summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/tr1/hashtable
blob: 28a71f9b1f726116242213f24ad782735063f195 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
// Internal header for TR1 unordered_set and unordered_map -*- C++ -*-

// Copyright (C) 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

/** @file 
 *  This is a TR1 C++ Library header. 
 */

// This header file defines std::tr1::hashtable, which is used to
// implement std::tr1::unordered_set, std::tr1::unordered_map, 
// std::tr1::unordered_multiset, and std::tr1::unordered_multimap.
// hashtable has many template parameters, partly to accommodate
// the differences between those four classes and partly to 
// accommodate policy choices that go beyond what TR1 calls for.

// ??? Arguably this should be Internal::hashtable, not std::tr1::hashtable.

// Class template hashtable attempts to encapsulate all reasonable
// variation among hash tables that use chaining.  It does not handle
// open addressing.

// References: 
// M. Austern, "A Proposal to Add Hash Tables to the Standard
//    Library (revision 4)," WG21 Document N1456=03-0039, 2003.
// D. E. Knuth, The Art of Computer Programming, v. 3, Sorting and Searching.
// A. Tavori and V. Dreizin, "Generic Associative Containers", 2004.
//    ??? Full citation?

#ifndef GNU_LIBSTDCXX_TR1_HASHTABLE_
#define GNU_LIBSTDCXX_TR1_HASHTABLE_

#include <utility>		// For std::pair
#include <iterator>
#include <cstddef>
#include <cstdlib>
#include <cmath>
#include <tr1/type_traits>	// For true_type and false_type

//----------------------------------------------------------------------
// General utilities

namespace Internal {
template <bool Flag, typename IfTrue, typename IfFalse> struct IF;

template <typename IfTrue, typename IfFalse>
struct IF <true, IfTrue, IfFalse> { typedef IfTrue type; };
 
template <typename IfTrue, typename IfFalse>
struct IF <false, IfTrue, IfFalse> { typedef IfFalse type; };

// Helper function: return distance(first, last) for forward
// iterators, or 0 for input iterators.

template <class Iterator>
inline typename std::iterator_traits<Iterator>::difference_type
distance_fw (Iterator first, Iterator last, std::input_iterator_tag)
{
  return 0;
}

template <class Iterator>
inline typename std::iterator_traits<Iterator>::difference_type
distance_fw (Iterator first, Iterator last, std::forward_iterator_tag)
{
  return std::distance(first, last);
}

template <class Iterator>
inline typename std::iterator_traits<Iterator>::difference_type
distance_fw (Iterator first, Iterator last)
{
  typedef typename std::iterator_traits<Iterator>::iterator_category tag;
  return distance_fw(first, last, tag());
}

} // namespace Internal

//----------------------------------------------------------------------
// Auxiliary types used for all instantiations of hashtable: nodes
// and iterators.

// Nodes, used to wrap elements stored in the hash table.  A policy
// template parameter of class template hashtable controls whether
// nodes also store a hash code. In some cases (e.g. strings) this may
// be a performance win.

namespace Internal {

template <typename Value, bool cache_hash_code> struct hash_node;

template <typename Value>
struct hash_node<Value, true> {
  Value m_v;
  std::size_t hash_code;
  hash_node* m_next;
};

template <typename Value>
struct hash_node<Value, false> {
  Value m_v;
  hash_node* m_next;
};

// Local iterators, used to iterate within a bucket but not between
// buckets.

template <typename Value, bool cache>
struct node_iterator_base {
  node_iterator_base(hash_node<Value, cache>* p) : m_cur(p) { }
  void incr() { m_cur = m_cur->m_next; }

  hash_node<Value, cache>* m_cur;
};

template <typename Value, bool cache>
inline bool operator== (const node_iterator_base<Value, cache>& x,
			const node_iterator_base<Value, cache>& y)
{
  return x.m_cur == y.m_cur;
}

template <typename Value, bool cache>
inline bool operator!= (const node_iterator_base<Value, cache>& x,
			const node_iterator_base<Value, cache>& y)
{
  return x.m_cur != y.m_cur;
}

template <typename Value, bool is_const, bool cache>
struct node_iterator : public node_iterator_base<Value, cache> {
  typedef Value                                             value_type;
  typedef typename IF<is_const, const Value*, Value*>::type pointer;
  typedef typename IF<is_const, const Value&, Value&>::type reference;
  typedef std::ptrdiff_t                                    difference_type;
  typedef std::forward_iterator_tag                         iterator_category;

  explicit node_iterator (hash_node<Value, cache>* p = 0)
    : node_iterator_base<Value, cache>(p) { }
  node_iterator (const node_iterator<Value, true, cache>& x)
    : node_iterator_base<Value, cache>(x.m_cur) { }

  reference operator*() const { return this->m_cur->m_v; }
  pointer operator->() const { return &this->m_cur->m_v; }

  node_iterator& operator++() { this->incr(); return *this; }
  node_iterator operator++(int)
  { node_iterator tmp(*this); this->incr(); return tmp; }
};

template <typename Value, bool cache>
struct hashtable_iterator_base {
  hashtable_iterator_base(hash_node<Value, cache>* node,
			  hash_node<Value, cache>** bucket)
    : m_cur_node (node), m_cur_bucket (bucket)
  { }

  void incr() {
    m_cur_node = m_cur_node->m_next;
    if (!m_cur_node)
      m_incr_bucket();
  }

  void m_incr_bucket();

  hash_node<Value, cache>* m_cur_node;
  hash_node<Value, cache>** m_cur_bucket;
};


// Global iterators, used for arbitrary iteration within a hash
// table.  Larger and more expensive than local iterators.

template <typename Value, bool cache>
void hashtable_iterator_base<Value, cache>::m_incr_bucket()
{
  ++m_cur_bucket;

  // This loop requires the bucket array to have a non-null sentinel
  while (!*m_cur_bucket)
    ++m_cur_bucket;
  m_cur_node = *m_cur_bucket;
}

template <typename Value, bool cache>
inline bool operator== (const hashtable_iterator_base<Value, cache>& x,
			const hashtable_iterator_base<Value, cache>& y)
{
  return x.m_cur_node == y.m_cur_node;
}

template <typename Value, bool cache>
inline bool operator!= (const hashtable_iterator_base<Value, cache>& x,
			const hashtable_iterator_base<Value, cache>& y)
{
  return x.m_cur_node != y.m_cur_node;
}

template <typename Value, bool is_const, bool cache>
struct hashtable_iterator : public hashtable_iterator_base<Value, cache>
{
  typedef Value                                             value_type;
  typedef typename IF<is_const, const Value*, Value*>::type pointer;
  typedef typename IF<is_const, const Value&, Value&>::type reference;
  typedef std::ptrdiff_t                                    difference_type;
  typedef std::forward_iterator_tag                         iterator_category;

  hashtable_iterator (hash_node<Value, cache>* p, hash_node<Value, cache>** b)
    : hashtable_iterator_base<Value, cache>(p, b) { }
  hashtable_iterator (hash_node<Value, cache>** b)
    : hashtable_iterator_base<Value, cache>(*b, b) { }
  hashtable_iterator (const hashtable_iterator<Value, true, cache>& x)
    : hashtable_iterator_base<Value, cache>(x.m_cur_node, x.m_cur_bucket) { }

  reference operator*() const { return this->m_cur_node->m_v; }
  pointer operator->() const { return &this->m_cur_node->m_v; }

  hashtable_iterator& operator++() { this->incr(); return *this; }
  hashtable_iterator operator++(int)
  { hashtable_iterator tmp(*this); this->incr(); return tmp; }
};

} // namespace Internal

// ----------------------------------------------------------------------
// Many of class template hashtable's template parameters are policy
// classes.  These are defaults for the policies.

namespace Internal {

// The two key extraction policies used by the *set and *map variants.
template <typename T>
struct identity {
  T operator()(const T& t) const { return t; }
};

template <typename Pair>
struct extract1st {
  typename Pair::first_type operator()(const Pair& p) const { return p.first; }
};

// Default range hashing function: use division to fold a large number
// into the range [0, N).
struct mod_range_hashing
{
  typedef std::size_t first_argument_type;
  typedef std::size_t second_argument_type;
  typedef std::size_t result_type;

  result_type operator() (first_argument_type r, second_argument_type N) const
    { return r % N; }
};

// Default ranged hash function H.  In principle it should be a
// function object composed from objects of type H1 and H2 such that
// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
// h1 and h2.  So instead we'll just use a tag to tell class template
// hashtable to do that composition.
struct default_ranged_hash { };

// Default value for rehash policy.  Bucket size is (usually) the
// smallest prime that keeps the load factor small enough.

struct prime_rehash_policy
{
  prime_rehash_policy (float z = 1.0);

  float max_load_factor() const;

  // Return a bucket size no smaller than n.
  std::size_t next_bkt (std::size_t n) const;

  // Return a bucket count appropriate for n elements
  std::size_t bkt_for_elements (std::size_t n) const;

  // n_bkt is current bucket count, n_elt is current element count,
  // and n_ins is number of elements to be inserted.  Do we need to
  // increase bucket count?  If so, return make_pair(true, n), where n
  // is the new bucket count.  If not, return make_pair(false, 0).
  std::pair<bool, std::size_t>
  need_rehash (std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const;

  float m_max_load_factor;
  float m_growth_factor;
  mutable std::size_t m_next_resize;
};

// XXX This is a hack.  prime_rehash_policy's member functions, and
// certainly the list of primes, should be defined in a .cc file.
// We're temporarily putting them in a header because we don't have a
// place to put TR1 .cc files yet.  There's no good reason for any of
// prime_rehash_policy's member functions to be inline, and there's
// certainly no good reason for X<> to exist at all.

struct lt {
  template <typename X, typename Y> bool operator()(X x, Y y) { return x < y; }
};

template <int dummy>
struct X {
  static const int n_primes = 256;
  static const unsigned long primes[n_primes + 1];
};

template <int dummy>
const int X<dummy>::n_primes;

template <int dummy>
const unsigned long X<dummy>::primes[n_primes + 1] =
  {
    2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
    37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 79ul,
    83ul, 89ul, 97ul, 103ul, 109ul, 113ul, 127ul, 137ul, 139ul, 149ul,
    157ul, 167ul, 179ul, 193ul, 199ul, 211ul, 227ul, 241ul, 257ul,
    277ul, 293ul, 313ul, 337ul, 359ul, 383ul, 409ul, 439ul, 467ul,
    503ul, 541ul, 577ul, 619ul, 661ul, 709ul, 761ul, 823ul, 887ul,
    953ul, 1031ul, 1109ul, 1193ul, 1289ul, 1381ul, 1493ul, 1613ul,
    1741ul, 1879ul, 2029ul, 2179ul, 2357ul, 2549ul, 2753ul, 2971ul,
    3209ul, 3469ul, 3739ul, 4027ul, 4349ul, 4703ul, 5087ul, 5503ul,
    5953ul, 6427ul, 6949ul, 7517ul, 8123ul, 8783ul, 9497ul, 10273ul,
    11113ul, 12011ul, 12983ul, 14033ul, 15173ul, 16411ul, 17749ul,
    19183ul, 20753ul, 22447ul, 24281ul, 26267ul, 28411ul, 30727ul,
    33223ul, 35933ul, 38873ul, 42043ul, 45481ul, 49201ul, 53201ul,
    57557ul, 62233ul, 67307ul, 72817ul, 78779ul, 85229ul, 92203ul,
    99733ul, 107897ul, 116731ul, 126271ul, 136607ul, 147793ul,
    159871ul, 172933ul, 187091ul, 202409ul, 218971ul, 236897ul,
    256279ul, 277261ul, 299951ul, 324503ul, 351061ul, 379787ul,
    410857ul, 444487ul, 480881ul, 520241ul, 562841ul, 608903ul,
    658753ul, 712697ul, 771049ul, 834181ul, 902483ul, 976369ul,
    1056323ul, 1142821ul, 1236397ul, 1337629ul, 1447153ul, 1565659ul,
    1693859ul, 1832561ul, 1982627ul, 2144977ul, 2320627ul, 2510653ul,
    2716249ul, 2938679ul, 3179303ul, 3439651ul, 3721303ul, 4026031ul,
    4355707ul, 4712381ul, 5098259ul, 5515729ul, 5967347ul, 6456007ul,
    6984629ul, 7556579ul, 8175383ul, 8844859ul, 9569143ul, 10352717ul,
    11200489ul, 12117689ul, 13109983ul, 14183539ul, 15345007ul,
    16601593ul, 17961079ul, 19431899ul, 21023161ul, 22744717ul,
    24607243ul, 26622317ul, 28802401ul, 31160981ul, 33712729ul,
    36473443ul, 39460231ul, 42691603ul, 46187573ul, 49969847ul,
    54061849ul, 58488943ul, 63278561ul, 68460391ul, 74066549ul,
    80131819ul, 86693767ul, 93793069ul, 101473717ul, 109783337ul,
    118773397ul, 128499677ul, 139022417ul, 150406843ul, 162723577ul,
    176048909ul, 190465427ul, 206062531ul, 222936881ul, 241193053ul,
    260944219ul, 282312799ul, 305431229ul, 330442829ul, 357502601ul,
    386778277ul, 418451333ul, 452718089ul, 489790921ul, 529899637ul,
    573292817ul, 620239453ul, 671030513ul, 725980837ul, 785430967ul,
    849749479ul, 919334987ul, 994618837ul, 1076067617ul, 1164186217ul,
    1259520799ul, 1362662261ul, 1474249943ul, 1594975441ul,
    1725587117ul, 1866894511ul, 2019773507ul, 2185171673ul,
    2364114217ul, 2557710269ul, 2767159799ul, 2993761039ul,
    3238918481ul, 3504151727ul, 3791104843ul, 4101556399ul,
    4294967291ul,
    4294967291ul // sentinel so we don't have to test result of lower_bound
  };

inline prime_rehash_policy::prime_rehash_policy (float z)
  : m_max_load_factor(z),
    m_growth_factor (2.f),
    m_next_resize (0)
{ }

inline float prime_rehash_policy::max_load_factor() const
{
  return m_max_load_factor;
}

// Return a prime no smaller than n.
inline std::size_t prime_rehash_policy::next_bkt (std::size_t n) const
{
  const unsigned long* const last = X<0>::primes + X<0>::n_primes;
  const unsigned long* p = std::lower_bound (X<0>::primes, last, n);
  m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
  return *p;
}

// Return the smallest prime p such that alpha p >= n, where alpha
// is the load factor.
inline std::size_t prime_rehash_policy::bkt_for_elements (std::size_t n) const
{
  const unsigned long* const last = X<0>::primes + X<0>::n_primes;
  const float min_bkts = n / m_max_load_factor;
  const unsigned long* p = std::lower_bound (X<0>::primes, last, min_bkts, lt());
  m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
  return *p;
}

// Finds the smallest prime p such that alpha p > n_elt + n_ins.
// If p > n_bkt, return make_pair(true, p); otherwise return
// make_pair(false, 0).  In principle this isn't very different from 
// bkt_for_elements.

// The only tricky part is that we're caching the element count at
// which we need to rehash, so we don't have to do a floating-point
// multiply for every insertion.

inline std::pair<bool, std::size_t>
prime_rehash_policy
::need_rehash (std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
{
  if (n_elt + n_ins > m_next_resize) {
    float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
    if (min_bkts > n_bkt) {
      min_bkts = std::max (min_bkts, m_growth_factor * n_bkt);
      const unsigned long* const last = X<0>::primes + X<0>::n_primes;
      const unsigned long* p = std::lower_bound (X<0>::primes, last, min_bkts, lt());
      m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
      return std::make_pair(true, *p);
    }
    else {
      m_next_resize = static_cast<std::size_t>(std::ceil(n_bkt * m_max_load_factor));
      return std::make_pair(false, 0);
    }
  }
  else
    return std::make_pair(false, 0);
}

} // namespace Internal

//----------------------------------------------------------------------
// Base classes for std::tr1::hashtable.  We define these base classes
// because in some cases we want to do different things depending on
// the value of a policy class.  In some cases the policy class affects
// which member functions and nested typedefs are defined; we handle that
// by specializing base class templates.  Several of the base class templates
// need to access other members of class template hashtable, so we use
// the "curiously recurring template pattern" for them.

namespace Internal {

// class template map_base.  If the hashtable has a value type of the
// form pair<T1, T2> and a key extraction policy that returns the
// first part of the pair, the hashtable gets a mapped_type typedef.
// If it satisfies those criteria and also has unique keys, then it
// also gets an operator[].

template <typename K, typename V, typename Ex, bool unique, typename Hashtable>
struct map_base { };
	  
template <typename K, typename Pair, typename Hashtable>
struct map_base<K, Pair, extract1st<Pair>, false, Hashtable>
{
  typedef typename Pair::second_type mapped_type;
};

template <typename K, typename Pair, typename Hashtable>
struct map_base<K, Pair, extract1st<Pair>, true, Hashtable>
{
  typedef typename Pair::second_type mapped_type;
  mapped_type& operator[](const K& k) {
    Hashtable* h = static_cast<Hashtable*>(this);
    typename Hashtable::iterator it = h->insert(std::make_pair(k, mapped_type())).first;
    return it->second;
  }
};

// class template rehash_base.  Give hashtable the max_load_factor
// functions iff the rehash policy is prime_rehash_policy.
template <typename RehashPolicy, typename Hashtable>
struct rehash_base { };

template <typename Hashtable>
struct rehash_base<prime_rehash_policy, Hashtable>
{
  float max_load_factor() const {
    const Hashtable* This = static_cast<const Hashtable*>(this);
    return This->rehash_policy()->max_load_factor();
  }

  void max_load_factor(float z) {
    Hashtable* This = static_cast<Hashtable*>(this);
    This->rehash_policy(prime_rehash_policy(z));    
  }
};

// Class template hash_code_base.  Encapsulates two policy issues that
// aren't quite orthogonal.
//   (1) the difference between using a ranged hash function and using
//       the combination of a hash function and a range-hashing function.
//       In the former case we don't have such things as hash codes, so
//       we have a dummy type as placeholder.
//   (2) Whether or not we cache hash codes.  Caching hash codes is
//       meaningless if we have a ranged hash function.
// We also put the key extraction and equality comparison function 
// objects here, for convenience.

// Primary template: unused except as a hook for specializations.

template <typename Key, typename Value,
	  typename ExtractKey, typename Equal,
	  typename H1, typename H2, typename H,
	  bool cache_hash_code>
struct hash_code_base;

// Specialization: ranged hash function, no caching hash codes.  H1
// and H2 are provided but ignored.  We define a dummy hash code type.
template <typename Key, typename Value,
	  typename ExtractKey, typename Equal,
	  typename H1, typename H2, typename H>
struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, H, false>
{
protected:
  hash_code_base (const ExtractKey& ex, const Equal& eq,
		    const H1&, const H2&, const H& h)
    : m_extract(ex), m_eq(eq), m_ranged_hash(h) { }

  typedef void* hash_code_t;
  hash_code_t m_hash_code (const Key& k) const { return 0; }
  std::size_t bucket_index (const Key& k, hash_code_t, std::size_t N) const
    { return m_ranged_hash (k, N); }
  std::size_t bucket_index (const hash_node<Value, false>* p, std::size_t N) const {
    return m_ranged_hash (m_extract (p->m_v), N); 
  }
  
  bool compare (const Key& k, hash_code_t, hash_node<Value, false>* n) const
    { return m_eq (k, m_extract(n->m_v)); }

  void copy_code (hash_node<Value, false>*, const hash_node<Value, false>*) const { }

  void m_swap(hash_code_base& x) {
    m_extract.m_swap(x);
    m_eq.m_swap(x);
    m_ranged_hash.m_swap(x);
  }

protected:
  ExtractKey m_extract;
  Equal m_eq;
  H m_ranged_hash;
};


// No specialization for ranged hash function while caching hash codes.
// That combination is meaningless, and trying to do it is an error.


// Specialization: ranged hash function, cache hash codes.  This
// combination is meaningless, so we provide only a declaration
// and no definition.

template <typename Key, typename Value,
	  typename ExtractKey, typename Equal,
	  typename H1, typename H2, typename H>
struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, H, true>;


// Specialization: hash function and range-hashing function, no
// caching of hash codes.  H is provided but ignored.  Provides
// typedef and accessor required by TR1.

template <typename Key, typename Value,
	  typename ExtractKey, typename Equal,
	  typename H1, typename H2>
struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, default_ranged_hash, false>
{
  typedef H1 hasher;
  hasher hash_function() const { return m_h1; }

protected:
  hash_code_base (const ExtractKey& ex, const Equal& eq,
		  const H1& h1, const H2& h2, const default_ranged_hash&)
    : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }

  typedef std::size_t hash_code_t;
  hash_code_t m_hash_code (const Key& k) const { return m_h1(k); }
  std::size_t bucket_index (const Key&, hash_code_t c, std::size_t N) const
    { return m_h2 (c, N); }
  std::size_t bucket_index (const hash_node<Value, false>* p, std::size_t N) const {
    return m_h2 (m_h1 (m_extract (p->m_v)), N);
  }

  bool compare (const Key& k, hash_code_t,  hash_node<Value, false>* n) const
    { return m_eq (k, m_extract(n->m_v)); }

  void copy_code (hash_node<Value, false>*, const hash_node<Value, false>*) const { }

  void m_swap(hash_code_base& x) {
    m_extract.m_swap(x);
    m_eq.m_swap(x);
    m_h1.m_swap(x);
    m_h2.m_swap(x);
  }

protected:
  ExtractKey m_extract;
  Equal m_eq;
  H1 m_h1;
  H2 m_h2;
};

// Specialization: hash function and range-hashing function, 
// caching hash codes.  H is provided but ignored.  Provides
// typedef and accessor required by TR1.
template <typename Key, typename Value,
	  typename ExtractKey, typename Equal,
	  typename H1, typename H2>
struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, default_ranged_hash, true>
{
  typedef H1 hasher;
  hasher hash_function() const { return m_h1; }

protected:
  hash_code_base (const ExtractKey& ex, const Equal& eq,
		    const H1& h1, const H2& h2, const default_ranged_hash&)
    : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }

  typedef std::size_t hash_code_t;
  hash_code_t m_hash_code (const Key& k) const { return m_h1(k); }
  std::size_t bucket_index (const Key&, hash_code_t c, std::size_t N) const
    { return m_h2 (c, N); }

  std::size_t bucket_index (const hash_node<Value, true>* p, std::size_t N) const {
    return m_h2 (p->hash_code, N);
  }

  bool compare (const Key& k, hash_code_t c,  hash_node<Value, true>* n) const
    { return c == n->hash_code && m_eq (k, m_extract(n->m_v)); }

  void copy_code (hash_node<Value, true>* to, const hash_node<Value, true>* from) const
    { to->hash_code = from->hash_code; }

  void m_swap(hash_code_base& x) {
    m_extract.m_swap(x);
    m_eq.m_swap(x);
    m_h1.m_swap(x);
    m_h2.m_swap(x);
  }

protected:
  ExtractKey m_extract;
  Equal m_eq;
  H1 m_h1;
  H2 m_h2;
};

} // namespace internal

namespace std { namespace tr1 {

//----------------------------------------------------------------------
// Class template hashtable, class definition.

// Meaning of class template hashtable's template parameters

// Key and Value: arbitrary CopyConstructible types.

// Allocator: an allocator type ([lib.allocator.requirements]) whose
// value type is Value.

// ExtractKey: function object that takes a object of type Value
// and returns a value of type Key.

// Equal: function object that takes two objects of type k and returns
// a bool-like value that is true if the two objects are considered equal.

// H1: the hash function.  A unary function object with argument type
// Key and result type size_t.  Return values should be distributed
// over the entire range [0, numeric_limits<size_t>:::max()].

// H2: the range-hashing function (in the terminology of Tavori and
// Dreizin).  A binary function object whose argument types and result
// type are all size_t.  Given arguments r and N, the return value is
// in the range [0, N).

// H: the ranged hash function (Tavori and Dreizin). A binary function
// whose argument types are Key and size_t and whose result type is
// size_t.  Given arguments k and N, the return value is in the range
// [0, N).  Default: h(k, N) = h2(h1(k), N).  If H is anything other
// than the default, H1 and H2 are ignored.

// RehashPolicy: Policy class with three members, all of which govern
// the bucket count. n_bkt(n) returns a bucket count no smaller
// than n.  bkt_for_elements(n) returns a bucket count appropriate
// for an element count of n.  need_rehash(n_bkt, n_elt, n_ins)
// determines whether, if the current bucket count is n_bkt and the
// current element count is n_elt, we need to increase the bucket
// count.  If so, returns make_pair(true, n), where n is the new
// bucket count.  If not, returns make_pair(false, <anything>).

// ??? Right now it is hard-wired that the number of buckets never
// shrinks.  Should we allow RehashPolicy to change that?

// cache_hash_code: bool.  true if we store the value of the hash
// function along with the value.  This is a time-space tradeoff.
// Storing it may improve lookup speed by reducing the number of times
// we need to call the Equal function.

// mutable_iterators: bool.  true if hashtable::iterator is a mutable
// iterator, false if iterator and const_iterator are both const 
// iterators.  This is true for unordered_map and unordered_multimap,
// false for unordered_set and unordered_multiset.

// unique_keys: bool.  true if the return value of hashtable::count(k)
// is always at most one, false if it may be an arbitrary number.  This
// true for unordered_set and unordered_map, false for unordered_multiset
// and unordered_multimap.

template <typename Key, typename Value, 
	  typename Allocator,
	  typename ExtractKey, typename Equal,
	  typename H1, typename H2,
	  typename H, typename RehashPolicy,
	  bool cache_hash_code,
	  bool mutable_iterators,
	  bool unique_keys>
class hashtable
  : public Internal::rehash_base<RehashPolicy, hashtable<Key, Value, Allocator, ExtractKey, Equal, H1, H2, H, RehashPolicy, cache_hash_code, mutable_iterators, unique_keys> >,
    public Internal::hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, cache_hash_code>,
    public Internal::map_base<Key, Value, ExtractKey, unique_keys, hashtable<Key, Value, Allocator, ExtractKey, Equal, H1, H2, H, RehashPolicy, cache_hash_code, mutable_iterators, unique_keys> >
{
public:
  typedef Allocator                           allocator_type;
  typedef Value                               value_type;
  typedef Key                                 key_type;
  typedef Equal                               key_equal;
  // mapped_type, if present, comes from map_base.
  // hasher, if present, comes from hash_code_base.
  typedef typename Allocator::difference_type difference_type;
  typedef typename Allocator::size_type       size_type;
  typedef typename Allocator::reference       reference;
  typedef typename Allocator::const_reference const_reference;

  typedef Internal::node_iterator<value_type, !mutable_iterators, cache_hash_code>
          local_iterator;
  typedef Internal::node_iterator<value_type, false,              cache_hash_code>
          const_local_iterator;

  typedef Internal::hashtable_iterator<value_type, !mutable_iterators, cache_hash_code>
          iterator;
  typedef Internal::hashtable_iterator<value_type, false,              cache_hash_code>
          const_iterator;

private:
  typedef Internal::hash_node<Value, cache_hash_code>                 node;
  typedef typename Allocator::template rebind<node>::other  node_allocator_t;
  typedef typename Allocator::template rebind<node*>::other bucket_allocator_t;

private:
  node_allocator_t m_node_allocator;
  node** m_buckets;
  size_type m_bucket_count;
  size_type m_element_count;
  RehashPolicy m_rehash_policy;

  node* m_allocate_node (const value_type& v);
  void m_deallocate_node (node* n);
  void m_deallocate_nodes (node**, size_type);

  node** m_allocate_buckets (size_type n);
  void m_deallocate_buckets (node**, size_type n);

public:				// Constructor, destructor, assignment, swap
  hashtable(size_type bucket_hint,
	    const H1&, const H2&, const H&,
	    const Equal&, const ExtractKey&,
	    const allocator_type&);
  
  template <typename InIter>
  hashtable(InIter first, InIter last,
	    size_type bucket_hint,
	    const H1&, const H2&, const H&,
	    const Equal&, const ExtractKey&,
	    const allocator_type&);
  
  hashtable(const hashtable&);
  hashtable& operator=(const hashtable&);
  ~hashtable();

  void swap(hashtable&);

public:				// Basic container operations
  iterator       begin() {
    iterator i(m_buckets);
    if (!i.m_cur_node)
      i.m_incr_bucket();
    return i;
  }

  const_iterator begin() const {
    const_iterator i(m_buckets);
    if (!i.m_cur_node)
      i.m_incr_bucket();
    return i;
  }

  iterator       end()
    { return iterator(m_buckets + m_bucket_count); }
  const_iterator end() const
    { return const_iterator(m_buckets + m_bucket_count); }

  size_type size() const { return m_element_count; }
  bool empty() const { return size() == 0; }

  allocator_type get_allocator() const { return m_node_allocator; }
  size_type max_size() const { return m_node_allocator.max_size(); }

public:				// Bucket operations
  size_type bucket_count() const
    { return m_bucket_count; }
  size_type max_bucket_count() const
    { return max_size(); }
  size_type bucket_size (size_type n) const
    { return std::distance(begin(n), end(n)); }
  size_type bucket (const key_type& k) const
    { return this->bucket_index (k, this->m_hash_code, this->m_bucket_count); }

  local_iterator begin(size_type n)
    { return local_iterator(m_buckets[n]); }
  local_iterator end(size_type n)
    { return local_iterator(0); }
  const_local_iterator begin(size_type n) const
    { return const_local_iterator(m_buckets[n]); }
  const_local_iterator end(size_type n) const
    { return const_local_iterator(0); }

  float load_factor() const
    { return static_cast<float>(size()) / static_cast<float>(bucket_count()); }
  // max_load_factor, if present, comes from rehash_base.

  // Generalization of max_load_factor.  Extension, not found in TR1.  Only
  // useful if RehashPolicy is something other than the default.
  const RehashPolicy& rehash_policy() const { return m_rehash_policy; }
  void rehash_policy (const RehashPolicy&);

public:				// lookup
  iterator       find(const key_type&);
  const_iterator find(const key_type& k) const;
  size_type count(const key_type& k) const;
  std::pair<iterator, iterator> equal_range(const key_type& k);
  std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;

private:			// Insert and erase helper functions
  // ??? This dispatching is a workaround for the fact that we don't
  // have partial specialization of member templates; it would be
  // better to just specialize insert on unique_keys.  There may be a
  // cleaner workaround.
  typedef typename Internal::IF<unique_keys, std::pair<iterator, bool>, iterator>::type
          Insert_Return_Type;

  node* find_node (node* p, const key_type& k, typename hashtable::hash_code_t c);

  std::pair<iterator, bool> insert (const value_type&, std::tr1::true_type);
  iterator insert (const value_type&, std::tr1::false_type);

public:				// Insert and erase
  Insert_Return_Type insert (const value_type& v) 
  { return this->insert (v, std::tr1::integral_constant<bool, unique_keys>()); }
  Insert_Return_Type insert (const_iterator, const value_type& v)
    { return this->insert(v); }

  template <typename InIter> void insert(InIter first, InIter last);

  void erase(const_iterator);
  size_type erase(const key_type&);
  void erase(const_iterator, const_iterator);
  void clear();

public:
  // Set number of buckets to be apropriate for container of n element.
  void rehash (size_type n);

private:
  // Unconditionally change size of bucket array to n.
  void m_rehash (size_type n);
};

//----------------------------------------------------------------------
// Definitions of class template hashtable's out-of-line member functions.

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node*
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_allocate_node (const value_type& v)
{
  node* n = m_node_allocator.allocate(1);
  try {
    get_allocator().construct(&n->m_v, v);
    n->m_next = 0;
    return n;
  }
  catch(...) {
    m_node_allocator.deallocate(n, 1);
    throw;
  }
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_deallocate_node (node* n)
{
  get_allocator().destroy(&n->m_v);
  m_node_allocator.deallocate(n, 1);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::m_deallocate_nodes (node** array, size_type n)
{
  for (size_type i = 0; i < n; ++i) {
    node* p = array[i];
    while (p) {
      node* tmp = p;
      p = p->m_next;
      m_deallocate_node (tmp);
    }
    array[i] = 0;
  }
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node**
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_allocate_buckets (size_type n)
{
  bucket_allocator_t alloc(m_node_allocator);

  // We allocate one extra bucket to hold a sentinel, an arbitrary
  // non-null pointer.  Iterator increment relies on this.
  node** p = alloc.allocate(n+1);
  std::fill(p, p+n, (node*) 0);
  p[n] = reinterpret_cast<node*>(0x1000);
  return p;
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::m_deallocate_buckets (node** p, size_type n)
{
  bucket_allocator_t alloc(m_node_allocator);
  alloc.deallocate(p, n+1);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::hashtable(size_type bucket_hint,
	    const H1& h1, const H2& h2, const H& h,
	    const Eq& eq, const Ex& exk,
	    const allocator_type& a)
  : Internal::rehash_base<RP,hashtable> (),
    Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (exk, eq, h1, h2, h),
    Internal::map_base<K,V,Ex,u,hashtable> (),
    m_node_allocator(a),
    m_bucket_count (0),
    m_element_count (0),
    m_rehash_policy ()
{
  m_bucket_count = m_rehash_policy.next_bkt(bucket_hint);
  m_buckets = m_allocate_buckets (m_bucket_count);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
template <typename InIter>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::hashtable(InIter f, InIter l,
	    size_type bucket_hint,
	    const H1& h1, const H2& h2, const H& h,
	    const Eq& eq, const Ex& exk,
	    const allocator_type& a)
  : Internal::rehash_base<RP,hashtable> (),
    Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (exk, eq, h1, h2, h),
    Internal::map_base<K,V,Ex,u,hashtable> (),
    m_node_allocator(a),
    m_bucket_count (0),
    m_element_count (0),
    m_rehash_policy ()
{
  m_bucket_count = std::max(m_rehash_policy.next_bkt(bucket_hint),
			    m_rehash_policy.bkt_for_elements(Internal::distance_fw(f, l)));
  m_buckets = m_allocate_buckets (m_bucket_count);
  try {
    for  (; f != l; ++f)
      this->insert (*f);
  }
  catch(...) {
    clear();
    m_deallocate_buckets (m_buckets, m_bucket_count);
    throw;
  }
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::hashtable(const hashtable& ht)
  : Internal::rehash_base<RP,hashtable> (ht),
    Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (ht),
    Internal::map_base<K,V,Ex,u,hashtable> (ht),
    m_node_allocator(ht.get_allocator()),
    m_bucket_count (ht.m_bucket_count),
    m_element_count (ht.m_element_count),
    m_rehash_policy (ht.m_rehash_policy)
{
  m_buckets = m_allocate_buckets (m_bucket_count);
  try {
    for (size_t i = 0; i < ht.m_bucket_count; ++i) {
      node* n = ht.m_buckets[i];
      node** tail = m_buckets + i;
      while (n) {
	*tail = m_allocate_node (n);
	(*tail).copy_code_from (n);
	tail = &((*tail)->m_next);
	n = n->m_next;
      }
    }
  }
  catch (...) {
    clear();
    m_deallocate_buckets (m_buckets, m_bucket_count);
    throw;
  }
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>&
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::operator= (const hashtable& ht)
{
  hashtable tmp(ht);
  this->swap(tmp);
  return *this;
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::~hashtable()
{
  clear();
  m_deallocate_buckets(m_buckets, m_bucket_count);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::swap (hashtable& x)
{
  // The only base class with member variables is hash_code_base.  We
  // define hash_code_base::m_swap because different specializations
  // have different members.
  Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>::m_swap(x);

  // open LWG issue 431
  // std::swap(m_node_allocator, x.m_node_allocator);
  std::swap (m_rehash_policy, x.m_rehash_policy);
  std::swap (m_buckets, x.m_buckets);
  std::swap (m_bucket_count, x.m_bucket_count);
  std::swap (m_element_count, x.m_element_count);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::rehash_policy (const RP& pol)
{
  m_rehash_policy = pol;
  size_type n_bkt = pol.bkt_for_elements(m_element_count);
  if (n_bkt > m_bucket_count)
    m_rehash (n_bkt);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::find (const key_type& k)
{
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  std::size_t n = this->bucket_index (k, code, this->bucket_count());
  node* p = find_node (m_buckets[n], k, code);
  return p ? iterator(p, m_buckets + n) : this->end();
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::find (const key_type& k) const
{
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  std::size_t n = this->bucket_index (k, code, this->bucket_count());
  node* p = find_node (m_buckets[n], k, code);
  return p ? const_iterator(p, m_buckets + n) : this->end();
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::size_type
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::count (const key_type& k) const
{
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  std::size_t n = this->bucket_index (k, code, this->bucket_count());
  size_t result = 0;
  for (node* p = m_buckets[n]; p ; p = p->m_next)
    if (this->compare (k, code, p))
      ++result;
  return result;
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator,
	  typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::equal_range (const key_type& k)
{
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  std::size_t n = this->bucket_index (k, code, this->bucket_count());
  node** head = m_buckets + n;
  node* p = find_node (*head, k, code);

  if (p) {
    node* p1 = p->m_next;
    for (; p1 ; p1 = p1->m_next)
      if (!this->compare (k, code, p1))
	break;
    iterator first(p, head);
    iterator last(p1, head);
    if (!p1)
      last.m_incr_bucket();
    return std::make_pair(first, last);
  }
  else
    return std::make_pair (this->end(), this->end());
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator,
	  typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::equal_range (const key_type& k) const
{
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  std::size_t n = this->bucket_index (k, code, this->bucket_count());
  node** head = m_buckets + n;
  node* p = find_node (*head, k, code);

  if (p) {
    node* p1 = p->m_next;
    for (; p1 ; p1 = p1->m_next)
      if (!this->compare (k, code, p1))
	break;
    const_iterator first(p, head);
    const_iterator last(p1, head);
    if (!p1)
      last.m_incr_bucket();
    return std::make_pair(first, last);
  }
  else
    return std::make_pair (this->end(), this->end());
}

// Find the node whose key compares equal to k, beginning the search
// at p (usually the head of a bucket).  Return nil if no node is found.
template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node* 
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::find_node (node* p, const key_type& k, typename hashtable::hash_code_t code)
{
  for ( ; p ; p = p->m_next)
    if (this->compare (k, code, p))
      return p;
  return false;
}

// Insert v if no element with its key is already present.
template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator, bool>
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::insert (const value_type& v, std::tr1::true_type)
{
  const key_type& k = this->m_extract(v);
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  size_type n = this->bucket_index (k, code, m_bucket_count);

  if (node* p = find_node (m_buckets[n], k, code))
    return std::make_pair(iterator(p, m_buckets + n), false);

  std::pair<bool, size_t> do_rehash
    = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);

  // Allocate the new node before doing the rehash so that we don't
  // do a rehash if the allocation throws.
  node* new_node = m_allocate_node (v);

  try {
    if (do_rehash.first) {
      n = this->bucket_index (k, code, do_rehash.second);
      m_rehash(do_rehash.second);
    }

    new_node->m_next = m_buckets[n];
    m_buckets[n] = new_node;
    ++m_element_count;
    return std::make_pair(iterator (new_node, m_buckets + n), true);
  }
  catch (...) {
    m_deallocate_node (new_node);
    throw;
  }
}

// Insert v unconditionally.
template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::insert (const value_type& v, std::tr1::false_type)
{
  std::pair<bool, std::size_t> do_rehash
    = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
  if (do_rehash.first)
    m_rehash(do_rehash.second);

  const key_type& k = this->m_extract(v);
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  size_type n = this->bucket_index (k, code, m_bucket_count);

  node* new_node = m_allocate_node (v);
  node* prev = find_node (m_buckets[n], k, code);
  if (prev) {
    new_node->m_next = prev->m_next;
    prev->m_next = new_node;
  }
  else {
    new_node->m_next = m_buckets[n];
    m_buckets[n] = new_node;
  }

  ++m_element_count;
  return iterator (new_node, m_buckets + n);
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
template <typename InIter>
void 
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::insert(InIter first, InIter last)
{
  size_type n_elt = Internal::distance_fw (first, last);
  std::pair<bool, std::size_t> do_rehash
    = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, n_elt);
  if (do_rehash.first)
    m_rehash(do_rehash.second);

  for (; first != last; ++first)
    this->insert (*first);
}

// XXX We're following the TR in giving this a return type of void,
// but that ought to change.  The return type should be const_iterator,
// and it should return the iterator following the one we've erased.
// That would simplify range erase.
template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::erase (const_iterator i)
{
  node* p = i.m_cur_node;
  node* cur = *i.m_cur_bucket;
  if (cur == p)
    *i.m_cur_bucket = cur->m_next;
  else {
    node* next = cur->m_next;
    while (next != p) {
      cur = next;
      next = cur->m_next;
    }
    cur->m_next = next->m_next;
  }

  m_deallocate_node (p);
  --m_element_count;
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::size_type 
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::erase(const key_type& k)
{
  typename hashtable::hash_code_t code = this->m_hash_code (k);
  size_type n = this->bucket_index (k, code, m_bucket_count);

  node** slot = m_buckets + n;
  while (*slot && ! this->compare (k, code, *slot))
    slot = &((*slot)->m_next);

  while (*slot && this->compare (k, code, *slot)) {
    node* n = *slot;
    *slot = n->m_next;
    m_deallocate_node (n);
    --m_element_count;
  }
}

// ??? This could be optimized by taking advantage of the bucket
// structure, but it's not clear that it's worth doing.  It probably
// wouldn't even be an optimization unless the load factor is large.
template <typename K, typename V,
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
::erase(const_iterator first, const_iterator last)
{
  while (first != last) {
    const_iterator next = first;
    ++next;
    this->erase(first);
    first = next;
  }
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::clear()
{
  m_deallocate_nodes (m_buckets, m_bucket_count);
  m_element_count = 0;
}

template <typename K, typename V, 
	  typename A, typename Ex, typename Eq,
	  typename H1, typename H2, typename H, typename RP,
	  bool c, bool m, bool u>
void
hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_rehash (size_type N)
{
  node** new_array = m_allocate_buckets (N);
  try {
    for (size_type i = 0; i < m_bucket_count; ++i)
      while (node* p = m_buckets[i]) {
	size_type new_index = this->bucket_index (p, N);
	m_buckets[i] = p->m_next;
	p->m_next = new_array[new_index];
	new_array[new_index] = p;
      }
    m_deallocate_buckets (m_buckets, m_bucket_count);
    m_bucket_count = N;
    m_buckets = new_array;
  }
  catch (...) {
    // A failure here means that a hash function threw an exception.
    // We can't restore the previous state without calling the hash
    // function again, so the only sensible recovery is to delete
    // everything.
    m_deallocate_nodes (new_array, N);
    m_deallocate_buckets (new_array, N);
    m_deallocate_nodes (m_buckets, m_bucket_count);
    m_element_count = 0;
    throw;
  }
}

} }				// Namespace std::tr1

#endif /* GNU_LIBSTDCXX_TR1_HASHTABLE_ */