1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
//===-- tsan_dense_alloc.h --------------------------------------*- C++ -*-===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// A DenseSlabAlloc is a freelist-based allocator of fixed-size objects.
// DenseSlabAllocCache is a thread-local cache for DenseSlabAlloc.
// The only difference with traditional slab allocators is that DenseSlabAlloc
// allocates/free indices of objects and provide a functionality to map
// the index onto the real pointer. The index is u32, that is, 2 times smaller
// than uptr (hense the Dense prefix).
//===----------------------------------------------------------------------===//
#ifndef TSAN_DENSE_ALLOC_H
#define TSAN_DENSE_ALLOC_H
#include "sanitizer_common/sanitizer_common.h"
#include "tsan_defs.h"
#include "tsan_mutex.h"
namespace __tsan {
class DenseSlabAllocCache {
static const uptr kSize = 128;
typedef u32 IndexT;
uptr pos;
IndexT cache[kSize];
template<typename T, uptr kL1Size, uptr kL2Size> friend class DenseSlabAlloc;
};
template<typename T, uptr kL1Size, uptr kL2Size>
class DenseSlabAlloc {
public:
typedef DenseSlabAllocCache Cache;
typedef typename Cache::IndexT IndexT;
DenseSlabAlloc() {
// Check that kL1Size and kL2Size are sane.
CHECK_EQ(kL1Size & (kL1Size - 1), 0);
CHECK_EQ(kL2Size & (kL2Size - 1), 0);
CHECK_GE(1ull << (sizeof(IndexT) * 8), kL1Size * kL2Size);
// Check that it makes sense to use the dense alloc.
CHECK_GE(sizeof(T), sizeof(IndexT));
internal_memset(map_, 0, sizeof(map_));
freelist_ = 0;
fillpos_ = 0;
}
~DenseSlabAlloc() {
for (uptr i = 0; i < kL1Size; i++) {
if (map_[i] != 0)
UnmapOrDie(map_[i], kL2Size * sizeof(T));
}
}
IndexT Alloc(Cache *c) {
if (c->pos == 0)
Refill(c);
return c->cache[--c->pos];
}
void Free(Cache *c, IndexT idx) {
DCHECK_NE(idx, 0);
if (c->pos == Cache::kSize)
Drain(c);
c->cache[c->pos++] = idx;
}
T *Map(IndexT idx) {
DCHECK_NE(idx, 0);
DCHECK_LE(idx, kL1Size * kL2Size);
return &map_[idx / kL2Size][idx % kL2Size];
}
void FlushCache(Cache *c) {
SpinMutexLock lock(&mtx_);
while (c->pos) {
IndexT idx = c->cache[--c->pos];
*(IndexT*)Map(idx) = freelist_;
freelist_ = idx;
}
}
void InitCache(Cache *c) {
c->pos = 0;
internal_memset(c->cache, 0, sizeof(c->cache));
}
private:
T *map_[kL1Size];
SpinMutex mtx_;
IndexT freelist_;
uptr fillpos_;
void Refill(Cache *c) {
SpinMutexLock lock(&mtx_);
if (freelist_ == 0) {
if (fillpos_ == kL1Size) {
Printf("ThreadSanitizer: DenseSlabAllocator overflow. Dying.\n");
Die();
}
T *batch = (T*)MmapOrDie(kL2Size * sizeof(T), "DenseSlabAllocator");
// Reserve 0 as invalid index.
IndexT start = fillpos_ == 0 ? 1 : 0;
for (IndexT i = start; i < kL2Size; i++) {
new(batch + i) T();
*(IndexT*)(batch + i) = i + 1 + fillpos_ * kL2Size;
}
*(IndexT*)(batch + kL2Size - 1) = 0;
freelist_ = fillpos_ * kL2Size + start;
map_[fillpos_++] = batch;
}
for (uptr i = 0; i < Cache::kSize / 2 && freelist_ != 0; i++) {
IndexT idx = freelist_;
c->cache[c->pos++] = idx;
freelist_ = *(IndexT*)Map(idx);
}
}
void Drain(Cache *c) {
SpinMutexLock lock(&mtx_);
for (uptr i = 0; i < Cache::kSize / 2; i++) {
IndexT idx = c->cache[--c->pos];
*(IndexT*)Map(idx) = freelist_;
freelist_ = idx;
}
}
};
} // namespace __tsan
#endif // TSAN_DENSE_ALLOC_H
|