summaryrefslogtreecommitdiff
path: root/libmudflap/mf-runtime.c
blob: 93765ab42204f2e00b8f2f769f3c865aff38af57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
/* Mudflap: narrow-pointer bounds-checking by tree rewriting.
   Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
   Contributed by Frank Ch. Eigler <fche@redhat.com>
   and Graydon Hoare <graydon@redhat.com>
   Splay Tree code originally by Mark Mitchell <mark@markmitchell.com>,
   adapted from libiberty.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"

/* These attempt to coax various unix flavours to declare all our
   needed tidbits in the system headers.  */
#if !defined(__FreeBSD__) && !defined(__APPLE__)
#define _POSIX_SOURCE
#endif /* Some BSDs break <sys/socket.h> if this is defined. */
#define _GNU_SOURCE
#define _XOPEN_SOURCE
#define _BSD_TYPES
#define __EXTENSIONS__
#define _ALL_SOURCE
#define _LARGE_FILE_API
#define _XOPEN_SOURCE_EXTENDED 1

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>
#endif
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#include <assert.h>

#include <string.h>
#include <limits.h>
#include <sys/types.h>
#include <signal.h>
#include <errno.h>
#include <ctype.h>

#include "mf-runtime.h"
#include "mf-impl.h"


/* ------------------------------------------------------------------------ */
/* Splay-tree implementation.  */

typedef uintptr_t mfsplay_tree_key;
typedef void *mfsplay_tree_value;

/* Forward declaration for a node in the tree.  */
typedef struct mfsplay_tree_node_s *mfsplay_tree_node;

/* The type of a function used to iterate over the tree.  */
typedef int (*mfsplay_tree_foreach_fn) (mfsplay_tree_node, void *);

/* The nodes in the splay tree.  */
struct mfsplay_tree_node_s
{
  /* Data.  */
  mfsplay_tree_key key;
  mfsplay_tree_value value;
  /* Children.  */
  mfsplay_tree_node left;
  mfsplay_tree_node right;
  /* XXX: The addition of a parent pointer may eliminate some recursion.  */
};

/* The splay tree itself.  */
struct mfsplay_tree_s
{
  /* The root of the tree.  */
  mfsplay_tree_node root;

  /* The last key value for which the tree has been splayed, but not
     since modified.  */
  mfsplay_tree_key last_splayed_key;
  int last_splayed_key_p;

  /* Statistics.  */
  unsigned num_keys;

  /* Traversal recursion control flags.  */
  unsigned max_depth;
  unsigned depth;
  unsigned rebalance_p;
};
typedef struct mfsplay_tree_s *mfsplay_tree;

static mfsplay_tree mfsplay_tree_new (void);
static mfsplay_tree_node mfsplay_tree_insert (mfsplay_tree, mfsplay_tree_key, mfsplay_tree_value);
static void mfsplay_tree_remove (mfsplay_tree, mfsplay_tree_key);
static mfsplay_tree_node mfsplay_tree_lookup (mfsplay_tree, mfsplay_tree_key);
static mfsplay_tree_node mfsplay_tree_predecessor (mfsplay_tree, mfsplay_tree_key);
static mfsplay_tree_node mfsplay_tree_successor (mfsplay_tree, mfsplay_tree_key);
static int mfsplay_tree_foreach (mfsplay_tree, mfsplay_tree_foreach_fn, void *);
static void mfsplay_tree_rebalance (mfsplay_tree sp);

/* ------------------------------------------------------------------------ */
/* Utility macros */

#define CTOR  __attribute__ ((constructor))
#define DTOR  __attribute__ ((destructor))


/* Codes to describe the context in which a violation occurs. */
#define __MF_VIOL_UNKNOWN 0
#define __MF_VIOL_READ 1
#define __MF_VIOL_WRITE 2
#define __MF_VIOL_REGISTER 3
#define __MF_VIOL_UNREGISTER 4
#define __MF_VIOL_WATCH 5

/* Protect against recursive calls. */

static void
begin_recursion_protect1 (const char *pf)
{
  if (__mf_get_state () == reentrant)
    {
      write (2, "mf: erroneous reentrancy detected in `", 38);
      write (2, pf, strlen(pf));
      write (2, "'\n", 2); \
      abort ();
    }
  __mf_set_state (reentrant);
}

#define BEGIN_RECURSION_PROTECT() \
  begin_recursion_protect1 (__PRETTY_FUNCTION__)

#define END_RECURSION_PROTECT() \
  __mf_set_state (active)

/* ------------------------------------------------------------------------ */
/* Required globals.  */

#define LOOKUP_CACHE_MASK_DFL 1023
#define LOOKUP_CACHE_SIZE_MAX 65536 /* Allows max CACHE_MASK 0xFFFF */
#define LOOKUP_CACHE_SHIFT_DFL 2

struct __mf_cache __mf_lookup_cache [LOOKUP_CACHE_SIZE_MAX];
uintptr_t __mf_lc_mask = LOOKUP_CACHE_MASK_DFL;
unsigned char __mf_lc_shift = LOOKUP_CACHE_SHIFT_DFL;
#define LOOKUP_CACHE_SIZE (__mf_lc_mask + 1)

struct __mf_options __mf_opts;
int __mf_starting_p = 1;

#ifdef LIBMUDFLAPTH
#ifdef HAVE_TLS
__thread enum __mf_state_enum __mf_state_1 = reentrant;
#endif
#else
enum __mf_state_enum __mf_state_1 = reentrant;
#endif

#ifdef LIBMUDFLAPTH
pthread_mutex_t __mf_biglock =
#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
       PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
#else
       PTHREAD_MUTEX_INITIALIZER;
#endif
#endif

/* Use HAVE_PTHREAD_H here instead of LIBMUDFLAPTH, so that even
   the libmudflap.la (no threading support) can diagnose whether
   the application is linked with -lpthread.  See __mf_usage() below.  */
#if HAVE_PTHREAD_H
#ifdef _POSIX_THREADS
#pragma weak pthread_join
#else
#define pthread_join NULL
#endif
#endif


/* ------------------------------------------------------------------------ */
/* stats-related globals.  */

static unsigned long __mf_count_check;
static unsigned long __mf_lookup_cache_reusecount [LOOKUP_CACHE_SIZE_MAX];
static unsigned long __mf_count_register;
static unsigned long __mf_total_register_size [__MF_TYPE_MAX+1];
static unsigned long __mf_count_unregister;
static unsigned long __mf_total_unregister_size;
static unsigned long __mf_count_violation [__MF_VIOL_WATCH+1];
static unsigned long __mf_sigusr1_received;
static unsigned long __mf_sigusr1_handled;
/* not static */ unsigned long __mf_reentrancy;
#ifdef LIBMUDFLAPTH
/* not static */ unsigned long __mf_lock_contention;
#endif


/* ------------------------------------------------------------------------ */
/* mode-check-related globals.  */

typedef struct __mf_object
{
  uintptr_t low, high; /* __mf_register parameters */
  const char *name;
  char type; /* __MF_TYPE_something */
  char watching_p; /* Trigger a VIOL_WATCH on access? */
  unsigned read_count; /* Number of times __mf_check/read was called on this object.  */
  unsigned write_count; /* Likewise for __mf_check/write.  */
  unsigned liveness; /* A measure of recent checking activity.  */
  unsigned description_epoch; /* Last epoch __mf_describe_object printed this.  */

  uintptr_t alloc_pc;
  struct timeval alloc_time;
  char **alloc_backtrace;
  size_t alloc_backtrace_size;
#ifdef LIBMUDFLAPTH
  pthread_t alloc_thread;
#endif

  int deallocated_p;
  uintptr_t dealloc_pc;
  struct timeval dealloc_time;
  char **dealloc_backtrace;
  size_t dealloc_backtrace_size;
#ifdef LIBMUDFLAPTH
  pthread_t dealloc_thread;
#endif
} __mf_object_t;

/* Live objects: splay trees, separated by type, ordered on .low (base address).  */
/* Actually stored as static vars within lookup function below.  */

/* Dead objects: circular arrays; _MIN_CEM .. _MAX_CEM only */
static unsigned __mf_object_dead_head[__MF_TYPE_MAX_CEM+1]; /* next empty spot */
static __mf_object_t *__mf_object_cemetary[__MF_TYPE_MAX_CEM+1][__MF_PERSIST_MAX];


/* ------------------------------------------------------------------------ */
/* Forward function declarations */

void __mf_init () CTOR;
static void __mf_sigusr1_respond ();
static unsigned __mf_find_objects (uintptr_t ptr_low, uintptr_t ptr_high,
                                   __mf_object_t **objs, unsigned max_objs);
static unsigned __mf_find_objects2 (uintptr_t ptr_low, uintptr_t ptr_high,
                                    __mf_object_t **objs, unsigned max_objs, int type);
static unsigned __mf_find_dead_objects (uintptr_t ptr_low, uintptr_t ptr_high,
                                        __mf_object_t **objs, unsigned max_objs);
static void __mf_adapt_cache ();
static void __mf_describe_object (__mf_object_t *obj);
static unsigned __mf_watch_or_not (void *ptr, size_t sz, char flag);
static mfsplay_tree __mf_object_tree (int type);
static void __mf_link_object (__mf_object_t *node);
static void __mf_unlink_object (__mf_object_t *node);


/* ------------------------------------------------------------------------ */
/* Configuration engine */

static void
__mf_set_default_options ()
{
  memset (& __mf_opts, 0, sizeof (__mf_opts));

  __mf_opts.adapt_cache = 1000003;
  __mf_opts.abbreviate = 1;
  __mf_opts.verbose_violations = 1;
  __mf_opts.free_queue_length = 4;
  __mf_opts.persistent_count = 100;
  __mf_opts.crumple_zone = 32;
  __mf_opts.backtrace = 4;
  __mf_opts.timestamps = 1;
  __mf_opts.mudflap_mode = mode_check;
  __mf_opts.violation_mode = viol_nop;
#ifdef HAVE___LIBC_FREERES
  __mf_opts.call_libc_freeres = 1;
#endif
  __mf_opts.heur_std_data = 1;
#ifdef LIBMUDFLAPTH
  __mf_opts.thread_stack = 0;
#endif
}

static struct mudoption
{
  char *name;
  char *description;
  enum
    {
      set_option,
      read_integer_option,
    } type;
  unsigned value;
  unsigned *target;
}
options [] =
  {
    {"mode-nop",
     "mudflaps do nothing",
     set_option, (unsigned)mode_nop, (unsigned *)&__mf_opts.mudflap_mode},
    {"mode-populate",
     "mudflaps populate object tree",
     set_option, (unsigned)mode_populate, (unsigned *)&__mf_opts.mudflap_mode},
    {"mode-check",
     "mudflaps check for memory violations",
     set_option, (unsigned)mode_check, (unsigned *)&__mf_opts.mudflap_mode},
    {"mode-violate",
     "mudflaps always cause violations (diagnostic)",
     set_option, (unsigned)mode_violate, (unsigned *)&__mf_opts.mudflap_mode},

    {"viol-nop",
     "violations do not change program execution",
     set_option, (unsigned)viol_nop, (unsigned *)&__mf_opts.violation_mode},
    {"viol-abort",
     "violations cause a call to abort()",
     set_option, (unsigned)viol_abort, (unsigned *)&__mf_opts.violation_mode},
    {"viol-segv",
     "violations are promoted to SIGSEGV signals",
     set_option, (unsigned)viol_segv, (unsigned *)&__mf_opts.violation_mode},
    {"viol-gdb",
     "violations fork a gdb process attached to current program",
     set_option, (unsigned)viol_gdb, (unsigned *)&__mf_opts.violation_mode},
    {"trace-calls",
     "trace calls to mudflap runtime library",
     set_option, 1, &__mf_opts.trace_mf_calls},
    {"verbose-trace",
     "trace internal events within mudflap runtime library",
     set_option, 1, &__mf_opts.verbose_trace},
    {"collect-stats",
     "collect statistics on mudflap's operation",
     set_option, 1, &__mf_opts.collect_stats},
#ifdef SIGUSR1
    {"sigusr1-report",
     "print report upon SIGUSR1",
     set_option, 1, &__mf_opts.sigusr1_report},
#endif
    {"internal-checking",
     "perform more expensive internal checking",
     set_option, 1, &__mf_opts.internal_checking},
    {"print-leaks",
     "print any memory leaks at program shutdown",
     set_option, 1, &__mf_opts.print_leaks},
#ifdef HAVE___LIBC_FREERES
    {"libc-freeres",
     "call glibc __libc_freeres at shutdown for better leak data",
     set_option, 1, &__mf_opts.call_libc_freeres},
#endif
    {"check-initialization",
     "detect uninitialized object reads",
     set_option, 1, &__mf_opts.check_initialization},
    {"verbose-violations",
     "print verbose messages when memory violations occur",
     set_option, 1, &__mf_opts.verbose_violations},
    {"abbreviate",
     "abbreviate repetitive listings",
     set_option, 1, &__mf_opts.abbreviate},
    {"timestamps",
     "track object lifetime timestamps",
     set_option, 1, &__mf_opts.timestamps},
    {"ignore-reads",
     "ignore read accesses - assume okay",
     set_option, 1, &__mf_opts.ignore_reads},
    {"wipe-stack",
     "wipe stack objects at unwind",
     set_option, 1, &__mf_opts.wipe_stack},
    {"wipe-heap",
     "wipe heap objects at free",
     set_option, 1, &__mf_opts.wipe_heap},
    {"heur-proc-map",
     "support /proc/self/map heuristics",
     set_option, 1, &__mf_opts.heur_proc_map},
    {"heur-stack-bound",
     "enable a simple upper stack bound heuristic",
     set_option, 1, &__mf_opts.heur_stack_bound},
    {"heur-start-end",
     "support _start.._end heuristics",
     set_option, 1, &__mf_opts.heur_start_end},
    {"heur-stdlib",
     "register standard library data (argv, errno, stdin, ...)",
     set_option, 1, &__mf_opts.heur_std_data},
    {"free-queue-length",
     "queue N deferred free() calls before performing them",
     read_integer_option, 0, &__mf_opts.free_queue_length},
    {"persistent-count",
     "keep a history of N unregistered regions",
     read_integer_option, 0, &__mf_opts.persistent_count},
    {"crumple-zone",
     "surround allocations with crumple zones of N bytes",
     read_integer_option, 0, &__mf_opts.crumple_zone},
    /* XXX: not type-safe.
    {"lc-mask",
     "set lookup cache size mask to N (2**M - 1)",
     read_integer_option, 0, (int *)(&__mf_lc_mask)},
    {"lc-shift",
     "set lookup cache pointer shift",
     read_integer_option, 0, (int *)(&__mf_lc_shift)},
    */
    {"lc-adapt",
     "adapt mask/shift parameters after N cache misses",
     read_integer_option, 1, &__mf_opts.adapt_cache},
    {"backtrace",
     "keep an N-level stack trace of each call context",
     read_integer_option, 0, &__mf_opts.backtrace},
#ifdef LIBMUDFLAPTH
    {"thread-stack",
     "override thread stacks allocation: N kB",
     read_integer_option, 0, &__mf_opts.thread_stack},
#endif
    {0, 0, set_option, 0, NULL}
  };

static void
__mf_usage ()
{
  struct mudoption *opt;

  fprintf (stderr,
           "This is a %s%sGCC \"mudflap\" memory-checked binary.\n"
           "Mudflap is Copyright (C) 2002-2004 Free Software Foundation, Inc.\n"
           "\n"
           "The mudflap code can be controlled by an environment variable:\n"
           "\n"
           "$ export MUDFLAP_OPTIONS='<options>'\n"
           "$ <mudflapped_program>\n"
           "\n"
           "where <options> is a space-separated list of \n"
           "any of the following options.  Use `-no-OPTION' to disable options.\n"
           "\n",
#if HAVE_PTHREAD_H
           (pthread_join ? "multi-threaded " : "single-threaded "),
#else
           "",
#endif
#if LIBMUDFLAPTH
           "thread-aware "
#else
           "thread-unaware "
#endif
            );
  /* XXX: The multi-threaded thread-unaware combination is bad.  */

  for (opt = options; opt->name; opt++)
    {
      int default_p = (opt->value == * opt->target);

      switch (opt->type)
        {
          char buf[128];
        case set_option:
          fprintf (stderr, "-%-23.23s %s", opt->name, opt->description);
          if (default_p)
            fprintf (stderr, " [active]\n");
          else
            fprintf (stderr, "\n");
          break;
        case read_integer_option:
          strncpy (buf, opt->name, 128);
          strncpy (buf + strlen (opt->name), "=N", 2);
          fprintf (stderr, "-%-23.23s %s", buf, opt->description);
          fprintf (stderr, " [%d]\n", * opt->target);
          break;
        default: abort();
        }
    }

  fprintf (stderr, "\n");
}


int
__mf_set_options (const char *optstr)
{
  int rc;
  LOCKTH ();
  BEGIN_RECURSION_PROTECT ();
  rc = __mfu_set_options (optstr);
  /* XXX: It's not really that easy.  A change to a bunch of parameters
     can require updating auxiliary state or risk crashing:
     free_queue_length, crumple_zone ... */
  END_RECURSION_PROTECT ();
  UNLOCKTH ();
  return rc;
}


int
__mfu_set_options (const char *optstr)
{
  struct mudoption *opts = 0;
  char *nxt = 0;
  long tmp = 0;
  int rc = 0;
  const char *saved_optstr = optstr;

  /* XXX: bounds-check for optstr! */

  while (*optstr)
    {
      switch (*optstr) {
      case ' ':
      case '\t':
      case '\n':
        optstr++;
        break;

      case '-':
        if (*optstr+1)
          {
            int negate = 0;
            optstr++;

            if (*optstr == '?' ||
                strncmp (optstr, "help", 4) == 0)
              {
                /* Caller will print help and exit.  */
                return -1;
              }

            if (strncmp (optstr, "no-", 3) == 0)
              {
                negate = 1;
                optstr = & optstr[3];
              }

            for (opts = options; opts->name; opts++)
              {
                if (strncmp (optstr, opts->name, strlen (opts->name)) == 0)
                  {
                    optstr += strlen (opts->name);
                    assert (opts->target);
                    switch (opts->type)
                      {
                      case set_option:
                        if (negate)
                          *(opts->target) = 0;
                        else
                          *(opts->target) = opts->value;
                        break;
                      case read_integer_option:
                        if (! negate && (*optstr == '=' && *(optstr+1)))
                          {
                            optstr++;
                            tmp = strtol (optstr, &nxt, 10);
                            if ((optstr != nxt) && (tmp != LONG_MAX))
                              {
                                optstr = nxt;
                                *(opts->target) = (int)tmp;
                              }
                          }
                        else if (negate)
                          * opts->target = 0;
                        break;
                      }
                  }
              }
          }
        break;

      default:
        fprintf (stderr,
                 "warning: unrecognized string '%s' in mudflap options\n",
                 optstr);
        optstr += strlen (optstr);
        rc = -1;
        break;
      }
    }

  /* Special post-processing: bound __mf_lc_mask and free_queue_length for security. */
  __mf_lc_mask &= (LOOKUP_CACHE_SIZE_MAX - 1);
  __mf_opts.free_queue_length &= (__MF_FREEQ_MAX - 1);

  /* Clear the lookup cache, in case the parameters got changed.  */
  /* XXX: race */
  memset (__mf_lookup_cache, 0, sizeof(__mf_lookup_cache));
  /* void slot 0 */
  __mf_lookup_cache[0].low = MAXPTR;

  TRACE ("set options from `%s'\n", saved_optstr);

  /* Call this unconditionally, in case -sigusr1-report was toggled. */
  __mf_sigusr1_respond ();

  return rc;
}


#ifdef PIC

void
__mf_resolve_single_dynamic (struct __mf_dynamic_entry *e)
{
  char *err;

  assert (e);
  if (e->pointer) return;

#if HAVE_DLVSYM
  if (e->version != NULL && e->version[0] != '\0') /* non-null/empty */
    e->pointer = dlvsym (RTLD_NEXT, e->name, e->version);
  else
#endif
    e->pointer = dlsym (RTLD_NEXT, e->name);

  err = dlerror ();

  if (err)
    {
      fprintf (stderr, "mf: error in dlsym(\"%s\"): %s\n",
               e->name, err);
      abort ();
    }
  if (! e->pointer)
    {
      fprintf (stderr, "mf: dlsym(\"%s\") = NULL\n", e->name);
      abort ();
    }
}


static void
__mf_resolve_dynamics ()
{
  int i;
  for (i = 0; i < dyn_INITRESOLVE; i++)
    __mf_resolve_single_dynamic (& __mf_dynamic[i]);
}


/* NB: order must match enums in mf-impl.h */
struct __mf_dynamic_entry __mf_dynamic [] =
{
  {NULL, "calloc", NULL},
  {NULL, "free", NULL},
  {NULL, "malloc", NULL},
  {NULL, "mmap", NULL},
  {NULL, "munmap", NULL},
  {NULL, "realloc", NULL},
  {NULL, "DUMMY", NULL}, /* dyn_INITRESOLVE */
#ifdef LIBMUDFLAPTH
  {NULL, "pthread_create", PTHREAD_CREATE_VERSION},
  {NULL, "pthread_join", NULL},
  {NULL, "pthread_exit", NULL}
#endif
};

#endif /* PIC */



/* ------------------------------------------------------------------------ */

/* Lookup & manage automatic initialization of the five or so splay trees.  */
static mfsplay_tree
__mf_object_tree (int type)
{
  static mfsplay_tree trees [__MF_TYPE_MAX+1];
  assert (type >= 0 && type <= __MF_TYPE_MAX);
  if (UNLIKELY (trees[type] == NULL))
    trees[type] = mfsplay_tree_new ();
  return trees[type];
}


/* not static */void
__mf_init ()
{
  char *ov = 0;

  /* Return if initialization has already been done. */
  if (LIKELY (__mf_starting_p == 0))
    return;

  /* This initial bootstrap phase requires that __mf_starting_p = 1. */
#ifdef PIC
  __mf_resolve_dynamics ();
#endif
  __mf_starting_p = 0;

  __mf_set_state (active);

  __mf_set_default_options ();

  ov = getenv ("MUDFLAP_OPTIONS");
  if (ov)
    {
      int rc = __mfu_set_options (ov);
      if (rc < 0)
        {
          __mf_usage ();
          exit (1);
        }
    }

  /* Initialize to a non-zero description epoch. */
  __mf_describe_object (NULL);

#define REG_RESERVED(obj) \
  __mf_register (& obj, sizeof(obj), __MF_TYPE_NOACCESS, # obj)

  REG_RESERVED (__mf_lookup_cache);
  REG_RESERVED (__mf_lc_mask);
  REG_RESERVED (__mf_lc_shift);
  /* XXX: others of our statics?  */

  /* Prevent access to *NULL. */
  __mf_register (MINPTR, 1, __MF_TYPE_NOACCESS, "NULL");
  __mf_lookup_cache[0].low = (uintptr_t) -1;
}



int
__wrap_main (int argc, char* argv[])
{
  extern char **environ;
  extern int main ();
  extern int __real_main ();
  static int been_here = 0;

  if (__mf_opts.heur_std_data && ! been_here)
    {
      unsigned i;

      been_here = 1;
      __mf_register (argv, sizeof(char *)*(argc+1), __MF_TYPE_STATIC, "argv[]");
      for (i=0; i<argc; i++)
        {
          unsigned j = strlen (argv[i]);
          __mf_register (argv[i], j+1, __MF_TYPE_STATIC, "argv element");
        }

      for (i=0; ; i++)
        {
          char *e = environ[i];
          unsigned j;
          if (e == NULL) break;
          j = strlen (environ[i]);
          __mf_register (environ[i], j+1, __MF_TYPE_STATIC, "environ element");
        }
      __mf_register (environ, sizeof(char *)*(i+1), __MF_TYPE_STATIC, "environ[]");

      __mf_register (& errno, sizeof (errno), __MF_TYPE_STATIC, "errno area");

      __mf_register (stdin,  sizeof (*stdin),  __MF_TYPE_STATIC, "stdin");
      __mf_register (stdout, sizeof (*stdout), __MF_TYPE_STATIC, "stdout");
      __mf_register (stderr, sizeof (*stderr), __MF_TYPE_STATIC, "stderr");

      /* Make some effort to register ctype.h static arrays.  */
      /* XXX: e.g., on Solaris, may need to register __ctype, _ctype, __ctype_mask, __toupper, etc. */
      /* On modern Linux GLIBC, these are thread-specific and changeable, and are dealt
         with in mf-hooks2.c.  */
    }

#ifdef PIC
  return main (argc, argv, environ);
#else
  return __real_main (argc, argv, environ);
#endif
}



extern void __mf_fini () DTOR;
void __mf_fini ()
{
  TRACE ("__mf_fini\n");
  __mfu_report ();

#ifndef PIC
/* Since we didn't populate the tree for allocations in constructors
   before __mf_init, we cannot check destructors after __mf_fini.  */
  __mf_opts.mudflap_mode = mode_nop;
#endif
}



/* ------------------------------------------------------------------------ */
/* __mf_check */

void __mf_check (void *ptr, size_t sz, int type, const char *location)
{
  LOCKTH ();
  BEGIN_RECURSION_PROTECT ();
  __mfu_check (ptr, sz, type, location);
  END_RECURSION_PROTECT ();
  UNLOCKTH ();
}


void __mfu_check (void *ptr, size_t sz, int type, const char *location)
{
  unsigned entry_idx = __MF_CACHE_INDEX (ptr);
  struct __mf_cache *entry = & __mf_lookup_cache [entry_idx];
  int judgement = 0; /* 0=undecided; <0=violation; >0=okay */
  uintptr_t ptr_low = (uintptr_t) ptr;
  uintptr_t ptr_high = CLAMPSZ (ptr, sz);
  struct __mf_cache old_entry = *entry;

  if (UNLIKELY (__mf_opts.sigusr1_report))
    __mf_sigusr1_respond ();
  if (UNLIKELY (__mf_opts.ignore_reads && type == 0))
    return;

  TRACE ("check ptr=%p b=%u size=%lu %s location=`%s'\n",
         ptr, entry_idx, (unsigned long)sz,
         (type == 0 ? "read" : "write"), location);

  switch (__mf_opts.mudflap_mode)
    {
    case mode_nop:
      /* It is tempting to poison the cache here similarly to
         mode_populate.  However that eliminates a valuable
         distinction between these two modes.  mode_nop is useful to
         let a user count & trace every single check / registration
         call.  mode_populate is useful to let a program run fast
         while unchecked.
      */
      judgement = 1;
      break;

    case mode_populate:
      entry->low = ptr_low;
      entry->high = ptr_high;
      judgement = 1;
      break;

    case mode_check:
      {
        unsigned heuristics = 0;

        /* Advance aging/adaptation counters.  */
        static unsigned adapt_count;
        adapt_count ++;
        if (UNLIKELY (__mf_opts.adapt_cache > 0 &&
                      adapt_count > __mf_opts.adapt_cache))
          {
            adapt_count = 0;
            __mf_adapt_cache ();
          }

        /* Looping only occurs if heuristics were triggered.  */
        while (judgement == 0)
          {
            DECLARE (void, free, void *p);
            __mf_object_t* ovr_obj[1];
            unsigned obj_count;
            __mf_object_t** all_ovr_obj = NULL;
            __mf_object_t** dealloc_me = NULL;
            unsigned i;

            /* Find all overlapping objects.  Be optimistic that there is just one.  */
            obj_count = __mf_find_objects (ptr_low, ptr_high, ovr_obj, 1);
            if (UNLIKELY (obj_count > 1))
              {
                /* Allocate a real buffer and do the search again.  */
                DECLARE (void *, malloc, size_t c);
                unsigned n;
                all_ovr_obj = CALL_REAL (malloc, (sizeof (__mf_object_t *) *
                                                   obj_count));
                if (all_ovr_obj == NULL) abort ();
                n = __mf_find_objects (ptr_low, ptr_high, all_ovr_obj, obj_count);
                assert (n == obj_count);
                dealloc_me = all_ovr_obj;
              }
            else
              {
                all_ovr_obj = ovr_obj;
                dealloc_me = NULL;
              }

            /* Update object statistics.  */
            for (i = 0; i < obj_count; i++)
              {
                __mf_object_t *obj = all_ovr_obj[i];
                assert (obj != NULL);
                if (type == __MF_CHECK_READ)
                  obj->read_count ++;
                else
                  obj->write_count ++;
                obj->liveness ++;
              }

            /* Iterate over the various objects.  There are a number of special cases.  */
            for (i = 0; i < obj_count; i++)
              {
                  __mf_object_t *obj = all_ovr_obj[i];

                /* Any __MF_TYPE_NOACCESS hit is bad.  */
                if (UNLIKELY (obj->type == __MF_TYPE_NOACCESS))
                  judgement = -1;

                /* Any object with a watch flag is bad.  */
                if (UNLIKELY (obj->watching_p))
                  judgement = -2; /* trigger VIOL_WATCH */

                /* A read from an uninitialized object is bad. */
                if (UNLIKELY (__mf_opts.check_initialization
                              /* reading */
                              && type == __MF_CHECK_READ
                              /* not written */
                              && obj->write_count == 0
                              /* uninitialized (heap) */
                              && obj->type == __MF_TYPE_HEAP))
                  judgement = -1;
              }

            /* We now know that the access spans no invalid objects.  */
            if (LIKELY (judgement >= 0))
              for (i = 0; i < obj_count; i++)
                {
                  __mf_object_t *obj = all_ovr_obj[i];

                  /* Is this access entirely contained within this object?  */
                  if (LIKELY (ptr_low >= obj->low && ptr_high <= obj->high))
                    {
                      /* Valid access.  */
                      entry->low = obj->low;
                      entry->high = obj->high;
                      judgement = 1;
                    }
                }

            /* This access runs off the end of one valid object.  That
                could be okay, if other valid objects fill in all the
                holes.  We allow this only for HEAP and GUESS type
                objects.  Accesses to STATIC and STACK variables
                should not be allowed to span.  */
            if (UNLIKELY ((judgement == 0) && (obj_count > 1)))
              {
                unsigned uncovered = 0;
                for (i = 0; i < obj_count; i++)
                  {
                    __mf_object_t *obj = all_ovr_obj[i];
                    int j, uncovered_low_p, uncovered_high_p;
                    uintptr_t ptr_lower, ptr_higher;

                    uncovered_low_p = ptr_low < obj->low;
                    ptr_lower = CLAMPSUB (obj->low, 1);
                    uncovered_high_p = ptr_high > obj->high;
                    ptr_higher = CLAMPADD (obj->high, 1);

                    for (j = 0; j < obj_count; j++)
                      {
                        __mf_object_t *obj2 = all_ovr_obj[j];

                        if (i == j) continue;

                        /* Filter out objects that cannot be spanned across.  */
                        if (obj2->type == __MF_TYPE_STACK
                            || obj2->type == __MF_TYPE_STATIC)
                          continue;

                          /* Consider a side "covered" if obj2 includes
                             the next byte on that side.  */
                          if (uncovered_low_p
                              && (ptr_lower >= obj2->low && ptr_lower <= obj2->high))
                            uncovered_low_p = 0;
                          if (uncovered_high_p
                              && (ptr_high >= obj2->low && ptr_higher <= obj2->high))
                            uncovered_high_p = 0;
                      }

                    if (uncovered_low_p || uncovered_high_p)
                      uncovered ++;
                  }

                /* Success if no overlapping objects are uncovered.  */
                if (uncovered == 0)
                  judgement = 1;
                }


            if (dealloc_me != NULL)
              CALL_REAL (free, dealloc_me);

            /* If the judgment is still unknown at this stage, loop
               around at most one more time.  */
            if (judgement == 0)
              {
                if (heuristics++ < 2) /* XXX parametrize this number? */
                  judgement = __mf_heuristic_check (ptr_low, ptr_high);
                else
                  judgement = -1;
              }
          }

      }
      break;

    case mode_violate:
      judgement = -1;
      break;
    }

  if (__mf_opts.collect_stats)
    {
      __mf_count_check ++;

      if (LIKELY (old_entry.low != entry->low || old_entry.high != entry->high))
        /* && (old_entry.low != 0) && (old_entry.high != 0)) */
        __mf_lookup_cache_reusecount [entry_idx] ++;
    }

  if (UNLIKELY (judgement < 0))
    __mf_violation (ptr, sz,
                    (uintptr_t) __builtin_return_address (0), location,
                    ((judgement == -1) ?
                     (type == __MF_CHECK_READ ? __MF_VIOL_READ : __MF_VIOL_WRITE) :
                     __MF_VIOL_WATCH));
}


static __mf_object_t *
__mf_insert_new_object (uintptr_t low, uintptr_t high, int type,
                        const char *name, uintptr_t pc)
{
  DECLARE (void *, calloc, size_t c, size_t n);

  __mf_object_t *new_obj;
  new_obj = CALL_REAL (calloc, 1, sizeof(__mf_object_t));
  new_obj->low = low;
  new_obj->high = high;
  new_obj->type = type;
  new_obj->name = name;
  new_obj->alloc_pc = pc;
#if HAVE_GETTIMEOFDAY
  if (__mf_opts.timestamps)
    gettimeofday (& new_obj->alloc_time, NULL);
#endif
#if LIBMUDFLAPTH
  new_obj->alloc_thread = pthread_self ();
#endif

  if (__mf_opts.backtrace > 0 && (type == __MF_TYPE_HEAP || type == __MF_TYPE_HEAP_I))
    new_obj->alloc_backtrace_size =
      __mf_backtrace (& new_obj->alloc_backtrace,
                      (void *) pc, 2);

  __mf_link_object (new_obj);
  return new_obj;
}


static void
__mf_uncache_object (__mf_object_t *old_obj)
{
  /* Remove any low/high pointers for this object from the lookup cache.  */

  /* Can it possibly exist in the cache?  */
  if (LIKELY (old_obj->read_count + old_obj->write_count))
    {
      uintptr_t low = old_obj->low;
      uintptr_t high = old_obj->high;
      struct __mf_cache *entry;
      unsigned i;
      if ((high - low) >= (__mf_lc_mask << __mf_lc_shift))
	{
	  /* For large objects (>= cache size - 1) check the whole cache.  */
          entry = & __mf_lookup_cache [0];
          for (i = 0; i <= __mf_lc_mask; i++, entry++)
            {
              /* NB: the "||" in the following test permits this code to
                 tolerate the situation introduced by __mf_check over
                 contiguous objects, where a cache entry spans several
                 objects.  */
              if (entry->low == low || entry->high == high)
                {
                  entry->low = MAXPTR;
                  entry->high = MINPTR;
                }
            }
        }
      else
	{
	  /* Object is now smaller then cache size.  */
          unsigned entry_low_idx = __MF_CACHE_INDEX (low);
          unsigned entry_high_idx = __MF_CACHE_INDEX (high);
          if (entry_low_idx <= entry_high_idx)
	    {
              entry = & __mf_lookup_cache [entry_low_idx];
              for (i = entry_low_idx; i <= entry_high_idx; i++, entry++)
                {
                  /* NB: the "||" in the following test permits this code to
                     tolerate the situation introduced by __mf_check over
                     contiguous objects, where a cache entry spans several
                     objects.  */
                  if (entry->low == low || entry->high == high)
                    {
                      entry->low = MAXPTR;
                      entry->high = MINPTR;
                    }
                }
            }
          else
	    {
	      /* Object wrapped around the end of the cache. First search
		 from low to end of cache and then from 0 to high.  */
              entry = & __mf_lookup_cache [entry_low_idx];
              for (i = entry_low_idx; i <= __mf_lc_mask; i++, entry++)
                {
                  /* NB: the "||" in the following test permits this code to
                     tolerate the situation introduced by __mf_check over
                     contiguous objects, where a cache entry spans several
                     objects.  */
                  if (entry->low == low || entry->high == high)
                    {
                      entry->low = MAXPTR;
                      entry->high = MINPTR;
                    }
                }
              entry = & __mf_lookup_cache [0];
              for (i = 0; i <= entry_high_idx; i++, entry++)
                {
                  /* NB: the "||" in the following test permits this code to
                     tolerate the situation introduced by __mf_check over
                     contiguous objects, where a cache entry spans several
                     objects.  */
                  if (entry->low == low || entry->high == high)
                    {
                      entry->low = MAXPTR;
                      entry->high = MINPTR;
                    }
                }
	    }
	}
    }
}


void
__mf_register (void *ptr, size_t sz, int type, const char *name)
{
  LOCKTH ();
  BEGIN_RECURSION_PROTECT ();
  __mfu_register (ptr, sz, type, name);
  END_RECURSION_PROTECT ();
  UNLOCKTH ();
}


void
__mfu_register (void *ptr, size_t sz, int type, const char *name)
{
  TRACE ("register ptr=%p size=%lu type=%x name='%s'\n",
         ptr, (unsigned long) sz, type, name ? name : "");

  if (__mf_opts.collect_stats)
    {
      __mf_count_register ++;
      __mf_total_register_size [(type < 0) ? 0 :
                                (type > __MF_TYPE_MAX) ? 0 :
                                type] += sz;
    }

  if (UNLIKELY (__mf_opts.sigusr1_report))
    __mf_sigusr1_respond ();

  switch (__mf_opts.mudflap_mode)
    {
    case mode_nop:
      break;

    case mode_violate:
      __mf_violation (ptr, sz, (uintptr_t) __builtin_return_address (0), NULL,
                      __MF_VIOL_REGISTER);
      break;

    case mode_populate:
      /* Clear the cache.  */
      /* XXX: why the entire cache? */
      /* XXX: race */
      memset (__mf_lookup_cache, 0, sizeof(__mf_lookup_cache));
      /* void slot 0 */
      __mf_lookup_cache[0].low = MAXPTR;
      break;

    case mode_check:
      {
        __mf_object_t *ovr_objs [1];
        unsigned num_overlapping_objs;
        uintptr_t low = (uintptr_t) ptr;
        uintptr_t high = CLAMPSZ (ptr, sz);
        uintptr_t pc = (uintptr_t) __builtin_return_address (0);

        /* Treat unknown size indication as 1.  */
        if (UNLIKELY (sz == 0)) sz = 1;

        /* Look for objects only of the same type.  This will e.g. permit a registration
           of a STATIC overlapping with a GUESS, and a HEAP with a NOACCESS.  At
           __mf_check time however harmful overlaps will be detected. */
        num_overlapping_objs = __mf_find_objects2 (low, high, ovr_objs, 1, type);

        /* Handle overlaps.  */
        if (UNLIKELY (num_overlapping_objs > 0))
          {
            __mf_object_t *ovr_obj = ovr_objs[0];

            /* Accept certain specific duplication pairs.  */
            if (((type == __MF_TYPE_STATIC) || (type == __MF_TYPE_GUESS))
                && ovr_obj->low == low
                && ovr_obj->high == high
                && ovr_obj->type == type)
              {
                /* Duplicate registration for static objects may come
                   from distinct compilation units.  */
                VERBOSE_TRACE ("harmless duplicate reg %p-%p `%s'\n",
                               (void *) low, (void *) high,
                               (ovr_obj->name ? ovr_obj->name : ""));
                break;
              }

            /* Alas, a genuine violation.  */
            else
              {
                /* Two or more *real* mappings here. */
                __mf_violation ((void *) ptr, sz,
                                (uintptr_t) __builtin_return_address (0), NULL,
                                __MF_VIOL_REGISTER);
              }
          }
        else /* No overlapping objects: AOK.  */
          __mf_insert_new_object (low, high, type, name, pc);

        /* We could conceivably call __mf_check() here to prime the cache,
           but then the read_count/write_count field is not reliable.  */
        break;
      }
    } /* end switch (__mf_opts.mudflap_mode) */
}


void
__mf_unregister (void *ptr, size_t sz, int type)
{
  LOCKTH ();
  BEGIN_RECURSION_PROTECT ();
  __mfu_unregister (ptr, sz, type);
  END_RECURSION_PROTECT ();
  UNLOCKTH ();
}


void
__mfu_unregister (void *ptr, size_t sz, int type)
{
  DECLARE (void, free, void *ptr);

  if (UNLIKELY (__mf_opts.sigusr1_report))
    __mf_sigusr1_respond ();

  TRACE ("unregister ptr=%p size=%lu type=%x\n", ptr, (unsigned long) sz, type);

  switch (__mf_opts.mudflap_mode)
    {
    case mode_nop:
      break;

    case mode_violate:
      __mf_violation (ptr, sz,
                      (uintptr_t) __builtin_return_address (0), NULL,
                      __MF_VIOL_UNREGISTER);
      break;

    case mode_populate:
      /* Clear the cache.  */
      /* XXX: race */
      memset (__mf_lookup_cache, 0, sizeof(__mf_lookup_cache));
      /* void slot 0 */
      __mf_lookup_cache[0].low = MAXPTR;
      break;

    case mode_check:
      {
        __mf_object_t *old_obj = NULL;
        __mf_object_t *del_obj = NULL;  /* Object to actually delete. */
        __mf_object_t *objs[1] = {NULL};
        unsigned num_overlapping_objs;

        num_overlapping_objs = __mf_find_objects2 ((uintptr_t) ptr,
                                                   CLAMPSZ (ptr, sz), objs, 1, type);

        /* Special case for HEAP_I - see free & realloc hook.  They don't
           know whether the input region was HEAP or HEAP_I before
           unmapping it.  Here we give HEAP a try in case HEAP_I
           failed.  */
        if ((type == __MF_TYPE_HEAP_I) && (num_overlapping_objs == 0))
          {
            num_overlapping_objs = __mf_find_objects2 ((uintptr_t) ptr,
                                                       CLAMPSZ (ptr, sz), objs, 1, __MF_TYPE_HEAP);
          }

        old_obj = objs[0];
        if (UNLIKELY ((num_overlapping_objs != 1) /* more than one overlap */
                      || ((sz == 0) ? 0 : (sz != (old_obj->high - old_obj->low + 1))) /* size mismatch */
                      || ((uintptr_t) ptr != old_obj->low))) /* base mismatch */
          {
            __mf_violation (ptr, sz,
                            (uintptr_t) __builtin_return_address (0), NULL,
                            __MF_VIOL_UNREGISTER);
            break;
          }

        __mf_unlink_object (old_obj);
        __mf_uncache_object (old_obj);

        /* Wipe buffer contents if desired.  */
        if ((__mf_opts.wipe_stack && old_obj->type == __MF_TYPE_STACK)
            || (__mf_opts.wipe_heap && (old_obj->type == __MF_TYPE_HEAP
                                        || old_obj->type == __MF_TYPE_HEAP_I)))
          {
            memset ((void *) old_obj->low,
                    0,
                    (size_t) (old_obj->high - old_obj->low + 1));
          }

        /* Manage the object cemetary.  */
        if (__mf_opts.persistent_count > 0
	    && (unsigned) old_obj->type <= __MF_TYPE_MAX_CEM)
          {
            old_obj->deallocated_p = 1;
            old_obj->dealloc_pc = (uintptr_t) __builtin_return_address (0);
#if HAVE_GETTIMEOFDAY
            if (__mf_opts.timestamps)
              gettimeofday (& old_obj->dealloc_time, NULL);
#endif
#ifdef LIBMUDFLAPTH
            old_obj->dealloc_thread = pthread_self ();
#endif

            if (__mf_opts.backtrace > 0 && old_obj->type == __MF_TYPE_HEAP)
              old_obj->dealloc_backtrace_size =
                __mf_backtrace (& old_obj->dealloc_backtrace,
                                NULL, 2);

            /* Encourage this object to be displayed again in current epoch.  */
            old_obj->description_epoch --;

            /* Put this object into the cemetary.  This may require this plot to
               be recycled, and the previous resident to be designated del_obj.  */
            {
              unsigned row = old_obj->type;
              unsigned plot = __mf_object_dead_head [row];

              del_obj = __mf_object_cemetary [row][plot];
              __mf_object_cemetary [row][plot] = old_obj;
              plot ++;
              if (plot == __mf_opts.persistent_count) plot = 0;
              __mf_object_dead_head [row] = plot;
            }
          }
        else
          del_obj = old_obj;

        if (__mf_opts.print_leaks)
          {
            if ((old_obj->read_count + old_obj->write_count) == 0 &&
                (old_obj->type == __MF_TYPE_HEAP
                 || old_obj->type == __MF_TYPE_HEAP_I))
              {
		/* The problem with a warning message here is that we may not
		   be privy to accesses to such objects that occur within
		   uninstrumented libraries.  */
#if 0
                fprintf (stderr,
                         "*******\n"
                         "mudflap warning: unaccessed registered object:\n");
                __mf_describe_object (old_obj);
#endif
              }
          }

        if (del_obj != NULL) /* May or may not equal old_obj.  */
          {
            if (__mf_opts.backtrace > 0)
              {
                CALL_REAL(free, del_obj->alloc_backtrace);
                if (__mf_opts.persistent_count > 0)
                  {
                    CALL_REAL(free, del_obj->dealloc_backtrace);
                  }
              }
            CALL_REAL(free, del_obj);
          }

        break;
      }
    } /* end switch (__mf_opts.mudflap_mode) */


  if (__mf_opts.collect_stats)
    {
      __mf_count_unregister ++;
      __mf_total_unregister_size += sz;
    }
}



struct tree_stats
{
  unsigned obj_count;
  unsigned long total_size;
  unsigned live_obj_count;
  double total_weight;
  double weighted_size;
  unsigned long weighted_address_bits [sizeof (uintptr_t) * 8][2];
};



static int
__mf_adapt_cache_fn (mfsplay_tree_node n, void *param)
{
  __mf_object_t *obj = (__mf_object_t *) n->value;
  struct tree_stats *s = (struct tree_stats *) param;

  assert (obj != NULL && s != NULL);

  /* Exclude never-accessed objects.  */
  if (obj->read_count + obj->write_count)
    {
      s->obj_count ++;
      s->total_size += (obj->high - obj->low + 1);

      if (obj->liveness)
        {
          unsigned i;
          uintptr_t addr;

          /* VERBOSE_TRACE ("analyze low=%p live=%u name=`%s'\n",
             (void *) obj->low, obj->liveness, obj->name); */

          s->live_obj_count ++;
          s->total_weight += (double) obj->liveness;
          s->weighted_size +=
            (double) (obj->high - obj->low + 1) *
            (double) obj->liveness;

          addr = obj->low;
          for (i=0; i<sizeof(uintptr_t) * 8; i++)
            {
              unsigned bit = addr & 1;
              s->weighted_address_bits[i][bit] += obj->liveness;
              addr = addr >> 1;
            }

          /* Age the liveness value.  */
          obj->liveness >>= 1;
        }
    }

  return 0;
}


static void
__mf_adapt_cache ()
{
  struct tree_stats s;
  uintptr_t new_mask = 0;
  unsigned char new_shift;
  float cache_utilization;
  float max_value;
  static float smoothed_new_shift = -1.0;
  unsigned i;

  memset (&s, 0, sizeof (s));

  mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_HEAP), __mf_adapt_cache_fn, (void *) & s);
  mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_HEAP_I), __mf_adapt_cache_fn, (void *) & s);
  mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_STACK), __mf_adapt_cache_fn, (void *) & s);
  mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_STATIC), __mf_adapt_cache_fn, (void *) & s);
  mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_GUESS), __mf_adapt_cache_fn, (void *) & s);

  /* Maybe we're dealing with funny aging/adaptation parameters, or an
     empty tree.  Just leave the cache alone in such cases, rather
     than risk dying by division-by-zero.  */
  if (! (s.obj_count > 0) && (s.live_obj_count > 0) && (s.total_weight > 0.0))
    return;

  /* Guess a good value for the shift parameter by finding an address bit that is a
     good discriminant of lively objects.  */
  max_value = 0.0;
  for (i=0; i<sizeof (uintptr_t)*8; i++)
    {
      float value = (float) s.weighted_address_bits[i][0] * (float) s.weighted_address_bits[i][1];
      if (max_value < value) max_value = value;
    }
  for (i=0; i<sizeof (uintptr_t)*8; i++)
    {
      float shoulder_factor = 0.7;  /* Include slightly less popular bits too.  */
      float value = (float) s.weighted_address_bits[i][0] * (float) s.weighted_address_bits[i][1];
      if (value >= max_value * shoulder_factor)
        break;
    }
  if (smoothed_new_shift < 0) smoothed_new_shift = __mf_lc_shift;
  /* Converge toward this slowly to reduce flapping. */
  smoothed_new_shift = 0.9*smoothed_new_shift + 0.1*i;
  new_shift = (unsigned) (smoothed_new_shift + 0.5);
  assert (new_shift < sizeof (uintptr_t)*8);

  /* Count number of used buckets.  */
  cache_utilization = 0.0;
  for (i = 0; i < (1 + __mf_lc_mask); i++)
    if (__mf_lookup_cache[i].low != 0 || __mf_lookup_cache[i].high != 0)
      cache_utilization += 1.0;
  cache_utilization /= (1 + __mf_lc_mask);

  new_mask |= 0xffff; /* XXX: force a large cache.  */
  new_mask &= (LOOKUP_CACHE_SIZE_MAX - 1);

  VERBOSE_TRACE ("adapt cache obj=%u/%u sizes=%lu/%.0f/%.0f => "
                 "util=%u%% m=%p s=%u\n",
                 s.obj_count, s.live_obj_count, s.total_size, s.total_weight, s.weighted_size,
                 (unsigned)(cache_utilization*100.0), (void *) new_mask, new_shift);

  /* We should reinitialize cache if its parameters have changed.  */
  if (new_mask != __mf_lc_mask ||
      new_shift != __mf_lc_shift)
    {
      __mf_lc_mask = new_mask;
      __mf_lc_shift = new_shift;
      /* XXX: race */
      memset (__mf_lookup_cache, 0, sizeof(__mf_lookup_cache));
      /* void slot 0 */
      __mf_lookup_cache[0].low = MAXPTR;
    }
}



/* __mf_find_object[s] */

/* Find overlapping live objecs between [low,high].  Return up to
   max_objs of their pointers in objs[].  Return total count of
   overlaps (may exceed max_objs). */

unsigned
__mf_find_objects2 (uintptr_t ptr_low, uintptr_t ptr_high,
                    __mf_object_t **objs, unsigned max_objs, int type)
{
  unsigned count = 0;
  mfsplay_tree t = __mf_object_tree (type);
  mfsplay_tree_key k = (mfsplay_tree_key) ptr_low;
  int direction;

  mfsplay_tree_node n = mfsplay_tree_lookup (t, k);
  /* An exact match for base address implies a hit.  */
  if (n != NULL)
    {
      if (count < max_objs)
        objs[count] = (__mf_object_t *) n->value;
      count ++;
    }

  /* Iterate left then right near this key value to find all overlapping objects. */
  for (direction = 0; direction < 2; direction ++)
    {
      /* Reset search origin.  */
      k = (mfsplay_tree_key) ptr_low;

      while (1)
        {
          __mf_object_t *obj;

          n = (direction == 0 ? mfsplay_tree_successor (t, k) : mfsplay_tree_predecessor (t, k));
          if (n == NULL) break;
          obj = (__mf_object_t *) n->value;

          if (! (obj->low <= ptr_high && obj->high >= ptr_low)) /* No overlap? */
            break;

          if (count < max_objs)
            objs[count] = (__mf_object_t *) n->value;
          count ++;

          k = (mfsplay_tree_key) obj->low;
        }
    }

  return count;
}


unsigned
__mf_find_objects (uintptr_t ptr_low, uintptr_t ptr_high,
                   __mf_object_t **objs, unsigned max_objs)
{
  int type;
  unsigned count = 0;

  /* Search each splay tree for overlaps.  */
  for (type = __MF_TYPE_NOACCESS; type <= __MF_TYPE_GUESS; type++)
    {
      unsigned c = __mf_find_objects2 (ptr_low, ptr_high, objs, max_objs, type);
      if (c > max_objs)
        {
          max_objs = 0;
          objs = NULL;
        }
      else /* NB: C may equal 0 */
        {
          max_objs -= c;
          objs += c;
        }
      count += c;
    }

  return count;
}



/* __mf_link_object */

static void
__mf_link_object (__mf_object_t *node)
{
  mfsplay_tree t = __mf_object_tree (node->type);
  mfsplay_tree_insert (t, (mfsplay_tree_key) node->low, (mfsplay_tree_value) node);
}

/* __mf_unlink_object */

static void
__mf_unlink_object (__mf_object_t *node)
{
  mfsplay_tree t = __mf_object_tree (node->type);
  mfsplay_tree_remove (t, (mfsplay_tree_key) node->low);
}

/* __mf_find_dead_objects */

/* Find overlapping dead objecs between [low,high].  Return up to
   max_objs of their pointers in objs[].  Return total count of
   overlaps (may exceed max_objs).  */

static unsigned
__mf_find_dead_objects (uintptr_t low, uintptr_t high,
                        __mf_object_t **objs, unsigned max_objs)
{
  if (__mf_opts.persistent_count > 0)
    {
      unsigned count = 0;
      unsigned recollection = 0;
      unsigned row = 0;

      assert (low <= high);
      assert (max_objs == 0 || objs != NULL);

      /* Widen the search from the most recent plots in each row, looking
         backward in time.  */
      recollection = 0;
      while (recollection < __mf_opts.persistent_count)
        {
          count = 0;

          for (row = 0; row <= __MF_TYPE_MAX_CEM; row ++)
            {
              unsigned plot;
              unsigned i;

              plot = __mf_object_dead_head [row];
              for (i = 0; i <= recollection; i ++)
                {
                  __mf_object_t *obj;

                  /* Look backward through row: it's a circular buffer.  */
                  if (plot > 0) plot --;
                  else plot = __mf_opts.persistent_count - 1;

                  obj = __mf_object_cemetary [row][plot];
                  if (obj && obj->low <= high && obj->high >= low)
                    {
                      /* Found an overlapping dead object!  */
                      if (count < max_objs)
                        objs [count] = obj;
                      count ++;
                    }
                }
            }

          if (count)
            break;

          /* Look farther back in time.  */
          recollection = (recollection * 2) + 1;
        }

      return count;
    } else {
      return 0;
    }
}

/* __mf_describe_object */

static void
__mf_describe_object (__mf_object_t *obj)
{
  static unsigned epoch = 0;
  if (obj == NULL)
    {
      epoch ++;
      return;
    }

  if (__mf_opts.abbreviate && obj->description_epoch == epoch)
    {
      fprintf (stderr,
               "mudflap %sobject %p: name=`%s'\n",
               (obj->deallocated_p ? "dead " : ""),
               (void *) obj, (obj->name ? obj->name : ""));
      return;
    }
  else
    obj->description_epoch = epoch;

  fprintf (stderr,
           "mudflap %sobject %p: name=`%s'\n"
           "bounds=[%p,%p] size=%lu area=%s check=%ur/%uw liveness=%u%s\n"
           "alloc time=%lu.%06lu pc=%p"
#ifdef LIBMUDFLAPTH
           " thread=%u"
#endif
           "\n",
           (obj->deallocated_p ? "dead " : ""),
           (void *) obj, (obj->name ? obj->name : ""),
           (void *) obj->low, (void *) obj->high,
           (unsigned long) (obj->high - obj->low + 1),
           (obj->type == __MF_TYPE_NOACCESS ? "no-access" :
            obj->type == __MF_TYPE_HEAP ? "heap" :
            obj->type == __MF_TYPE_HEAP_I ? "heap-init" :
            obj->type == __MF_TYPE_STACK ? "stack" :
            obj->type == __MF_TYPE_STATIC ? "static" :
            obj->type == __MF_TYPE_GUESS ? "guess" :
            "unknown"),
           obj->read_count, obj->write_count, obj->liveness,
           obj->watching_p ? " watching" : "",
           obj->alloc_time.tv_sec, obj->alloc_time.tv_usec,
           (void *) obj->alloc_pc
#ifdef LIBMUDFLAPTH
           , (unsigned) obj->alloc_thread
#endif
           );

  if (__mf_opts.backtrace > 0)
  {
    unsigned i;
    for (i=0; i<obj->alloc_backtrace_size; i++)
      fprintf (stderr, "      %s\n", obj->alloc_backtrace[i]);
  }

  if (__mf_opts.persistent_count > 0)
    {
      if (obj->deallocated_p)
        {
          fprintf (stderr, "dealloc time=%lu.%06lu pc=%p"
#ifdef LIBMUDFLAPTH
                   " thread=%u"
#endif
                   "\n",
                   obj->dealloc_time.tv_sec, obj->dealloc_time.tv_usec,
                   (void *) obj->dealloc_pc
#ifdef LIBMUDFLAPTH
                   , (unsigned) obj->dealloc_thread
#endif
                   );


          if (__mf_opts.backtrace > 0)
          {
            unsigned i;
            for (i=0; i<obj->dealloc_backtrace_size; i++)
              fprintf (stderr, "      %s\n", obj->dealloc_backtrace[i]);
          }
        }
    }
}


static int
__mf_report_leaks_fn (mfsplay_tree_node n, void *param)
{
  __mf_object_t *node = (__mf_object_t *) n->value;
  unsigned *count = (unsigned *) param;

  if (count != NULL)
    (*count) ++;

  fprintf (stderr, "Leaked object %u:\n", (*count));
  __mf_describe_object (node);

  return 0;
}


static unsigned
__mf_report_leaks ()
{
  unsigned count = 0;

  (void) mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_HEAP),
                             __mf_report_leaks_fn, & count);
  (void) mfsplay_tree_foreach (__mf_object_tree (__MF_TYPE_HEAP_I),
                             __mf_report_leaks_fn, & count);

  return count;
}

/* ------------------------------------------------------------------------ */
/* __mf_report */

void
__mf_report ()
{
  LOCKTH ();
  BEGIN_RECURSION_PROTECT ();
  __mfu_report ();
  END_RECURSION_PROTECT ();
  UNLOCKTH ();
}

void
__mfu_report ()
{
  if (__mf_opts.collect_stats)
    {
      fprintf (stderr,
               "*******\n"
               "mudflap stats:\n"
               "calls to __mf_check: %lu\n"
               "         __mf_register: %lu [%luB, %luB, %luB, %luB, %luB]\n"
               "         __mf_unregister: %lu [%luB]\n"
               "         __mf_violation: [%lu, %lu, %lu, %lu, %lu]\n",
               __mf_count_check,
               __mf_count_register,
               __mf_total_register_size[0], __mf_total_register_size[1],
               __mf_total_register_size[2], __mf_total_register_size[3],
               __mf_total_register_size[4], /* XXX */
               __mf_count_unregister, __mf_total_unregister_size,
               __mf_count_violation[0], __mf_count_violation[1],
               __mf_count_violation[2], __mf_count_violation[3],
               __mf_count_violation[4]);

      fprintf (stderr,
               "calls with reentrancy: %lu\n", __mf_reentrancy);
#ifdef LIBMUDFLAPTH
      fprintf (stderr,
               "           lock contention: %lu\n", __mf_lock_contention);
#endif

      /* Lookup cache stats.  */
      {
        unsigned i;
        unsigned max_reuse = 0;
        unsigned num_used = 0;
        unsigned num_unused = 0;

        for (i = 0; i < LOOKUP_CACHE_SIZE; i++)
          {
            if (__mf_lookup_cache_reusecount[i])
              num_used ++;
            else
              num_unused ++;
            if (max_reuse < __mf_lookup_cache_reusecount[i])
              max_reuse = __mf_lookup_cache_reusecount[i];
          }
        fprintf (stderr, "lookup cache slots used: %u  unused: %u  peak-reuse: %u\n",
                 num_used, num_unused, max_reuse);
      }

      {
        unsigned live_count;
        live_count = __mf_find_objects (MINPTR, MAXPTR, NULL, 0);
        fprintf (stderr, "number of live objects: %u\n", live_count);
      }

      if (__mf_opts.persistent_count > 0)
        {
          unsigned dead_count = 0;
          unsigned row, plot;
          for (row = 0; row <= __MF_TYPE_MAX_CEM; row ++)
            for (plot = 0 ; plot < __mf_opts.persistent_count; plot ++)
              if (__mf_object_cemetary [row][plot] != 0)
                dead_count ++;
          fprintf (stderr, "          zombie objects: %u\n", dead_count);
        }
    }
  if (__mf_opts.print_leaks && (__mf_opts.mudflap_mode == mode_check))
    {
      unsigned l;
      extern void * __mf_wrap_alloca_indirect (size_t c);

      /* Free up any remaining alloca()'d blocks.  */
      __mf_wrap_alloca_indirect (0);
#ifdef HAVE___LIBC_FREERES
      if (__mf_opts.call_libc_freeres)
        {
          extern void __libc_freeres (void);
          __libc_freeres ();
        }
#endif

      __mf_describe_object (NULL); /* Reset description epoch.  */
      l = __mf_report_leaks ();
      fprintf (stderr, "number of leaked objects: %u\n", l);
    }
}

/* __mf_backtrace */

size_t
__mf_backtrace (char ***symbols, void *guess_pc, unsigned guess_omit_levels)
{
  void ** pc_array;
  unsigned pc_array_size = __mf_opts.backtrace + guess_omit_levels;
  unsigned remaining_size;
  unsigned omitted_size = 0;
  unsigned i;
  DECLARE (void, free, void *ptr);
  DECLARE (void *, calloc, size_t c, size_t n);
  DECLARE (void *, malloc, size_t n);

  pc_array = CALL_REAL (calloc, pc_array_size, sizeof (void *) );
#ifdef HAVE_BACKTRACE
  pc_array_size = backtrace (pc_array, pc_array_size);
#else
#define FETCH(n) do { if (pc_array_size >= n) { \
                 pc_array[n] = __builtin_return_address(n); \
                 if (pc_array[n] == 0) pc_array_size = n; } } while (0)

  /* Unroll some calls __builtin_return_address because this function
     only takes a literal integer parameter.  */
  FETCH (0);
#if 0
  /* XXX: __builtin_return_address sometimes crashes (!) on >0 arguments,
     rather than simply returning 0.  :-(  */
  FETCH (1);
  FETCH (2);
  FETCH (3);
  FETCH (4);
  FETCH (5);
  FETCH (6);
  FETCH (7);
  FETCH (8);
  if (pc_array_size > 8) pc_array_size = 9;
#else
  if (pc_array_size > 0) pc_array_size = 1;
#endif

#undef FETCH
#endif

  /* We want to trim the first few levels of the stack traceback,
     since they contain libmudflap wrappers and junk.  If pc_array[]
     ends up containing a non-NULL guess_pc, then trim everything
     before that.  Otherwise, omit the first guess_omit_levels
     entries. */

  if (guess_pc != NULL)
    for (i=0; i<pc_array_size; i++)
      if (pc_array [i] == guess_pc)
        omitted_size = i;

  if (omitted_size == 0) /* No match? */
    if (pc_array_size > guess_omit_levels)
      omitted_size = guess_omit_levels;

  remaining_size = pc_array_size - omitted_size;

#ifdef HAVE_BACKTRACE_SYMBOLS
  *symbols = backtrace_symbols (pc_array + omitted_size, remaining_size);
#else
  {
    /* Let's construct a buffer by hand.  It will have <remaining_size>
       char*'s at the front, pointing at individual strings immediately
       afterwards.  */
    void *buffer;
    char *chars;
    char **pointers;
    enum { perline = 30 };
    buffer = CALL_REAL (malloc, remaining_size * (perline + sizeof(char *)));
    pointers = (char **) buffer;
    chars = (char *)buffer + (remaining_size * sizeof (char *));
    for (i = 0; i < remaining_size; i++)
      {
        pointers[i] = chars;
        sprintf (chars, "[0x%p]", pc_array [omitted_size + i]);
        chars = chars + perline;
      }
    *symbols = pointers;
  }
#endif
  CALL_REAL (free, pc_array);

  return remaining_size;
}

/* ------------------------------------------------------------------------ */
/* __mf_violation */

void
__mf_violation (void *ptr, size_t sz, uintptr_t pc,
                const char *location, int type)
{
  char buf [128];
  static unsigned violation_number;
  DECLARE(void, free, void *ptr);

  TRACE ("violation pc=%p location=%s type=%d ptr=%p size=%lu\n",
         (void *) pc,
         (location != NULL ? location : ""), type, ptr, (unsigned long) sz);

  if (__mf_opts.collect_stats)
    __mf_count_violation [(type < 0) ? 0 :
                          (type > __MF_VIOL_WATCH) ? 0 :
                          type] ++;

  /* Print out a basic warning message.  */
  if (__mf_opts.verbose_violations)
  {
    unsigned dead_p;
    unsigned num_helpful = 0;
    struct timeval now = { 0, 0 };
#if HAVE_GETTIMEOFDAY
    gettimeofday (& now, NULL);
#endif

    violation_number ++;
    fprintf (stderr,
             "*******\n"
             "mudflap violation %u (%s): time=%lu.%06lu "
             "ptr=%p size=%lu\npc=%p%s%s%s\n",
             violation_number,
             ((type == __MF_VIOL_READ) ? "check/read" :
              (type == __MF_VIOL_WRITE) ? "check/write" :
              (type == __MF_VIOL_REGISTER) ? "register" :
              (type == __MF_VIOL_UNREGISTER) ? "unregister" :
              (type == __MF_VIOL_WATCH) ? "watch" : "unknown"),
             now.tv_sec, now.tv_usec,
             (void *) ptr, (unsigned long)sz, (void *) pc,
             (location != NULL ? " location=`" : ""),
             (location != NULL ? location : ""),
             (location != NULL ? "'" : ""));

    if (__mf_opts.backtrace > 0)
      {
        char ** symbols;
        unsigned i, num;

        num = __mf_backtrace (& symbols, (void *) pc, 2);
        /* Note: backtrace_symbols calls malloc().  But since we're in
           __mf_violation and presumably __mf_check, it'll detect
           recursion, and not put the new string into the database.  */

        for (i=0; i<num; i++)
          fprintf (stderr, "      %s\n", symbols[i]);

        /* Calling free() here would trigger a violation.  */
        CALL_REAL(free, symbols);
      }


    /* Look for nearby objects.  For this, we start with s_low/s_high
       pointing to the given area, looking for overlapping objects.
       If none show up, widen the search area and keep looking. */

    if (sz == 0) sz = 1;

    for (dead_p = 0; dead_p <= 1; dead_p ++) /* for dead_p in 0 1 */
      {
        enum {max_objs = 3}; /* magic */
        __mf_object_t *objs[max_objs];
        unsigned num_objs = 0;
        uintptr_t s_low, s_high;
        unsigned tries = 0;
        unsigned i;

        s_low = (uintptr_t) ptr;
        s_high = CLAMPSZ (ptr, sz);

        while (tries < 16) /* magic */
          {
            if (dead_p)
              num_objs = __mf_find_dead_objects (s_low, s_high, objs, max_objs);
            else
              num_objs = __mf_find_objects (s_low, s_high, objs, max_objs);

            if (num_objs) /* good enough */
              break;

            tries ++;

            /* XXX: tune this search strategy.  It's too dependent on
             sz, which can vary from 1 to very big (when array index
             checking) numbers. */
            s_low = CLAMPSUB (s_low, (sz * tries * tries));
            s_high = CLAMPADD (s_high, (sz * tries * tries));
          }

        for (i = 0; i < min (num_objs, max_objs); i++)
          {
            __mf_object_t *obj = objs[i];
            uintptr_t low = (uintptr_t) ptr;
            uintptr_t high = CLAMPSZ (ptr, sz);
            unsigned before1 = (low < obj->low) ? obj->low - low : 0;
            unsigned after1 = (low > obj->high) ? low - obj->high : 0;
            unsigned into1 = (high >= obj->low && low <= obj->high) ? low - obj->low : 0;
            unsigned before2 = (high < obj->low) ? obj->low - high : 0;
            unsigned after2 = (high > obj->high) ? high - obj->high : 0;
            unsigned into2 = (high >= obj->low && low <= obj->high) ? high - obj->low : 0;

            fprintf (stderr, "Nearby object %u: checked region begins %uB %s and ends %uB %s\n",
                     num_helpful + i + 1,
                     (before1 ? before1 : after1 ? after1 : into1),
                     (before1 ? "before" : after1 ? "after" : "into"),
                     (before2 ? before2 : after2 ? after2 : into2),
                     (before2 ? "before" : after2 ? "after" : "into"));
            __mf_describe_object (obj);
          }
        num_helpful += num_objs;
      }

    fprintf (stderr, "number of nearby objects: %u\n", num_helpful);
  }

  /* How to finally handle this violation?  */
  switch (__mf_opts.violation_mode)
    {
    case viol_nop:
      break;
    case viol_segv:
      kill (getpid(), SIGSEGV);
      break;
    case viol_abort:
      abort ();
      break;
    case viol_gdb:

      snprintf (buf, 128, "gdb --pid=%u", (unsigned) getpid ());
      system (buf);
      /* XXX: should probably fork() && sleep(GDB_WAIT_PARAMETER)
      instead, and let the forked child execlp() gdb.  That way, this
      subject process can be resumed under the supervision of gdb.
      This can't happen now, since system() only returns when gdb
      dies.  In that case, we need to beware of starting a second
      concurrent gdb child upon the next violation.  (But if the first
      gdb dies, then starting a new one is appropriate.)  */
      break;
    }
}

/* ------------------------------------------------------------------------ */


unsigned __mf_watch (void *ptr, size_t sz)
{
  unsigned rc;
  LOCKTH ();
  BEGIN_RECURSION_PROTECT ();
  rc = __mf_watch_or_not (ptr, sz, 1);
  END_RECURSION_PROTECT ();
  UNLOCKTH ();
  return rc;
}

unsigned __mf_unwatch (void *ptr, size_t sz)
{
  unsigned rc;
  LOCKTH ();
  rc = __mf_watch_or_not (ptr, sz, 0);
  UNLOCKTH ();
  return rc;
}


static unsigned
__mf_watch_or_not (void *ptr, size_t sz, char flag)
{
  uintptr_t ptr_high = CLAMPSZ (ptr, sz);
  uintptr_t ptr_low = (uintptr_t) ptr;
  unsigned count = 0;

  TRACE ("%s ptr=%p size=%lu\n",
         (flag ? "watch" : "unwatch"), ptr, (unsigned long) sz);

  switch (__mf_opts.mudflap_mode)
    {
    case mode_nop:
    case mode_populate:
    case mode_violate:
      count = 0;
      break;

    case mode_check:
      {
        __mf_object_t **all_ovr_objs;
        unsigned obj_count;
        unsigned n;
        DECLARE (void *, malloc, size_t c);
        DECLARE (void, free, void *p);

        obj_count = __mf_find_objects (ptr_low, ptr_high, NULL, 0);
        VERBOSE_TRACE (" %u:", obj_count);

        all_ovr_objs = CALL_REAL (malloc, (sizeof (__mf_object_t *) * obj_count));
        if (all_ovr_objs == NULL) abort ();
        n = __mf_find_objects (ptr_low, ptr_high, all_ovr_objs, obj_count);
        assert (n == obj_count);

        for (n = 0; n < obj_count; n ++)
          {
            __mf_object_t *obj = all_ovr_objs[n];

            VERBOSE_TRACE (" [%p]", (void *) obj);
            if (obj->watching_p != flag)
              {
                obj->watching_p = flag;
                count ++;

                /* Remove object from cache, to ensure next access
                   goes through __mf_check().  */
                if (flag)
                  __mf_uncache_object (obj);
              }
          }
        CALL_REAL (free, all_ovr_objs);
      }
      break;
    }

  return count;
}


void
__mf_sigusr1_handler (int num)
{
  __mf_sigusr1_received ++;
}

/* Install or remove SIGUSR1 handler as necessary.
   Also, respond to a received pending SIGUSR1.  */
void
__mf_sigusr1_respond ()
{
  static int handler_installed;

#ifdef SIGUSR1
  /* Manage handler */
  if (__mf_opts.sigusr1_report && ! handler_installed)
    {
      signal (SIGUSR1, __mf_sigusr1_handler);
      handler_installed = 1;
    }
  else if(! __mf_opts.sigusr1_report && handler_installed)
    {
      signal (SIGUSR1, SIG_DFL);
      handler_installed = 0;
    }
#endif

  /* Manage enqueued signals */
  if (__mf_sigusr1_received > __mf_sigusr1_handled)
    {
      __mf_sigusr1_handled ++;
      assert (__mf_get_state () == reentrant);
      __mfu_report ();
      handler_installed = 0; /* We may need to re-enable signal; this might be a SysV library. */
    }
}


/* XXX: provide an alternative __assert_fail function that cannot
   fail due to libmudflap infinite recursion.  */
#ifndef NDEBUG

static void
write_itoa (int fd, unsigned n)
{
  enum x { bufsize = sizeof(n)*4 };
  char buf [bufsize];
  unsigned i;

  for (i=0; i<bufsize-1; i++)
    {
      unsigned digit = n % 10;
      buf[bufsize-2-i] = digit + '0';
      n /= 10;
      if (n == 0)
        {
          char *m = & buf [bufsize-2-i];
          buf[bufsize-1] = '\0';
          write (fd, m, strlen(m));
          break;
        }
    }
}


void
__assert_fail (const char *msg, const char *file, unsigned line, const char *func)
{
#define write2(string) write (2, (string), strlen ((string)));
  write2("mf");
#ifdef LIBMUDFLAPTH
  write2("(");
  write_itoa (2, (unsigned) pthread_self ());
  write2(")");
#endif
  write2(": assertion failure: `");
  write (2, msg, strlen (msg));
  write2("' in ");
  write (2, func, strlen (func));
  write2(" at ");
  write (2, file, strlen (file));
  write2(":");
  write_itoa (2, line);
  write2("\n");
#undef write2
  abort ();
}


#endif



/* Adapted splay tree code, originally from libiberty.  It has been
   specialized for libmudflap as requested by RMS.  */

static void
mfsplay_tree_free (void *p)
{
  DECLARE (void, free, void *p);
  CALL_REAL (free, p);
}

static void *
mfsplay_tree_xmalloc (size_t s)
{
  DECLARE (void *, malloc, size_t s);
  return CALL_REAL (malloc, s);
}


static void mfsplay_tree_splay (mfsplay_tree, mfsplay_tree_key);
static mfsplay_tree_node mfsplay_tree_splay_helper (mfsplay_tree,
                                                mfsplay_tree_key,
                                                mfsplay_tree_node *,
                                                mfsplay_tree_node *,
                                                mfsplay_tree_node *);


/* Help splay SP around KEY.  PARENT and GRANDPARENT are the parent
   and grandparent, respectively, of NODE.  */

static mfsplay_tree_node
mfsplay_tree_splay_helper (mfsplay_tree sp,
                         mfsplay_tree_key key,
                         mfsplay_tree_node * node,
                         mfsplay_tree_node * parent,
                         mfsplay_tree_node * grandparent)
{
  mfsplay_tree_node *next;
  mfsplay_tree_node n;
  int comparison;

  n = *node;

  if (!n)
    return *parent;

  comparison = ((key > n->key) ? 1 : ((key < n->key) ? -1 : 0));

  if (comparison == 0)
    /* We've found the target.  */
    next = 0;
  else if (comparison < 0)
    /* The target is to the left.  */
    next = &n->left;
  else
    /* The target is to the right.  */
    next = &n->right;

  if (next)
    {
      /* Check whether our recursion depth is too high.  Abort this search,
         and signal that a rebalance is required to continue.  */
      if (sp->depth > sp->max_depth)
        {
          sp->rebalance_p = 1;
          return n;
         }

      /* Continue down the tree.  */
      sp->depth ++;
      n = mfsplay_tree_splay_helper (sp, key, next, node, parent);
      sp->depth --;

      /* The recursive call will change the place to which NODE
         points.  */
      if (*node != n || sp->rebalance_p)
        return n;
    }

  if (!parent)
    /* NODE is the root.  We are done.  */
    return n;

  /* First, handle the case where there is no grandparent (i.e.,
   *PARENT is the root of the tree.)  */
  if (!grandparent)
    {
      if (n == (*parent)->left)
        {
          *node = n->right;
          n->right = *parent;
        }
      else
        {
          *node = n->left;
          n->left = *parent;
        }
      *parent = n;
      return n;
    }

  /* Next handle the cases where both N and *PARENT are left children,
     or where both are right children.  */
  if (n == (*parent)->left && *parent == (*grandparent)->left)
    {
      mfsplay_tree_node p = *parent;

      (*grandparent)->left = p->right;
      p->right = *grandparent;
      p->left = n->right;
      n->right = p;
      *grandparent = n;
      return n;
    }
  else if (n == (*parent)->right && *parent == (*grandparent)->right)
    {
      mfsplay_tree_node p = *parent;

      (*grandparent)->right = p->left;
      p->left = *grandparent;
      p->right = n->left;
      n->left = p;
      *grandparent = n;
      return n;
    }

  /* Finally, deal with the case where N is a left child, but *PARENT
     is a right child, or vice versa.  */
  if (n == (*parent)->left)
    {
      (*parent)->left = n->right;
      n->right = *parent;
      (*grandparent)->right = n->left;
      n->left = *grandparent;
      *grandparent = n;
      return n;
    }
  else
    {
      (*parent)->right = n->left;
      n->left = *parent;
      (*grandparent)->left = n->right;
      n->right = *grandparent;
      *grandparent = n;
      return n;
    }
}



static int
mfsplay_tree_rebalance_helper1 (mfsplay_tree_node n, void *array_ptr)
{
  mfsplay_tree_node **p = array_ptr;
  *(*p) = n;
  (*p)++;
  return 0;
}


static mfsplay_tree_node
mfsplay_tree_rebalance_helper2 (mfsplay_tree_node * array, unsigned low,
                              unsigned high)
{
  unsigned middle = low + (high - low) / 2;
  mfsplay_tree_node n = array[middle];

  /* Note that since we're producing a balanced binary tree, it is not a problem
     that this function is recursive.  */
  if (low + 1 <= middle)
    n->left = mfsplay_tree_rebalance_helper2 (array, low, middle - 1);
  else
    n->left = NULL;

  if (middle + 1 <= high)
    n->right = mfsplay_tree_rebalance_helper2 (array, middle + 1, high);
  else
    n->right = NULL;

  return n;
}


/* Rebalance the entire tree.  Do this by copying all the node
   pointers into an array, then cleverly re-linking them.  */
static void
mfsplay_tree_rebalance (mfsplay_tree sp)
{
  mfsplay_tree_node *all_nodes, *all_nodes_1;

  if (sp->num_keys <= 2)
    return;

  all_nodes = mfsplay_tree_xmalloc (sizeof (mfsplay_tree_node) * sp->num_keys);

  /* Traverse all nodes to copy their addresses into this array.  */
  all_nodes_1 = all_nodes;
  mfsplay_tree_foreach (sp, mfsplay_tree_rebalance_helper1,
                      (void *) &all_nodes_1);

  /* Relink all the nodes.  */
  sp->root = mfsplay_tree_rebalance_helper2 (all_nodes, 0, sp->num_keys - 1);

  mfsplay_tree_free (all_nodes);
}


/* Splay SP around KEY.  */
static void
mfsplay_tree_splay (mfsplay_tree sp, mfsplay_tree_key key)
{
  if (sp->root == 0)
    return;

  /* If we just splayed the tree with the same key, do nothing.  */
  if (sp->last_splayed_key_p &&
      (sp->last_splayed_key == key))
    return;

  /* Compute a maximum recursion depth for a splay tree with NUM nodes.
     The idea is to limit excessive stack usage if we're facing
     degenerate access patterns.  Unfortunately such patterns can occur
     e.g. during static initialization, where many static objects might
     be registered in increasing address sequence, or during a case where
     large tree-like heap data structures are allocated quickly.

     On x86, this corresponds to roughly 200K of stack usage.
     XXX: For libmudflapth, this could be a function of __mf_opts.thread_stack.  */
  sp->max_depth = 2500;
  sp->rebalance_p = sp->depth = 0;

  mfsplay_tree_splay_helper (sp, key, &sp->root, NULL, NULL);
  if (sp->rebalance_p)
    {
      mfsplay_tree_rebalance (sp);

      sp->rebalance_p = sp->depth = 0;
      mfsplay_tree_splay_helper (sp, key, &sp->root, NULL, NULL);

      if (sp->rebalance_p)
        abort ();
    }


  /* Cache this splay key. */
  sp->last_splayed_key = key;
  sp->last_splayed_key_p = 1;
}



/* Allocate a new splay tree.  */
static mfsplay_tree
mfsplay_tree_new ()
{
  mfsplay_tree sp = mfsplay_tree_xmalloc (sizeof (struct mfsplay_tree_s));
  sp->root = NULL;
  sp->last_splayed_key_p = 0;
  sp->num_keys = 0;

  return sp;
}



/* Insert a new node (associating KEY with DATA) into SP.  If a
   previous node with the indicated KEY exists, its data is replaced
   with the new value.  Returns the new node.  */
static mfsplay_tree_node
mfsplay_tree_insert (mfsplay_tree sp, mfsplay_tree_key key, mfsplay_tree_value value)
{
  int comparison = 0;

  mfsplay_tree_splay (sp, key);

  if (sp->root)
    comparison = ((sp->root->key > key) ? 1 :
                  ((sp->root->key < key) ? -1 : 0));

  if (sp->root && comparison == 0)
    {
      /* If the root of the tree already has the indicated KEY, just
         replace the value with VALUE.  */
      sp->root->value = value;
    }
  else
    {
      /* Create a new node, and insert it at the root.  */
      mfsplay_tree_node node;

      node = mfsplay_tree_xmalloc (sizeof (struct mfsplay_tree_node_s));
      node->key = key;
      node->value = value;
      sp->num_keys++;
      if (!sp->root)
        node->left = node->right = 0;
      else if (comparison < 0)
        {
          node->left = sp->root;
          node->right = node->left->right;
          node->left->right = 0;
        }
      else
        {
          node->right = sp->root;
          node->left = node->right->left;
          node->right->left = 0;
        }

      sp->root = node;
      sp->last_splayed_key_p = 0;
    }

  return sp->root;
}

/* Remove KEY from SP.  It is not an error if it did not exist.  */

static void
mfsplay_tree_remove (mfsplay_tree sp, mfsplay_tree_key key)
{
  mfsplay_tree_splay (sp, key);
  sp->last_splayed_key_p = 0;
  if (sp->root && (sp->root->key == key))
    {
      mfsplay_tree_node left, right;
      left = sp->root->left;
      right = sp->root->right;
      /* Delete the root node itself.  */
      mfsplay_tree_free (sp->root);
      sp->num_keys--;
      /* One of the children is now the root.  Doesn't matter much
         which, so long as we preserve the properties of the tree.  */
      if (left)
        {
          sp->root = left;
          /* If there was a right child as well, hang it off the
             right-most leaf of the left child.  */
          if (right)
            {
              while (left->right)
                left = left->right;
              left->right = right;
            }
        }
      else
        sp->root = right;
    }
}

/* Lookup KEY in SP, returning VALUE if present, and NULL
   otherwise.  */

static mfsplay_tree_node
mfsplay_tree_lookup (mfsplay_tree sp, mfsplay_tree_key key)
{
  mfsplay_tree_splay (sp, key);
  if (sp->root && (sp->root->key == key))
    return sp->root;
  else
    return 0;
}


/* Return the immediate predecessor KEY, or NULL if there is no
   predecessor.  KEY need not be present in the tree.  */

static mfsplay_tree_node
mfsplay_tree_predecessor (mfsplay_tree sp, mfsplay_tree_key key)
{
  int comparison;
  mfsplay_tree_node node;
  /* If the tree is empty, there is certainly no predecessor.  */
  if (!sp->root)
    return NULL;
  /* Splay the tree around KEY.  That will leave either the KEY
     itself, its predecessor, or its successor at the root.  */
  mfsplay_tree_splay (sp, key);
  comparison = ((sp->root->key > key) ? 1 :
                ((sp->root->key < key) ? -1 : 0));

  /* If the predecessor is at the root, just return it.  */
  if (comparison < 0)
    return sp->root;
  /* Otherwise, find the rightmost element of the left subtree.  */
  node = sp->root->left;
  if (node)
    while (node->right)
      node = node->right;
  return node;
}

/* Return the immediate successor KEY, or NULL if there is no
   successor.  KEY need not be present in the tree.  */

static mfsplay_tree_node
mfsplay_tree_successor (mfsplay_tree sp, mfsplay_tree_key key)
{
  int comparison;
  mfsplay_tree_node node;
  /* If the tree is empty, there is certainly no successor.  */
  if (!sp->root)
    return NULL;
  /* Splay the tree around KEY.  That will leave either the KEY
     itself, its predecessor, or its successor at the root.  */
  mfsplay_tree_splay (sp, key);
  comparison = ((sp->root->key > key) ? 1 :
                ((sp->root->key < key) ? -1 : 0));
  /* If the successor is at the root, just return it.  */
  if (comparison > 0)
    return sp->root;
  /* Otherwise, find the leftmost element of the right subtree.  */
  node = sp->root->right;
  if (node)
    while (node->left)
      node = node->left;
  return node;
}

/* Call FN, passing it the DATA, for every node in SP, following an
   in-order traversal.  If FN every returns a non-zero value, the
   iteration ceases immediately, and the value is returned.
   Otherwise, this function returns 0.

   This function simulates recursion using dynamically allocated
   arrays, since it may be called from mfsplay_tree_rebalance(), which
   in turn means that the tree is already uncomfortably deep for stack
   space limits.  */
static int
mfsplay_tree_foreach (mfsplay_tree st, mfsplay_tree_foreach_fn fn, void *data)
{
  mfsplay_tree_node *stack1;
  char *stack2;
  unsigned sp;
  int val = 0;
  enum s { s_left, s_here, s_right, s_up };

  if (st->root == NULL) /* => num_keys == 0 */
    return 0;

  stack1 = mfsplay_tree_xmalloc (sizeof (mfsplay_tree_node) * st->num_keys);
  stack2 = mfsplay_tree_xmalloc (sizeof (char) * st->num_keys);

  sp = 0;
  stack1 [sp] = st->root;
  stack2 [sp] = s_left;

  while (1)
    {
      mfsplay_tree_node n;
      enum s s;

      n = stack1 [sp];
      s = stack2 [sp];

      /* Handle each of the four possible states separately.  */

      /* 1: We're here to traverse the left subtree (if any).  */
      if (s == s_left)
        {
          stack2 [sp] = s_here;
          if (n->left != NULL)
            {
              sp ++;
              stack1 [sp] = n->left;
              stack2 [sp] = s_left;
            }
        }

      /* 2: We're here to traverse this node.  */
      else if (s == s_here)
        {
          stack2 [sp] = s_right;
          val = (*fn) (n, data);
          if (val) break;
        }

      /* 3: We're here to traverse the right subtree (if any).  */
      else if (s == s_right)
        {
          stack2 [sp] = s_up;
          if (n->right != NULL)
            {
              sp ++;
              stack1 [sp] = n->right;
              stack2 [sp] = s_left;
            }
        }

      /* 4: We're here after both subtrees (if any) have been traversed.  */
      else if (s == s_up)
        {
          /* Pop the stack.  */
          if (sp == 0) break; /* Popping off the root note: we're finished!  */
          sp --;
        }

      else
        abort ();
    }

  mfsplay_tree_free (stack1);
  mfsplay_tree_free (stack2);
  return val;
}