summaryrefslogtreecommitdiff
path: root/libgo/runtime/go-signal.c
blob: 8c7ecbae3b5da3208b48500452a4dcab77b119c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* go-signal.c -- signal handling for Go.

   Copyright 2009 The Go Authors. All rights reserved.
   Use of this source code is governed by a BSD-style
   license that can be found in the LICENSE file.  */

#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#include <ucontext.h>

#include "runtime.h"

#ifndef SA_RESTART
  #define SA_RESTART 0
#endif

#ifdef USING_SPLIT_STACK

extern void __splitstack_getcontext(void *context[10]);

extern void __splitstack_setcontext(void *context[10]);

extern void *__splitstack_find_context(void *context[10], size_t *,
				       void **, void **, void **);

#endif

// The rest of the signal handler, written in Go.

extern void sigtrampgo(uint32, siginfo_t *, void *)
	__asm__(GOSYM_PREFIX "runtime.sigtrampgo");

// The Go signal handler, written in C.  This should be running on the
// alternate signal stack.  This is responsible for setting up the
// split stack context so that stack guard checks will work as
// expected.

void sigtramp(int, siginfo_t *, void *)
	__attribute__ ((no_split_stack));

void sigtramp(int, siginfo_t *, void *)
	__asm__ (GOSYM_PREFIX "runtime.sigtramp");

#ifndef USING_SPLIT_STACK

// When not using split stacks, there are no stack checks, and there
// is nothing special for this function to do.

void
sigtramp(int sig, siginfo_t *info, void *context)
{
	sigtrampgo(sig, info, context);
}

#else // USING_SPLIT_STACK

void
sigtramp(int sig, siginfo_t *info, void *context)
{
	G *gp;
	void *stack_context[10];
	void *stack;
	size_t stack_size;
	void *next_segment;
	void *next_sp;
	void *initial_sp;
	uintptr sp;
	stack_t st;
	uintptr stsp;

	gp = runtime_g();

	if (gp == nil) {
		// Let the Go code handle this case.
		// It should only call nosplit functions in this case.
		sigtrampgo(sig, info, context);
		return;
	}

	// If this signal is one for which we will panic, we are not
	// on the alternate signal stack.  It's OK to call split-stack
	// functions here.
	if (sig == SIGBUS || sig == SIGFPE || sig == SIGSEGV) {
		sigtrampgo(sig, info, context);
		return;
	}

	// We are running on the alternate signal stack.

	__splitstack_getcontext(&stack_context[0]);

	stack = __splitstack_find_context((void*)(&gp->m->gsignal->stackcontext[0]),
					  &stack_size, &next_segment,
					  &next_sp, &initial_sp);

	// If some non-Go code called sigaltstack, adjust.
	sp = (uintptr)(&stack_size);
	if (sp < (uintptr)(stack) || sp >= (uintptr)(stack) + stack_size) {
		sigaltstack(nil, &st);
		if ((st.ss_flags & SS_DISABLE) != 0) {
			runtime_printf("signal %d received on thread with no signal stack\n", (int32)(sig));
			runtime_throw("non-Go code disabled sigaltstack");
		}

		stsp = (uintptr)(st.ss_sp);
		if (sp < stsp || sp >= stsp + st.ss_size) {
			runtime_printf("signal %d received but handler not on signal stack\n", (int32)(sig));
			runtime_throw("non-Go code set up signal handler without SA_ONSTACK flag");
		}

		// Unfortunately __splitstack_find_context will return NULL
		// when it is called on a context that has never been used.
		// There isn't much we can do but assume all is well.
		if (stack != NULL) {
			// Here the gc runtime adjusts the gsignal
			// stack guard to match the values returned by
			// sigaltstack.  Unfortunately we have no way
			// to do that.
			runtime_printf("signal %d received on unknown signal stack\n", (int32)(sig));
			runtime_throw("non-Go code changed signal stack");
		}
	}

	// Set the split stack context so that the stack guards are
	// checked correctly.

	__splitstack_setcontext((void*)(&gp->m->gsignal->stackcontext[0]));

	sigtrampgo(sig, info, context);

	// We are going to return back to the signal trampoline and
	// then to whatever we were doing before we got the signal.
	// Restore the split stack context so that stack guards are
	// checked correctly.

	__splitstack_setcontext(&stack_context[0]);
}

#endif // USING_SPLIT_STACK

// C function to return the address of the sigtramp function.
uintptr getSigtramp(void) __asm__ (GOSYM_PREFIX "runtime.getSigtramp");

uintptr
getSigtramp()
{
  return (uintptr)(void*)sigtramp;
}

// C code to manage the sigaction sa_sigaction field, which is
// typically a union and so hard for mksysinfo.sh to handle.

uintptr getSigactionHandler(struct sigaction*)
	__attribute__ ((no_split_stack));

uintptr getSigactionHandler(struct sigaction*)
	__asm__ (GOSYM_PREFIX "runtime.getSigactionHandler");

uintptr
getSigactionHandler(struct sigaction* sa)
{
	return (uintptr)(sa->sa_sigaction);
}

void setSigactionHandler(struct sigaction*, uintptr)
	__attribute__ ((no_split_stack));

void setSigactionHandler(struct sigaction*, uintptr)
	__asm__ (GOSYM_PREFIX "runtime.setSigactionHandler");

void
setSigactionHandler(struct sigaction* sa, uintptr handler)
{
	sa->sa_sigaction = (void*)(handler);
}

// C code to fetch values from the siginfo_t and ucontext_t pointers
// passed to a signal handler.

struct getSiginfoRet {
	uintptr sigaddr;
	uintptr sigpc;
};

struct getSiginfoRet getSiginfo(siginfo_t *, void *)
	__asm__(GOSYM_PREFIX "runtime.getSiginfo");

struct getSiginfoRet
getSiginfo(siginfo_t *info, void *context __attribute__((unused)))
{
	struct getSiginfoRet ret;
	Location loc[1];
	int32 n;

	if (info == nil) {
		ret.sigaddr = 0;
	} else {
		ret.sigaddr = (uintptr)(info->si_addr);
	}
	ret.sigpc = 0;

	// There doesn't seem to be a portable way to get the PC.
	// Use unportable code to pull it from context, and if that fails
	// try a stack backtrace across the signal handler.

#ifdef __x86_64__
 #ifdef __linux__
	ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_RIP];
 #endif
#endif
#ifdef __i386__
  #ifdef __linux__
	ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_EIP];
  #endif
#endif
#ifdef __alpha__
  #ifdef __linux__
	ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.sc_pc;
  #endif
#endif
#ifdef __PPC__
  #ifdef __linux__
	ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.regs->nip;
  #endif
#endif

	if (ret.sigpc == 0) {
		// Skip getSiginfo/sighandler/sigtrampgo/sigtramp/handler.
		n = runtime_callers(5, &loc[0], 1, false);
		if (n > 0) {
			ret.sigpc = loc[0].pc;
		}
	}

	return ret;
}

// Dump registers when crashing in a signal.
// There is no portable way to write this,
// so we just have some CPU/OS specific implementations.

void dumpregs(siginfo_t *, void *)
	__asm__(GOSYM_PREFIX "runtime.dumpregs");

void
dumpregs(siginfo_t *info __attribute__((unused)), void *context __attribute__((unused)))
{
#ifdef __x86_64__
 #ifdef __linux__
	{
		mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;

		runtime_printf("rax    %X\n", m->gregs[REG_RAX]);
		runtime_printf("rbx    %X\n", m->gregs[REG_RBX]);
		runtime_printf("rcx    %X\n", m->gregs[REG_RCX]);
		runtime_printf("rdx    %X\n", m->gregs[REG_RDX]);
		runtime_printf("rdi    %X\n", m->gregs[REG_RDI]);
		runtime_printf("rsi    %X\n", m->gregs[REG_RSI]);
		runtime_printf("rbp    %X\n", m->gregs[REG_RBP]);
		runtime_printf("rsp    %X\n", m->gregs[REG_RSP]);
		runtime_printf("r8     %X\n", m->gregs[REG_R8]);
		runtime_printf("r9     %X\n", m->gregs[REG_R9]);
		runtime_printf("r10    %X\n", m->gregs[REG_R10]);
		runtime_printf("r11    %X\n", m->gregs[REG_R11]);
		runtime_printf("r12    %X\n", m->gregs[REG_R12]);
		runtime_printf("r13    %X\n", m->gregs[REG_R13]);
		runtime_printf("r14    %X\n", m->gregs[REG_R14]);
		runtime_printf("r15    %X\n", m->gregs[REG_R15]);
		runtime_printf("rip    %X\n", m->gregs[REG_RIP]);
		runtime_printf("rflags %X\n", m->gregs[REG_EFL]);
		runtime_printf("cs     %X\n", m->gregs[REG_CSGSFS] & 0xffff);
		runtime_printf("fs     %X\n", (m->gregs[REG_CSGSFS] >> 16) & 0xffff);
		runtime_printf("gs     %X\n", (m->gregs[REG_CSGSFS] >> 32) & 0xffff);
	  }
 #endif
#endif

#ifdef __i386__
 #ifdef __linux__
	{
		mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;

		runtime_printf("eax    %X\n", m->gregs[REG_EAX]);
		runtime_printf("ebx    %X\n", m->gregs[REG_EBX]);
		runtime_printf("ecx    %X\n", m->gregs[REG_ECX]);
		runtime_printf("edx    %X\n", m->gregs[REG_EDX]);
		runtime_printf("edi    %X\n", m->gregs[REG_EDI]);
		runtime_printf("esi    %X\n", m->gregs[REG_ESI]);
		runtime_printf("ebp    %X\n", m->gregs[REG_EBP]);
		runtime_printf("esp    %X\n", m->gregs[REG_ESP]);
		runtime_printf("eip    %X\n", m->gregs[REG_EIP]);
		runtime_printf("eflags %X\n", m->gregs[REG_EFL]);
		runtime_printf("cs     %X\n", m->gregs[REG_CS]);
		runtime_printf("fs     %X\n", m->gregs[REG_FS]);
		runtime_printf("gs     %X\n", m->gregs[REG_GS]);
	  }
 #endif
#endif
}