summaryrefslogtreecommitdiff
path: root/libgo/runtime/thread-sema.c
blob: 71555d09725060423e9172367a2b7c7be7381eab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "config.h"
#include "runtime.h"

#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <semaphore.h>

/* If we don't have sem_timedwait, use pthread_cond_timedwait instead.
   We don't always use condition variables because on some systems
   pthread_mutex_lock and pthread_mutex_unlock must be called by the
   same thread.  That is never true of semaphores.  */

struct go_sem
{
  sem_t sem;

#ifndef HAVE_SEM_TIMEDWAIT
  int timedwait;
  pthread_mutex_t mutex;
  pthread_cond_t cond;
#endif
};

/* Create a semaphore.  */

uintptr
runtime_semacreate(void)
{
  struct go_sem *p;

  /* Call malloc rather than runtime_malloc.  This will allocate space
     on the C heap.  We can't call runtime_malloc here because it
     could cause a deadlock.  */
  p = malloc (sizeof (struct go_sem));
  if (sem_init (&p->sem, 0, 0) != 0)
    runtime_throw ("sem_init");

#ifndef HAVE_SEM_TIMEDWAIT
  if (pthread_mutex_init (&p->mutex, NULL) != 0)
    runtime_throw ("pthread_mutex_init");
  if (pthread_cond_init (&p->cond, NULL) != 0)
    runtime_throw ("pthread_cond_init");
#endif

  return (uintptr) p;
}

/* Acquire m->waitsema.  */

int32
runtime_semasleep (int64 ns)
{
  M *m;
  struct go_sem *sem;
  int r;

  m = runtime_m ();
  sem = (struct go_sem *) m->waitsema;
  if (ns >= 0)
    {
      int64 abs;
      struct timespec ts;
      int err;

      abs = ns + runtime_nanotime ();
      ts.tv_sec = abs / 1000000000LL;
      ts.tv_nsec = abs % 1000000000LL;

      err = 0;

#ifdef HAVE_SEM_TIMEDWAIT
      r = sem_timedwait (&sem->sem, &ts);
      if (r != 0)
	err = errno;
#else
      if (pthread_mutex_lock (&sem->mutex) != 0)
	runtime_throw ("pthread_mutex_lock");

      while ((r = sem_trywait (&sem->sem)) != 0)
	{
	  r = pthread_cond_timedwait (&sem->cond, &sem->mutex, &ts);
	  if (r != 0)
	    {
	      err = r;
	      break;
	    }
	}

      if (pthread_mutex_unlock (&sem->mutex) != 0)
	runtime_throw ("pthread_mutex_unlock");
#endif

      if (err != 0)
	{
	  if (err == ETIMEDOUT || err == EAGAIN || err == EINTR)
	    return -1;
	  runtime_throw ("sema_timedwait");
	}
      return 0;
    }

  while (sem_wait (&sem->sem) != 0)
    {
      if (errno == EINTR)
	continue;
      runtime_throw ("sem_wait");
    }

  return 0;
}

/* Wake up mp->waitsema.  */

void
runtime_semawakeup (M *mp)
{
  struct go_sem *sem;

  sem = (struct go_sem *) mp->waitsema;
  if (sem_post (&sem->sem) != 0)
    runtime_throw ("sem_post");

#ifndef HAVE_SEM_TIMEDWAIT
  if (pthread_mutex_lock (&sem->mutex) != 0)
    runtime_throw ("pthread_mutex_lock");
  if (pthread_cond_broadcast (&sem->cond) != 0)
    runtime_throw ("pthread_cond_broadcast");
  if (pthread_mutex_unlock (&sem->mutex) != 0)
    runtime_throw ("pthread_mutex_unlock");
#endif
}

void
runtime_osinit(void)
{
}