summaryrefslogtreecommitdiff
path: root/libgo/runtime/mheap.c
blob: a375cad7345b4c6763d166b732889d1b52254796 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Page heap.
//
// See malloc.h for overview.
//
// When a MSpan is in the heap free list, state == MSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
//
// When a MSpan is allocated, state == MSpanInUse
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.

#include "runtime.h"
#include "malloc.h"

static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
static bool MHeap_Grow(MHeap*, uintptr);
static void MHeap_FreeLocked(MHeap*, MSpan*);
static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
static MSpan *BestFit(MSpan*, uintptr, MSpan*);

static void
RecordSpan(void *vh, byte *p)
{
	MHeap *h;
	MSpan *s;

	h = vh;
	s = (MSpan*)p;
	s->allnext = h->allspans;
	h->allspans = s;
}

// Initialize the heap; fetch memory using alloc.
void
runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr))
{
	uint32 i;

	runtime_initlock(h);
	runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h);
	runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil);
	runtime_MHeapMap_Init(&h->map, alloc);
	// h->mapcache needs no init
	for(i=0; i<nelem(h->free); i++)
		runtime_MSpanList_Init(&h->free[i]);
	runtime_MSpanList_Init(&h->large);
	for(i=0; i<nelem(h->central); i++)
		runtime_MCentral_Init(&h->central[i], i);
}

// Allocate a new span of npage pages from the heap
// and record its size class in the HeapMap and HeapMapCache.
MSpan*
runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct)
{
	MSpan *s;

	runtime_lock(h);
	mstats.heap_alloc += m->mcache->local_alloc;
	m->mcache->local_alloc = 0;
	mstats.heap_objects += m->mcache->local_objects;
	m->mcache->local_objects = 0;
	s = MHeap_AllocLocked(h, npage, sizeclass);
	if(s != nil) {
		mstats.heap_inuse += npage<<PageShift;
		if(acct) {
			mstats.heap_objects++;
			mstats.heap_alloc += npage<<PageShift;
		}
	}
	runtime_unlock(h);
	return s;
}

static MSpan*
MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
{
	uintptr n;
	MSpan *s, *t;

	// Try in fixed-size lists up to max.
	for(n=npage; n < nelem(h->free); n++) {
		if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
			s = h->free[n].next;
			goto HaveSpan;
		}
	}

	// Best fit in list of large spans.
	if((s = MHeap_AllocLarge(h, npage)) == nil) {
		if(!MHeap_Grow(h, npage))
			return nil;
		if((s = MHeap_AllocLarge(h, npage)) == nil)
			return nil;
	}

HaveSpan:
	// Mark span in use.
	if(s->state != MSpanFree)
		runtime_throw("MHeap_AllocLocked - MSpan not free");
	if(s->npages < npage)
		runtime_throw("MHeap_AllocLocked - bad npages");
	runtime_MSpanList_Remove(s);
	s->state = MSpanInUse;

	if(s->npages > npage) {
		// Trim extra and put it back in the heap.
		t = runtime_FixAlloc_Alloc(&h->spanalloc);
		mstats.mspan_inuse = h->spanalloc.inuse;
		mstats.mspan_sys = h->spanalloc.sys;
		runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
		s->npages = npage;
		runtime_MHeapMap_Set(&h->map, t->start - 1, s);
		runtime_MHeapMap_Set(&h->map, t->start, t);
		runtime_MHeapMap_Set(&h->map, t->start + t->npages - 1, t);
		t->state = MSpanInUse;
		MHeap_FreeLocked(h, t);
	}

	// Record span info, because gc needs to be
	// able to map interior pointer to containing span.
	s->sizeclass = sizeclass;
	for(n=0; n<npage; n++)
		runtime_MHeapMap_Set(&h->map, s->start+n, s);
	return s;
}

// Allocate a span of exactly npage pages from the list of large spans.
static MSpan*
MHeap_AllocLarge(MHeap *h, uintptr npage)
{
	return BestFit(&h->large, npage, nil);
}

// Search list for smallest span with >= npage pages.
// If there are multiple smallest spans, take the one
// with the earliest starting address.
static MSpan*
BestFit(MSpan *list, uintptr npage, MSpan *best)
{
	MSpan *s;

	for(s=list->next; s != list; s=s->next) {
		if(s->npages < npage)
			continue;
		if(best == nil
		|| s->npages < best->npages
		|| (s->npages == best->npages && s->start < best->start))
			best = s;
	}
	return best;
}

// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
static bool
MHeap_Grow(MHeap *h, uintptr npage)
{
	uintptr ask;
	void *v;
	MSpan *s;

	// Ask for a big chunk, to reduce the number of mappings
	// the operating system needs to track; also amortizes
	// the overhead of an operating system mapping.
	// For Native Client, allocate a multiple of 64kB (16 pages).
	npage = (npage+15)&~15;
	ask = npage<<PageShift;
	if(ask < HeapAllocChunk)
		ask = HeapAllocChunk;

	v = runtime_SysAlloc(ask);
	if(v == nil) {
		if(ask > (npage<<PageShift)) {
			ask = npage<<PageShift;
			v = runtime_SysAlloc(ask);
		}
		if(v == nil)
			return false;
	}
	mstats.heap_sys += ask;

	if((byte*)v < h->min || h->min == nil)
		h->min = v;
	if((byte*)v+ask > h->max)
		h->max = (byte*)v+ask;

	// NOTE(rsc): In tcmalloc, if we've accumulated enough
	// system allocations, the heap map gets entirely allocated
	// in 32-bit mode.  (In 64-bit mode that's not practical.)
	if(!runtime_MHeapMap_Preallocate(&h->map, ((uintptr)v>>PageShift) - 1, (ask>>PageShift) + 2)) {
		runtime_SysFree(v, ask);
		return false;
	}

	// Create a fake "in use" span and free it, so that the
	// right coalescing happens.
	s = runtime_FixAlloc_Alloc(&h->spanalloc);
	mstats.mspan_inuse = h->spanalloc.inuse;
	mstats.mspan_sys = h->spanalloc.sys;
	runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
	runtime_MHeapMap_Set(&h->map, s->start, s);
	runtime_MHeapMap_Set(&h->map, s->start + s->npages - 1, s);
	s->state = MSpanInUse;
	MHeap_FreeLocked(h, s);
	return true;
}

// Look up the span at the given page number.
// Page number is guaranteed to be in map
// and is guaranteed to be start or end of span.
MSpan*
runtime_MHeap_Lookup(MHeap *h, PageID p)
{
	return runtime_MHeapMap_Get(&h->map, p);
}

// Look up the span at the given page number.
// Page number is *not* guaranteed to be in map
// and may be anywhere in the span.
// Map entries for the middle of a span are only
// valid for allocated spans.  Free spans may have
// other garbage in their middles, so we have to
// check for that.
MSpan*
runtime_MHeap_LookupMaybe(MHeap *h, PageID p)
{
	MSpan *s;

	s = runtime_MHeapMap_GetMaybe(&h->map, p);
	if(s == nil || p < s->start || p - s->start >= s->npages)
		return nil;
	if(s->state != MSpanInUse)
		return nil;
	return s;
}

// Free the span back into the heap.
void
runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
{
	runtime_lock(h);
	mstats.heap_alloc += m->mcache->local_alloc;
	m->mcache->local_alloc = 0;
	mstats.heap_objects += m->mcache->local_objects;
	m->mcache->local_objects = 0;
	mstats.heap_inuse -= s->npages<<PageShift;
	if(acct) {
		mstats.heap_alloc -= s->npages<<PageShift;
		mstats.heap_objects--;
	}
	MHeap_FreeLocked(h, s);
	runtime_unlock(h);
}

static void
MHeap_FreeLocked(MHeap *h, MSpan *s)
{
	MSpan *t;

	if(s->state != MSpanInUse || s->ref != 0) {
		// runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
		runtime_throw("MHeap_FreeLocked - invalid free");
	}
	s->state = MSpanFree;
	runtime_MSpanList_Remove(s);

	// Coalesce with earlier, later spans.
	if((t = runtime_MHeapMap_Get(&h->map, s->start - 1)) != nil && t->state != MSpanInUse) {
		s->start = t->start;
		s->npages += t->npages;
		runtime_MHeapMap_Set(&h->map, s->start, s);
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
		mstats.mspan_inuse = h->spanalloc.inuse;
		mstats.mspan_sys = h->spanalloc.sys;
	}
	if((t = runtime_MHeapMap_Get(&h->map, s->start + s->npages)) != nil && t->state != MSpanInUse) {
		s->npages += t->npages;
		runtime_MHeapMap_Set(&h->map, s->start + s->npages - 1, s);
		runtime_MSpanList_Remove(t);
		t->state = MSpanDead;
		runtime_FixAlloc_Free(&h->spanalloc, t);
		mstats.mspan_inuse = h->spanalloc.inuse;
		mstats.mspan_sys = h->spanalloc.sys;
	}

	// Insert s into appropriate list.
	if(s->npages < nelem(h->free))
		runtime_MSpanList_Insert(&h->free[s->npages], s);
	else
		runtime_MSpanList_Insert(&h->large, s);

	// TODO(rsc): IncrementalScavenge() to return memory to OS.
}

// Initialize a new span with the given start and npages.
void
runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
{
	span->next = nil;
	span->prev = nil;
	span->start = start;
	span->npages = npages;
	span->freelist = nil;
	span->ref = 0;
	span->sizeclass = 0;
	span->state = 0;
}

// Initialize an empty doubly-linked list.
void
runtime_MSpanList_Init(MSpan *list)
{
	list->state = MSpanListHead;
	list->next = list;
	list->prev = list;
}

void
runtime_MSpanList_Remove(MSpan *span)
{
	if(span->prev == nil && span->next == nil)
		return;
	span->prev->next = span->next;
	span->next->prev = span->prev;
	span->prev = nil;
	span->next = nil;
}

bool
runtime_MSpanList_IsEmpty(MSpan *list)
{
	return list->next == list;
}

void
runtime_MSpanList_Insert(MSpan *list, MSpan *span)
{
	if(span->next != nil || span->prev != nil)
		runtime_throw("MSpanList_Insert");
	span->next = list->next;
	span->prev = list;
	span->next->prev = span;
	span->prev->next = span;
}