64(x)
		b := int64(y.(int64Val))
		var c int64
		switch op {
		case token.ADD:
			if !is63bit(a) || !is63bit(b) {
				return normInt(new(big.Int).Add(big.NewInt(a), big.NewInt(b)))
			}
			c = a + b
		case token.SUB:
			if !is63bit(a) || !is63bit(b) {
				return normInt(new(big.Int).Sub(big.NewInt(a), big.NewInt(b)))
			}
			c = a - b
		case token.MUL:
			if !is32bit(a) || !is32bit(b) {
				return normInt(new(big.Int).Mul(big.NewInt(a), big.NewInt(b)))
			}
			c = a * b
		case token.QUO:
			return normFloat(new(big.Rat).SetFrac(big.NewInt(a), big.NewInt(b)))
		case token.QUO_ASSIGN: // force integer division
			c = a / b
		case token.REM:
			c = a % b
		case token.AND:
			c = a & b
		case token.OR:
			c = a | b
		case token.XOR:
			c = a ^ b
		case token.AND_NOT:
			c = a &^ b
		default:
			goto Error
		}
		return int64Val(c)

	case intVal:
		a := x.val
		b := y.(intVal).val
		var c big.Int
		switch op {
		case token.ADD:
			c.Add(a, b)
		case token.SUB:
			c.Sub(a, b)
		case token.MUL:
			c.Mul(a, b)
		case token.QUO:
			return normFloat(new(big.Rat).SetFrac(a, b))
		case token.QUO_ASSIGN: // force integer division
			c.Quo(a, b)
		case token.REM:
			c.Rem(a, b)
		case token.AND:
			c.And(a, b)
		case token.OR:
			c.Or(a, b)
		case token.XOR:
			c.Xor(a, b)
		case token.AND_NOT:
			c.AndNot(a, b)
		default:
			goto Error
		}
		return normInt(&c)

	case floatVal:
		a := x.val
		b := y.(floatVal).val
		var c big.Rat
		switch op {
		case token.ADD:
			c.Add(a, b)
		case token.SUB:
			c.Sub(a, b)
		case token.MUL:
			c.Mul(a, b)
		case token.QUO:
			c.Quo(a, b)
		default:
			goto Error
		}
		return normFloat(&c)

	case complexVal:
		y := y.(complexVal)
		a, b := x.re, x.im
		c, d := y.re, y.im
		var re, im big.Rat
		switch op {
		case token.ADD:
			// (a+c) + i(b+d)
			re.Add(a, c)
			im.Add(b, d)
		case token.SUB:
			// (a-c) + i(b-d)
			re.Sub(a, c)
			im.Sub(b, d)
		case token.MUL:
			// (ac-bd) + i(bc+ad)
			var ac, bd, bc, ad big.Rat
			ac.Mul(a, c)
			bd.Mul(b, d)
			bc.Mul(b, c)
			ad.Mul(a, d)
			re.Sub(&ac, &bd)
			im.Add(&bc, &ad)
		case token.QUO:
			// (ac+bd)/s + i(bc-ad)/s, with s = cc + dd
			var ac, bd, bc, ad, s, cc, dd big.Rat
			ac.Mul(a, c)
			bd.Mul(b, d)
			bc.Mul(b, c)
			ad.Mul(a, d)
			cc.Mul(c, c)
			dd.Mul(d, d)
			s.Add(&cc, &dd)
			re.Add(&ac, &bd)
			re.Quo(&re, &s)
			im.Sub(&bc, &ad)
			im.Quo(&im, &s)
		default:
			goto Error
		}
		return normComplex(&re, &im)

	case stringVal:
		if op == token.ADD {
			return x + y.(stringVal)
		}
	}

Error:
	panic(fmt.Sprintf("invalid binary operation %v %s %v", x, op, y))
}

// Shift returns the result of the shift expression x op s
// with op == token.SHL or token.SHR (<< or >>). x must be
// an Int or an Unknown. If x is Unknown, the result is x.
//
func Shift(x Value, op token.Token, s uint) Value {
	switch x := x.(type) {
	case unknownVal:
		return x

	case int64Val:
		if s == 0 {
			return x
		}
		switch op {
		case token.SHL:
			z := big.NewInt(int64(x))
			return normInt(z.Lsh(z, s))
		case token.SHR:
			return x >> s
		}

	case intVal:
		if s == 0 {
			return x
		}
		var z big.Int
		switch op {
		case token.SHL:
			return normInt(z.Lsh(x.val, s))
		case token.SHR:
			return normInt(z.Rsh(x.val, s))
		}
	}

	panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
}

func cmpZero(x int, op token.Token) bool {
	switch op {
	case token.EQL:
		return x == 0
	case token.NEQ:
		return x != 0
	case token.LSS:
		return x < 0
	case token.LEQ:
		return x <= 0
	case token.GTR:
		return x > 0
	case token.GEQ:
		return x >= 0
	}
	panic("unreachable")
}

// Compare returns the result of the comparison x op y.
// The comparison must be defined for the operands.
// If one of the operands is Unknown, the result is
// false.
//
func Compare(x Value, op token.Token, y Value) bool {
	x, y = match(x, y)

	switch x := x.(type) {
	case unknownVal:
		return false

	case boolVal:
		y := y.(boolVal)
		switch op {
		case token.EQL:
			return x == y
		case token.NEQ:
			return x != y
		}

	case int64Val:
		y := y.(int64Val)
		switch op {
		case token.EQL:
			return x == y
		case token.NEQ:
			return x != y
		case token.LSS:
			return x < y
		case token.LEQ:
			return x <= y
		case token.GTR:
			return x > y
		case token.GEQ:
			return x >= y
		}

	case intVal:
		return cmpZero(x.val.Cmp(y.(intVal).val), op)

	case floatVal:
		return cmpZero(x.val.Cmp(y.(floatVal).val), op)

	case complexVal:
		y := y.(complexVal)
		re := x.re.Cmp(y.re)
		im := x.im.Cmp(y.im)
		switch op {
		case token.EQL:
			return re == 0 && im == 0
		case token.NEQ:
			return re != 0 || im != 0
		}

	case stringVal:
		y := y.(stringVal)
		switch op {
		case token.EQL:
			return x == y
		case token.NEQ:
			return x != y
		case token.LSS:
			return x < y
		case token.LEQ:
			return x <= y
		case token.GTR:
			return x > y
		case token.GEQ:
			return x >= y
		}
	}

	panic(fmt.Sprintf("invalid comparison %v %s %v", x, op, y))
}