summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/proc.go
blob: 958b56e0ecd4c244584326b579db4fd91bf58fe1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

// Functions temporarily called by C code.
//go:linkname newextram runtime.newextram
//go:linkname acquirep runtime.acquirep
//go:linkname releasep runtime.releasep
//go:linkname incidlelocked runtime.incidlelocked
//go:linkname checkdead runtime.checkdead
//go:linkname sysmon runtime.sysmon
//go:linkname schedtrace runtime.schedtrace
//go:linkname allgadd runtime.allgadd
//go:linkname mcommoninit runtime.mcommoninit
//go:linkname ready runtime.ready
//go:linkname gcprocs runtime.gcprocs
//go:linkname needaddgcproc runtime.needaddgcproc
//go:linkname stopm runtime.stopm
//go:linkname handoffp runtime.handoffp
//go:linkname wakep runtime.wakep
//go:linkname stoplockedm runtime.stoplockedm
//go:linkname schedule runtime.schedule
//go:linkname execute runtime.execute
//go:linkname gfput runtime.gfput
//go:linkname gfget runtime.gfget
//go:linkname lockOSThread runtime.lockOSThread
//go:linkname unlockOSThread runtime.unlockOSThread
//go:linkname procresize runtime.procresize
//go:linkname helpgc runtime.helpgc
//go:linkname stopTheWorldWithSema runtime.stopTheWorldWithSema
//go:linkname startTheWorldWithSema runtime.startTheWorldWithSema
//go:linkname mput runtime.mput
//go:linkname mget runtime.mget
//go:linkname globrunqput runtime.globrunqput
//go:linkname pidleget runtime.pidleget
//go:linkname runqempty runtime.runqempty
//go:linkname runqput runtime.runqput

// Functions temporarily in C that have not yet been ported.
func allocm(*p, bool, *unsafe.Pointer, *uintptr) *m
func malg(bool, bool, *unsafe.Pointer, *uintptr) *g
func startm(*p, bool)
func newm(unsafe.Pointer, *p)
func gchelper()
func getfingwait() bool
func getfingwake() bool
func wakefing() *g

// C functions for ucontext management.
func gogo(*g)
func setGContext()
func makeGContext(*g, unsafe.Pointer, uintptr)
func getTraceback(me, gp *g)

// main_init_done is a signal used by cgocallbackg that initialization
// has been completed. It is made before _cgo_notify_runtime_init_done,
// so all cgo calls can rely on it existing. When main_init is complete,
// it is closed, meaning cgocallbackg can reliably receive from it.
var main_init_done chan bool

func goready(gp *g, traceskip int) {
	systemstack(func() {
		ready(gp, traceskip, true)
	})
}

//go:nosplit
func acquireSudog() *sudog {
	// Delicate dance: the semaphore implementation calls
	// acquireSudog, acquireSudog calls new(sudog),
	// new calls malloc, malloc can call the garbage collector,
	// and the garbage collector calls the semaphore implementation
	// in stopTheWorld.
	// Break the cycle by doing acquirem/releasem around new(sudog).
	// The acquirem/releasem increments m.locks during new(sudog),
	// which keeps the garbage collector from being invoked.
	mp := acquirem()
	pp := mp.p.ptr()
	if len(pp.sudogcache) == 0 {
		lock(&sched.sudoglock)
		// First, try to grab a batch from central cache.
		for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
			s := sched.sudogcache
			sched.sudogcache = s.next
			s.next = nil
			pp.sudogcache = append(pp.sudogcache, s)
		}
		unlock(&sched.sudoglock)
		// If the central cache is empty, allocate a new one.
		if len(pp.sudogcache) == 0 {
			pp.sudogcache = append(pp.sudogcache, new(sudog))
		}
	}
	n := len(pp.sudogcache)
	s := pp.sudogcache[n-1]
	pp.sudogcache[n-1] = nil
	pp.sudogcache = pp.sudogcache[:n-1]
	if s.elem != nil {
		throw("acquireSudog: found s.elem != nil in cache")
	}
	releasem(mp)
	return s
}

//go:nosplit
func releaseSudog(s *sudog) {
	if s.elem != nil {
		throw("runtime: sudog with non-nil elem")
	}
	if s.selectdone != nil {
		throw("runtime: sudog with non-nil selectdone")
	}
	if s.next != nil {
		throw("runtime: sudog with non-nil next")
	}
	if s.prev != nil {
		throw("runtime: sudog with non-nil prev")
	}
	if s.waitlink != nil {
		throw("runtime: sudog with non-nil waitlink")
	}
	if s.c != nil {
		throw("runtime: sudog with non-nil c")
	}
	gp := getg()
	if gp.param != nil {
		throw("runtime: releaseSudog with non-nil gp.param")
	}
	mp := acquirem() // avoid rescheduling to another P
	pp := mp.p.ptr()
	if len(pp.sudogcache) == cap(pp.sudogcache) {
		// Transfer half of local cache to the central cache.
		var first, last *sudog
		for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
			n := len(pp.sudogcache)
			p := pp.sudogcache[n-1]
			pp.sudogcache[n-1] = nil
			pp.sudogcache = pp.sudogcache[:n-1]
			if first == nil {
				first = p
			} else {
				last.next = p
			}
			last = p
		}
		lock(&sched.sudoglock)
		last.next = sched.sudogcache
		sched.sudogcache = first
		unlock(&sched.sudoglock)
	}
	pp.sudogcache = append(pp.sudogcache, s)
	releasem(mp)
}

// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
// For gccgo here unless and until we port proc.go.
// Note that this differs from the gc implementation; the gc implementation
// adds sys.PtrSize to the address of the interface value, but GCC's
// alias analysis decides that that can not be a reference to the second
// field of the interface, and in some cases it drops the initialization
// of the second field as a dead store.
//go:nosplit
func funcPC(f interface{}) uintptr {
	i := (*iface)(unsafe.Pointer(&f))
	return **(**uintptr)(i.data)
}

func lockedOSThread() bool {
	gp := getg()
	return gp.lockedm != nil && gp.m.lockedg != nil
}

var (
	allgs    []*g
	allglock mutex
)

func allgadd(gp *g) {
	if readgstatus(gp) == _Gidle {
		throw("allgadd: bad status Gidle")
	}

	lock(&allglock)
	allgs = append(allgs, gp)
	allglen = uintptr(len(allgs))

	// Grow GC rescan list if necessary.
	if len(allgs) > cap(work.rescan.list) {
		lock(&work.rescan.lock)
		l := work.rescan.list
		// Let append do the heavy lifting, but keep the
		// length the same.
		work.rescan.list = append(l[:cap(l)], 0)[:len(l)]
		unlock(&work.rescan.lock)
	}
	unlock(&allglock)
}

func dumpgstatus(gp *g) {
	_g_ := getg()
	print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
	print("runtime:  g:  g=", _g_, ", goid=", _g_.goid, ",  g->atomicstatus=", readgstatus(_g_), "\n")
}

func checkmcount() {
	// sched lock is held
	if sched.mcount > sched.maxmcount {
		print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
		throw("thread exhaustion")
	}
}

func mcommoninit(mp *m) {
	_g_ := getg()

	// g0 stack won't make sense for user (and is not necessary unwindable).
	if _g_ != _g_.m.g0 {
		callers(1, mp.createstack[:])
	}

	mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
	if mp.fastrand == 0 {
		mp.fastrand = 0x49f6428a
	}

	lock(&sched.lock)
	mp.id = sched.mcount
	sched.mcount++
	checkmcount()
	mpreinit(mp)

	// Add to allm so garbage collector doesn't free g->m
	// when it is just in a register or thread-local storage.
	mp.alllink = allm

	// NumCgoCall() iterates over allm w/o schedlock,
	// so we need to publish it safely.
	atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
	unlock(&sched.lock)
}

// Mark gp ready to run.
func ready(gp *g, traceskip int, next bool) {
	if trace.enabled {
		traceGoUnpark(gp, traceskip)
	}

	status := readgstatus(gp)

	// Mark runnable.
	_g_ := getg()
	_g_.m.locks++ // disable preemption because it can be holding p in a local var
	if status&^_Gscan != _Gwaiting {
		dumpgstatus(gp)
		throw("bad g->status in ready")
	}

	// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
	casgstatus(gp, _Gwaiting, _Grunnable)
	runqput(_g_.m.p.ptr(), gp, next)
	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
		wakep()
	}
	_g_.m.locks--
}

func gcprocs() int32 {
	// Figure out how many CPUs to use during GC.
	// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
	lock(&sched.lock)
	n := gomaxprocs
	if n > ncpu {
		n = ncpu
	}
	if n > _MaxGcproc {
		n = _MaxGcproc
	}
	if n > sched.nmidle+1 { // one M is currently running
		n = sched.nmidle + 1
	}
	unlock(&sched.lock)
	return n
}

func needaddgcproc() bool {
	lock(&sched.lock)
	n := gomaxprocs
	if n > ncpu {
		n = ncpu
	}
	if n > _MaxGcproc {
		n = _MaxGcproc
	}
	n -= sched.nmidle + 1 // one M is currently running
	unlock(&sched.lock)
	return n > 0
}

func helpgc(nproc int32) {
	_g_ := getg()
	lock(&sched.lock)
	pos := 0
	for n := int32(1); n < nproc; n++ { // one M is currently running
		if allp[pos].mcache == _g_.m.mcache {
			pos++
		}
		mp := mget()
		if mp == nil {
			throw("gcprocs inconsistency")
		}
		mp.helpgc = n
		mp.p.set(allp[pos])
		mp.mcache = allp[pos].mcache
		pos++
		notewakeup(&mp.park)
	}
	unlock(&sched.lock)
}

// freezeStopWait is a large value that freezetheworld sets
// sched.stopwait to in order to request that all Gs permanently stop.
const freezeStopWait = 0x7fffffff

// freezing is set to non-zero if the runtime is trying to freeze the
// world.
var freezing uint32

// Similar to stopTheWorld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
func freezetheworld() {
	atomic.Store(&freezing, 1)
	// stopwait and preemption requests can be lost
	// due to races with concurrently executing threads,
	// so try several times
	for i := 0; i < 5; i++ {
		// this should tell the scheduler to not start any new goroutines
		sched.stopwait = freezeStopWait
		atomic.Store(&sched.gcwaiting, 1)
		// this should stop running goroutines
		if !preemptall() {
			break // no running goroutines
		}
		usleep(1000)
	}
	// to be sure
	usleep(1000)
	preemptall()
	usleep(1000)
}

func isscanstatus(status uint32) bool {
	if status == _Gscan {
		throw("isscanstatus: Bad status Gscan")
	}
	return status&_Gscan == _Gscan
}

// All reads and writes of g's status go through readgstatus, casgstatus
// castogscanstatus, casfrom_Gscanstatus.
//go:nosplit
func readgstatus(gp *g) uint32 {
	return atomic.Load(&gp.atomicstatus)
}

// Ownership of gcscanvalid:
//
// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
// then gp owns gp.gcscanvalid, and other goroutines must not modify it.
//
// Otherwise, a second goroutine can lock the scan state by setting _Gscan
// in the status bit and then modify gcscanvalid, and then unlock the scan state.
//
// Note that the first condition implies an exception to the second:
// if a second goroutine changes gp's status to _Grunning|_Gscan,
// that second goroutine still does not have the right to modify gcscanvalid.

// The Gscanstatuses are acting like locks and this releases them.
// If it proves to be a performance hit we should be able to make these
// simple atomic stores but for now we are going to throw if
// we see an inconsistent state.
func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
	success := false

	// Check that transition is valid.
	switch oldval {
	default:
		print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
		dumpgstatus(gp)
		throw("casfrom_Gscanstatus:top gp->status is not in scan state")
	case _Gscanrunnable,
		_Gscanwaiting,
		_Gscanrunning,
		_Gscansyscall:
		if newval == oldval&^_Gscan {
			success = atomic.Cas(&gp.atomicstatus, oldval, newval)
		}
	}
	if !success {
		print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
		dumpgstatus(gp)
		throw("casfrom_Gscanstatus: gp->status is not in scan state")
	}
}

// This will return false if the gp is not in the expected status and the cas fails.
// This acts like a lock acquire while the casfromgstatus acts like a lock release.
func castogscanstatus(gp *g, oldval, newval uint32) bool {
	switch oldval {
	case _Grunnable,
		_Grunning,
		_Gwaiting,
		_Gsyscall:
		if newval == oldval|_Gscan {
			return atomic.Cas(&gp.atomicstatus, oldval, newval)
		}
	}
	print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
	throw("castogscanstatus")
	panic("not reached")
}

// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
// and casfrom_Gscanstatus instead.
// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
// put it in the Gscan state is finished.
//go:nosplit
func casgstatus(gp *g, oldval, newval uint32) {
	if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
		systemstack(func() {
			print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
			throw("casgstatus: bad incoming values")
		})
	}

	if oldval == _Grunning && gp.gcscanvalid {
		// If oldvall == _Grunning, then the actual status must be
		// _Grunning or _Grunning|_Gscan; either way,
		// we own gp.gcscanvalid, so it's safe to read.
		// gp.gcscanvalid must not be true when we are running.
		print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
		throw("casgstatus")
	}

	// See http://golang.org/cl/21503 for justification of the yield delay.
	const yieldDelay = 5 * 1000
	var nextYield int64

	// loop if gp->atomicstatus is in a scan state giving
	// GC time to finish and change the state to oldval.
	for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
		if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
			systemstack(func() {
				throw("casgstatus: waiting for Gwaiting but is Grunnable")
			})
		}
		// Help GC if needed.
		// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
		// 	gp.preemptscan = false
		// 	systemstack(func() {
		// 		gcphasework(gp)
		// 	})
		// }
		// But meanwhile just yield.
		if i == 0 {
			nextYield = nanotime() + yieldDelay
		}
		if nanotime() < nextYield {
			for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
				procyield(1)
			}
		} else {
			osyield()
			nextYield = nanotime() + yieldDelay/2
		}
	}
	if newval == _Grunning && gp.gcscanvalid {
		// Run queueRescan on the system stack so it has more space.
		systemstack(func() { queueRescan(gp) })
	}
}

// stopTheWorld stops all P's from executing goroutines, interrupting
// all goroutines at GC safe points and records reason as the reason
// for the stop. On return, only the current goroutine's P is running.
// stopTheWorld must not be called from a system stack and the caller
// must not hold worldsema. The caller must call startTheWorld when
// other P's should resume execution.
//
// stopTheWorld is safe for multiple goroutines to call at the
// same time. Each will execute its own stop, and the stops will
// be serialized.
//
// This is also used by routines that do stack dumps. If the system is
// in panic or being exited, this may not reliably stop all
// goroutines.
func stopTheWorld(reason string) {
	semacquire(&worldsema, 0)
	getg().m.preemptoff = reason
	systemstack(stopTheWorldWithSema)
}

// startTheWorld undoes the effects of stopTheWorld.
func startTheWorld() {
	systemstack(startTheWorldWithSema)
	// worldsema must be held over startTheWorldWithSema to ensure
	// gomaxprocs cannot change while worldsema is held.
	semrelease(&worldsema)
	getg().m.preemptoff = ""
}

// Holding worldsema grants an M the right to try to stop the world
// and prevents gomaxprocs from changing concurrently.
var worldsema uint32 = 1

// stopTheWorldWithSema is the core implementation of stopTheWorld.
// The caller is responsible for acquiring worldsema and disabling
// preemption first and then should stopTheWorldWithSema on the system
// stack:
//
//	semacquire(&worldsema, 0)
//	m.preemptoff = "reason"
//	systemstack(stopTheWorldWithSema)
//
// When finished, the caller must either call startTheWorld or undo
// these three operations separately:
//
//	m.preemptoff = ""
//	systemstack(startTheWorldWithSema)
//	semrelease(&worldsema)
//
// It is allowed to acquire worldsema once and then execute multiple
// startTheWorldWithSema/stopTheWorldWithSema pairs.
// Other P's are able to execute between successive calls to
// startTheWorldWithSema and stopTheWorldWithSema.
// Holding worldsema causes any other goroutines invoking
// stopTheWorld to block.
func stopTheWorldWithSema() {
	_g_ := getg()

	// If we hold a lock, then we won't be able to stop another M
	// that is blocked trying to acquire the lock.
	if _g_.m.locks > 0 {
		throw("stopTheWorld: holding locks")
	}

	lock(&sched.lock)
	sched.stopwait = gomaxprocs
	atomic.Store(&sched.gcwaiting, 1)
	preemptall()
	// stop current P
	_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
	sched.stopwait--
	// try to retake all P's in Psyscall status
	for i := 0; i < int(gomaxprocs); i++ {
		p := allp[i]
		s := p.status
		if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
			if trace.enabled {
				traceGoSysBlock(p)
				traceProcStop(p)
			}
			p.syscalltick++
			sched.stopwait--
		}
	}
	// stop idle P's
	for {
		p := pidleget()
		if p == nil {
			break
		}
		p.status = _Pgcstop
		sched.stopwait--
	}
	wait := sched.stopwait > 0
	unlock(&sched.lock)

	// wait for remaining P's to stop voluntarily
	if wait {
		for {
			// wait for 100us, then try to re-preempt in case of any races
			if notetsleep(&sched.stopnote, 100*1000) {
				noteclear(&sched.stopnote)
				break
			}
			preemptall()
		}
	}

	// sanity checks
	bad := ""
	if sched.stopwait != 0 {
		bad = "stopTheWorld: not stopped (stopwait != 0)"
	} else {
		for i := 0; i < int(gomaxprocs); i++ {
			p := allp[i]
			if p.status != _Pgcstop {
				bad = "stopTheWorld: not stopped (status != _Pgcstop)"
			}
		}
	}
	if atomic.Load(&freezing) != 0 {
		// Some other thread is panicking. This can cause the
		// sanity checks above to fail if the panic happens in
		// the signal handler on a stopped thread. Either way,
		// we should halt this thread.
		lock(&deadlock)
		lock(&deadlock)
	}
	if bad != "" {
		throw(bad)
	}
}

func mhelpgc() {
	_g_ := getg()
	_g_.m.helpgc = -1
}

func startTheWorldWithSema() {
	_g_ := getg()

	_g_.m.locks++        // disable preemption because it can be holding p in a local var
	gp := netpoll(false) // non-blocking
	injectglist(gp)
	add := needaddgcproc()
	lock(&sched.lock)

	procs := gomaxprocs
	if newprocs != 0 {
		procs = newprocs
		newprocs = 0
	}
	p1 := procresize(procs)
	sched.gcwaiting = 0
	if sched.sysmonwait != 0 {
		sched.sysmonwait = 0
		notewakeup(&sched.sysmonnote)
	}
	unlock(&sched.lock)

	for p1 != nil {
		p := p1
		p1 = p1.link.ptr()
		if p.m != 0 {
			mp := p.m.ptr()
			p.m = 0
			if mp.nextp != 0 {
				throw("startTheWorld: inconsistent mp->nextp")
			}
			mp.nextp.set(p)
			notewakeup(&mp.park)
		} else {
			// Start M to run P.  Do not start another M below.
			newm(nil, p)
			add = false
		}
	}

	// Wakeup an additional proc in case we have excessive runnable goroutines
	// in local queues or in the global queue. If we don't, the proc will park itself.
	// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
		wakep()
	}

	if add {
		// If GC could have used another helper proc, start one now,
		// in the hope that it will be available next time.
		// It would have been even better to start it before the collection,
		// but doing so requires allocating memory, so it's tricky to
		// coordinate. This lazy approach works out in practice:
		// we don't mind if the first couple gc rounds don't have quite
		// the maximum number of procs.
		newm(unsafe.Pointer(funcPC(mhelpgc)), nil)
	}
	_g_.m.locks--
}

// forEachP calls fn(p) for every P p when p reaches a GC safe point.
// If a P is currently executing code, this will bring the P to a GC
// safe point and execute fn on that P. If the P is not executing code
// (it is idle or in a syscall), this will call fn(p) directly while
// preventing the P from exiting its state. This does not ensure that
// fn will run on every CPU executing Go code, but it acts as a global
// memory barrier. GC uses this as a "ragged barrier."
//
// The caller must hold worldsema.
//
//go:systemstack
func forEachP(fn func(*p)) {
	mp := acquirem()
	_p_ := getg().m.p.ptr()

	lock(&sched.lock)
	if sched.safePointWait != 0 {
		throw("forEachP: sched.safePointWait != 0")
	}
	sched.safePointWait = gomaxprocs - 1
	sched.safePointFn = fn

	// Ask all Ps to run the safe point function.
	for _, p := range allp[:gomaxprocs] {
		if p != _p_ {
			atomic.Store(&p.runSafePointFn, 1)
		}
	}
	preemptall()

	// Any P entering _Pidle or _Psyscall from now on will observe
	// p.runSafePointFn == 1 and will call runSafePointFn when
	// changing its status to _Pidle/_Psyscall.

	// Run safe point function for all idle Ps. sched.pidle will
	// not change because we hold sched.lock.
	for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
		if atomic.Cas(&p.runSafePointFn, 1, 0) {
			fn(p)
			sched.safePointWait--
		}
	}

	wait := sched.safePointWait > 0
	unlock(&sched.lock)

	// Run fn for the current P.
	fn(_p_)

	// Force Ps currently in _Psyscall into _Pidle and hand them
	// off to induce safe point function execution.
	for i := 0; i < int(gomaxprocs); i++ {
		p := allp[i]
		s := p.status
		if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
			if trace.enabled {
				traceGoSysBlock(p)
				traceProcStop(p)
			}
			p.syscalltick++
			handoffp(p)
		}
	}

	// Wait for remaining Ps to run fn.
	if wait {
		for {
			// Wait for 100us, then try to re-preempt in
			// case of any races.
			//
			// Requires system stack.
			if notetsleep(&sched.safePointNote, 100*1000) {
				noteclear(&sched.safePointNote)
				break
			}
			preemptall()
		}
	}
	if sched.safePointWait != 0 {
		throw("forEachP: not done")
	}
	for i := 0; i < int(gomaxprocs); i++ {
		p := allp[i]
		if p.runSafePointFn != 0 {
			throw("forEachP: P did not run fn")
		}
	}

	lock(&sched.lock)
	sched.safePointFn = nil
	unlock(&sched.lock)
	releasem(mp)
}

// runSafePointFn runs the safe point function, if any, for this P.
// This should be called like
//
//     if getg().m.p.runSafePointFn != 0 {
//         runSafePointFn()
//     }
//
// runSafePointFn must be checked on any transition in to _Pidle or
// _Psyscall to avoid a race where forEachP sees that the P is running
// just before the P goes into _Pidle/_Psyscall and neither forEachP
// nor the P run the safe-point function.
func runSafePointFn() {
	p := getg().m.p.ptr()
	// Resolve the race between forEachP running the safe-point
	// function on this P's behalf and this P running the
	// safe-point function directly.
	if !atomic.Cas(&p.runSafePointFn, 1, 0) {
		return
	}
	sched.safePointFn(p)
	lock(&sched.lock)
	sched.safePointWait--
	if sched.safePointWait == 0 {
		notewakeup(&sched.safePointNote)
	}
	unlock(&sched.lock)
}

// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via casp) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
//go:nosplit
func needm(x byte) {
	if iscgo && !cgoHasExtraM {
		// Can happen if C/C++ code calls Go from a global ctor.
		// Can not throw, because scheduler is not initialized yet.
		write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
		exit(1)
	}

	// Lock extra list, take head, unlock popped list.
	// nilokay=false is safe here because of the invariant above,
	// that the extra list always contains or will soon contain
	// at least one m.
	mp := lockextra(false)

	// Set needextram when we've just emptied the list,
	// so that the eventual call into cgocallbackg will
	// allocate a new m for the extra list. We delay the
	// allocation until then so that it can be done
	// after exitsyscall makes sure it is okay to be
	// running at all (that is, there's no garbage collection
	// running right now).
	mp.needextram = mp.schedlink == 0
	unlockextra(mp.schedlink.ptr())

	// Save and block signals before installing g.
	// Once g is installed, any incoming signals will try to execute,
	// but we won't have the sigaltstack settings and other data
	// set up appropriately until the end of minit, which will
	// unblock the signals. This is the same dance as when
	// starting a new m to run Go code via newosproc.
	msigsave(mp)
	sigblock()

	// Install g (= m->curg).
	setg(mp.curg)
	atomic.Store(&mp.curg.atomicstatus, _Gsyscall)
	setGContext()

	// Initialize this thread to use the m.
	minit()
}

var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")

// newextram allocates m's and puts them on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
func newextram() {
	c := atomic.Xchg(&extraMWaiters, 0)
	if c > 0 {
		for i := uint32(0); i < c; i++ {
			oneNewExtraM()
		}
	} else {
		// Make sure there is at least one extra M.
		mp := lockextra(true)
		unlockextra(mp)
		if mp == nil {
			oneNewExtraM()
		}
	}
}

// oneNewExtraM allocates an m and puts it on the extra list.
func oneNewExtraM() {
	// Create extra goroutine locked to extra m.
	// The goroutine is the context in which the cgo callback will run.
	// The sched.pc will never be returned to, but setting it to
	// goexit makes clear to the traceback routines where
	// the goroutine stack ends.
	var g0SP unsafe.Pointer
	var g0SPSize uintptr
	mp := allocm(nil, true, &g0SP, &g0SPSize)
	gp := malg(true, false, nil, nil)
	gp.gcscanvalid = true // fresh G, so no dequeueRescan necessary
	gp.gcscandone = true
	gp.gcRescan = -1

	// malg returns status as Gidle, change to Gdead before adding to allg
	// where GC will see it.
	// gccgo uses Gdead here, not Gsyscall, because the split
	// stack context is not initialized.
	casgstatus(gp, _Gidle, _Gdead)
	gp.m = mp
	mp.curg = gp
	mp.locked = _LockInternal
	mp.lockedg = gp
	gp.lockedm = mp
	gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
	// put on allg for garbage collector
	allgadd(gp)

	// The context for gp will be set up in needm.
	// Here we need to set the context for g0.
	makeGContext(mp.g0, g0SP, g0SPSize)

	// Add m to the extra list.
	mnext := lockextra(true)
	mp.schedlink.set(mnext)
	unlockextra(mp)
}

// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
func dropm() {
	// Clear m and g, and return m to the extra list.
	// After the call to setg we can only call nosplit functions
	// with no pointer manipulation.
	mp := getg().m

	// Block signals before unminit.
	// Unminit unregisters the signal handling stack (but needs g on some systems).
	// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
	// It's important not to try to handle a signal between those two steps.
	sigmask := mp.sigmask
	sigblock()
	unminit()

	// gccgo sets the stack to Gdead here, because the splitstack
	// context is not initialized.
	mp.curg.atomicstatus = _Gdead
	mp.curg.gcstack = nil
	mp.curg.gcnextsp = nil

	mnext := lockextra(true)
	mp.schedlink.set(mnext)

	setg(nil)

	// Commit the release of mp.
	unlockextra(mp)

	msigrestore(sigmask)
}

// A helper function for EnsureDropM.
func getm() uintptr {
	return uintptr(unsafe.Pointer(getg().m))
}

var extram uintptr
var extraMWaiters uint32

// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
//go:nosplit
func lockextra(nilokay bool) *m {
	const locked = 1

	incr := false
	for {
		old := atomic.Loaduintptr(&extram)
		if old == locked {
			yield := osyield
			yield()
			continue
		}
		if old == 0 && !nilokay {
			if !incr {
				// Add 1 to the number of threads
				// waiting for an M.
				// This is cleared by newextram.
				atomic.Xadd(&extraMWaiters, 1)
				incr = true
			}
			usleep(1)
			continue
		}
		if atomic.Casuintptr(&extram, old, locked) {
			return (*m)(unsafe.Pointer(old))
		}
		yield := osyield
		yield()
		continue
	}
}

//go:nosplit
func unlockextra(mp *m) {
	atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
}

// Stops execution of the current m until new work is available.
// Returns with acquired P.
func stopm() {
	_g_ := getg()

	if _g_.m.locks != 0 {
		throw("stopm holding locks")
	}
	if _g_.m.p != 0 {
		throw("stopm holding p")
	}
	if _g_.m.spinning {
		throw("stopm spinning")
	}

retry:
	lock(&sched.lock)
	mput(_g_.m)
	unlock(&sched.lock)
	notesleep(&_g_.m.park)
	noteclear(&_g_.m.park)
	if _g_.m.helpgc != 0 {
		gchelper()
		_g_.m.helpgc = 0
		_g_.m.mcache = nil
		_g_.m.p = 0
		goto retry
	}
	acquirep(_g_.m.nextp.ptr())
	_g_.m.nextp = 0
}

// Hands off P from syscall or locked M.
// Always runs without a P, so write barriers are not allowed.
//go:nowritebarrierrec
func handoffp(_p_ *p) {
	// handoffp must start an M in any situation where
	// findrunnable would return a G to run on _p_.

	// if it has local work, start it straight away
	if !runqempty(_p_) || sched.runqsize != 0 {
		startm(_p_, false)
		return
	}
	// if it has GC work, start it straight away
	if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
		startm(_p_, false)
		return
	}
	// no local work, check that there are no spinning/idle M's,
	// otherwise our help is not required
	if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
		startm(_p_, true)
		return
	}
	lock(&sched.lock)
	if sched.gcwaiting != 0 {
		_p_.status = _Pgcstop
		sched.stopwait--
		if sched.stopwait == 0 {
			notewakeup(&sched.stopnote)
		}
		unlock(&sched.lock)
		return
	}
	if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
		sched.safePointFn(_p_)
		sched.safePointWait--
		if sched.safePointWait == 0 {
			notewakeup(&sched.safePointNote)
		}
	}
	if sched.runqsize != 0 {
		unlock(&sched.lock)
		startm(_p_, false)
		return
	}
	// If this is the last running P and nobody is polling network,
	// need to wakeup another M to poll network.
	if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
		unlock(&sched.lock)
		startm(_p_, false)
		return
	}
	pidleput(_p_)
	unlock(&sched.lock)
}

// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
func wakep() {
	// be conservative about spinning threads
	if !atomic.Cas(&sched.nmspinning, 0, 1) {
		return
	}
	startm(nil, true)
}

// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
func stoplockedm() {
	_g_ := getg()

	if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
		throw("stoplockedm: inconsistent locking")
	}
	if _g_.m.p != 0 {
		// Schedule another M to run this p.
		_p_ := releasep()
		handoffp(_p_)
	}
	incidlelocked(1)
	// Wait until another thread schedules lockedg again.
	notesleep(&_g_.m.park)
	noteclear(&_g_.m.park)
	status := readgstatus(_g_.m.lockedg)
	if status&^_Gscan != _Grunnable {
		print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
		dumpgstatus(_g_)
		throw("stoplockedm: not runnable")
	}
	acquirep(_g_.m.nextp.ptr())
	_g_.m.nextp = 0
}

// Schedules the locked m to run the locked gp.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func startlockedm(gp *g) {
	_g_ := getg()

	mp := gp.lockedm
	if mp == _g_.m {
		throw("startlockedm: locked to me")
	}
	if mp.nextp != 0 {
		throw("startlockedm: m has p")
	}
	// directly handoff current P to the locked m
	incidlelocked(-1)
	_p_ := releasep()
	mp.nextp.set(_p_)
	notewakeup(&mp.park)
	stopm()
}

// Stops the current m for stopTheWorld.
// Returns when the world is restarted.
func gcstopm() {
	_g_ := getg()

	if sched.gcwaiting == 0 {
		throw("gcstopm: not waiting for gc")
	}
	if _g_.m.spinning {
		_g_.m.spinning = false
		// OK to just drop nmspinning here,
		// startTheWorld will unpark threads as necessary.
		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
			throw("gcstopm: negative nmspinning")
		}
	}
	_p_ := releasep()
	lock(&sched.lock)
	_p_.status = _Pgcstop
	sched.stopwait--
	if sched.stopwait == 0 {
		notewakeup(&sched.stopnote)
	}
	unlock(&sched.lock)
	stopm()
}

// Schedules gp to run on the current M.
// If inheritTime is true, gp inherits the remaining time in the
// current time slice. Otherwise, it starts a new time slice.
// Never returns.
//
// Write barriers are allowed because this is called immediately after
// acquiring a P in several places.
//
//go:yeswritebarrierrec
func execute(gp *g, inheritTime bool) {
	_g_ := getg()

	casgstatus(gp, _Grunnable, _Grunning)
	gp.waitsince = 0
	gp.preempt = false
	if !inheritTime {
		_g_.m.p.ptr().schedtick++
	}
	_g_.m.curg = gp
	gp.m = _g_.m

	// Check whether the profiler needs to be turned on or off.
	hz := sched.profilehz
	if _g_.m.profilehz != hz {
		resetcpuprofiler(hz)
	}

	if trace.enabled {
		// GoSysExit has to happen when we have a P, but before GoStart.
		// So we emit it here.
		if gp.syscallsp != 0 && gp.sysblocktraced {
			traceGoSysExit(gp.sysexitticks)
		}
		traceGoStart()
	}

	gogo(gp)
}

// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
func findrunnable() (gp *g, inheritTime bool) {
	_g_ := getg()

	// The conditions here and in handoffp must agree: if
	// findrunnable would return a G to run, handoffp must start
	// an M.

top:
	_p_ := _g_.m.p.ptr()
	if sched.gcwaiting != 0 {
		gcstopm()
		goto top
	}
	if _p_.runSafePointFn != 0 {
		runSafePointFn()
	}
	if getfingwait() && getfingwake() {
		if gp := wakefing(); gp != nil {
			ready(gp, 0, true)
		}
	}

	// local runq
	if gp, inheritTime := runqget(_p_); gp != nil {
		return gp, inheritTime
	}

	// global runq
	if sched.runqsize != 0 {
		lock(&sched.lock)
		gp := globrunqget(_p_, 0)
		unlock(&sched.lock)
		if gp != nil {
			return gp, false
		}
	}

	// Poll network.
	// This netpoll is only an optimization before we resort to stealing.
	// We can safely skip it if there a thread blocked in netpoll already.
	// If there is any kind of logical race with that blocked thread
	// (e.g. it has already returned from netpoll, but does not set lastpoll yet),
	// this thread will do blocking netpoll below anyway.
	if netpollinited() && sched.lastpoll != 0 {
		if gp := netpoll(false); gp != nil { // non-blocking
			// netpoll returns list of goroutines linked by schedlink.
			injectglist(gp.schedlink.ptr())
			casgstatus(gp, _Gwaiting, _Grunnable)
			if trace.enabled {
				traceGoUnpark(gp, 0)
			}
			return gp, false
		}
	}

	// Steal work from other P's.
	procs := uint32(gomaxprocs)
	if atomic.Load(&sched.npidle) == procs-1 {
		// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
		// New work can appear from returning syscall/cgocall, network or timers.
		// Neither of that submits to local run queues, so no point in stealing.
		goto stop
	}
	// If number of spinning M's >= number of busy P's, block.
	// This is necessary to prevent excessive CPU consumption
	// when GOMAXPROCS>>1 but the program parallelism is low.
	if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
		goto stop
	}
	if !_g_.m.spinning {
		_g_.m.spinning = true
		atomic.Xadd(&sched.nmspinning, 1)
	}
	for i := 0; i < 4; i++ {
		for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
			if sched.gcwaiting != 0 {
				goto top
			}
			stealRunNextG := i > 2 // first look for ready queues with more than 1 g
			if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
				return gp, false
			}
		}
	}

stop:

	// We have nothing to do. If we're in the GC mark phase, can
	// safely scan and blacken objects, and have work to do, run
	// idle-time marking rather than give up the P.
	if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
		_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
		gp := _p_.gcBgMarkWorker.ptr()
		casgstatus(gp, _Gwaiting, _Grunnable)
		if trace.enabled {
			traceGoUnpark(gp, 0)
		}
		return gp, false
	}

	// return P and block
	lock(&sched.lock)
	if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
		unlock(&sched.lock)
		goto top
	}
	if sched.runqsize != 0 {
		gp := globrunqget(_p_, 0)
		unlock(&sched.lock)
		return gp, false
	}
	if releasep() != _p_ {
		throw("findrunnable: wrong p")
	}
	pidleput(_p_)
	unlock(&sched.lock)

	// Delicate dance: thread transitions from spinning to non-spinning state,
	// potentially concurrently with submission of new goroutines. We must
	// drop nmspinning first and then check all per-P queues again (with
	// #StoreLoad memory barrier in between). If we do it the other way around,
	// another thread can submit a goroutine after we've checked all run queues
	// but before we drop nmspinning; as the result nobody will unpark a thread
	// to run the goroutine.
	// If we discover new work below, we need to restore m.spinning as a signal
	// for resetspinning to unpark a new worker thread (because there can be more
	// than one starving goroutine). However, if after discovering new work
	// we also observe no idle Ps, it is OK to just park the current thread:
	// the system is fully loaded so no spinning threads are required.
	// Also see "Worker thread parking/unparking" comment at the top of the file.
	wasSpinning := _g_.m.spinning
	if _g_.m.spinning {
		_g_.m.spinning = false
		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
			throw("findrunnable: negative nmspinning")
		}
	}

	// check all runqueues once again
	for i := 0; i < int(gomaxprocs); i++ {
		_p_ := allp[i]
		if _p_ != nil && !runqempty(_p_) {
			lock(&sched.lock)
			_p_ = pidleget()
			unlock(&sched.lock)
			if _p_ != nil {
				acquirep(_p_)
				if wasSpinning {
					_g_.m.spinning = true
					atomic.Xadd(&sched.nmspinning, 1)
				}
				goto top
			}
			break
		}
	}

	// Check for idle-priority GC work again.
	if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) {
		lock(&sched.lock)
		_p_ = pidleget()
		if _p_ != nil && _p_.gcBgMarkWorker == 0 {
			pidleput(_p_)
			_p_ = nil
		}
		unlock(&sched.lock)
		if _p_ != nil {
			acquirep(_p_)
			if wasSpinning {
				_g_.m.spinning = true
				atomic.Xadd(&sched.nmspinning, 1)
			}
			// Go back to idle GC check.
			goto stop
		}
	}

	// poll network
	if netpollinited() && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
		if _g_.m.p != 0 {
			throw("findrunnable: netpoll with p")
		}
		if _g_.m.spinning {
			throw("findrunnable: netpoll with spinning")
		}
		gp := netpoll(true) // block until new work is available
		atomic.Store64(&sched.lastpoll, uint64(nanotime()))
		if gp != nil {
			lock(&sched.lock)
			_p_ = pidleget()
			unlock(&sched.lock)
			if _p_ != nil {
				acquirep(_p_)
				injectglist(gp.schedlink.ptr())
				casgstatus(gp, _Gwaiting, _Grunnable)
				if trace.enabled {
					traceGoUnpark(gp, 0)
				}
				return gp, false
			}
			injectglist(gp)
		}
	}
	stopm()
	goto top
}

// pollWork returns true if there is non-background work this P could
// be doing. This is a fairly lightweight check to be used for
// background work loops, like idle GC. It checks a subset of the
// conditions checked by the actual scheduler.
func pollWork() bool {
	if sched.runqsize != 0 {
		return true
	}
	p := getg().m.p.ptr()
	if !runqempty(p) {
		return true
	}
	if netpollinited() && sched.lastpoll != 0 {
		if gp := netpoll(false); gp != nil {
			injectglist(gp)
			return true
		}
	}
	return false
}

func resetspinning() {
	_g_ := getg()
	if !_g_.m.spinning {
		throw("resetspinning: not a spinning m")
	}
	_g_.m.spinning = false
	nmspinning := atomic.Xadd(&sched.nmspinning, -1)
	if int32(nmspinning) < 0 {
		throw("findrunnable: negative nmspinning")
	}
	// M wakeup policy is deliberately somewhat conservative, so check if we
	// need to wakeup another P here. See "Worker thread parking/unparking"
	// comment at the top of the file for details.
	if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
		wakep()
	}
}

// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
func injectglist(glist *g) {
	if glist == nil {
		return
	}
	if trace.enabled {
		for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
			traceGoUnpark(gp, 0)
		}
	}
	lock(&sched.lock)
	var n int
	for n = 0; glist != nil; n++ {
		gp := glist
		glist = gp.schedlink.ptr()
		casgstatus(gp, _Gwaiting, _Grunnable)
		globrunqput(gp)
	}
	unlock(&sched.lock)
	for ; n != 0 && sched.npidle != 0; n-- {
		startm(nil, false)
	}
}

// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
func schedule() {
	_g_ := getg()

	if _g_.m.locks != 0 {
		throw("schedule: holding locks")
	}

	if _g_.m.lockedg != nil {
		stoplockedm()
		execute(_g_.m.lockedg, false) // Never returns.
	}

top:
	if sched.gcwaiting != 0 {
		gcstopm()
		goto top
	}
	if _g_.m.p.ptr().runSafePointFn != 0 {
		runSafePointFn()
	}

	var gp *g
	var inheritTime bool
	if trace.enabled || trace.shutdown {
		gp = traceReader()
		if gp != nil {
			casgstatus(gp, _Gwaiting, _Grunnable)
			traceGoUnpark(gp, 0)
		}
	}
	if gp == nil && gcBlackenEnabled != 0 {
		gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
	}
	if gp == nil {
		// Check the global runnable queue once in a while to ensure fairness.
		// Otherwise two goroutines can completely occupy the local runqueue
		// by constantly respawning each other.
		if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
			lock(&sched.lock)
			gp = globrunqget(_g_.m.p.ptr(), 1)
			unlock(&sched.lock)
		}
	}
	if gp == nil {
		gp, inheritTime = runqget(_g_.m.p.ptr())
		if gp != nil && _g_.m.spinning {
			throw("schedule: spinning with local work")
		}

		// Because gccgo does not implement preemption as a stack check,
		// we need to check for preemption here for fairness.
		// Otherwise goroutines on the local queue may starve
		// goroutines on the global queue.
		// Since we preempt by storing the goroutine on the global
		// queue, this is the only place we need to check preempt.
		if gp != nil && gp.preempt {
			gp.preempt = false
			lock(&sched.lock)
			globrunqput(gp)
			unlock(&sched.lock)
			goto top
		}
	}
	if gp == nil {
		gp, inheritTime = findrunnable() // blocks until work is available
	}

	// This thread is going to run a goroutine and is not spinning anymore,
	// so if it was marked as spinning we need to reset it now and potentially
	// start a new spinning M.
	if _g_.m.spinning {
		resetspinning()
	}

	if gp.lockedm != nil {
		// Hands off own p to the locked m,
		// then blocks waiting for a new p.
		startlockedm(gp)
		goto top
	}

	execute(gp, inheritTime)
}

// dropg removes the association between m and the current goroutine m->curg (gp for short).
// Typically a caller sets gp's status away from Grunning and then
// immediately calls dropg to finish the job. The caller is also responsible
// for arranging that gp will be restarted using ready at an
// appropriate time. After calling dropg and arranging for gp to be
// readied later, the caller can do other work but eventually should
// call schedule to restart the scheduling of goroutines on this m.
func dropg() {
	_g_ := getg()

	setMNoWB(&_g_.m.curg.m, nil)
	setGNoWB(&_g_.m.curg, nil)
}

func beforefork() {
	gp := getg().m.curg

	// Fork can hang if preempted with signals frequently enough (see issue 5517).
	// Ensure that we stay on the same M where we disable profiling.
	gp.m.locks++
	if gp.m.profilehz != 0 {
		resetcpuprofiler(0)
	}
}

// Called from syscall package before fork.
//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
//go:nosplit
func syscall_runtime_BeforeFork() {
	systemstack(beforefork)
}

func afterfork() {
	gp := getg().m.curg

	hz := sched.profilehz
	if hz != 0 {
		resetcpuprofiler(hz)
	}
	gp.m.locks--
}

// Called from syscall package after fork in parent.
//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
//go:nosplit
func syscall_runtime_AfterFork() {
	systemstack(afterfork)
}

// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
func gfput(_p_ *p, gp *g) {
	if readgstatus(gp) != _Gdead {
		throw("gfput: bad status (not Gdead)")
	}

	gp.schedlink.set(_p_.gfree)
	_p_.gfree = gp
	_p_.gfreecnt++
	if _p_.gfreecnt >= 64 {
		lock(&sched.gflock)
		for _p_.gfreecnt >= 32 {
			_p_.gfreecnt--
			gp = _p_.gfree
			_p_.gfree = gp.schedlink.ptr()
			gp.schedlink.set(sched.gfree)
			sched.gfree = gp
			sched.ngfree++
		}
		unlock(&sched.gflock)
	}
}

// Get from gfree list.
// If local list is empty, grab a batch from global list.
func gfget(_p_ *p) *g {
retry:
	gp := _p_.gfree
	if gp == nil && sched.gfree != nil {
		lock(&sched.gflock)
		for _p_.gfreecnt < 32 {
			if sched.gfree != nil {
				gp = sched.gfree
				sched.gfree = gp.schedlink.ptr()
			} else {
				break
			}
			_p_.gfreecnt++
			sched.ngfree--
			gp.schedlink.set(_p_.gfree)
			_p_.gfree = gp
		}
		unlock(&sched.gflock)
		goto retry
	}
	if gp != nil {
		_p_.gfree = gp.schedlink.ptr()
		_p_.gfreecnt--
	}
	return gp
}

// Purge all cached G's from gfree list to the global list.
func gfpurge(_p_ *p) {
	lock(&sched.gflock)
	for _p_.gfreecnt != 0 {
		_p_.gfreecnt--
		gp := _p_.gfree
		_p_.gfree = gp.schedlink.ptr()
		gp.schedlink.set(sched.gfree)
		sched.gfree = gp
		sched.ngfree++
	}
	unlock(&sched.gflock)
}

// dolockOSThread is called by LockOSThread and lockOSThread below
// after they modify m.locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
//go:nosplit
func dolockOSThread() {
	_g_ := getg()
	_g_.m.lockedg = _g_
	_g_.lockedm = _g_.m
}

//go:nosplit

// LockOSThread wires the calling goroutine to its current operating system thread.
// Until the calling goroutine exits or calls UnlockOSThread, it will always
// execute in that thread, and no other goroutine can.
func LockOSThread() {
	getg().m.locked |= _LockExternal
	dolockOSThread()
}

//go:nosplit
func lockOSThread() {
	getg().m.locked += _LockInternal
	dolockOSThread()
}

// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
//go:nosplit
func dounlockOSThread() {
	_g_ := getg()
	if _g_.m.locked != 0 {
		return
	}
	_g_.m.lockedg = nil
	_g_.lockedm = nil
}

//go:nosplit

// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
func UnlockOSThread() {
	getg().m.locked &^= _LockExternal
	dounlockOSThread()
}

//go:nosplit
func unlockOSThread() {
	_g_ := getg()
	if _g_.m.locked < _LockInternal {
		systemstack(badunlockosthread)
	}
	_g_.m.locked -= _LockInternal
	dounlockOSThread()
}

func badunlockosthread() {
	throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
}

func gcount() int32 {
	n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys))
	for i := 0; ; i++ {
		_p_ := allp[i]
		if _p_ == nil {
			break
		}
		n -= _p_.gfreecnt
	}

	// All these variables can be changed concurrently, so the result can be inconsistent.
	// But at least the current goroutine is running.
	if n < 1 {
		n = 1
	}
	return n
}

func mcount() int32 {
	return sched.mcount
}

// Change number of processors. The world is stopped, sched is locked.
// gcworkbufs are not being modified by either the GC or
// the write barrier code.
// Returns list of Ps with local work, they need to be scheduled by the caller.
func procresize(nprocs int32) *p {
	old := gomaxprocs
	if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
		throw("procresize: invalid arg")
	}
	if trace.enabled {
		traceGomaxprocs(nprocs)
	}

	// update statistics
	now := nanotime()
	if sched.procresizetime != 0 {
		sched.totaltime += int64(old) * (now - sched.procresizetime)
	}
	sched.procresizetime = now

	// initialize new P's
	for i := int32(0); i < nprocs; i++ {
		pp := allp[i]
		if pp == nil {
			pp = new(p)
			pp.id = i
			pp.status = _Pgcstop
			pp.sudogcache = pp.sudogbuf[:0]
			pp.deferpool = pp.deferpoolbuf[:0]
			atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
		}
		if pp.mcache == nil {
			if old == 0 && i == 0 {
				if getg().m.mcache == nil {
					throw("missing mcache?")
				}
				pp.mcache = getg().m.mcache // bootstrap
			} else {
				pp.mcache = allocmcache()
			}
		}
	}

	// free unused P's
	for i := nprocs; i < old; i++ {
		p := allp[i]
		if trace.enabled {
			if p == getg().m.p.ptr() {
				// moving to p[0], pretend that we were descheduled
				// and then scheduled again to keep the trace sane.
				traceGoSched()
				traceProcStop(p)
			}
		}
		// move all runnable goroutines to the global queue
		for p.runqhead != p.runqtail {
			// pop from tail of local queue
			p.runqtail--
			gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
			// push onto head of global queue
			globrunqputhead(gp)
		}
		if p.runnext != 0 {
			globrunqputhead(p.runnext.ptr())
			p.runnext = 0
		}
		// if there's a background worker, make it runnable and put
		// it on the global queue so it can clean itself up
		if gp := p.gcBgMarkWorker.ptr(); gp != nil {
			casgstatus(gp, _Gwaiting, _Grunnable)
			if trace.enabled {
				traceGoUnpark(gp, 0)
			}
			globrunqput(gp)
			// This assignment doesn't race because the
			// world is stopped.
			p.gcBgMarkWorker.set(nil)
		}
		for i := range p.sudogbuf {
			p.sudogbuf[i] = nil
		}
		p.sudogcache = p.sudogbuf[:0]
		for i := range p.deferpoolbuf {
			p.deferpoolbuf[i] = nil
		}
		p.deferpool = p.deferpoolbuf[:0]
		freemcache(p.mcache)
		p.mcache = nil
		gfpurge(p)
		traceProcFree(p)
		p.status = _Pdead
		// can't free P itself because it can be referenced by an M in syscall
	}

	_g_ := getg()
	if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
		// continue to use the current P
		_g_.m.p.ptr().status = _Prunning
	} else {
		// release the current P and acquire allp[0]
		if _g_.m.p != 0 {
			_g_.m.p.ptr().m = 0
		}
		_g_.m.p = 0
		_g_.m.mcache = nil
		p := allp[0]
		p.m = 0
		p.status = _Pidle
		acquirep(p)
		if trace.enabled {
			traceGoStart()
		}
	}
	var runnablePs *p
	for i := nprocs - 1; i >= 0; i-- {
		p := allp[i]
		if _g_.m.p.ptr() == p {
			continue
		}
		p.status = _Pidle
		if runqempty(p) {
			pidleput(p)
		} else {
			p.m.set(mget())
			p.link.set(runnablePs)
			runnablePs = p
		}
	}
	stealOrder.reset(uint32(nprocs))
	var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
	atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
	return runnablePs
}

// Associate p and the current m.
//
// This function is allowed to have write barriers even if the caller
// isn't because it immediately acquires _p_.
//
//go:yeswritebarrierrec
func acquirep(_p_ *p) {
	// Do the part that isn't allowed to have write barriers.
	acquirep1(_p_)

	// have p; write barriers now allowed
	_g_ := getg()
	_g_.m.mcache = _p_.mcache

	if trace.enabled {
		traceProcStart()
	}
}

// acquirep1 is the first step of acquirep, which actually acquires
// _p_. This is broken out so we can disallow write barriers for this
// part, since we don't yet have a P.
//
//go:nowritebarrierrec
func acquirep1(_p_ *p) {
	_g_ := getg()

	if _g_.m.p != 0 || _g_.m.mcache != nil {
		throw("acquirep: already in go")
	}
	if _p_.m != 0 || _p_.status != _Pidle {
		id := int32(0)
		if _p_.m != 0 {
			id = _p_.m.ptr().id
		}
		print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
		throw("acquirep: invalid p state")
	}
	_g_.m.p.set(_p_)
	_p_.m.set(_g_.m)
	_p_.status = _Prunning
}

// Disassociate p and the current m.
func releasep() *p {
	_g_ := getg()

	if _g_.m.p == 0 || _g_.m.mcache == nil {
		throw("releasep: invalid arg")
	}
	_p_ := _g_.m.p.ptr()
	if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
		print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
		throw("releasep: invalid p state")
	}
	if trace.enabled {
		traceProcStop(_g_.m.p.ptr())
	}
	_g_.m.p = 0
	_g_.m.mcache = nil
	_p_.m = 0
	_p_.status = _Pidle
	return _p_
}

func incidlelocked(v int32) {
	lock(&sched.lock)
	sched.nmidlelocked += v
	if v > 0 {
		checkdead()
	}
	unlock(&sched.lock)
}

// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
func checkdead() {
	// For -buildmode=c-shared or -buildmode=c-archive it's OK if
	// there are no running goroutines. The calling program is
	// assumed to be running.
	if islibrary || isarchive {
		return
	}

	// If we are dying because of a signal caught on an already idle thread,
	// freezetheworld will cause all running threads to block.
	// And runtime will essentially enter into deadlock state,
	// except that there is a thread that will call exit soon.
	if panicking > 0 {
		return
	}

	// -1 for sysmon
	run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
	if run > 0 {
		return
	}
	if run < 0 {
		print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
		throw("checkdead: inconsistent counts")
	}

	grunning := 0
	lock(&allglock)
	for i := 0; i < len(allgs); i++ {
		gp := allgs[i]
		if isSystemGoroutine(gp) {
			continue
		}
		s := readgstatus(gp)
		switch s &^ _Gscan {
		case _Gwaiting:
			grunning++
		case _Grunnable,
			_Grunning,
			_Gsyscall:
			unlock(&allglock)
			print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
			throw("checkdead: runnable g")
		}
	}
	unlock(&allglock)
	if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
		throw("no goroutines (main called runtime.Goexit) - deadlock!")
	}

	// Maybe jump time forward for playground.
	gp := timejump()
	if gp != nil {
		casgstatus(gp, _Gwaiting, _Grunnable)
		globrunqput(gp)
		_p_ := pidleget()
		if _p_ == nil {
			throw("checkdead: no p for timer")
		}
		mp := mget()
		if mp == nil {
			// There should always be a free M since
			// nothing is running.
			throw("checkdead: no m for timer")
		}
		mp.nextp.set(_p_)
		notewakeup(&mp.park)
		return
	}

	getg().m.throwing = -1 // do not dump full stacks
	throw("all goroutines are asleep - deadlock!")
}

// forcegcperiod is the maximum time in nanoseconds between garbage
// collections. If we go this long without a garbage collection, one
// is forced to run.
//
// This is a variable for testing purposes. It normally doesn't change.
var forcegcperiod int64 = 2 * 60 * 1e9

// Always runs without a P, so write barriers are not allowed.
//
//go:nowritebarrierrec
func sysmon() {
	// If a heap span goes unused for 5 minutes after a garbage collection,
	// we hand it back to the operating system.
	scavengelimit := int64(5 * 60 * 1e9)

	if debug.scavenge > 0 {
		// Scavenge-a-lot for testing.
		forcegcperiod = 10 * 1e6
		scavengelimit = 20 * 1e6
	}

	lastscavenge := nanotime()
	nscavenge := 0

	lasttrace := int64(0)
	idle := 0 // how many cycles in succession we had not wokeup somebody
	delay := uint32(0)
	for {
		if idle == 0 { // start with 20us sleep...
			delay = 20
		} else if idle > 50 { // start doubling the sleep after 1ms...
			delay *= 2
		}
		if delay > 10*1000 { // up to 10ms
			delay = 10 * 1000
		}
		usleep(delay)
		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
			lock(&sched.lock)
			if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
				atomic.Store(&sched.sysmonwait, 1)
				unlock(&sched.lock)
				// Make wake-up period small enough
				// for the sampling to be correct.
				maxsleep := forcegcperiod / 2
				if scavengelimit < forcegcperiod {
					maxsleep = scavengelimit / 2
				}
				notetsleep(&sched.sysmonnote, maxsleep)
				lock(&sched.lock)
				atomic.Store(&sched.sysmonwait, 0)
				noteclear(&sched.sysmonnote)
				idle = 0
				delay = 20
			}
			unlock(&sched.lock)
		}
		// poll network if not polled for more than 10ms
		lastpoll := int64(atomic.Load64(&sched.lastpoll))
		now := nanotime()
		unixnow := unixnanotime()
		if lastpoll != 0 && lastpoll+10*1000*1000 < now {
			atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
			gp := netpoll(false) // non-blocking - returns list of goroutines
			if gp != nil {
				// Need to decrement number of idle locked M's
				// (pretending that one more is running) before injectglist.
				// Otherwise it can lead to the following situation:
				// injectglist grabs all P's but before it starts M's to run the P's,
				// another M returns from syscall, finishes running its G,
				// observes that there is no work to do and no other running M's
				// and reports deadlock.
				incidlelocked(-1)
				injectglist(gp)
				incidlelocked(1)
			}
		}
		// retake P's blocked in syscalls
		// and preempt long running G's
		if retake(now) != 0 {
			idle = 0
		} else {
			idle++
		}
		// check if we need to force a GC
		lastgc := int64(atomic.Load64(&memstats.last_gc))
		if gcphase == _GCoff && lastgc != 0 && unixnow-lastgc > forcegcperiod && atomic.Load(&forcegc.idle) != 0 {
			lock(&forcegc.lock)
			forcegc.idle = 0
			forcegc.g.schedlink = 0
			injectglist(forcegc.g)
			unlock(&forcegc.lock)
		}
		// scavenge heap once in a while
		if lastscavenge+scavengelimit/2 < now {
			mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
			lastscavenge = now
			nscavenge++
		}
		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
			lasttrace = now
			schedtrace(debug.scheddetail > 0)
		}
	}
}

var pdesc [_MaxGomaxprocs]struct {
	schedtick   uint32
	schedwhen   int64
	syscalltick uint32
	syscallwhen int64
}

// forcePreemptNS is the time slice given to a G before it is
// preempted.
const forcePreemptNS = 10 * 1000 * 1000 // 10ms

func retake(now int64) uint32 {
	n := 0
	for i := int32(0); i < gomaxprocs; i++ {
		_p_ := allp[i]
		if _p_ == nil {
			continue
		}
		pd := &pdesc[i]
		s := _p_.status
		if s == _Psyscall {
			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
			t := int64(_p_.syscalltick)
			if int64(pd.syscalltick) != t {
				pd.syscalltick = uint32(t)
				pd.syscallwhen = now
				continue
			}
			// On the one hand we don't want to retake Ps if there is no other work to do,
			// but on the other hand we want to retake them eventually
			// because they can prevent the sysmon thread from deep sleep.
			if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
				continue
			}
			// Need to decrement number of idle locked M's
			// (pretending that one more is running) before the CAS.
			// Otherwise the M from which we retake can exit the syscall,
			// increment nmidle and report deadlock.
			incidlelocked(-1)
			if atomic.Cas(&_p_.status, s, _Pidle) {
				if trace.enabled {
					traceGoSysBlock(_p_)
					traceProcStop(_p_)
				}
				n++
				_p_.syscalltick++
				handoffp(_p_)
			}
			incidlelocked(1)
		} else if s == _Prunning {
			// Preempt G if it's running for too long.
			t := int64(_p_.schedtick)
			if int64(pd.schedtick) != t {
				pd.schedtick = uint32(t)
				pd.schedwhen = now
				continue
			}
			if pd.schedwhen+forcePreemptNS > now {
				continue
			}
			preemptone(_p_)
		}
	}
	return uint32(n)
}

// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort. It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
func preemptall() bool {
	res := false
	for i := int32(0); i < gomaxprocs; i++ {
		_p_ := allp[i]
		if _p_ == nil || _p_.status != _Prunning {
			continue
		}
		if preemptone(_p_) {
			res = true
		}
	}
	return res
}

// Tell the goroutine running on processor P to stop.
// This function is purely best-effort. It can incorrectly fail to inform the
// goroutine. It can send inform the wrong goroutine. Even if it informs the
// correct goroutine, that goroutine might ignore the request if it is
// simultaneously executing newstack.
// No lock needs to be held.
// Returns true if preemption request was issued.
// The actual preemption will happen at some point in the future
// and will be indicated by the gp->status no longer being
// Grunning
func preemptone(_p_ *p) bool {
	mp := _p_.m.ptr()
	if mp == nil || mp == getg().m {
		return false
	}
	gp := mp.curg
	if gp == nil || gp == mp.g0 {
		return false
	}

	gp.preempt = true

	// At this point the gc implementation sets gp.stackguard0 to
	// a value that causes the goroutine to suspend itself.
	// gccgo has no support for this, and it's hard to support.
	// The split stack code reads a value from its TCB.
	// We have no way to set a value in the TCB of a different thread.
	// And, of course, not all systems support split stack anyhow.
	// Checking the field in the g is expensive, since it requires
	// loading the g from TLS.  The best mechanism is likely to be
	// setting a global variable and figuring out a way to efficiently
	// check that global variable.
	//
	// For now we check gp.preempt in schedule and mallocgc,
	// which is at least better than doing nothing at all.

	return true
}

var starttime int64

func schedtrace(detailed bool) {
	now := nanotime()
	if starttime == 0 {
		starttime = now
	}

	lock(&sched.lock)
	print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
	if detailed {
		print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
	}
	// We must be careful while reading data from P's, M's and G's.
	// Even if we hold schedlock, most data can be changed concurrently.
	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
	for i := int32(0); i < gomaxprocs; i++ {
		_p_ := allp[i]
		if _p_ == nil {
			continue
		}
		mp := _p_.m.ptr()
		h := atomic.Load(&_p_.runqhead)
		t := atomic.Load(&_p_.runqtail)
		if detailed {
			id := int32(-1)
			if mp != nil {
				id = mp.id
			}
			print("  P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
		} else {
			// In non-detailed mode format lengths of per-P run queues as:
			// [len1 len2 len3 len4]
			print(" ")
			if i == 0 {
				print("[")
			}
			print(t - h)
			if i == gomaxprocs-1 {
				print("]\n")
			}
		}
	}

	if !detailed {
		unlock(&sched.lock)
		return
	}

	for mp := allm; mp != nil; mp = mp.alllink {
		_p_ := mp.p.ptr()
		gp := mp.curg
		lockedg := mp.lockedg
		id1 := int32(-1)
		if _p_ != nil {
			id1 = _p_.id
		}
		id2 := int64(-1)
		if gp != nil {
			id2 = gp.goid
		}
		id3 := int64(-1)
		if lockedg != nil {
			id3 = lockedg.goid
		}
		print("  M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
	}

	lock(&allglock)
	for gi := 0; gi < len(allgs); gi++ {
		gp := allgs[gi]
		mp := gp.m
		lockedm := gp.lockedm
		id1 := int32(-1)
		if mp != nil {
			id1 = mp.id
		}
		id2 := int32(-1)
		if lockedm != nil {
			id2 = lockedm.id
		}
		print("  G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
	}
	unlock(&allglock)
	unlock(&sched.lock)
}

// Put mp on midle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func mput(mp *m) {
	mp.schedlink = sched.midle
	sched.midle.set(mp)
	sched.nmidle++
	checkdead()
}

// Try to get an m from midle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func mget() *m {
	mp := sched.midle.ptr()
	if mp != nil {
		sched.midle = mp.schedlink
		sched.nmidle--
	}
	return mp
}

// Put gp on the global runnable queue.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func globrunqput(gp *g) {
	gp.schedlink = 0
	if sched.runqtail != 0 {
		sched.runqtail.ptr().schedlink.set(gp)
	} else {
		sched.runqhead.set(gp)
	}
	sched.runqtail.set(gp)
	sched.runqsize++
}

// Put gp at the head of the global runnable queue.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func globrunqputhead(gp *g) {
	gp.schedlink = sched.runqhead
	sched.runqhead.set(gp)
	if sched.runqtail == 0 {
		sched.runqtail.set(gp)
	}
	sched.runqsize++
}

// Put a batch of runnable goroutines on the global runnable queue.
// Sched must be locked.
func globrunqputbatch(ghead *g, gtail *g, n int32) {
	gtail.schedlink = 0
	if sched.runqtail != 0 {
		sched.runqtail.ptr().schedlink.set(ghead)
	} else {
		sched.runqhead.set(ghead)
	}
	sched.runqtail.set(gtail)
	sched.runqsize += n
}

// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
func globrunqget(_p_ *p, max int32) *g {
	if sched.runqsize == 0 {
		return nil
	}

	n := sched.runqsize/gomaxprocs + 1
	if n > sched.runqsize {
		n = sched.runqsize
	}
	if max > 0 && n > max {
		n = max
	}
	if n > int32(len(_p_.runq))/2 {
		n = int32(len(_p_.runq)) / 2
	}

	sched.runqsize -= n
	if sched.runqsize == 0 {
		sched.runqtail = 0
	}

	gp := sched.runqhead.ptr()
	sched.runqhead = gp.schedlink
	n--
	for ; n > 0; n-- {
		gp1 := sched.runqhead.ptr()
		sched.runqhead = gp1.schedlink
		runqput(_p_, gp1, false)
	}
	return gp
}

// Put p to on _Pidle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func pidleput(_p_ *p) {
	if !runqempty(_p_) {
		throw("pidleput: P has non-empty run queue")
	}
	_p_.link = sched.pidle
	sched.pidle.set(_p_)
	atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
}

// Try get a p from _Pidle list.
// Sched must be locked.
// May run during STW, so write barriers are not allowed.
//go:nowritebarrierrec
func pidleget() *p {
	_p_ := sched.pidle.ptr()
	if _p_ != nil {
		sched.pidle = _p_.link
		atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
	}
	return _p_
}

// runqempty returns true if _p_ has no Gs on its local run queue.
// It never returns true spuriously.
func runqempty(_p_ *p) bool {
	// Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
	// 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
	// Simply observing that runqhead == runqtail and then observing that runqnext == nil
	// does not mean the queue is empty.
	for {
		head := atomic.Load(&_p_.runqhead)
		tail := atomic.Load(&_p_.runqtail)
		runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
		if tail == atomic.Load(&_p_.runqtail) {
			return head == tail && runnext == 0
		}
	}
}

// To shake out latent assumptions about scheduling order,
// we introduce some randomness into scheduling decisions
// when running with the race detector.
// The need for this was made obvious by changing the
// (deterministic) scheduling order in Go 1.5 and breaking
// many poorly-written tests.
// With the randomness here, as long as the tests pass
// consistently with -race, they shouldn't have latent scheduling
// assumptions.
const randomizeScheduler = raceenabled

// runqput tries to put g on the local runnable queue.
// If next if false, runqput adds g to the tail of the runnable queue.
// If next is true, runqput puts g in the _p_.runnext slot.
// If the run queue is full, runnext puts g on the global queue.
// Executed only by the owner P.
func runqput(_p_ *p, gp *g, next bool) {
	if randomizeScheduler && next && fastrand()%2 == 0 {
		next = false
	}

	if next {
	retryNext:
		oldnext := _p_.runnext
		if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
			goto retryNext
		}
		if oldnext == 0 {
			return
		}
		// Kick the old runnext out to the regular run queue.
		gp = oldnext.ptr()
	}

retry:
	h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
	t := _p_.runqtail
	if t-h < uint32(len(_p_.runq)) {
		_p_.runq[t%uint32(len(_p_.runq))].set(gp)
		atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
		return
	}
	if runqputslow(_p_, gp, h, t) {
		return
	}
	// the queue is not full, now the put above must succeed
	goto retry
}

// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
	var batch [len(_p_.runq)/2 + 1]*g

	// First, grab a batch from local queue.
	n := t - h
	n = n / 2
	if n != uint32(len(_p_.runq)/2) {
		throw("runqputslow: queue is not full")
	}
	for i := uint32(0); i < n; i++ {
		batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
	}
	if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
		return false
	}
	batch[n] = gp

	if randomizeScheduler {
		for i := uint32(1); i <= n; i++ {
			j := fastrand() % (i + 1)
			batch[i], batch[j] = batch[j], batch[i]
		}
	}

	// Link the goroutines.
	for i := uint32(0); i < n; i++ {
		batch[i].schedlink.set(batch[i+1])
	}

	// Now put the batch on global queue.
	lock(&sched.lock)
	globrunqputbatch(batch[0], batch[n], int32(n+1))
	unlock(&sched.lock)
	return true
}

// Get g from local runnable queue.
// If inheritTime is true, gp should inherit the remaining time in the
// current time slice. Otherwise, it should start a new time slice.
// Executed only by the owner P.
func runqget(_p_ *p) (gp *g, inheritTime bool) {
	// If there's a runnext, it's the next G to run.
	for {
		next := _p_.runnext
		if next == 0 {
			break
		}
		if _p_.runnext.cas(next, 0) {
			return next.ptr(), true
		}
	}

	for {
		h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
		t := _p_.runqtail
		if t == h {
			return nil, false
		}
		gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
		if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
			return gp, false
		}
	}
}

// Grabs a batch of goroutines from _p_'s runnable queue into batch.
// Batch is a ring buffer starting at batchHead.
// Returns number of grabbed goroutines.
// Can be executed by any P.
func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
	for {
		h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
		t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer
		n := t - h
		n = n - n/2
		if n == 0 {
			if stealRunNextG {
				// Try to steal from _p_.runnext.
				if next := _p_.runnext; next != 0 {
					// Sleep to ensure that _p_ isn't about to run the g we
					// are about to steal.
					// The important use case here is when the g running on _p_
					// ready()s another g and then almost immediately blocks.
					// Instead of stealing runnext in this window, back off
					// to give _p_ a chance to schedule runnext. This will avoid
					// thrashing gs between different Ps.
					// A sync chan send/recv takes ~50ns as of time of writing,
					// so 3us gives ~50x overshoot.
					if GOOS != "windows" {
						usleep(3)
					} else {
						// On windows system timer granularity is 1-15ms,
						// which is way too much for this optimization.
						// So just yield.
						osyield()
					}
					if !_p_.runnext.cas(next, 0) {
						continue
					}
					batch[batchHead%uint32(len(batch))] = next
					return 1
				}
			}
			return 0
		}
		if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
			continue
		}
		for i := uint32(0); i < n; i++ {
			g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
			batch[(batchHead+i)%uint32(len(batch))] = g
		}
		if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
			return n
		}
	}
}

// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
	t := _p_.runqtail
	n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
	if n == 0 {
		return nil
	}
	n--
	gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
	if n == 0 {
		return gp
	}
	h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
	if t-h+n >= uint32(len(_p_.runq)) {
		throw("runqsteal: runq overflow")
	}
	atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
	return gp
}

//go:linkname setMaxThreads runtime_debug.setMaxThreads
func setMaxThreads(in int) (out int) {
	lock(&sched.lock)
	out = int(sched.maxmcount)
	if in > 0x7fffffff { // MaxInt32
		sched.maxmcount = 0x7fffffff
	} else {
		sched.maxmcount = int32(in)
	}
	checkmcount()
	unlock(&sched.lock)
	return
}

//go:nosplit
func procPin() int {
	_g_ := getg()
	mp := _g_.m

	mp.locks++
	return int(mp.p.ptr().id)
}

//go:nosplit
func procUnpin() {
	_g_ := getg()
	_g_.m.locks--
}

//go:linkname sync_runtime_procPin sync.runtime_procPin
//go:nosplit
func sync_runtime_procPin() int {
	return procPin()
}

//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
//go:nosplit
func sync_runtime_procUnpin() {
	procUnpin()
}

//go:linkname sync_atomic_runtime_procPin sync_atomic.runtime_procPin
//go:nosplit
func sync_atomic_runtime_procPin() int {
	return procPin()
}

//go:linkname sync_atomic_runtime_procUnpin sync_atomic.runtime_procUnpin
//go:nosplit
func sync_atomic_runtime_procUnpin() {
	procUnpin()
}

// Active spinning for sync.Mutex.
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
//go:nosplit
func sync_runtime_canSpin(i int) bool {
	// sync.Mutex is cooperative, so we are conservative with spinning.
	// Spin only few times and only if running on a multicore machine and
	// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
	// As opposed to runtime mutex we don't do passive spinning here,
	// because there can be work on global runq on on other Ps.
	if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
		return false
	}
	if p := getg().m.p.ptr(); !runqempty(p) {
		return false
	}
	return true
}

//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
	procyield(active_spin_cnt)
}

var stealOrder randomOrder

// randomOrder/randomEnum are helper types for randomized work stealing.
// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
type randomOrder struct {
	count    uint32
	coprimes []uint32
}

type randomEnum struct {
	i     uint32
	count uint32
	pos   uint32
	inc   uint32
}

func (ord *randomOrder) reset(count uint32) {
	ord.count = count
	ord.coprimes = ord.coprimes[:0]
	for i := uint32(1); i <= count; i++ {
		if gcd(i, count) == 1 {
			ord.coprimes = append(ord.coprimes, i)
		}
	}
}

func (ord *randomOrder) start(i uint32) randomEnum {
	return randomEnum{
		count: ord.count,
		pos:   i % ord.count,
		inc:   ord.coprimes[i%uint32(len(ord.coprimes))],
	}
}

func (enum *randomEnum) done() bool {
	return enum.i == enum.count
}

func (enum *randomEnum) next() {
	enum.i++
	enum.pos = (enum.pos + enum.inc) % enum.count
}

func (enum *randomEnum) position() uint32 {
	return enum.pos
}

func gcd(a, b uint32) uint32 {
	for b != 0 {
		a, b = b, a%b
	}
	return a
}