summaryrefslogtreecommitdiff
path: root/libgo/go/reflect/value.go
blob: c390b8e2d6c1dc020aabca53c44ef0ad28a82ed4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package reflect

import (
	"math"
	"runtime"
	"strconv"
	"unsafe"
)

const bigEndian = false // can be smarter if we find a big-endian machine
const ptrSize = unsafe.Sizeof((*byte)(nil))
const cannotSet = "cannot set value obtained from unexported struct field"

// TODO: This will have to go away when
// the new gc goes in.
func memmove(adst, asrc unsafe.Pointer, n uintptr) {
	dst := uintptr(adst)
	src := uintptr(asrc)
	switch {
	case src < dst && src+n > dst:
		// byte copy backward
		// careful: i is unsigned
		for i := n; i > 0; {
			i--
			*(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
		}
	case (n|src|dst)&(ptrSize-1) != 0:
		// byte copy forward
		for i := uintptr(0); i < n; i++ {
			*(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
		}
	default:
		// word copy forward
		for i := uintptr(0); i < n; i += ptrSize {
			*(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
		}
	}
}

// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values.  Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods.  Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// A Value can be used concurrently by multiple goroutines provided that
// the underlying Go value can be used concurrently for the equivalent
// direct operations.
type Value struct {
	// typ holds the type of the value represented by a Value.
	typ *rtype

	// Pointer-valued data or, if flagIndir is set, pointer to data.
	// Valid when either flagIndir is set or typ.pointers() is true.
	// Gccgo always uses this field.
	ptr unsafe.Pointer

	// Non-pointer-valued data.  When the data is smaller
	// than a word, it begins at the first byte (in the memory
	// address sense) of this field.
	// Valid when flagIndir is not set and typ.pointers() is false.
	// Gccgo never uses this field.
	// scalar uintptr

	// flag holds metadata about the value.
	// The lowest bits are flag bits:
	//	- flagRO: obtained via unexported field, so read-only
	//	- flagIndir: val holds a pointer to the data
	//	- flagAddr: v.CanAddr is true (implies flagIndir)
	//	- flagMethod: v is a method value.
	// The next five bits give the Kind of the value.
	// This repeats typ.Kind() except for method values.
	// The remaining 23+ bits give a method number for method values.
	// If flag.kind() != Func, code can assume that flagMethod is unset.
	// If typ.size > ptrSize, code can assume that flagIndir is set.
	flag

	// A method value represents a curried method invocation
	// like r.Read for some receiver r.  The typ+val+flag bits describe
	// the receiver r, but the flag's Kind bits say Func (methods are
	// functions), and the top bits of the flag give the method number
	// in r's type's method table.
}

type flag uintptr

const (
	flagRO flag = 1 << iota
	flagIndir
	flagAddr
	flagMethod
	flagMethodFn         // gccgo: first fn parameter is always pointer
	flagKindShift        = iota
	flagKindWidth        = 5 // there are 27 kinds
	flagKindMask    flag = 1<<flagKindWidth - 1
	flagMethodShift      = flagKindShift + flagKindWidth
)

func (f flag) kind() Kind {
	return Kind((f >> flagKindShift) & flagKindMask)
}

// pointer returns the underlying pointer represented by v.
// v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
func (v Value) pointer() unsafe.Pointer {
	if v.typ.size != ptrSize || !v.typ.pointers() {
		panic("can't call pointer on a non-pointer Value")
	}
	if v.flag&flagIndir != 0 {
		return *(*unsafe.Pointer)(v.ptr)
	}
	return v.ptr
}

// packEface converts v to the empty interface.
func packEface(v Value) interface{} {
	t := v.typ
	var i interface{}
	e := (*emptyInterface)(unsafe.Pointer(&i))
	// First, fill in the data portion of the interface.
	switch {
	case v.Kind() != Ptr && v.Kind() != UnsafePointer:
		// Value is indirect, and so is the interface we're making.
		if v.flag&flagIndir == 0 {
			panic("reflect: missing flagIndir")
		}
		ptr := v.ptr
		if v.flag&flagAddr != 0 {
			// TODO: pass safe boolean from valueInterface so
			// we don't need to copy if safe==true?
			c := unsafe_New(t)
			memmove(c, ptr, t.size)
			ptr = c
		}
		e.word = iword(ptr)
	case v.flag&flagIndir != 0:
		// Value is indirect, but interface is direct.  We need
		// to load the data at v.ptr into the interface data word.
		if t.pointers() {
			e.word = iword(*(*unsafe.Pointer)(v.ptr))
		} else {
			e.word = iword(loadScalar(v.ptr, t.size))
		}
	default:
		// Value is direct, and so is the interface.
		if t.pointers() {
			e.word = iword(v.ptr)
		} else {
			// e.word = iword(v.scalar)
			panic("reflect: missing flagIndir")
		}
	}
	// Now, fill in the type portion.  We're very careful here not
	// to have any operation between the e.word and e.typ assignments
	// that would let the garbage collector observe the partially-built
	// interface value.
	e.typ = t
	return i
}

// unpackEface converts the empty interface i to a Value.
func unpackEface(i interface{}) Value {
	e := (*emptyInterface)(unsafe.Pointer(&i))
	// NOTE: don't read e.word until we know whether it is really a pointer or not.
	t := e.typ
	if t == nil {
		return Value{}
	}
	f := flag(t.Kind()) << flagKindShift
	if t.Kind() != Ptr && t.Kind() != UnsafePointer {
		f |= flagIndir
	}
	return Value{t, unsafe.Pointer(e.word), f}
}

// A ValueError occurs when a Value method is invoked on
// a Value that does not support it.  Such cases are documented
// in the description of each method.
type ValueError struct {
	Method string
	Kind   Kind
}

func (e *ValueError) Error() string {
	if e.Kind == 0 {
		return "reflect: call of " + e.Method + " on zero Value"
	}
	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}

// methodName returns the name of the calling method,
// assumed to be two stack frames above.
func methodName() string {
	pc, _, _, _ := runtime.Caller(2)
	f := runtime.FuncForPC(pc)
	if f == nil {
		return "unknown method"
	}
	return f.Name()
}

// An iword is the word that would be stored in an
// interface to represent a given value v.  Specifically, if v is
// bigger than a pointer, its word is a pointer to v's data.
// Otherwise, its word holds the data stored
// in its leading bytes (so is not a pointer).
// This type is very dangerous for the garbage collector because
// it must be treated conservatively.  We try to never expose it
// to the GC here so that GC remains precise.
type iword unsafe.Pointer

// loadScalar loads n bytes at p from memory into a uintptr
// that forms the second word of an interface.  The data
// must be non-pointer in nature.
func loadScalar(p unsafe.Pointer, n uintptr) uintptr {
	// Run the copy ourselves instead of calling memmove
	// to avoid moving w to the heap.
	var w uintptr
	switch n {
	default:
		panic("reflect: internal error: loadScalar of " + strconv.Itoa(int(n)) + "-byte value")
	case 0:
	case 1:
		*(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
	case 2:
		*(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
	case 3:
		*(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
	case 4:
		*(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
	case 5:
		*(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
	case 6:
		*(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
	case 7:
		*(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
	case 8:
		*(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
	}
	return w
}

// storeScalar stores n bytes from w into p.
func storeScalar(p unsafe.Pointer, w uintptr, n uintptr) {
	// Run the copy ourselves instead of calling memmove
	// to avoid moving w to the heap.
	switch n {
	default:
		panic("reflect: internal error: storeScalar of " + strconv.Itoa(int(n)) + "-byte value")
	case 0:
	case 1:
		*(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
	case 2:
		*(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
	case 3:
		*(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
	case 4:
		*(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
	case 5:
		*(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
	case 6:
		*(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
	case 7:
		*(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
	case 8:
		*(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
	}
}

// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
	typ  *rtype
	word iword
}

// nonEmptyInterface is the header for a interface value with methods.
type nonEmptyInterface struct {
	// see ../runtime/iface.c:/Itab
	itab *struct {
		typ *rtype                 // dynamic concrete type
		fun [100000]unsafe.Pointer // method table
	}
	word iword
}

// mustBe panics if f's kind is not expected.
// Making this a method on flag instead of on Value
// (and embedding flag in Value) means that we can write
// the very clear v.mustBe(Bool) and have it compile into
// v.flag.mustBe(Bool), which will only bother to copy the
// single important word for the receiver.
func (f flag) mustBe(expected Kind) {
	k := f.kind()
	if k != expected {
		panic(&ValueError{methodName(), k})
	}
}

// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
	if f == 0 {
		panic(&ValueError{methodName(), 0})
	}
	if f&flagRO != 0 {
		panic("reflect: " + methodName() + " using value obtained using unexported field")
	}
}

// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
	if f == 0 {
		panic(&ValueError{methodName(), Invalid})
	}
	// Assignable if addressable and not read-only.
	if f&flagRO != 0 {
		panic("reflect: " + methodName() + " using value obtained using unexported field")
	}
	if f&flagAddr == 0 {
		panic("reflect: " + methodName() + " using unaddressable value")
	}
}

// Addr returns a pointer value representing the address of v.
// It panics if CanAddr() returns false.
// Addr is typically used to obtain a pointer to a struct field
// or slice element in order to call a method that requires a
// pointer receiver.
func (v Value) Addr() Value {
	if v.flag&flagAddr == 0 {
		panic("reflect.Value.Addr of unaddressable value")
	}
	return Value{v.typ.ptrTo(), v.ptr /* 0, */, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
}

// Bool returns v's underlying value.
// It panics if v's kind is not Bool.
func (v Value) Bool() bool {
	v.mustBe(Bool)
	if v.flag&flagIndir != 0 {
		return *(*bool)(v.ptr)
	}
	// return *(*bool)(unsafe.Pointer(&v.scalar))
	panic("reflect: missing flagIndir")
}

// Bytes returns v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) Bytes() []byte {
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Uint8 {
		panic("reflect.Value.Bytes of non-byte slice")
	}
	// Slice is always bigger than a word; assume flagIndir.
	return *(*[]byte)(v.ptr)
}

// runes returns v's underlying value.
// It panics if v's underlying value is not a slice of runes (int32s).
func (v Value) runes() []rune {
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Int32 {
		panic("reflect.Value.Bytes of non-rune slice")
	}
	// Slice is always bigger than a word; assume flagIndir.
	return *(*[]rune)(v.ptr)
}

// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable.  A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, or the result of dereferencing a pointer.
// If CanAddr returns false, calling Addr will panic.
func (v Value) CanAddr() bool {
	return v.flag&flagAddr != 0
}

// CanSet returns true if the value of v can be changed.
// A Value can be changed only if it is addressable and was not
// obtained by the use of unexported struct fields.
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt64) will panic.
func (v Value) CanSet() bool {
	return v.flag&(flagAddr|flagRO) == flagAddr
}

// Call calls the function v with the input arguments in.
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
// Call panics if v's Kind is not Func.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
// If v is a variadic function, Call creates the variadic slice parameter
// itself, copying in the corresponding values.
func (v Value) Call(in []Value) []Value {
	v.mustBe(Func)
	v.mustBeExported()
	return v.call("Call", in)
}

// CallSlice calls the variadic function v with the input arguments in,
// assigning the slice in[len(in)-1] to v's final variadic argument.
// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
// Call panics if v's Kind is not Func or if v is not variadic.
// It returns the output results as Values.
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
func (v Value) CallSlice(in []Value) []Value {
	v.mustBe(Func)
	v.mustBeExported()
	return v.call("CallSlice", in)
}

var callGC bool // for testing; see TestCallMethodJump

var makeFuncStubFn = makeFuncStub
var makeFuncStubCode = **(**uintptr)(unsafe.Pointer(&makeFuncStubFn))

func (v Value) call(op string, in []Value) []Value {
	// Get function pointer, type.
	t := v.typ
	var (
		fn   unsafe.Pointer
		rcvr Value
	)
	if v.flag&flagMethod != 0 {
		rcvr = v
		_, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
	} else if v.flag&flagIndir != 0 {
		fn = *(*unsafe.Pointer)(v.ptr)
	} else {
		fn = v.ptr
	}

	if fn == nil {
		panic("reflect.Value.Call: call of nil function")
	}

	isSlice := op == "CallSlice"
	n := t.NumIn()
	if isSlice {
		if !t.IsVariadic() {
			panic("reflect: CallSlice of non-variadic function")
		}
		if len(in) < n {
			panic("reflect: CallSlice with too few input arguments")
		}
		if len(in) > n {
			panic("reflect: CallSlice with too many input arguments")
		}
	} else {
		if t.IsVariadic() {
			n--
		}
		if len(in) < n {
			panic("reflect: Call with too few input arguments")
		}
		if !t.IsVariadic() && len(in) > n {
			panic("reflect: Call with too many input arguments")
		}
	}
	for _, x := range in {
		if x.Kind() == Invalid {
			panic("reflect: " + op + " using zero Value argument")
		}
	}
	for i := 0; i < n; i++ {
		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
		}
	}
	if !isSlice && t.IsVariadic() {
		// prepare slice for remaining values
		m := len(in) - n
		slice := MakeSlice(t.In(n), m, m)
		elem := t.In(n).Elem()
		for i := 0; i < m; i++ {
			x := in[n+i]
			if xt := x.Type(); !xt.AssignableTo(elem) {
				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
			}
			slice.Index(i).Set(x)
		}
		origIn := in
		in = make([]Value, n+1)
		copy(in[:n], origIn)
		in[n] = slice
	}

	nin := len(in)
	if nin != t.NumIn() {
		panic("reflect.Value.Call: wrong argument count")
	}
	nout := t.NumOut()

	// If target is makeFuncStub, short circuit the unpack onto stack /
	// pack back into []Value for the args and return values.  Just do the
	// call directly.
	// We need to do this here because otherwise we have a situation where
	// reflect.callXX calls makeFuncStub, neither of which knows the
	// layout of the args.  That's bad for precise gc & stack copying.
	x := (*makeFuncImpl)(fn)
	if x.code == makeFuncStubCode {
		return x.call(in)
	}

	if v.flag&flagMethod != 0 {
		nin++
	}
	firstPointer := len(in) > 0 && t.In(0).Kind() != Ptr && v.flag&flagMethodFn != 0
	params := make([]unsafe.Pointer, nin)
	off := 0
	if v.flag&flagMethod != 0 {
		// Hard-wired first argument.
		p := new(unsafe.Pointer)
		if rcvr.typ.Kind() == Interface {
			*p = unsafe.Pointer((*nonEmptyInterface)(v.ptr).word)
		} else if rcvr.typ.Kind() == Ptr || rcvr.typ.Kind() == UnsafePointer {
			*p = rcvr.pointer()
		} else {
			*p = rcvr.ptr
		}
		params[0] = unsafe.Pointer(p)
		off = 1
	}
	for i, pv := range in {
		pv.mustBeExported()
		targ := t.In(i).(*rtype)
		pv = pv.assignTo("reflect.Value.Call", targ, nil)
		if pv.flag&flagIndir == 0 {
			p := new(unsafe.Pointer)
			*p = pv.ptr
			params[off] = unsafe.Pointer(p)
		} else {
			params[off] = pv.ptr
		}
		if i == 0 && firstPointer {
			p := new(unsafe.Pointer)
			*p = params[off]
			params[off] = unsafe.Pointer(p)
		}
		off++
	}

	ret := make([]Value, nout)
	results := make([]unsafe.Pointer, nout)
	for i := 0; i < nout; i++ {
		v := New(t.Out(i))
		results[i] = unsafe.Pointer(v.Pointer())
		ret[i] = Indirect(v)
	}

	var pp *unsafe.Pointer
	if len(params) > 0 {
		pp = &params[0]
	}
	var pr *unsafe.Pointer
	if len(results) > 0 {
		pr = &results[0]
	}

	call(t, fn, v.flag&flagMethod != 0, firstPointer, pp, pr)

	// For testing; see TestCallMethodJump.
	if callGC {
		runtime.GC()
	}

	return ret
}

// methodReceiver returns information about the receiver
// described by v. The Value v may or may not have the
// flagMethod bit set, so the kind cached in v.flag should
// not be used.
// The return value rcvrtype gives the method's actual receiver type.
// The return value t gives the method type signature (without the receiver).
// The return value fn is a pointer to the method code.
func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
	i := methodIndex
	if v.typ.Kind() == Interface {
		tt := (*interfaceType)(unsafe.Pointer(v.typ))
		if i < 0 || i >= len(tt.methods) {
			panic("reflect: internal error: invalid method index")
		}
		m := &tt.methods[i]
		if m.pkgPath != nil {
			panic("reflect: " + op + " of unexported method")
		}
		iface := (*nonEmptyInterface)(v.ptr)
		if iface.itab == nil {
			panic("reflect: " + op + " of method on nil interface value")
		}
		rcvrtype = iface.itab.typ
		fn = unsafe.Pointer(&iface.itab.fun[i])
		t = m.typ
	} else {
		rcvrtype = v.typ
		ut := v.typ.uncommon()
		if ut == nil || i < 0 || i >= len(ut.methods) {
			panic("reflect: internal error: invalid method index")
		}
		m := &ut.methods[i]
		if m.pkgPath != nil {
			panic("reflect: " + op + " of unexported method")
		}
		fn = unsafe.Pointer(&m.tfn)
		t = m.mtyp
	}
	return
}

// v is a method receiver.  Store at p the word which is used to
// encode that receiver at the start of the argument list.
// Reflect uses the "interface" calling convention for
// methods, which always uses one word to record the receiver.
func storeRcvr(v Value, p unsafe.Pointer) {
	t := v.typ
	if t.Kind() == Interface {
		// the interface data word becomes the receiver word
		iface := (*nonEmptyInterface)(v.ptr)
		*(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word)
	} else if v.flag&flagIndir != 0 {
		if t.size > ptrSize {
			*(*unsafe.Pointer)(p) = v.ptr
		} else if t.pointers() {
			*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
		} else {
			*(*uintptr)(p) = loadScalar(v.ptr, t.size)
		}
	} else if t.pointers() {
		*(*unsafe.Pointer)(p) = v.ptr
	} else {
		// *(*uintptr)(p) = v.scalar
		panic("reflect: missing flagIndir")
	}
}

// align returns the result of rounding x up to a multiple of n.
// n must be a power of two.
func align(x, n uintptr) uintptr {
	return (x + n - 1) &^ (n - 1)
}

// funcName returns the name of f, for use in error messages.
func funcName(f func([]Value) []Value) string {
	pc := *(*uintptr)(unsafe.Pointer(&f))
	rf := runtime.FuncForPC(pc)
	if rf != nil {
		return rf.Name()
	}
	return "closure"
}

// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
	k := v.kind()
	switch k {
	case Array:
		return v.typ.Len()
	case Chan:
		return int(chancap(v.pointer()))
	case Slice:
		// Slice is always bigger than a word; assume flagIndir.
		return (*sliceHeader)(v.ptr).Cap
	}
	panic(&ValueError{"reflect.Value.Cap", k})
}

// Close closes the channel v.
// It panics if v's Kind is not Chan.
func (v Value) Close() {
	v.mustBe(Chan)
	v.mustBeExported()
	chanclose(v.pointer())
}

// Complex returns v's underlying value, as a complex128.
// It panics if v's Kind is not Complex64 or Complex128
func (v Value) Complex() complex128 {
	k := v.kind()
	switch k {
	case Complex64:
		if v.flag&flagIndir != 0 {
			return complex128(*(*complex64)(v.ptr))
		}
		// return complex128(*(*complex64)(unsafe.Pointer(&v.scalar)))
		panic("reflect: missing flagIndir")
	case Complex128:
		// complex128 is always bigger than a word; assume flagIndir.
		return *(*complex128)(v.ptr)
	}
	panic(&ValueError{"reflect.Value.Complex", k})
}

// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Ptr.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
	k := v.kind()
	switch k {
	case Interface:
		var eface interface{}
		if v.typ.NumMethod() == 0 {
			eface = *(*interface{})(v.ptr)
		} else {
			eface = (interface{})(*(*interface {
				M()
			})(v.ptr))
		}
		x := unpackEface(eface)
		x.flag |= v.flag & flagRO
		return x
	case Ptr:
		ptr := v.ptr
		if v.flag&flagIndir != 0 {
			ptr = *(*unsafe.Pointer)(ptr)
		}
		// The returned value's address is v's value.
		if ptr == nil {
			return Value{}
		}
		tt := (*ptrType)(unsafe.Pointer(v.typ))
		typ := tt.elem
		fl := v.flag&flagRO | flagIndir | flagAddr
		fl |= flag(typ.Kind() << flagKindShift)
		return Value{typ, ptr /* 0, */, fl}
	}
	panic(&ValueError{"reflect.Value.Elem", k})
}

// Field returns the i'th field of the struct v.
// It panics if v's Kind is not Struct or i is out of range.
func (v Value) Field(i int) Value {
	v.mustBe(Struct)
	tt := (*structType)(unsafe.Pointer(v.typ))
	if i < 0 || i >= len(tt.fields) {
		panic("reflect: Field index out of range")
	}
	field := &tt.fields[i]
	typ := field.typ

	// Inherit permission bits from v.
	fl := v.flag & (flagRO | flagIndir | flagAddr)
	// Using an unexported field forces flagRO.
	if field.pkgPath != nil {
		fl |= flagRO
	}
	fl |= flag(typ.Kind()) << flagKindShift

	var ptr unsafe.Pointer
	// var scalar uintptr
	switch {
	case fl&flagIndir != 0:
		// Indirect.  Just bump pointer.
		ptr = unsafe.Pointer(uintptr(v.ptr) + field.offset)
	case typ.pointers():
		if field.offset != 0 {
			panic("field access of ptr value isn't at offset 0")
		}
		ptr = v.ptr
	case bigEndian:
		// Must be scalar.  Discard leading bytes.
		// scalar = v.scalar << (field.offset * 8)
		panic("reflect: missing flagIndir")
	default:
		// Must be scalar.  Discard leading bytes.
		// scalar = v.scalar >> (field.offset * 8)
		panic("reflect: missing flagIndir")
	}

	return Value{typ, ptr /* scalar, */, fl}
}

// FieldByIndex returns the nested field corresponding to index.
// It panics if v's Kind is not struct.
func (v Value) FieldByIndex(index []int) Value {
	v.mustBe(Struct)
	for i, x := range index {
		if i > 0 {
			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
				if v.IsNil() {
					panic("reflect: indirection through nil pointer to embedded struct")
				}
				v = v.Elem()
			}
		}
		v = v.Field(x)
	}
	return v
}

// FieldByName returns the struct field with the given name.
// It returns the zero Value if no field was found.
// It panics if v's Kind is not struct.
func (v Value) FieldByName(name string) Value {
	v.mustBe(Struct)
	if f, ok := v.typ.FieldByName(name); ok {
		return v.FieldByIndex(f.Index)
	}
	return Value{}
}

// FieldByNameFunc returns the struct field with a name
// that satisfies the match function.
// It panics if v's Kind is not struct.
// It returns the zero Value if no field was found.
func (v Value) FieldByNameFunc(match func(string) bool) Value {
	v.mustBe(Struct)
	if f, ok := v.typ.FieldByNameFunc(match); ok {
		return v.FieldByIndex(f.Index)
	}
	return Value{}
}

// Float returns v's underlying value, as a float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
	k := v.kind()
	switch k {
	case Float32:
		if v.flag&flagIndir != 0 {
			return float64(*(*float32)(v.ptr))
		}
		// return float64(*(*float32)(unsafe.Pointer(&v.scalar)))
		panic("reflect: missing flagIndir")
	case Float64:
		if v.flag&flagIndir != 0 {
			return *(*float64)(v.ptr)
		}
		// return *(*float64)(unsafe.Pointer(&v.scalar))
		panic("reflect: missing flagIndir")
	}
	panic(&ValueError{"reflect.Value.Float", k})
}

var uint8Type = TypeOf(uint8(0)).(*rtype)

// Index returns v's i'th element.
// It panics if v's Kind is not Array, Slice, or String or i is out of range.
func (v Value) Index(i int) Value {
	k := v.kind()
	switch k {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		if i < 0 || i > int(tt.len) {
			panic("reflect: array index out of range")
		}
		typ := tt.elem
		fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
		fl |= flag(typ.Kind()) << flagKindShift
		offset := uintptr(i) * typ.size

		var val unsafe.Pointer
		switch {
		case fl&flagIndir != 0:
			// Indirect.  Just bump pointer.
			val = unsafe.Pointer(uintptr(v.ptr) + offset)
		case typ.pointers():
			if offset != 0 {
				panic("can't Index(i) with i!=0 on ptrLike value")
			}
			val = v.ptr
		case bigEndian:
			// Direct.  Discard leading bytes.
			// scalar = v.scalar << (offset * 8)
			panic("reflect: missing flagIndir")
		default:
			// Direct.  Discard leading bytes.
			// scalar = v.scalar >> (offset * 8)
			panic("reflect: missing flagIndir")
		}
		return Value{typ, val /* scalar, */, fl}

	case Slice:
		// Element flag same as Elem of Ptr.
		// Addressable, indirect, possibly read-only.
		fl := flagAddr | flagIndir | v.flag&flagRO
		s := (*sliceHeader)(v.ptr)
		if i < 0 || i >= s.Len {
			panic("reflect: slice index out of range")
		}
		tt := (*sliceType)(unsafe.Pointer(v.typ))
		typ := tt.elem
		fl |= flag(typ.Kind()) << flagKindShift
		val := unsafe.Pointer(uintptr(s.Data) + uintptr(i)*typ.size)
		return Value{typ, val /* 0, */, fl}

	case String:
		fl := v.flag&flagRO | flag(Uint8<<flagKindShift) | flagIndir
		s := (*StringHeader)(v.ptr)
		if i < 0 || i >= s.Len {
			panic("reflect: string index out of range")
		}
		b := uintptr(0)
		*(*byte)(unsafe.Pointer(&b)) = *(*byte)(unsafe.Pointer(uintptr(s.Data) + uintptr(i)))
		return Value{uint8Type, unsafe.Pointer(&b) /* 0, */, fl | flagIndir}
	}
	panic(&ValueError{"reflect.Value.Index", k})
}

// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) Int() int64 {
	k := v.kind()
	var p unsafe.Pointer
	if v.flag&flagIndir != 0 {
		p = v.ptr
	} else {
		// The escape analysis is good enough that &v.scalar
		// does not trigger a heap allocation.
		// p = unsafe.Pointer(&v.scalar)
		switch k {
		case Int, Int8, Int16, Int32, Int64:
			panic("reflect: missing flagIndir")
		}
	}
	switch k {
	case Int:
		return int64(*(*int)(p))
	case Int8:
		return int64(*(*int8)(p))
	case Int16:
		return int64(*(*int16)(p))
	case Int32:
		return int64(*(*int32)(p))
	case Int64:
		return int64(*(*int64)(p))
	}
	panic(&ValueError{"reflect.Value.Int", k})
}

// CanInterface returns true if Interface can be used without panicking.
func (v Value) CanInterface() bool {
	if v.flag == 0 {
		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
	}
	return v.flag&flagRO == 0
}

// Interface returns v's current value as an interface{}.
// It is equivalent to:
//	var i interface{} = (v's underlying value)
// It panics if the Value was obtained by accessing
// unexported struct fields.
func (v Value) Interface() (i interface{}) {
	return valueInterface(v, true)
}

func valueInterface(v Value, safe bool) interface{} {
	if v.flag == 0 {
		panic(&ValueError{"reflect.Value.Interface", 0})
	}
	if safe && v.flag&flagRO != 0 {
		// Do not allow access to unexported values via Interface,
		// because they might be pointers that should not be
		// writable or methods or function that should not be callable.
		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
	}
	if v.flag&flagMethod != 0 {
		v = makeMethodValue("Interface", v)
	}

	if v.flag&flagMethodFn != 0 {
		if v.typ.Kind() != Func {
			panic("reflect: MethodFn of non-Func")
		}
		ft := (*funcType)(unsafe.Pointer(v.typ))
		if ft.in[0].Kind() != Ptr {
			v = makeValueMethod(v)
		}
	}

	if v.kind() == Interface {
		// Special case: return the element inside the interface.
		// Empty interface has one layout, all interfaces with
		// methods have a second layout.
		if v.NumMethod() == 0 {
			return *(*interface{})(v.ptr)
		}
		return *(*interface {
			M()
		})(v.ptr)
	}

	// TODO: pass safe to packEface so we don't need to copy if safe==true?
	return packEface(v)
}

// InterfaceData returns the interface v's value as a uintptr pair.
// It panics if v's Kind is not Interface.
func (v Value) InterfaceData() [2]uintptr {
	// TODO: deprecate this
	v.mustBe(Interface)
	// We treat this as a read operation, so we allow
	// it even for unexported data, because the caller
	// has to import "unsafe" to turn it into something
	// that can be abused.
	// Interface value is always bigger than a word; assume flagIndir.
	return *(*[2]uintptr)(v.ptr)
}

// IsNil reports whether its argument v is nil. The argument must be
// a chan, func, interface, map, pointer, or slice value; if it is
// not, IsNil panics. Note that IsNil is not always equivalent to a
// regular comparison with nil in Go. For example, if v was created
// by calling ValueOf with an uninitialized interface variable i,
// i==nil will be true but v.IsNil will panic as v will be the zero
// Value.
func (v Value) IsNil() bool {
	k := v.kind()
	switch k {
	case Chan, Func, Map, Ptr:
		if v.flag&flagMethod != 0 {
			return false
		}
		ptr := v.ptr
		if v.flag&flagIndir != 0 {
			ptr = *(*unsafe.Pointer)(ptr)
		}
		return ptr == nil
	case Interface, Slice:
		// Both interface and slice are nil if first word is 0.
		// Both are always bigger than a word; assume flagIndir.
		return *(*unsafe.Pointer)(v.ptr) == nil
	}
	panic(&ValueError{"reflect.Value.IsNil", k})
}

// IsValid returns true if v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
	return v.flag != 0
}

// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
	return v.kind()
}

// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
	k := v.kind()
	switch k {
	case Array:
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		return int(tt.len)
	case Chan:
		return chanlen(v.pointer())
	case Map:
		return maplen(v.pointer())
	case Slice:
		// Slice is bigger than a word; assume flagIndir.
		return (*sliceHeader)(v.ptr).Len
	case String:
		// String is bigger than a word; assume flagIndir.
		return (*stringHeader)(v.ptr).Len
	}
	panic(&ValueError{"reflect.Value.Len", k})
}

// MapIndex returns the value associated with key in the map v.
// It panics if v's Kind is not Map.
// It returns the zero Value if key is not found in the map or if v represents a nil map.
// As in Go, the key's value must be assignable to the map's key type.
func (v Value) MapIndex(key Value) Value {
	v.mustBe(Map)
	tt := (*mapType)(unsafe.Pointer(v.typ))

	// Do not require key to be exported, so that DeepEqual
	// and other programs can use all the keys returned by
	// MapKeys as arguments to MapIndex.  If either the map
	// or the key is unexported, though, the result will be
	// considered unexported.  This is consistent with the
	// behavior for structs, which allow read but not write
	// of unexported fields.
	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)

	var k unsafe.Pointer
	if key.flag&flagIndir != 0 {
		k = key.ptr
	} else if key.typ.pointers() {
		k = unsafe.Pointer(&key.ptr)
	} else {
		// k = unsafe.Pointer(&key.scalar)
		panic("reflect: missing flagIndir")
	}
	e := mapaccess(v.typ, v.pointer(), k)
	if e == nil {
		return Value{}
	}
	typ := tt.elem
	fl := (v.flag | key.flag) & flagRO
	fl |= flag(typ.Kind()) << flagKindShift
	if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
		// Copy result so future changes to the map
		// won't change the underlying value.
		c := unsafe_New(typ)
		memmove(c, e, typ.size)
		return Value{typ, c /* 0, */, fl | flagIndir}
	} else if typ.pointers() {
		return Value{typ, *(*unsafe.Pointer)(e) /* 0, */, fl}
	} else {
		panic("reflect: can't happen")
	}
}

// MapKeys returns a slice containing all the keys present in the map,
// in unspecified order.
// It panics if v's Kind is not Map.
// It returns an empty slice if v represents a nil map.
func (v Value) MapKeys() []Value {
	v.mustBe(Map)
	tt := (*mapType)(unsafe.Pointer(v.typ))
	keyType := tt.key

	fl := v.flag&flagRO | flag(keyType.Kind())<<flagKindShift
	if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
		fl |= flagIndir
	}

	m := v.pointer()
	mlen := int(0)
	if m != nil {
		mlen = maplen(m)
	}
	it := mapiterinit(v.typ, m)
	a := make([]Value, mlen)
	var i int
	for i = 0; i < len(a); i++ {
		key := mapiterkey(it)
		if key == nil {
			// Someone deleted an entry from the map since we
			// called maplen above.  It's a data race, but nothing
			// we can do about it.
			break
		}
		if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
			// Copy result so future changes to the map
			// won't change the underlying value.
			c := unsafe_New(keyType)
			memmove(c, key, keyType.size)
			a[i] = Value{keyType, c /* 0, */, fl | flagIndir}
		} else if keyType.pointers() {
			a[i] = Value{keyType, *(*unsafe.Pointer)(key) /* 0, */, fl}
		} else {
			panic("reflect: can't happen")
		}
		mapiternext(it)
	}
	return a[:i]
}

// Method returns a function value corresponding to v's i'th method.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// Method panics if i is out of range or if v is a nil interface value.
func (v Value) Method(i int) Value {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.Method", Invalid})
	}
	if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
		panic("reflect: Method index out of range")
	}
	if v.typ.Kind() == Interface && v.IsNil() {
		panic("reflect: Method on nil interface value")
	}
	fl := v.flag & (flagRO | flagIndir)
	fl |= flag(Func) << flagKindShift
	fl |= flag(i)<<flagMethodShift | flagMethod
	return Value{v.typ, v.ptr /* v.scalar, */, fl}
}

// NumMethod returns the number of methods in the value's method set.
func (v Value) NumMethod() int {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
	}
	if v.flag&flagMethod != 0 {
		return 0
	}
	return v.typ.NumMethod()
}

// MethodByName returns a function value corresponding to the method
// of v with the given name.
// The arguments to a Call on the returned function should not include
// a receiver; the returned function will always use v as the receiver.
// It returns the zero Value if no method was found.
func (v Value) MethodByName(name string) Value {
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
	}
	if v.flag&flagMethod != 0 {
		return Value{}
	}
	m, ok := v.typ.MethodByName(name)
	if !ok {
		return Value{}
	}
	return v.Method(m.Index)
}

// NumField returns the number of fields in the struct v.
// It panics if v's Kind is not Struct.
func (v Value) NumField() int {
	v.mustBe(Struct)
	tt := (*structType)(unsafe.Pointer(v.typ))
	return len(tt.fields)
}

// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
// It panics if v's Kind is not Complex64 or Complex128.
func (v Value) OverflowComplex(x complex128) bool {
	k := v.kind()
	switch k {
	case Complex64:
		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
	case Complex128:
		return false
	}
	panic(&ValueError{"reflect.Value.OverflowComplex", k})
}

// OverflowFloat returns true if the float64 x cannot be represented by v's type.
// It panics if v's Kind is not Float32 or Float64.
func (v Value) OverflowFloat(x float64) bool {
	k := v.kind()
	switch k {
	case Float32:
		return overflowFloat32(x)
	case Float64:
		return false
	}
	panic(&ValueError{"reflect.Value.OverflowFloat", k})
}

func overflowFloat32(x float64) bool {
	if x < 0 {
		x = -x
	}
	return math.MaxFloat32 < x && x <= math.MaxFloat64
}

// OverflowInt returns true if the int64 x cannot be represented by v's type.
// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
func (v Value) OverflowInt(x int64) bool {
	k := v.kind()
	switch k {
	case Int, Int8, Int16, Int32, Int64:
		bitSize := v.typ.size * 8
		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
		return x != trunc
	}
	panic(&ValueError{"reflect.Value.OverflowInt", k})
}

// OverflowUint returns true if the uint64 x cannot be represented by v's type.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) OverflowUint(x uint64) bool {
	k := v.kind()
	switch k {
	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
		bitSize := v.typ.size * 8
		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
		return x != trunc
	}
	panic(&ValueError{"reflect.Value.OverflowUint", k})
}

// Pointer returns v's value as a uintptr.
// It returns uintptr instead of unsafe.Pointer so that
// code using reflect cannot obtain unsafe.Pointers
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
//
// If v's Kind is Func, the returned pointer is an underlying
// code pointer, but not necessarily enough to identify a
// single function uniquely. The only guarantee is that the
// result is zero if and only if v is a nil func Value.
//
// If v's Kind is Slice, the returned pointer is to the first
// element of the slice.  If the slice is nil the returned value
// is 0.  If the slice is empty but non-nil the return value is non-zero.
func (v Value) Pointer() uintptr {
	// TODO: deprecate
	k := v.kind()
	switch k {
	case Chan, Map, Ptr, UnsafePointer:
		return uintptr(v.pointer())
	case Func:
		if v.flag&flagMethod != 0 {
			// As the doc comment says, the returned pointer is an
			// underlying code pointer but not necessarily enough to
			// identify a single function uniquely. All method expressions
			// created via reflect have the same underlying code pointer,
			// so their Pointers are equal. The function used here must
			// match the one used in makeMethodValue.
			f := makeFuncStub
			return **(**uintptr)(unsafe.Pointer(&f))
		}
		p := v.pointer()
		// Non-nil func value points at data block.
		// First word of data block is actual code.
		if p != nil {
			p = *(*unsafe.Pointer)(p)
		}
		return uintptr(p)

	case Slice:
		return (*SliceHeader)(v.ptr).Data
	}
	panic(&ValueError{"reflect.Value.Pointer", k})
}

// Recv receives and returns a value from the channel v.
// It panics if v's Kind is not Chan.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) Recv() (x Value, ok bool) {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.recv(false)
}

// internal recv, possibly non-blocking (nb).
// v is known to be a channel.
func (v Value) recv(nb bool) (val Value, ok bool) {
	tt := (*chanType)(unsafe.Pointer(v.typ))
	if ChanDir(tt.dir)&RecvDir == 0 {
		panic("reflect: recv on send-only channel")
	}
	t := tt.elem
	val = Value{t, nil /* 0, */, flag(t.Kind()) << flagKindShift}
	var p unsafe.Pointer
	if t.Kind() != Ptr && t.Kind() != UnsafePointer {
		p = unsafe_New(t)
		val.ptr = p
		val.flag |= flagIndir
	} else {
		p = unsafe.Pointer(&val.ptr)
	}
	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
	if !selected {
		val = Value{}
	}
	return
}

// Send sends x on the channel v.
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) Send(x Value) {
	v.mustBe(Chan)
	v.mustBeExported()
	v.send(x, false)
}

// internal send, possibly non-blocking.
// v is known to be a channel.
func (v Value) send(x Value, nb bool) (selected bool) {
	tt := (*chanType)(unsafe.Pointer(v.typ))
	if ChanDir(tt.dir)&SendDir == 0 {
		panic("reflect: send on recv-only channel")
	}
	x.mustBeExported()
	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
	var p unsafe.Pointer
	if x.flag&flagIndir != 0 {
		p = x.ptr
	} else if x.typ.pointers() {
		p = unsafe.Pointer(&x.ptr)
	} else {
		// p = unsafe.Pointer(&x.scalar)
		panic("reflect: missing flagIndir")
	}
	return chansend(v.typ, v.pointer(), p, nb)
}

// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
	v.mustBeAssignable()
	x.mustBeExported() // do not let unexported x leak
	var target *interface{}
	if v.kind() == Interface {
		target = (*interface{})(v.ptr)
	}
	x = x.assignTo("reflect.Set", v.typ, target)
	if x.flag&flagIndir != 0 {
		memmove(v.ptr, x.ptr, v.typ.size)
	} else if x.typ.pointers() {
		*(*unsafe.Pointer)(v.ptr) = x.ptr
	} else {
		// memmove(v.ptr, unsafe.Pointer(&x.scalar), v.typ.size)
		panic("reflect: missing flagIndir")
	}
}

// SetBool sets v's underlying value.
// It panics if v's Kind is not Bool or if CanSet() is false.
func (v Value) SetBool(x bool) {
	v.mustBeAssignable()
	v.mustBe(Bool)
	*(*bool)(v.ptr) = x
}

// SetBytes sets v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) SetBytes(x []byte) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Uint8 {
		panic("reflect.Value.SetBytes of non-byte slice")
	}
	*(*[]byte)(v.ptr) = x
}

// setRunes sets v's underlying value.
// It panics if v's underlying value is not a slice of runes (int32s).
func (v Value) setRunes(x []rune) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	if v.typ.Elem().Kind() != Int32 {
		panic("reflect.Value.setRunes of non-rune slice")
	}
	*(*[]rune)(v.ptr) = x
}

// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetComplex", k})
	case Complex64:
		*(*complex64)(v.ptr) = complex64(x)
	case Complex128:
		*(*complex128)(v.ptr) = x
	}
}

// SetFloat sets v's underlying value to x.
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
func (v Value) SetFloat(x float64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetFloat", k})
	case Float32:
		*(*float32)(v.ptr) = float32(x)
	case Float64:
		*(*float64)(v.ptr) = x
	}
}

// SetInt sets v's underlying value to x.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
func (v Value) SetInt(x int64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetInt", k})
	case Int:
		*(*int)(v.ptr) = int(x)
	case Int8:
		*(*int8)(v.ptr) = int8(x)
	case Int16:
		*(*int16)(v.ptr) = int16(x)
	case Int32:
		*(*int32)(v.ptr) = int32(x)
	case Int64:
		*(*int64)(v.ptr) = x
	}
}

// SetLen sets v's length to n.
// It panics if v's Kind is not Slice or if n is negative or
// greater than the capacity of the slice.
func (v Value) SetLen(n int) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	s := (*sliceHeader)(v.ptr)
	if n < 0 || n > int(s.Cap) {
		panic("reflect: slice length out of range in SetLen")
	}
	s.Len = n
}

// SetCap sets v's capacity to n.
// It panics if v's Kind is not Slice or if n is smaller than the length or
// greater than the capacity of the slice.
func (v Value) SetCap(n int) {
	v.mustBeAssignable()
	v.mustBe(Slice)
	s := (*sliceHeader)(v.ptr)
	if n < int(s.Len) || n > int(s.Cap) {
		panic("reflect: slice capacity out of range in SetCap")
	}
	s.Cap = n
}

// SetMapIndex sets the value associated with key in the map v to val.
// It panics if v's Kind is not Map.
// If val is the zero Value, SetMapIndex deletes the key from the map.
// Otherwise if v holds a nil map, SetMapIndex will panic.
// As in Go, key's value must be assignable to the map's key type,
// and val's value must be assignable to the map's value type.
func (v Value) SetMapIndex(key, val Value) {
	v.mustBe(Map)
	v.mustBeExported()
	key.mustBeExported()
	tt := (*mapType)(unsafe.Pointer(v.typ))
	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
	var k unsafe.Pointer
	if key.flag&flagIndir != 0 {
		k = key.ptr
	} else if key.typ.pointers() {
		k = unsafe.Pointer(&key.ptr)
	} else {
		// k = unsafe.Pointer(&key.scalar)
		panic("reflect: missing flagIndir")
	}
	if val.typ == nil {
		mapdelete(v.typ, v.pointer(), k)
		return
	}
	val.mustBeExported()
	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
	var e unsafe.Pointer
	if val.flag&flagIndir != 0 {
		e = val.ptr
	} else if val.typ.pointers() {
		e = unsafe.Pointer(&val.ptr)
	} else {
		// e = unsafe.Pointer(&val.scalar)
		panic("reflect: missing flagIndir")
	}
	mapassign(v.typ, v.pointer(), k, e)
}

// SetUint sets v's underlying value to x.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
func (v Value) SetUint(x uint64) {
	v.mustBeAssignable()
	switch k := v.kind(); k {
	default:
		panic(&ValueError{"reflect.Value.SetUint", k})
	case Uint:
		*(*uint)(v.ptr) = uint(x)
	case Uint8:
		*(*uint8)(v.ptr) = uint8(x)
	case Uint16:
		*(*uint16)(v.ptr) = uint16(x)
	case Uint32:
		*(*uint32)(v.ptr) = uint32(x)
	case Uint64:
		*(*uint64)(v.ptr) = x
	case Uintptr:
		*(*uintptr)(v.ptr) = uintptr(x)
	}
}

// SetPointer sets the unsafe.Pointer value v to x.
// It panics if v's Kind is not UnsafePointer.
func (v Value) SetPointer(x unsafe.Pointer) {
	v.mustBeAssignable()
	v.mustBe(UnsafePointer)
	*(*unsafe.Pointer)(v.ptr) = x
}

// SetString sets v's underlying value to x.
// It panics if v's Kind is not String or if CanSet() is false.
func (v Value) SetString(x string) {
	v.mustBeAssignable()
	v.mustBe(String)
	*(*string)(v.ptr) = x
}

// Slice returns v[i:j].
// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
// or if the indexes are out of bounds.
func (v Value) Slice(i, j int) Value {
	var (
		cap  int
		typ  *sliceType
		base unsafe.Pointer
	)
	switch kind := v.kind(); kind {
	default:
		panic(&ValueError{"reflect.Value.Slice", kind})

	case Array:
		if v.flag&flagAddr == 0 {
			panic("reflect.Value.Slice: slice of unaddressable array")
		}
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		cap = int(tt.len)
		typ = (*sliceType)(unsafe.Pointer(tt.slice))
		base = v.ptr

	case Slice:
		typ = (*sliceType)(unsafe.Pointer(v.typ))
		s := (*sliceHeader)(v.ptr)
		base = unsafe.Pointer(s.Data)
		cap = s.Cap

	case String:
		s := (*stringHeader)(v.ptr)
		if i < 0 || j < i || j > s.Len {
			panic("reflect.Value.Slice: string slice index out of bounds")
		}
		t := stringHeader{unsafe.Pointer(uintptr(s.Data) + uintptr(i)), j - i}
		return Value{v.typ, unsafe.Pointer(&t) /* 0, */, v.flag}
	}

	if i < 0 || j < i || j > cap {
		panic("reflect.Value.Slice: slice index out of bounds")
	}

	// Declare slice so that gc can see the base pointer in it.
	var x []unsafe.Pointer

	// Reinterpret as *sliceHeader to edit.
	s := (*sliceHeader)(unsafe.Pointer(&x))
	s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size())
	s.Len = j - i
	s.Cap = cap - i

	fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
	return Value{typ.common(), unsafe.Pointer(&x) /* 0, */, fl}
}

// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
// or if the indexes are out of bounds.
func (v Value) Slice3(i, j, k int) Value {
	var (
		cap  int
		typ  *sliceType
		base unsafe.Pointer
	)
	switch kind := v.kind(); kind {
	default:
		panic(&ValueError{"reflect.Value.Slice3", kind})

	case Array:
		if v.flag&flagAddr == 0 {
			panic("reflect.Value.Slice3: slice of unaddressable array")
		}
		tt := (*arrayType)(unsafe.Pointer(v.typ))
		cap = int(tt.len)
		typ = (*sliceType)(unsafe.Pointer(tt.slice))
		base = v.ptr

	case Slice:
		typ = (*sliceType)(unsafe.Pointer(v.typ))
		s := (*sliceHeader)(v.ptr)
		base = s.Data
		cap = s.Cap
	}

	if i < 0 || j < i || k < j || k > cap {
		panic("reflect.Value.Slice3: slice index out of bounds")
	}

	// Declare slice so that the garbage collector
	// can see the base pointer in it.
	var x []unsafe.Pointer

	// Reinterpret as *sliceHeader to edit.
	s := (*sliceHeader)(unsafe.Pointer(&x))
	s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size())
	s.Len = j - i
	s.Cap = k - i

	fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
	return Value{typ.common(), unsafe.Pointer(&x) /* 0, */, fl}
}

// String returns the string v's underlying value, as a string.
// String is a special case because of Go's String method convention.
// Unlike the other getters, it does not panic if v's Kind is not String.
// Instead, it returns a string of the form "<T value>" where T is v's type.
func (v Value) String() string {
	switch k := v.kind(); k {
	case Invalid:
		return "<invalid Value>"
	case String:
		return *(*string)(v.ptr)
	}
	// If you call String on a reflect.Value of other type, it's better to
	// print something than to panic. Useful in debugging.
	return "<" + v.typ.String() + " Value>"
}

// TryRecv attempts to receive a value from the channel v but will not block.
// It panics if v's Kind is not Chan.
// If the receive delivers a value, x is the transferred value and ok is true.
// If the receive cannot finish without blocking, x is the zero Value and ok is false.
// If the channel is closed, x is the zero value for the channel's element type and ok is false.
func (v Value) TryRecv() (x Value, ok bool) {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.recv(true)
}

// TrySend attempts to send x on the channel v but will not block.
// It panics if v's Kind is not Chan.
// It returns true if the value was sent, false otherwise.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) TrySend(x Value) bool {
	v.mustBe(Chan)
	v.mustBeExported()
	return v.send(x, true)
}

// Type returns v's type.
func (v Value) Type() Type {
	f := v.flag
	if f == 0 {
		panic(&ValueError{"reflect.Value.Type", Invalid})
	}
	if f&flagMethod == 0 {
		// Easy case
		return toType(v.typ)
	}

	// Method value.
	// v.typ describes the receiver, not the method type.
	i := int(v.flag) >> flagMethodShift
	if v.typ.Kind() == Interface {
		// Method on interface.
		tt := (*interfaceType)(unsafe.Pointer(v.typ))
		if i < 0 || i >= len(tt.methods) {
			panic("reflect: internal error: invalid method index")
		}
		m := &tt.methods[i]
		return toType(m.typ)
	}
	// Method on concrete type.
	ut := v.typ.uncommon()
	if ut == nil || i < 0 || i >= len(ut.methods) {
		panic("reflect: internal error: invalid method index")
	}
	m := &ut.methods[i]
	return toType(m.mtyp)
}

// Uint returns v's underlying value, as a uint64.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) Uint() uint64 {
	k := v.kind()
	var p unsafe.Pointer
	if v.flag&flagIndir != 0 {
		p = v.ptr
	} else {
		// The escape analysis is good enough that &v.scalar
		// does not trigger a heap allocation.
		// p = unsafe.Pointer(&v.scalar)
		switch k {
		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			panic("reflect: missing flagIndir")
		}
	}
	switch k {
	case Uint:
		return uint64(*(*uint)(p))
	case Uint8:
		return uint64(*(*uint8)(p))
	case Uint16:
		return uint64(*(*uint16)(p))
	case Uint32:
		return uint64(*(*uint32)(p))
	case Uint64:
		return uint64(*(*uint64)(p))
	case Uintptr:
		return uint64(*(*uintptr)(p))
	}
	panic(&ValueError{"reflect.Value.Uint", k})
}

// UnsafeAddr returns a pointer to v's data.
// It is for advanced clients that also import the "unsafe" package.
// It panics if v is not addressable.
func (v Value) UnsafeAddr() uintptr {
	// TODO: deprecate
	if v.typ == nil {
		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
	}
	if v.flag&flagAddr == 0 {
		panic("reflect.Value.UnsafeAddr of unaddressable value")
	}
	return uintptr(v.ptr)
}

// StringHeader is the runtime representation of a string.
// It cannot be used safely or portably and its representation may
// change in a later release.
// Moreover, the Data field is not sufficient to guarantee the data
// it references will not be garbage collected, so programs must keep
// a separate, correctly typed pointer to the underlying data.
type StringHeader struct {
	Data uintptr
	Len  int
}

// stringHeader is a safe version of StringHeader used within this package.
type stringHeader struct {
	Data unsafe.Pointer
	Len  int
}

// SliceHeader is the runtime representation of a slice.
// It cannot be used safely or portably and its representation may
// change in a later release.
// Moreover, the Data field is not sufficient to guarantee the data
// it references will not be garbage collected, so programs must keep
// a separate, correctly typed pointer to the underlying data.
type SliceHeader struct {
	Data uintptr
	Len  int
	Cap  int
}

// sliceHeader is a safe version of SliceHeader used within this package.
type sliceHeader struct {
	Data unsafe.Pointer
	Len  int
	Cap  int
}

func typesMustMatch(what string, t1, t2 Type) {
	if t1 != t2 {
		panic(what + ": " + t1.String() + " != " + t2.String())
	}
}

// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func grow(s Value, extra int) (Value, int, int) {
	i0 := s.Len()
	i1 := i0 + extra
	if i1 < i0 {
		panic("reflect.Append: slice overflow")
	}
	m := s.Cap()
	if i1 <= m {
		return s.Slice(0, i1), i0, i1
	}
	if m == 0 {
		m = extra
	} else {
		for m < i1 {
			if i0 < 1024 {
				m += m
			} else {
				m += m / 4
			}
		}
	}
	t := MakeSlice(s.Type(), i1, m)
	Copy(t, s)
	return t, i0, i1
}

// Append appends the values x to a slice s and returns the resulting slice.
// As in Go, each x's value must be assignable to the slice's element type.
func Append(s Value, x ...Value) Value {
	s.mustBe(Slice)
	s, i0, i1 := grow(s, len(x))
	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
		s.Index(i).Set(x[j])
	}
	return s
}

// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t Value) Value {
	s.mustBe(Slice)
	t.mustBe(Slice)
	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
	s, i0, i1 := grow(s, t.Len())
	Copy(s.Slice(i0, i1), t)
	return s
}

// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// Dst and src each must have kind Slice or Array, and
// dst and src must have the same element type.
func Copy(dst, src Value) int {
	dk := dst.kind()
	if dk != Array && dk != Slice {
		panic(&ValueError{"reflect.Copy", dk})
	}
	if dk == Array {
		dst.mustBeAssignable()
	}
	dst.mustBeExported()

	sk := src.kind()
	if sk != Array && sk != Slice {
		panic(&ValueError{"reflect.Copy", sk})
	}
	src.mustBeExported()

	de := dst.typ.Elem()
	se := src.typ.Elem()
	typesMustMatch("reflect.Copy", de, se)

	n := dst.Len()
	if sn := src.Len(); n > sn {
		n = sn
	}

	// If sk is an in-line array, cannot take its address.
	// Instead, copy element by element.
	// TODO: memmove would be ok for this (sa = unsafe.Pointer(&v.scalar))
	// if we teach the compiler that ptrs don't escape from memmove.
	if src.flag&flagIndir == 0 {
		for i := 0; i < n; i++ {
			dst.Index(i).Set(src.Index(i))
		}
		return n
	}

	// Copy via memmove.
	var da, sa unsafe.Pointer
	if dk == Array {
		da = dst.ptr
	} else {
		da = (*sliceHeader)(dst.ptr).Data
	}
	if sk == Array {
		sa = src.ptr
	} else {
		sa = (*sliceHeader)(src.ptr).Data
	}
	memmove(da, sa, uintptr(n)*de.Size())
	return n
}

// A runtimeSelect is a single case passed to rselect.
// This must match ../runtime/chan.c:/runtimeSelect
type runtimeSelect struct {
	dir uintptr        // 0, SendDir, or RecvDir
	typ *rtype         // channel type
	ch  unsafe.Pointer // channel
	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
}

// rselect runs a select.  It returns the index of the chosen case.
// If the case was a receive, val is filled in with the received value.
// The conventional OK bool indicates whether the receive corresponds
// to a sent value.
//go:noescape
func rselect([]runtimeSelect) (chosen int, recvOK bool)

// A SelectDir describes the communication direction of a select case.
type SelectDir int

// NOTE: These values must match ../runtime/chan.c:/SelectDir.

const (
	_             SelectDir = iota
	SelectSend              // case Chan <- Send
	SelectRecv              // case <-Chan:
	SelectDefault           // default
)

// A SelectCase describes a single case in a select operation.
// The kind of case depends on Dir, the communication direction.
//
// If Dir is SelectDefault, the case represents a default case.
// Chan and Send must be zero Values.
//
// If Dir is SelectSend, the case represents a send operation.
// Normally Chan's underlying value must be a channel, and Send's underlying value must be
// assignable to the channel's element type. As a special case, if Chan is a zero Value,
// then the case is ignored, and the field Send will also be ignored and may be either zero
// or non-zero.
//
// If Dir is SelectRecv, the case represents a receive operation.
// Normally Chan's underlying value must be a channel and Send must be a zero Value.
// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
// When a receive operation is selected, the received Value is returned by Select.
//
type SelectCase struct {
	Dir  SelectDir // direction of case
	Chan Value     // channel to use (for send or receive)
	Send Value     // value to send (for send)
}

// Select executes a select operation described by the list of cases.
// Like the Go select statement, it blocks until at least one of the cases
// can proceed, makes a uniform pseudo-random choice,
// and then executes that case. It returns the index of the chosen case
// and, if that case was a receive operation, the value received and a
// boolean indicating whether the value corresponds to a send on the channel
// (as opposed to a zero value received because the channel is closed).
func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
	// NOTE: Do not trust that caller is not modifying cases data underfoot.
	// The range is safe because the caller cannot modify our copy of the len
	// and each iteration makes its own copy of the value c.
	runcases := make([]runtimeSelect, len(cases))
	haveDefault := false
	for i, c := range cases {
		rc := &runcases[i]
		rc.dir = uintptr(c.Dir)
		switch c.Dir {
		default:
			panic("reflect.Select: invalid Dir")

		case SelectDefault: // default
			if haveDefault {
				panic("reflect.Select: multiple default cases")
			}
			haveDefault = true
			if c.Chan.IsValid() {
				panic("reflect.Select: default case has Chan value")
			}
			if c.Send.IsValid() {
				panic("reflect.Select: default case has Send value")
			}

		case SelectSend:
			ch := c.Chan
			if !ch.IsValid() {
				break
			}
			ch.mustBe(Chan)
			ch.mustBeExported()
			tt := (*chanType)(unsafe.Pointer(ch.typ))
			if ChanDir(tt.dir)&SendDir == 0 {
				panic("reflect.Select: SendDir case using recv-only channel")
			}
			rc.ch = ch.pointer()
			rc.typ = &tt.rtype
			v := c.Send
			if !v.IsValid() {
				panic("reflect.Select: SendDir case missing Send value")
			}
			v.mustBeExported()
			v = v.assignTo("reflect.Select", tt.elem, nil)
			if v.flag&flagIndir != 0 {
				rc.val = v.ptr
			} else if v.typ.pointers() {
				rc.val = unsafe.Pointer(&v.ptr)
			} else {
				// rc.val = unsafe.Pointer(&v.scalar)
				panic("reflect: missing flagIndir")
			}

		case SelectRecv:
			if c.Send.IsValid() {
				panic("reflect.Select: RecvDir case has Send value")
			}
			ch := c.Chan
			if !ch.IsValid() {
				break
			}
			ch.mustBe(Chan)
			ch.mustBeExported()
			tt := (*chanType)(unsafe.Pointer(ch.typ))
			if ChanDir(tt.dir)&RecvDir == 0 {
				panic("reflect.Select: RecvDir case using send-only channel")
			}
			rc.ch = ch.pointer()
			rc.typ = &tt.rtype
			rc.val = unsafe_New(tt.elem)
		}
	}

	chosen, recvOK = rselect(runcases)
	if runcases[chosen].dir == uintptr(SelectRecv) {
		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
		t := tt.elem
		p := runcases[chosen].val
		fl := flag(t.Kind()) << flagKindShift
		if t.Kind() != Ptr && t.Kind() != UnsafePointer {
			recv = Value{t, p /* 0, */, fl | flagIndir}
		} else {
			recv = Value{t, *(*unsafe.Pointer)(p) /* 0, */, fl}
		}
	}
	return chosen, recv, recvOK
}

/*
 * constructors
 */

// implemented in package runtime
func unsafe_New(*rtype) unsafe.Pointer
func unsafe_NewArray(*rtype, int) unsafe.Pointer

// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ Type, len, cap int) Value {
	if typ.Kind() != Slice {
		panic("reflect.MakeSlice of non-slice type")
	}
	if len < 0 {
		panic("reflect.MakeSlice: negative len")
	}
	if cap < 0 {
		panic("reflect.MakeSlice: negative cap")
	}
	if len > cap {
		panic("reflect.MakeSlice: len > cap")
	}

	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
	return Value{typ.common(), unsafe.Pointer(&s) /* 0, */, flagIndir | flag(Slice)<<flagKindShift}
}

// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
	if typ.Kind() != Chan {
		panic("reflect.MakeChan of non-chan type")
	}
	if buffer < 0 {
		panic("reflect.MakeChan: negative buffer size")
	}
	if typ.ChanDir() != BothDir {
		panic("reflect.MakeChan: unidirectional channel type")
	}
	ch := makechan(typ.(*rtype), uint64(buffer))
	return Value{typ.common(), unsafe.Pointer(&ch) /* 0, */, flagIndir | (flag(Chan) << flagKindShift)}
}

// MakeMap creates a new map of the specified type.
func MakeMap(typ Type) Value {
	if typ.Kind() != Map {
		panic("reflect.MakeMap of non-map type")
	}
	m := makemap(typ.(*rtype))
	return Value{typ.common(), unsafe.Pointer(&m) /* 0, */, flagIndir | (flag(Map) << flagKindShift)}
}

// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a zero Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
	if v.Kind() != Ptr {
		return v
	}
	return v.Elem()
}

// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i.  ValueOf(nil) returns the zero Value.
func ValueOf(i interface{}) Value {
	if i == nil {
		return Value{}
	}

	// TODO(rsc): Eliminate this terrible hack.
	// In the call to unpackEface, i.typ doesn't escape,
	// and i.word is an integer.  So it looks like
	// i doesn't escape.  But really it does,
	// because i.word is actually a pointer.
	escapes(i)

	return unpackEface(i)
}

// Zero returns a Value representing the zero value for the specified type.
// The result is different from the zero value of the Value struct,
// which represents no value at all.
// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
// The returned value is neither addressable nor settable.
func Zero(typ Type) Value {
	if typ == nil {
		panic("reflect: Zero(nil)")
	}
	t := typ.common()
	fl := flag(t.Kind()) << flagKindShift
	if t.Kind() == Ptr || t.Kind() == UnsafePointer {
		return Value{t, nil /* 0, */, fl}
	}
	return Value{t, unsafe_New(typ.(*rtype)) /* 0, */, fl | flagIndir}
}

// New returns a Value representing a pointer to a new zero value
// for the specified type.  That is, the returned Value's Type is PtrTo(typ).
func New(typ Type) Value {
	if typ == nil {
		panic("reflect: New(nil)")
	}
	ptr := unsafe_New(typ.(*rtype))
	fl := flag(Ptr) << flagKindShift
	return Value{typ.common().ptrTo(), ptr /* 0, */, fl}
}

// NewAt returns a Value representing a pointer to a value of the
// specified type, using p as that pointer.
func NewAt(typ Type, p unsafe.Pointer) Value {
	fl := flag(Ptr) << flagKindShift
	return Value{typ.common().ptrTo(), p /* 0, */, fl}
}

// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value {
	if v.flag&flagMethod != 0 {
		v = makeMethodValue(context, v)
	}

	switch {
	case directlyAssignable(dst, v.typ):
		// Overwrite type so that they match.
		// Same memory layout, so no harm done.
		v.typ = dst
		fl := v.flag & (flagRO | flagAddr | flagIndir)
		fl |= flag(dst.Kind()) << flagKindShift
		return Value{dst, v.ptr /* v.scalar, */, fl}

	case implements(dst, v.typ):
		if target == nil {
			target = new(interface{})
		}
		x := valueInterface(v, false)
		if dst.NumMethod() == 0 {
			*target = x
		} else {
			ifaceE2I(dst, x, unsafe.Pointer(target))
		}
		return Value{dst, unsafe.Pointer(target) /* 0, */, flagIndir | flag(Interface)<<flagKindShift}
	}

	// Failed.
	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
}

// Convert returns the value v converted to type t.
// If the usual Go conversion rules do not allow conversion
// of the value v to type t, Convert panics.
func (v Value) Convert(t Type) Value {
	if v.flag&flagMethod != 0 {
		v = makeMethodValue("Convert", v)
	}
	op := convertOp(t.common(), v.typ)
	if op == nil {
		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
	}
	return op(v, t)
}

// convertOp returns the function to convert a value of type src
// to a value of type dst. If the conversion is illegal, convertOp returns nil.
func convertOp(dst, src *rtype) func(Value, Type) Value {
	switch src.Kind() {
	case Int, Int8, Int16, Int32, Int64:
		switch dst.Kind() {
		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			return cvtInt
		case Float32, Float64:
			return cvtIntFloat
		case String:
			return cvtIntString
		}

	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
		switch dst.Kind() {
		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			return cvtUint
		case Float32, Float64:
			return cvtUintFloat
		case String:
			return cvtUintString
		}

	case Float32, Float64:
		switch dst.Kind() {
		case Int, Int8, Int16, Int32, Int64:
			return cvtFloatInt
		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
			return cvtFloatUint
		case Float32, Float64:
			return cvtFloat
		}

	case Complex64, Complex128:
		switch dst.Kind() {
		case Complex64, Complex128:
			return cvtComplex
		}

	case String:
		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
			switch dst.Elem().Kind() {
			case Uint8:
				return cvtStringBytes
			case Int32:
				return cvtStringRunes
			}
		}

	case Slice:
		if dst.Kind() == String && src.Elem().PkgPath() == "" {
			switch src.Elem().Kind() {
			case Uint8:
				return cvtBytesString
			case Int32:
				return cvtRunesString
			}
		}
	}

	// dst and src have same underlying type.
	if haveIdenticalUnderlyingType(dst, src) {
		return cvtDirect
	}

	// dst and src are unnamed pointer types with same underlying base type.
	if dst.Kind() == Ptr && dst.Name() == "" &&
		src.Kind() == Ptr && src.Name() == "" &&
		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
		return cvtDirect
	}

	if implements(dst, src) {
		if src.Kind() == Interface {
			return cvtI2I
		}
		return cvtT2I
	}

	return nil
}

// makeInt returns a Value of type t equal to bits (possibly truncated),
// where t is a signed or unsigned int type.
func makeInt(f flag, bits uint64, t Type) Value {
	typ := t.common()
	if typ.size > ptrSize {
		// Assume ptrSize >= 4, so this must be uint64.
		ptr := unsafe_New(typ)
		*(*uint64)(unsafe.Pointer(ptr)) = bits
		return Value{typ, ptr /* 0, */, f | flagIndir | flag(typ.Kind())<<flagKindShift}
	}
	var s uintptr
	switch typ.size {
	case 1:
		*(*uint8)(unsafe.Pointer(&s)) = uint8(bits)
	case 2:
		*(*uint16)(unsafe.Pointer(&s)) = uint16(bits)
	case 4:
		*(*uint32)(unsafe.Pointer(&s)) = uint32(bits)
	case 8:
		*(*uint64)(unsafe.Pointer(&s)) = uint64(bits)
	}
	return Value{typ, unsafe.Pointer(&s) /* 0, */, f | flagIndir | flag(typ.Kind())<<flagKindShift}
}

// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
// where t is a float32 or float64 type.
func makeFloat(f flag, v float64, t Type) Value {
	typ := t.common()
	if typ.size > ptrSize {
		// Assume ptrSize >= 4, so this must be float64.
		ptr := unsafe_New(typ)
		*(*float64)(unsafe.Pointer(ptr)) = v
		return Value{typ, ptr /* 0, */, f | flagIndir | flag(typ.Kind())<<flagKindShift}
	}

	var s uintptr
	switch typ.size {
	case 4:
		*(*float32)(unsafe.Pointer(&s)) = float32(v)
	case 8:
		*(*float64)(unsafe.Pointer(&s)) = v
	}
	return Value{typ, unsafe.Pointer(&s) /* 0, */, f | flagIndir | flag(typ.Kind())<<flagKindShift}
}

// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
// where t is a complex64 or complex128 type.
func makeComplex(f flag, v complex128, t Type) Value {
	typ := t.common()
	if typ.size > ptrSize {
		ptr := unsafe_New(typ)
		switch typ.size {
		case 8:
			*(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
		case 16:
			*(*complex128)(unsafe.Pointer(ptr)) = v
		}
		return Value{typ, ptr /* 0, */, f | flagIndir | flag(typ.Kind())<<flagKindShift}
	}

	// Assume ptrSize <= 8 so this must be complex64.
	var s uintptr
	*(*complex64)(unsafe.Pointer(&s)) = complex64(v)
	return Value{typ, unsafe.Pointer(&s) /* 0, */, f | flagIndir | flag(typ.Kind())<<flagKindShift}
}

func makeString(f flag, v string, t Type) Value {
	ret := New(t).Elem()
	ret.SetString(v)
	ret.flag = ret.flag&^flagAddr | f | flagIndir
	return ret
}

func makeBytes(f flag, v []byte, t Type) Value {
	ret := New(t).Elem()
	ret.SetBytes(v)
	ret.flag = ret.flag&^flagAddr | f | flagIndir
	return ret
}

func makeRunes(f flag, v []rune, t Type) Value {
	ret := New(t).Elem()
	ret.setRunes(v)
	ret.flag = ret.flag&^flagAddr | f | flagIndir
	return ret
}

// These conversion functions are returned by convertOp
// for classes of conversions. For example, the first function, cvtInt,
// takes any value v of signed int type and returns the value converted
// to type t, where t is any signed or unsigned int type.

// convertOp: intXX -> [u]intXX
func cvtInt(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
}

// convertOp: uintXX -> [u]intXX
func cvtUint(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, v.Uint(), t)
}

// convertOp: floatXX -> intXX
func cvtFloatInt(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
}

// convertOp: floatXX -> uintXX
func cvtFloatUint(v Value, t Type) Value {
	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
}

// convertOp: intXX -> floatXX
func cvtIntFloat(v Value, t Type) Value {
	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
}

// convertOp: uintXX -> floatXX
func cvtUintFloat(v Value, t Type) Value {
	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
}

// convertOp: floatXX -> floatXX
func cvtFloat(v Value, t Type) Value {
	return makeFloat(v.flag&flagRO, v.Float(), t)
}

// convertOp: complexXX -> complexXX
func cvtComplex(v Value, t Type) Value {
	return makeComplex(v.flag&flagRO, v.Complex(), t)
}

// convertOp: intXX -> string
func cvtIntString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.Int()), t)
}

// convertOp: uintXX -> string
func cvtUintString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.Uint()), t)
}

// convertOp: []byte -> string
func cvtBytesString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.Bytes()), t)
}

// convertOp: string -> []byte
func cvtStringBytes(v Value, t Type) Value {
	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
}

// convertOp: []rune -> string
func cvtRunesString(v Value, t Type) Value {
	return makeString(v.flag&flagRO, string(v.runes()), t)
}

// convertOp: string -> []rune
func cvtStringRunes(v Value, t Type) Value {
	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
}

// convertOp: direct copy
func cvtDirect(v Value, typ Type) Value {
	f := v.flag
	t := typ.common()
	ptr := v.ptr
	if f&flagAddr != 0 {
		// indirect, mutable word - make a copy
		c := unsafe_New(t)
		memmove(c, ptr, t.size)
		ptr = c
		f &^= flagAddr
	}
	return Value{t, ptr /* v.scalar, */, v.flag&flagRO | f} // v.flag&flagRO|f == f?
}

// convertOp: concrete -> interface
func cvtT2I(v Value, typ Type) Value {
	target := new(interface{})
	x := valueInterface(v, false)
	if typ.NumMethod() == 0 {
		*target = x
	} else {
		ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target))
	}
	return Value{typ.common(), unsafe.Pointer(target) /* 0, */, v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift}
}

// convertOp: interface -> interface
func cvtI2I(v Value, typ Type) Value {
	if v.IsNil() {
		ret := Zero(typ)
		ret.flag |= v.flag & flagRO
		return ret
	}
	return cvtT2I(v.Elem(), typ)
}

// implemented in ../pkg/runtime
func chancap(ch unsafe.Pointer) int
func chanclose(ch unsafe.Pointer)
func chanlen(ch unsafe.Pointer) int

//go:noescape
func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)

//go:noescape
func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool

func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
func makemap(t *rtype) (m unsafe.Pointer)
func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
func mapiternext(it unsafe.Pointer)
func maplen(m unsafe.Pointer) int

func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)

// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
	if dummy.b {
		dummy.x = x
	}
}

var dummy struct {
	b bool
	x interface{}
}