1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package jpeg
import (
"bufio"
"errors"
"image"
"image/color"
"io"
)
// min returns the minimum of two integers.
func min(x, y int) int {
if x < y {
return x
}
return y
}
// div returns a/b rounded to the nearest integer, instead of rounded to zero.
func div(a, b int32) int32 {
if a >= 0 {
return (a + (b >> 1)) / b
}
return -((-a + (b >> 1)) / b)
}
// bitCount counts the number of bits needed to hold an integer.
var bitCount = [256]byte{
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
}
type quantIndex int
const (
quantIndexLuminance quantIndex = iota
quantIndexChrominance
nQuantIndex
)
// unscaledQuant are the unscaled quantization tables in zig-zag order. Each
// encoder copies and scales the tables according to its quality parameter.
// The values are derived from section K.1 after converting from natural to
// zig-zag order.
var unscaledQuant = [nQuantIndex][blockSize]byte{
// Luminance.
{
16, 11, 12, 14, 12, 10, 16, 14,
13, 14, 18, 17, 16, 19, 24, 40,
26, 24, 22, 22, 24, 49, 35, 37,
29, 40, 58, 51, 61, 60, 57, 51,
56, 55, 64, 72, 92, 78, 64, 68,
87, 69, 55, 56, 80, 109, 81, 87,
95, 98, 103, 104, 103, 62, 77, 113,
121, 112, 100, 120, 92, 101, 103, 99,
},
// Chrominance.
{
17, 18, 18, 24, 21, 24, 47, 26,
26, 47, 99, 66, 56, 66, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
},
}
type huffIndex int
const (
huffIndexLuminanceDC huffIndex = iota
huffIndexLuminanceAC
huffIndexChrominanceDC
huffIndexChrominanceAC
nHuffIndex
)
// huffmanSpec specifies a Huffman encoding.
type huffmanSpec struct {
// count[i] is the number of codes of length i bits.
count [16]byte
// value[i] is the decoded value of the i'th codeword.
value []byte
}
// theHuffmanSpec is the Huffman encoding specifications.
// This encoder uses the same Huffman encoding for all images.
var theHuffmanSpec = [nHuffIndex]huffmanSpec{
// Luminance DC.
{
[16]byte{0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0},
[]byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
},
// Luminance AC.
{
[16]byte{0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125},
[]byte{
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa,
},
},
// Chrominance DC.
{
[16]byte{0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0},
[]byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
},
// Chrominance AC.
{
[16]byte{0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119},
[]byte{
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa,
},
},
}
// huffmanLUT is a compiled look-up table representation of a huffmanSpec.
// Each value maps to a uint32 of which the 8 most significant bits hold the
// codeword size in bits and the 24 least significant bits hold the codeword.
// The maximum codeword size is 16 bits.
type huffmanLUT []uint32
func (h *huffmanLUT) init(s huffmanSpec) {
maxValue := 0
for _, v := range s.value {
if int(v) > maxValue {
maxValue = int(v)
}
}
*h = make([]uint32, maxValue+1)
code, k := uint32(0), 0
for i := 0; i < len(s.count); i++ {
nBits := uint32(i+1) << 24
for j := uint8(0); j < s.count[i]; j++ {
(*h)[s.value[k]] = nBits | code
code++
k++
}
code <<= 1
}
}
// theHuffmanLUT are compiled representations of theHuffmanSpec.
var theHuffmanLUT [4]huffmanLUT
func init() {
for i, s := range theHuffmanSpec {
theHuffmanLUT[i].init(s)
}
}
// writer is a buffered writer.
type writer interface {
Flush() error
io.Writer
io.ByteWriter
}
// encoder encodes an image to the JPEG format.
type encoder struct {
// w is the writer to write to. err is the first error encountered during
// writing. All attempted writes after the first error become no-ops.
w writer
err error
// buf is a scratch buffer.
buf [16]byte
// bits and nBits are accumulated bits to write to w.
bits, nBits uint32
// quant is the scaled quantization tables, in zig-zag order.
quant [nQuantIndex][blockSize]byte
}
func (e *encoder) flush() {
if e.err != nil {
return
}
e.err = e.w.Flush()
}
func (e *encoder) write(p []byte) {
if e.err != nil {
return
}
_, e.err = e.w.Write(p)
}
func (e *encoder) writeByte(b byte) {
if e.err != nil {
return
}
e.err = e.w.WriteByte(b)
}
// emit emits the least significant nBits bits of bits to the bit-stream.
// The precondition is bits < 1<<nBits && nBits <= 16.
func (e *encoder) emit(bits, nBits uint32) {
nBits += e.nBits
bits <<= 32 - nBits
bits |= e.bits
for nBits >= 8 {
b := uint8(bits >> 24)
e.writeByte(b)
if b == 0xff {
e.writeByte(0x00)
}
bits <<= 8
nBits -= 8
}
e.bits, e.nBits = bits, nBits
}
// emitHuff emits the given value with the given Huffman encoder.
func (e *encoder) emitHuff(h huffIndex, value int32) {
x := theHuffmanLUT[h][value]
e.emit(x&(1<<24-1), x>>24)
}
// emitHuffRLE emits a run of runLength copies of value encoded with the given
// Huffman encoder.
func (e *encoder) emitHuffRLE(h huffIndex, runLength, value int32) {
a, b := value, value
if a < 0 {
a, b = -value, value-1
}
var nBits uint32
if a < 0x100 {
nBits = uint32(bitCount[a])
} else {
nBits = 8 + uint32(bitCount[a>>8])
}
e.emitHuff(h, runLength<<4|int32(nBits))
if nBits > 0 {
e.emit(uint32(b)&(1<<nBits-1), nBits)
}
}
// writeMarkerHeader writes the header for a marker with the given length.
func (e *encoder) writeMarkerHeader(marker uint8, markerlen int) {
e.buf[0] = 0xff
e.buf[1] = marker
e.buf[2] = uint8(markerlen >> 8)
e.buf[3] = uint8(markerlen & 0xff)
e.write(e.buf[:4])
}
// writeDQT writes the Define Quantization Table marker.
func (e *encoder) writeDQT() {
const markerlen = 2 + int(nQuantIndex)*(1+blockSize)
e.writeMarkerHeader(dqtMarker, markerlen)
for i := range e.quant {
e.writeByte(uint8(i))
e.write(e.quant[i][:])
}
}
// writeSOF0 writes the Start Of Frame (Baseline) marker.
func (e *encoder) writeSOF0(size image.Point, nComponent int) {
markerlen := 8 + 3*nComponent
e.writeMarkerHeader(sof0Marker, markerlen)
e.buf[0] = 8 // 8-bit color.
e.buf[1] = uint8(size.Y >> 8)
e.buf[2] = uint8(size.Y & 0xff)
e.buf[3] = uint8(size.X >> 8)
e.buf[4] = uint8(size.X & 0xff)
e.buf[5] = uint8(nComponent)
if nComponent == 1 {
e.buf[6] = 1
// No subsampling for grayscale image.
e.buf[7] = 0x11
e.buf[8] = 0x00
} else {
for i := 0; i < nComponent; i++ {
e.buf[3*i+6] = uint8(i + 1)
// We use 4:2:0 chroma subsampling.
e.buf[3*i+7] = "\x22\x11\x11"[i]
e.buf[3*i+8] = "\x00\x01\x01"[i]
}
}
e.write(e.buf[:3*(nComponent-1)+9])
}
// writeDHT writes the Define Huffman Table marker.
func (e *encoder) writeDHT(nComponent int) {
markerlen := 2
specs := theHuffmanSpec[:]
if nComponent == 1 {
// Drop the Chrominance tables.
specs = specs[:2]
}
for _, s := range specs {
markerlen += 1 + 16 + len(s.value)
}
e.writeMarkerHeader(dhtMarker, markerlen)
for i, s := range specs {
e.writeByte("\x00\x10\x01\x11"[i])
e.write(s.count[:])
e.write(s.value)
}
}
// writeBlock writes a block of pixel data using the given quantization table,
// returning the post-quantized DC value of the DCT-transformed block. b is in
// natural (not zig-zag) order.
func (e *encoder) writeBlock(b *block, q quantIndex, prevDC int32) int32 {
fdct(b)
// Emit the DC delta.
dc := div(b[0], 8*int32(e.quant[q][0]))
e.emitHuffRLE(huffIndex(2*q+0), 0, dc-prevDC)
// Emit the AC components.
h, runLength := huffIndex(2*q+1), int32(0)
for zig := 1; zig < blockSize; zig++ {
ac := div(b[unzig[zig]], 8*int32(e.quant[q][zig]))
if ac == 0 {
runLength++
} else {
for runLength > 15 {
e.emitHuff(h, 0xf0)
runLength -= 16
}
e.emitHuffRLE(h, runLength, ac)
runLength = 0
}
}
if runLength > 0 {
e.emitHuff(h, 0x00)
}
return dc
}
// toYCbCr converts the 8x8 region of m whose top-left corner is p to its
// YCbCr values.
func toYCbCr(m image.Image, p image.Point, yBlock, cbBlock, crBlock *block) {
b := m.Bounds()
xmax := b.Max.X - 1
ymax := b.Max.Y - 1
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
r, g, b, _ := m.At(min(p.X+i, xmax), min(p.Y+j, ymax)).RGBA()
yy, cb, cr := color.RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
yBlock[8*j+i] = int32(yy)
cbBlock[8*j+i] = int32(cb)
crBlock[8*j+i] = int32(cr)
}
}
}
// grayToY stores the 8x8 region of m whose top-left corner is p in yBlock.
func grayToY(m *image.Gray, p image.Point, yBlock *block) {
b := m.Bounds()
xmax := b.Max.X - 1
ymax := b.Max.Y - 1
pix := m.Pix
for j := 0; j < 8; j++ {
for i := 0; i < 8; i++ {
idx := m.PixOffset(min(p.X+i, xmax), min(p.Y+j, ymax))
yBlock[8*j+i] = int32(pix[idx])
}
}
}
// rgbaToYCbCr is a specialized version of toYCbCr for image.RGBA images.
func rgbaToYCbCr(m *image.RGBA, p image.Point, yBlock, cbBlock, crBlock *block) {
b := m.Bounds()
xmax := b.Max.X - 1
ymax := b.Max.Y - 1
for j := 0; j < 8; j++ {
sj := p.Y + j
if sj > ymax {
sj = ymax
}
offset := (sj-b.Min.Y)*m.Stride - b.Min.X*4
for i := 0; i < 8; i++ {
sx := p.X + i
if sx > xmax {
sx = xmax
}
pix := m.Pix[offset+sx*4:]
yy, cb, cr := color.RGBToYCbCr(pix[0], pix[1], pix[2])
yBlock[8*j+i] = int32(yy)
cbBlock[8*j+i] = int32(cb)
crBlock[8*j+i] = int32(cr)
}
}
}
// scale scales the 16x16 region represented by the 4 src blocks to the 8x8
// dst block.
func scale(dst *block, src *[4]block) {
for i := 0; i < 4; i++ {
dstOff := (i&2)<<4 | (i&1)<<2
for y := 0; y < 4; y++ {
for x := 0; x < 4; x++ {
j := 16*y + 2*x
sum := src[i][j] + src[i][j+1] + src[i][j+8] + src[i][j+9]
dst[8*y+x+dstOff] = (sum + 2) >> 2
}
}
}
}
// sosHeaderY is the SOS marker "\xff\xda" followed by 8 bytes:
// - the marker length "\x00\x08",
// - the number of components "\x01",
// - component 1 uses DC table 0 and AC table 0 "\x01\x00",
// - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for
// sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al)
// should be 0x00, 0x3f, 0x00<<4 | 0x00.
var sosHeaderY = []byte{
0xff, 0xda, 0x00, 0x08, 0x01, 0x01, 0x00, 0x00, 0x3f, 0x00,
}
// sosHeaderYCbCr is the SOS marker "\xff\xda" followed by 12 bytes:
// - the marker length "\x00\x0c",
// - the number of components "\x03",
// - component 1 uses DC table 0 and AC table 0 "\x01\x00",
// - component 2 uses DC table 1 and AC table 1 "\x02\x11",
// - component 3 uses DC table 1 and AC table 1 "\x03\x11",
// - the bytes "\x00\x3f\x00". Section B.2.3 of the spec says that for
// sequential DCTs, those bytes (8-bit Ss, 8-bit Se, 4-bit Ah, 4-bit Al)
// should be 0x00, 0x3f, 0x00<<4 | 0x00.
var sosHeaderYCbCr = []byte{
0xff, 0xda, 0x00, 0x0c, 0x03, 0x01, 0x00, 0x02,
0x11, 0x03, 0x11, 0x00, 0x3f, 0x00,
}
// writeSOS writes the StartOfScan marker.
func (e *encoder) writeSOS(m image.Image) {
switch m.(type) {
case *image.Gray:
e.write(sosHeaderY)
default:
e.write(sosHeaderYCbCr)
}
var (
// Scratch buffers to hold the YCbCr values.
// The blocks are in natural (not zig-zag) order.
b block
cb, cr [4]block
// DC components are delta-encoded.
prevDCY, prevDCCb, prevDCCr int32
)
bounds := m.Bounds()
switch m := m.(type) {
// TODO(wathiede): switch on m.ColorModel() instead of type.
case *image.Gray:
for y := bounds.Min.Y; y < bounds.Max.Y; y += 8 {
for x := bounds.Min.X; x < bounds.Max.X; x += 8 {
p := image.Pt(x, y)
grayToY(m, p, &b)
prevDCY = e.writeBlock(&b, 0, prevDCY)
}
}
default:
rgba, _ := m.(*image.RGBA)
for y := bounds.Min.Y; y < bounds.Max.Y; y += 16 {
for x := bounds.Min.X; x < bounds.Max.X; x += 16 {
for i := 0; i < 4; i++ {
xOff := (i & 1) * 8
yOff := (i & 2) * 4
p := image.Pt(x+xOff, y+yOff)
if rgba != nil {
rgbaToYCbCr(rgba, p, &b, &cb[i], &cr[i])
} else {
toYCbCr(m, p, &b, &cb[i], &cr[i])
}
prevDCY = e.writeBlock(&b, 0, prevDCY)
}
scale(&b, &cb)
prevDCCb = e.writeBlock(&b, 1, prevDCCb)
scale(&b, &cr)
prevDCCr = e.writeBlock(&b, 1, prevDCCr)
}
}
}
// Pad the last byte with 1's.
e.emit(0x7f, 7)
}
// DefaultQuality is the default quality encoding parameter.
const DefaultQuality = 75
// Options are the encoding parameters.
// Quality ranges from 1 to 100 inclusive, higher is better.
type Options struct {
Quality int
}
// Encode writes the Image m to w in JPEG 4:2:0 baseline format with the given
// options. Default parameters are used if a nil *Options is passed.
func Encode(w io.Writer, m image.Image, o *Options) error {
b := m.Bounds()
if b.Dx() >= 1<<16 || b.Dy() >= 1<<16 {
return errors.New("jpeg: image is too large to encode")
}
var e encoder
if ww, ok := w.(writer); ok {
e.w = ww
} else {
e.w = bufio.NewWriter(w)
}
// Clip quality to [1, 100].
quality := DefaultQuality
if o != nil {
quality = o.Quality
if quality < 1 {
quality = 1
} else if quality > 100 {
quality = 100
}
}
// Convert from a quality rating to a scaling factor.
var scale int
if quality < 50 {
scale = 5000 / quality
} else {
scale = 200 - quality*2
}
// Initialize the quantization tables.
for i := range e.quant {
for j := range e.quant[i] {
x := int(unscaledQuant[i][j])
x = (x*scale + 50) / 100
if x < 1 {
x = 1
} else if x > 255 {
x = 255
}
e.quant[i][j] = uint8(x)
}
}
// Compute number of components based on input image type.
nComponent := 3
switch m.(type) {
// TODO(wathiede): switch on m.ColorModel() instead of type.
case *image.Gray:
nComponent = 1
}
// Write the Start Of Image marker.
e.buf[0] = 0xff
e.buf[1] = 0xd8
e.write(e.buf[:2])
// Write the quantization tables.
e.writeDQT()
// Write the image dimensions.
e.writeSOF0(b.Size(), nComponent)
// Write the Huffman tables.
e.writeDHT(nComponent)
// Write the image data.
e.writeSOS(m)
// Write the End Of Image marker.
e.buf[0] = 0xff
e.buf[1] = 0xd9
e.write(e.buf[:2])
e.flush()
return e.err
}
|