1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tiff implements a TIFF image decoder.
//
// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
package tiff
import (
"compress/lzw"
"compress/zlib"
"encoding/binary"
"image"
"io"
"io/ioutil"
"os"
)
// A FormatError reports that the input is not a valid TIFF image.
type FormatError string
func (e FormatError) String() string {
return "tiff: invalid format: " + string(e)
}
// An UnsupportedError reports that the input uses a valid but
// unimplemented feature.
type UnsupportedError string
func (e UnsupportedError) String() string {
return "tiff: unsupported feature: " + string(e)
}
// An InternalError reports that an internal error was encountered.
type InternalError string
func (e InternalError) String() string {
return "tiff: internal error: " + string(e)
}
type decoder struct {
r io.ReaderAt
byteOrder binary.ByteOrder
config image.Config
mode imageMode
features map[int][]uint
palette []image.Color
}
// firstVal returns the first uint of the features entry with the given tag,
// or 0 if the tag does not exist.
func (d *decoder) firstVal(tag int) uint {
f := d.features[tag]
if len(f) == 0 {
return 0
}
return f[0]
}
// ifdUint decodes the IFD entry in p, which must be of the Byte, Short
// or Long type, and returns the decoded uint values.
func (d *decoder) ifdUint(p []byte) (u []uint, err os.Error) {
var raw []byte
datatype := d.byteOrder.Uint16(p[2:4])
count := d.byteOrder.Uint32(p[4:8])
if datalen := lengths[datatype] * count; datalen > 4 {
// The IFD contains a pointer to the real value.
raw = make([]byte, datalen)
_, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12])))
} else {
raw = p[8 : 8+datalen]
}
if err != nil {
return nil, err
}
u = make([]uint, count)
switch datatype {
case dtByte:
for i := uint32(0); i < count; i++ {
u[i] = uint(raw[i])
}
case dtShort:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)]))
}
case dtLong:
for i := uint32(0); i < count; i++ {
u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)]))
}
default:
return nil, UnsupportedError("data type")
}
return u, nil
}
// parseIFD decides whether the the IFD entry in p is "interesting" and
// stows away the data in the decoder.
func (d *decoder) parseIFD(p []byte) os.Error {
tag := d.byteOrder.Uint16(p[0:2])
switch tag {
case tBitsPerSample,
tExtraSamples,
tPhotometricInterpretation,
tCompression,
tPredictor,
tStripOffsets,
tStripByteCounts,
tRowsPerStrip,
tImageLength,
tImageWidth:
val, err := d.ifdUint(p)
if err != nil {
return err
}
d.features[int(tag)] = val
case tColorMap:
val, err := d.ifdUint(p)
if err != nil {
return err
}
numcolors := len(val) / 3
if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 {
return FormatError("bad ColorMap length")
}
d.palette = make([]image.Color, numcolors)
for i := 0; i < numcolors; i++ {
d.palette[i] = image.RGBA64Color{
uint16(val[i]),
uint16(val[i+numcolors]),
uint16(val[i+2*numcolors]),
0xffff,
}
}
}
return nil
}
// decode decodes the raw data of an image with 8 bits in each sample.
// It reads from p and writes the strip with ymin <= y < ymax into dst.
func (d *decoder) decode(dst image.Image, p []byte, ymin, ymax int) os.Error {
spp := len(d.features[tBitsPerSample]) // samples per pixel
off := 0
width := dst.Bounds().Dx()
if len(p) < spp*(ymax-ymin)*width {
return FormatError("short data strip")
}
// Apply horizontal predictor if necessary.
// In this case, p contains the color difference to the preceding pixel.
// See page 64-65 of the spec.
if d.firstVal(tPredictor) == prHorizontal {
for y := ymin; y < ymax; y++ {
off += spp
for x := 0; x < (width-1)*spp; x++ {
p[off] += p[off-spp]
off++
}
}
off = 0
}
switch d.mode {
case mGray:
img := dst.(*image.Gray)
for y := ymin; y < ymax; y++ {
for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
img.Set(x, y, image.GrayColor{p[off]})
off += spp
}
}
case mGrayInvert:
img := dst.(*image.Gray)
for y := ymin; y < ymax; y++ {
for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
img.Set(x, y, image.GrayColor{0xff - p[off]})
off += spp
}
}
case mPaletted:
img := dst.(*image.Paletted)
for y := ymin; y < ymax; y++ {
for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
img.SetColorIndex(x, y, p[off])
off += spp
}
}
case mRGB:
img := dst.(*image.RGBA)
for y := ymin; y < ymax; y++ {
for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
img.Set(x, y, image.RGBAColor{p[off], p[off+1], p[off+2], 0xff})
off += spp
}
}
case mNRGBA:
img := dst.(*image.NRGBA)
for y := ymin; y < ymax; y++ {
for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
img.Set(x, y, image.NRGBAColor{p[off], p[off+1], p[off+2], p[off+3]})
off += spp
}
}
case mRGBA:
img := dst.(*image.RGBA)
for y := ymin; y < ymax; y++ {
for x := img.Rect.Min.X; x < img.Rect.Max.X; x++ {
img.Set(x, y, image.RGBAColor{p[off], p[off+1], p[off+2], p[off+3]})
off += spp
}
}
}
return nil
}
func newDecoder(r io.Reader) (*decoder, os.Error) {
d := &decoder{
r: newReaderAt(r),
features: make(map[int][]uint),
}
p := make([]byte, 8)
if _, err := d.r.ReadAt(p, 0); err != nil {
return nil, err
}
switch string(p[0:4]) {
case leHeader:
d.byteOrder = binary.LittleEndian
case beHeader:
d.byteOrder = binary.BigEndian
default:
return nil, FormatError("malformed header")
}
ifdOffset := int64(d.byteOrder.Uint32(p[4:8]))
// The first two bytes contain the number of entries (12 bytes each).
if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil {
return nil, err
}
numItems := int(d.byteOrder.Uint16(p[0:2]))
// All IFD entries are read in one chunk.
p = make([]byte, ifdLen*numItems)
if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil {
return nil, err
}
for i := 0; i < len(p); i += ifdLen {
if err := d.parseIFD(p[i : i+ifdLen]); err != nil {
return nil, err
}
}
d.config.Width = int(d.firstVal(tImageWidth))
d.config.Height = int(d.firstVal(tImageLength))
// Determine the image mode.
switch d.firstVal(tPhotometricInterpretation) {
case pRGB:
d.config.ColorModel = image.RGBAColorModel
// RGB images normally have 3 samples per pixel.
// If there are more, ExtraSamples (p. 31-32 of the spec)
// gives their meaning (usually an alpha channel).
switch len(d.features[tBitsPerSample]) {
case 3:
d.mode = mRGB
case 4:
switch d.firstVal(tExtraSamples) {
case 1:
d.mode = mRGBA
case 2:
d.mode = mNRGBA
d.config.ColorModel = image.NRGBAColorModel
default:
// The extra sample is discarded.
d.mode = mRGB
}
default:
return nil, FormatError("wrong number of samples for RGB")
}
case pPaletted:
d.mode = mPaletted
d.config.ColorModel = image.PalettedColorModel(d.palette)
case pWhiteIsZero:
d.mode = mGrayInvert
d.config.ColorModel = image.GrayColorModel
case pBlackIsZero:
d.mode = mGray
d.config.ColorModel = image.GrayColorModel
default:
return nil, UnsupportedError("color model")
}
if _, ok := d.features[tBitsPerSample]; !ok {
return nil, FormatError("BitsPerSample tag missing")
}
for _, b := range d.features[tBitsPerSample] {
if b != 8 {
return nil, UnsupportedError("not an 8-bit image")
}
}
return d, nil
}
// DecodeConfig returns the color model and dimensions of a TIFF image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, os.Error) {
d, err := newDecoder(r)
if err != nil {
return image.Config{}, err
}
return d.config, nil
}
// Decode reads a TIFF image from r and returns it as an image.Image.
// The type of Image returned depends on the contents of the TIFF.
func Decode(r io.Reader) (img image.Image, err os.Error) {
d, err := newDecoder(r)
if err != nil {
return
}
// Check if we have the right number of strips, offsets and counts.
rps := int(d.firstVal(tRowsPerStrip))
numStrips := (d.config.Height + rps - 1) / rps
if rps == 0 || len(d.features[tStripOffsets]) < numStrips || len(d.features[tStripByteCounts]) < numStrips {
return nil, FormatError("inconsistent header")
}
switch d.mode {
case mGray, mGrayInvert:
img = image.NewGray(d.config.Width, d.config.Height)
case mPaletted:
img = image.NewPaletted(d.config.Width, d.config.Height, d.palette)
case mNRGBA:
img = image.NewNRGBA(d.config.Width, d.config.Height)
case mRGB, mRGBA:
img = image.NewRGBA(d.config.Width, d.config.Height)
}
var p []byte
for i := 0; i < numStrips; i++ {
ymin := i * rps
// The last strip may be shorter.
if i == numStrips-1 && d.config.Height%rps != 0 {
rps = d.config.Height % rps
}
offset := int64(d.features[tStripOffsets][i])
n := int64(d.features[tStripByteCounts][i])
switch d.firstVal(tCompression) {
case cNone:
// TODO(bsiegert): Avoid copy if r is a tiff.buffer.
p = make([]byte, 0, n)
_, err = d.r.ReadAt(p, offset)
case cLZW:
r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8)
p, err = ioutil.ReadAll(r)
r.Close()
case cDeflate, cDeflateOld:
r, err := zlib.NewReader(io.NewSectionReader(d.r, offset, n))
if err != nil {
return nil, err
}
p, err = ioutil.ReadAll(r)
r.Close()
default:
err = UnsupportedError("compression")
}
if err != nil {
return
}
err = d.decode(img, p, ymin, ymin+rps)
}
return
}
func init() {
image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig)
image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig)
}
|