1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
|
// random number generation -*- C++ -*-
// Copyright (C) 2009-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/**
* @file tr1/random.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/random}
*/
#ifndef _GLIBCXX_TR1_RANDOM_H
#define _GLIBCXX_TR1_RANDOM_H 1
#pragma GCC system_header
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.1] Random number generation
/**
* @addtogroup tr1_random Random Number Generation
* A facility for generating random numbers on selected distributions.
* @{
*/
/*
* Implementation-space details.
*/
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename _UIntType, int __w,
bool = __w < std::numeric_limits<_UIntType>::digits>
struct _Shift
{ static const _UIntType __value = 0; };
template<typename _UIntType, int __w>
struct _Shift<_UIntType, __w, true>
{ static const _UIntType __value = _UIntType(1) << __w; };
template<typename _Tp, _Tp __a, _Tp __c, _Tp __m, bool>
struct _Mod;
// Dispatch based on modulus value to prevent divide-by-zero compile-time
// errors when m == 0.
template<typename _Tp, _Tp __a, _Tp __c, _Tp __m>
inline _Tp
__mod(_Tp __x)
{ return _Mod<_Tp, __a, __c, __m, __m == 0>::__calc(__x); }
typedef __gnu_cxx::__conditional_type<(sizeof(unsigned) == 4),
unsigned, unsigned long>::__type _UInt32Type;
/*
* An adaptor class for converting the output of any Generator into
* the input for a specific Distribution.
*/
template<typename _Engine, typename _Distribution>
struct _Adaptor
{
typedef typename remove_reference<_Engine>::type _BEngine;
typedef typename _BEngine::result_type _Engine_result_type;
typedef typename _Distribution::input_type result_type;
public:
_Adaptor(const _Engine& __g)
: _M_g(__g) { }
result_type
min() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g.min();
else
__return_value = result_type(0);
return __return_value;
}
result_type
max() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g.max();
else if (!is_integral<result_type>::value)
__return_value = result_type(1);
else
__return_value = std::numeric_limits<result_type>::max() - 1;
return __return_value;
}
/*
* Converts a value generated by the adapted random number generator
* into a value in the input domain for the dependent random number
* distribution.
*
* Because the type traits are compile time constants only the
* appropriate clause of the if statements will actually be emitted
* by the compiler.
*/
result_type
operator()()
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g();
else if (!is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type(_M_g() - _M_g.min())
/ result_type(_M_g.max() - _M_g.min());
else if (is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type(_M_g() - _M_g.min())
/ result_type(_M_g.max() - _M_g.min() + result_type(1));
else
__return_value = (((_M_g() - _M_g.min())
/ (_M_g.max() - _M_g.min()))
* std::numeric_limits<result_type>::max());
return __return_value;
}
private:
_Engine _M_g;
};
// Specialization for _Engine*.
template<typename _Engine, typename _Distribution>
struct _Adaptor<_Engine*, _Distribution>
{
typedef typename _Engine::result_type _Engine_result_type;
typedef typename _Distribution::input_type result_type;
public:
_Adaptor(_Engine* __g)
: _M_g(__g) { }
result_type
min() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g->min();
else
__return_value = result_type(0);
return __return_value;
}
result_type
max() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g->max();
else if (!is_integral<result_type>::value)
__return_value = result_type(1);
else
__return_value = std::numeric_limits<result_type>::max() - 1;
return __return_value;
}
result_type
operator()()
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = (*_M_g)();
else if (!is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type((*_M_g)() - _M_g->min())
/ result_type(_M_g->max() - _M_g->min());
else if (is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type((*_M_g)() - _M_g->min())
/ result_type(_M_g->max() - _M_g->min() + result_type(1));
else
__return_value = ((((*_M_g)() - _M_g->min())
/ (_M_g->max() - _M_g->min()))
* std::numeric_limits<result_type>::max());
return __return_value;
}
private:
_Engine* _M_g;
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* Produces random numbers on a given distribution function using a
* non-uniform random number generation engine.
*
* @todo the engine_value_type needs to be studied more carefully.
*/
template<typename _Engine, typename _Dist>
class variate_generator
{
// Concept requirements.
__glibcxx_class_requires(_Engine, _CopyConstructibleConcept)
// __glibcxx_class_requires(_Engine, _EngineConcept)
// __glibcxx_class_requires(_Dist, _EngineConcept)
public:
typedef _Engine engine_type;
typedef __detail::_Adaptor<_Engine, _Dist> engine_value_type;
typedef _Dist distribution_type;
typedef typename _Dist::result_type result_type;
// tr1:5.1.1 table 5.1 requirement
typedef typename __gnu_cxx::__enable_if<
is_arithmetic<result_type>::value, result_type>::__type _IsValidType;
/**
* Constructs a variate generator with the uniform random number
* generator @p __eng for the random distribution @p __dist.
*
* @throws Any exceptions which may thrown by the copy constructors of
* the @p _Engine or @p _Dist objects.
*/
variate_generator(engine_type __eng, distribution_type __dist)
: _M_engine(__eng), _M_dist(__dist) { }
/**
* Gets the next generated value on the distribution.
*/
result_type
operator()()
{ return _M_dist(_M_engine); }
/**
* WTF?
*/
template<typename _Tp>
result_type
operator()(_Tp __value)
{ return _M_dist(_M_engine, __value); }
/**
* Gets a reference to the underlying uniform random number generator
* object.
*/
engine_value_type&
engine()
{ return _M_engine; }
/**
* Gets a const reference to the underlying uniform random number
* generator object.
*/
const engine_value_type&
engine() const
{ return _M_engine; }
/**
* Gets a reference to the underlying random distribution.
*/
distribution_type&
distribution()
{ return _M_dist; }
/**
* Gets a const reference to the underlying random distribution.
*/
const distribution_type&
distribution() const
{ return _M_dist; }
/**
* Gets the closed lower bound of the distribution interval.
*/
result_type
min() const
{ return this->distribution().min(); }
/**
* Gets the closed upper bound of the distribution interval.
*/
result_type
max() const
{ return this->distribution().max(); }
private:
engine_value_type _M_engine;
distribution_type _M_dist;
};
/**
* @addtogroup tr1_random_generators Random Number Generators
* @ingroup tr1_random
*
* These classes define objects which provide random or pseudorandom
* numbers, either from a discrete or a continuous interval. The
* random number generator supplied as a part of this library are
* all uniform random number generators which provide a sequence of
* random number uniformly distributed over their range.
*
* A number generator is a function object with an operator() that
* takes zero arguments and returns a number.
*
* A compliant random number generator must satisfy the following
* requirements. <table border=1 cellpadding=10 cellspacing=0>
* <caption align=top>Random Number Generator Requirements</caption>
* <tr><td>To be documented.</td></tr> </table>
*
* @{
*/
/**
* @brief A model of a linear congruential random number generator.
*
* A random number generator that produces pseudorandom numbers using the
* linear function @f$x_{i+1}\leftarrow(ax_{i} + c) \bmod m @f$.
*
* The template parameter @p _UIntType must be an unsigned integral type
* large enough to store values up to (__m-1). If the template parameter
* @p __m is 0, the modulus @p __m used is
* std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
* parameters @p __a and @p __c must be less than @p __m.
*
* The size of the state is @f$ 1 @f$.
*/
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
class linear_congruential
{
__glibcxx_class_requires(_UIntType, _UnsignedIntegerConcept)
// __glibcpp_class_requires(__a < __m && __c < __m)
public:
/** The type of the generated random value. */
typedef _UIntType result_type;
/** The multiplier. */
static const _UIntType multiplier = __a;
/** An increment. */
static const _UIntType increment = __c;
/** The modulus. */
static const _UIntType modulus = __m;
/**
* Constructs a %linear_congruential random number generator engine with
* seed @p __s. The default seed value is 1.
*
* @param __s The initial seed value.
*/
explicit
linear_congruential(unsigned long __x0 = 1)
{ this->seed(__x0); }
/**
* Constructs a %linear_congruential random number generator engine
* seeded from the generator function @p __g.
*
* @param __g The seed generator function.
*/
template<class _Gen>
linear_congruential(_Gen& __g)
{ this->seed(__g); }
/**
* Reseeds the %linear_congruential random number generator engine
* sequence to the seed @g __s.
*
* @param __s The new seed.
*/
void
seed(unsigned long __s = 1);
/**
* Reseeds the %linear_congruential random number generator engine
* sequence using values from the generator function @p __g.
*
* @param __g the seed generator function.
*/
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
/**
* Gets the smallest possible value in the output range.
*
* The minimum depends on the @p __c parameter: if it is zero, the
* minimum generated must be > 0, otherwise 0 is allowed.
*/
result_type
min() const
{ return (__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0) ? 1 : 0; }
/**
* Gets the largest possible value in the output range.
*/
result_type
max() const
{ return __m - 1; }
/**
* Gets the next random number in the sequence.
*/
result_type
operator()();
/**
* Compares two linear congruential random number generator
* objects of the same type for equality.
*
* @param __lhs A linear congruential random number generator object.
* @param __rhs Another linear congruential random number generator obj.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const linear_congruential& __lhs,
const linear_congruential& __rhs)
{ return __lhs._M_x == __rhs._M_x; }
/**
* Compares two linear congruential random number generator
* objects of the same type for inequality.
*
* @param __lhs A linear congruential random number generator object.
* @param __rhs Another linear congruential random number generator obj.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const linear_congruential& __lhs,
const linear_congruential& __rhs)
{ return !(__lhs == __rhs); }
/**
* Writes the textual representation of the state x(i) of x to @p __os.
*
* @param __os The output stream.
* @param __lcr A % linear_congruential random number generator.
* @returns __os.
*/
template<class _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
_UIntType1 __m1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const linear_congruential<_UIntType1, __a1, __c1,
__m1>& __lcr);
/**
* Sets the state of the engine by reading its textual
* representation from @p __is.
*
* The textual representation must have been previously written using an
* output stream whose imbued locale and whose type's template
* specialization arguments _CharT and _Traits were the same as those of
* @p __is.
*
* @param __is The input stream.
* @param __lcr A % linear_congruential random number generator.
* @returns __is.
*/
template<class _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
_UIntType1 __m1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
linear_congruential<_UIntType1, __a1, __c1, __m1>& __lcr);
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
template<class _Gen>
void
seed(_Gen& __g, false_type);
_UIntType _M_x;
};
/**
* The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
*/
typedef linear_congruential<unsigned long, 16807, 0, 2147483647> minstd_rand0;
/**
* An alternative LCR (Lehmer Generator function) .
*/
typedef linear_congruential<unsigned long, 48271, 0, 2147483647> minstd_rand;
/**
* A generalized feedback shift register discrete random number generator.
*
* This algorithm avoids multiplication and division and is designed to be
* friendly to a pipelined architecture. If the parameters are chosen
* correctly, this generator will produce numbers with a very long period and
* fairly good apparent entropy, although still not cryptographically strong.
*
* The best way to use this generator is with the predefined mt19937 class.
*
* This algorithm was originally invented by Makoto Matsumoto and
* Takuji Nishimura.
*
* @var word_size The number of bits in each element of the state vector.
* @var state_size The degree of recursion.
* @var shift_size The period parameter.
* @var mask_bits The separation point bit index.
* @var parameter_a The last row of the twist matrix.
* @var output_u The first right-shift tempering matrix parameter.
* @var output_s The first left-shift tempering matrix parameter.
* @var output_b The first left-shift tempering matrix mask.
* @var output_t The second left-shift tempering matrix parameter.
* @var output_c The second left-shift tempering matrix mask.
* @var output_l The second right-shift tempering matrix parameter.
*/
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s, _UIntType __b, int __t,
_UIntType __c, int __l>
class mersenne_twister
{
__glibcxx_class_requires(_UIntType, _UnsignedIntegerConcept)
public:
// types
typedef _UIntType result_type;
// parameter values
static const int word_size = __w;
static const int state_size = __n;
static const int shift_size = __m;
static const int mask_bits = __r;
static const _UIntType parameter_a = __a;
static const int output_u = __u;
static const int output_s = __s;
static const _UIntType output_b = __b;
static const int output_t = __t;
static const _UIntType output_c = __c;
static const int output_l = __l;
// constructors and member function
mersenne_twister()
{ seed(); }
explicit
mersenne_twister(unsigned long __value)
{ seed(__value); }
template<class _Gen>
mersenne_twister(_Gen& __g)
{ seed(__g); }
void
seed()
{ seed(5489UL); }
void
seed(unsigned long __value);
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
result_type
min() const
{ return 0; };
result_type
max() const
{ return __detail::_Shift<_UIntType, __w>::__value - 1; }
result_type
operator()();
/**
* Compares two % mersenne_twister random number generator objects of
* the same type for equality.
*
* @param __lhs A % mersenne_twister random number generator object.
* @param __rhs Another % mersenne_twister random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const mersenne_twister& __lhs,
const mersenne_twister& __rhs)
{ return std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x); }
/**
* Compares two % mersenne_twister random number generator objects of
* the same type for inequality.
*
* @param __lhs A % mersenne_twister random number generator object.
* @param __rhs Another % mersenne_twister random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const mersenne_twister& __lhs,
const mersenne_twister& __rhs)
{ return !(__lhs == __rhs); }
/**
* Inserts the current state of a % mersenne_twister random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A % mersenne_twister random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<class _UIntType1, int __w1, int __n1, int __m1, int __r1,
_UIntType1 __a1, int __u1, int __s1, _UIntType1 __b1, int __t1,
_UIntType1 __c1, int __l1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const mersenne_twister<_UIntType1, __w1, __n1, __m1, __r1,
__a1, __u1, __s1, __b1, __t1, __c1, __l1>& __x);
/**
* Extracts the current state of a % mersenne_twister random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A % mersenne_twister random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<class _UIntType1, int __w1, int __n1, int __m1, int __r1,
_UIntType1 __a1, int __u1, int __s1, _UIntType1 __b1, int __t1,
_UIntType1 __c1, int __l1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
mersenne_twister<_UIntType1, __w1, __n1, __m1, __r1,
__a1, __u1, __s1, __b1, __t1, __c1, __l1>& __x);
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
template<class _Gen>
void
seed(_Gen& __g, false_type);
_UIntType _M_x[state_size];
int _M_p;
};
/**
* The classic Mersenne Twister.
*
* Reference:
* M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
* Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
* on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
*/
typedef mersenne_twister<
unsigned long, 32, 624, 397, 31,
0x9908b0dful, 11, 7,
0x9d2c5680ul, 15,
0xefc60000ul, 18
> mt19937;
/**
* @brief The Marsaglia-Zaman generator.
*
* This is a model of a Generalized Fibonacci discrete random number
* generator, sometimes referred to as the SWC generator.
*
* A discrete random number generator that produces pseudorandom
* numbers using @f$x_{i}\leftarrow(x_{i - s} - x_{i - r} -
* carry_{i-1}) \bmod m @f$.
*
* The size of the state is @f$ r @f$
* and the maximum period of the generator is @f$ m^r - m^s -1 @f$.
*
* N1688[4.13] says <em>the template parameter _IntType shall denote
* an integral type large enough to store values up to m</em>.
*
* @var _M_x The state of the generator. This is a ring buffer.
* @var _M_carry The carry.
* @var _M_p Current index of x(i - r).
*/
template<typename _IntType, _IntType __m, int __s, int __r>
class subtract_with_carry
{
__glibcxx_class_requires(_IntType, _IntegerConcept)
public:
/** The type of the generated random value. */
typedef _IntType result_type;
// parameter values
static const _IntType modulus = __m;
static const int long_lag = __r;
static const int short_lag = __s;
/**
* Constructs a default-initialized % subtract_with_carry random number
* generator.
*/
subtract_with_carry()
{ this->seed(); }
/**
* Constructs an explicitly seeded % subtract_with_carry random number
* generator.
*/
explicit
subtract_with_carry(unsigned long __value)
{ this->seed(__value); }
/**
* Constructs a %subtract_with_carry random number generator engine
* seeded from the generator function @p __g.
*
* @param __g The seed generator function.
*/
template<class _Gen>
subtract_with_carry(_Gen& __g)
{ this->seed(__g); }
/**
* Seeds the initial state @f$ x_0 @f$ of the random number generator.
*
* N1688[4.19] modifies this as follows. If @p __value == 0,
* sets value to 19780503. In any case, with a linear
* congruential generator lcg(i) having parameters @f$ m_{lcg} =
* 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
* @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
* \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$
* set carry to 1, otherwise sets carry to 0.
*/
void
seed(unsigned long __value = 19780503);
/**
* Seeds the initial state @f$ x_0 @f$ of the % subtract_with_carry
* random number generator.
*/
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
/**
* Gets the inclusive minimum value of the range of random integers
* returned by this generator.
*/
result_type
min() const
{ return 0; }
/**
* Gets the inclusive maximum value of the range of random integers
* returned by this generator.
*/
result_type
max() const
{ return this->modulus - 1; }
/**
* Gets the next random number in the sequence.
*/
result_type
operator()();
/**
* Compares two % subtract_with_carry random number generator objects of
* the same type for equality.
*
* @param __lhs A % subtract_with_carry random number generator object.
* @param __rhs Another % subtract_with_carry random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const subtract_with_carry& __lhs,
const subtract_with_carry& __rhs)
{ return std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x); }
/**
* Compares two % subtract_with_carry random number generator objects of
* the same type for inequality.
*
* @param __lhs A % subtract_with_carry random number generator object.
* @param __rhs Another % subtract_with_carry random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const subtract_with_carry& __lhs,
const subtract_with_carry& __rhs)
{ return !(__lhs == __rhs); }
/**
* Inserts the current state of a % subtract_with_carry random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A % subtract_with_carry random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, _IntType1 __m1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry<_IntType1, __m1, __s1,
__r1>& __x);
/**
* Extracts the current state of a % subtract_with_carry random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A % subtract_with_carry random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<typename _IntType1, _IntType1 __m1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
subtract_with_carry<_IntType1, __m1, __s1, __r1>& __x);
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
template<class _Gen>
void
seed(_Gen& __g, false_type);
typedef typename __gnu_cxx::__add_unsigned<_IntType>::__type _UIntType;
_UIntType _M_x[long_lag];
_UIntType _M_carry;
int _M_p;
};
/**
* @brief The Marsaglia-Zaman generator (floats version).
*
* @var _M_x The state of the generator. This is a ring buffer.
* @var _M_carry The carry.
* @var _M_p Current index of x(i - r).
* @var _M_npows Precomputed negative powers of 2.
*/
template<typename _RealType, int __w, int __s, int __r>
class subtract_with_carry_01
{
public:
/** The type of the generated random value. */
typedef _RealType result_type;
// parameter values
static const int word_size = __w;
static const int long_lag = __r;
static const int short_lag = __s;
/**
* Constructs a default-initialized % subtract_with_carry_01 random
* number generator.
*/
subtract_with_carry_01()
{
this->seed();
_M_initialize_npows();
}
/**
* Constructs an explicitly seeded % subtract_with_carry_01 random number
* generator.
*/
explicit
subtract_with_carry_01(unsigned long __value)
{
this->seed(__value);
_M_initialize_npows();
}
/**
* Constructs a % subtract_with_carry_01 random number generator engine
* seeded from the generator function @p __g.
*
* @param __g The seed generator function.
*/
template<class _Gen>
subtract_with_carry_01(_Gen& __g)
{
this->seed(__g);
_M_initialize_npows();
}
/**
* Seeds the initial state @f$ x_0 @f$ of the random number generator.
*/
void
seed(unsigned long __value = 19780503);
/**
* Seeds the initial state @f$ x_0 @f$ of the % subtract_with_carry_01
* random number generator.
*/
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
/**
* Gets the minimum value of the range of random floats
* returned by this generator.
*/
result_type
min() const
{ return 0.0; }
/**
* Gets the maximum value of the range of random floats
* returned by this generator.
*/
result_type
max() const
{ return 1.0; }
/**
* Gets the next random number in the sequence.
*/
result_type
operator()();
/**
* Compares two % subtract_with_carry_01 random number generator objects
* of the same type for equality.
*
* @param __lhs A % subtract_with_carry_01 random number
* generator object.
* @param __rhs Another % subtract_with_carry_01 random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const subtract_with_carry_01& __lhs,
const subtract_with_carry_01& __rhs)
{
for (int __i = 0; __i < long_lag; ++__i)
if (!std::equal(__lhs._M_x[__i], __lhs._M_x[__i] + __n,
__rhs._M_x[__i]))
return false;
return true;
}
/**
* Compares two % subtract_with_carry_01 random number generator objects
* of the same type for inequality.
*
* @param __lhs A % subtract_with_carry_01 random number
* generator object.
*
* @param __rhs Another % subtract_with_carry_01 random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const subtract_with_carry_01& __lhs,
const subtract_with_carry_01& __rhs)
{ return !(__lhs == __rhs); }
/**
* Inserts the current state of a % subtract_with_carry_01 random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A % subtract_with_carry_01 random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, int __w1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry_01<_RealType1, __w1, __s1,
__r1>& __x);
/**
* Extracts the current state of a % subtract_with_carry_01 random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A % subtract_with_carry_01 random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<typename _RealType1, int __w1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
subtract_with_carry_01<_RealType1, __w1, __s1, __r1>& __x);
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
template<class _Gen>
void
seed(_Gen& __g, false_type);
void
_M_initialize_npows();
static const int __n = (__w + 31) / 32;
typedef __detail::_UInt32Type _UInt32Type;
_UInt32Type _M_x[long_lag][__n];
_RealType _M_npows[__n];
_UInt32Type _M_carry;
int _M_p;
};
typedef subtract_with_carry_01<float, 24, 10, 24> ranlux_base_01;
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 508. Bad parameters for ranlux64_base_01.
typedef subtract_with_carry_01<double, 48, 5, 12> ranlux64_base_01;
/**
* Produces random numbers from some base engine by discarding blocks of
* data.
*
* 0 <= @p __r <= @p __p
*/
template<class _UniformRandomNumberGenerator, int __p, int __r>
class discard_block
{
// __glibcxx_class_requires(typename base_type::result_type,
// ArithmeticTypeConcept)
public:
/** The type of the underlying generator engine. */
typedef _UniformRandomNumberGenerator base_type;
/** The type of the generated random value. */
typedef typename base_type::result_type result_type;
// parameter values
static const int block_size = __p;
static const int used_block = __r;
/**
* Constructs a default %discard_block engine.
*
* The underlying engine is default constructed as well.
*/
discard_block()
: _M_n(0) { }
/**
* Copy constructs a %discard_block engine.
*
* Copies an existing base class random number generator.
* @param rng An existing (base class) engine object.
*/
explicit
discard_block(const base_type& __rng)
: _M_b(__rng), _M_n(0) { }
/**
* Seed constructs a %discard_block engine.
*
* Constructs the underlying generator engine seeded with @p __s.
* @param __s A seed value for the base class engine.
*/
explicit
discard_block(unsigned long __s)
: _M_b(__s), _M_n(0) { }
/**
* Generator construct a %discard_block engine.
*
* @param __g A seed generator function.
*/
template<class _Gen>
discard_block(_Gen& __g)
: _M_b(__g), _M_n(0) { }
/**
* Reseeds the %discard_block object with the default seed for the
* underlying base class generator engine.
*/
void seed()
{
_M_b.seed();
_M_n = 0;
}
/**
* Reseeds the %discard_block object with the given seed generator
* function.
* @param __g A seed generator function.
*/
template<class _Gen>
void seed(_Gen& __g)
{
_M_b.seed(__g);
_M_n = 0;
}
/**
* Gets a const reference to the underlying generator engine object.
*/
const base_type&
base() const
{ return _M_b; }
/**
* Gets the minimum value in the generated random number range.
*/
result_type
min() const
{ return _M_b.min(); }
/**
* Gets the maximum value in the generated random number range.
*/
result_type
max() const
{ return _M_b.max(); }
/**
* Gets the next value in the generated random number sequence.
*/
result_type
operator()();
/**
* Compares two %discard_block random number generator objects of
* the same type for equality.
*
* @param __lhs A %discard_block random number generator object.
* @param __rhs Another %discard_block random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const discard_block& __lhs, const discard_block& __rhs)
{ return (__lhs._M_b == __rhs._M_b) && (__lhs._M_n == __rhs._M_n); }
/**
* Compares two %discard_block random number generator objects of
* the same type for inequality.
*
* @param __lhs A %discard_block random number generator object.
* @param __rhs Another %discard_block random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const discard_block& __lhs, const discard_block& __rhs)
{ return !(__lhs == __rhs); }
/**
* Inserts the current state of a %discard_block random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %discard_block random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator1, int __p1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const discard_block<_UniformRandomNumberGenerator1,
__p1, __r1>& __x);
/**
* Extracts the current state of a % subtract_with_carry random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %discard_block random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator1, int __p1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
discard_block<_UniformRandomNumberGenerator1,
__p1, __r1>& __x);
private:
base_type _M_b;
int _M_n;
};
/**
* James's luxury-level-3 integer adaptation of Luescher's generator.
*/
typedef discard_block<
subtract_with_carry<unsigned long, (1UL << 24), 10, 24>,
223,
24
> ranlux3;
/**
* James's luxury-level-4 integer adaptation of Luescher's generator.
*/
typedef discard_block<
subtract_with_carry<unsigned long, (1UL << 24), 10, 24>,
389,
24
> ranlux4;
typedef discard_block<
subtract_with_carry_01<float, 24, 10, 24>,
223,
24
> ranlux3_01;
typedef discard_block<
subtract_with_carry_01<float, 24, 10, 24>,
389,
24
> ranlux4_01;
/**
* A random number generator adaptor class that combines two random number
* generator engines into a single output sequence.
*/
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2>
class xor_combine
{
// __glibcxx_class_requires(typename _UniformRandomNumberGenerator1::
// result_type, ArithmeticTypeConcept)
// __glibcxx_class_requires(typename _UniformRandomNumberGenerator2::
// result_type, ArithmeticTypeConcept)
public:
/** The type of the first underlying generator engine. */
typedef _UniformRandomNumberGenerator1 base1_type;
/** The type of the second underlying generator engine. */
typedef _UniformRandomNumberGenerator2 base2_type;
private:
typedef typename base1_type::result_type _Result_type1;
typedef typename base2_type::result_type _Result_type2;
public:
/** The type of the generated random value. */
typedef typename __gnu_cxx::__conditional_type<(sizeof(_Result_type1)
> sizeof(_Result_type2)),
_Result_type1, _Result_type2>::__type result_type;
// parameter values
static const int shift1 = __s1;
static const int shift2 = __s2;
// constructors and member function
xor_combine()
: _M_b1(), _M_b2()
{ _M_initialize_max(); }
xor_combine(const base1_type& __rng1, const base2_type& __rng2)
: _M_b1(__rng1), _M_b2(__rng2)
{ _M_initialize_max(); }
xor_combine(unsigned long __s)
: _M_b1(__s), _M_b2(__s + 1)
{ _M_initialize_max(); }
template<class _Gen>
xor_combine(_Gen& __g)
: _M_b1(__g), _M_b2(__g)
{ _M_initialize_max(); }
void
seed()
{
_M_b1.seed();
_M_b2.seed();
}
template<class _Gen>
void
seed(_Gen& __g)
{
_M_b1.seed(__g);
_M_b2.seed(__g);
}
const base1_type&
base1() const
{ return _M_b1; }
const base2_type&
base2() const
{ return _M_b2; }
result_type
min() const
{ return 0; }
result_type
max() const
{ return _M_max; }
/**
* Gets the next random number in the sequence.
*/
// NB: Not exactly the TR1 formula, per N2079 instead.
result_type
operator()()
{
return ((result_type(_M_b1() - _M_b1.min()) << shift1)
^ (result_type(_M_b2() - _M_b2.min()) << shift2));
}
/**
* Compares two %xor_combine random number generator objects of
* the same type for equality.
*
* @param __lhs A %xor_combine random number generator object.
* @param __rhs Another %xor_combine random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const xor_combine& __lhs, const xor_combine& __rhs)
{
return (__lhs.base1() == __rhs.base1())
&& (__lhs.base2() == __rhs.base2());
}
/**
* Compares two %xor_combine random number generator objects of
* the same type for inequality.
*
* @param __lhs A %xor_combine random number generator object.
* @param __rhs Another %xor_combine random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const xor_combine& __lhs, const xor_combine& __rhs)
{ return !(__lhs == __rhs); }
/**
* Inserts the current state of a %xor_combine random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %xor_combine random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator11, int __s11,
class _UniformRandomNumberGenerator21, int __s21,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const xor_combine<_UniformRandomNumberGenerator11, __s11,
_UniformRandomNumberGenerator21, __s21>& __x);
/**
* Extracts the current state of a %xor_combine random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %xor_combine random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator11, int __s11,
class _UniformRandomNumberGenerator21, int __s21,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
xor_combine<_UniformRandomNumberGenerator11, __s11,
_UniformRandomNumberGenerator21, __s21>& __x);
private:
void
_M_initialize_max();
result_type
_M_initialize_max_aux(result_type, result_type, int);
base1_type _M_b1;
base2_type _M_b2;
result_type _M_max;
};
/**
* A standard interface to a platform-specific non-deterministic
* random number generator (if any are available).
*/
class random_device
{
public:
// types
typedef unsigned int result_type;
// constructors, destructors and member functions
#ifdef _GLIBCXX_USE_RANDOM_TR1
explicit
random_device(const std::string& __token = "/dev/urandom")
{
if ((__token != "/dev/urandom" && __token != "/dev/random")
|| !(_M_file = std::fopen(__token.c_str(), "rb")))
std::__throw_runtime_error(__N("random_device::"
"random_device(const std::string&)"));
}
~random_device()
{ std::fclose(_M_file); }
#else
explicit
random_device(const std::string& __token = "mt19937")
: _M_mt(_M_strtoul(__token)) { }
private:
static unsigned long
_M_strtoul(const std::string& __str)
{
unsigned long __ret = 5489UL;
if (__str != "mt19937")
{
const char* __nptr = __str.c_str();
char* __endptr;
__ret = std::strtoul(__nptr, &__endptr, 0);
if (*__nptr == '\0' || *__endptr != '\0')
std::__throw_runtime_error(__N("random_device::_M_strtoul"
"(const std::string&)"));
}
return __ret;
}
public:
#endif
result_type
min() const
{ return std::numeric_limits<result_type>::min(); }
result_type
max() const
{ return std::numeric_limits<result_type>::max(); }
double
entropy() const
{ return 0.0; }
result_type
operator()()
{
#ifdef _GLIBCXX_USE_RANDOM_TR1
result_type __ret;
std::fread(reinterpret_cast<void*>(&__ret), sizeof(result_type),
1, _M_file);
return __ret;
#else
return _M_mt();
#endif
}
private:
random_device(const random_device&);
void operator=(const random_device&);
#ifdef _GLIBCXX_USE_RANDOM_TR1
FILE* _M_file;
#else
mt19937 _M_mt;
#endif
};
/* @} */ // group tr1_random_generators
/**
* @addtogroup tr1_random_distributions Random Number Distributions
* @ingroup tr1_random
* @{
*/
/**
* @addtogroup tr1_random_distributions_discrete Discrete Distributions
* @ingroup tr1_random_distributions
* @{
*/
/**
* @brief Uniform discrete distribution for random numbers.
* A discrete random distribution on the range @f$[min, max]@f$ with equal
* probability throughout the range.
*/
template<typename _IntType = int>
class uniform_int
{
__glibcxx_class_requires(_IntType, _IntegerConcept)
public:
/** The type of the parameters of the distribution. */
typedef _IntType input_type;
/** The type of the range of the distribution. */
typedef _IntType result_type;
public:
/**
* Constructs a uniform distribution object.
*/
explicit
uniform_int(_IntType __min = 0, _IntType __max = 9)
: _M_min(__min), _M_max(__max)
{
_GLIBCXX_DEBUG_ASSERT(_M_min <= _M_max);
}
/**
* Gets the inclusive lower bound of the distribution range.
*/
result_type
min() const
{ return _M_min; }
/**
* Gets the inclusive upper bound of the distribution range.
*/
result_type
max() const
{ return _M_max; }
/**
* Resets the distribution state.
*
* Does nothing for the uniform integer distribution.
*/
void
reset() { }
/**
* Gets a uniformly distributed random number in the range
* @f$(min, max)@f$.
*/
template<typename _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{
typedef typename _UniformRandomNumberGenerator::result_type
_UResult_type;
return _M_call(__urng, _M_min, _M_max,
typename is_integral<_UResult_type>::type());
}
/**
* Gets a uniform random number in the range @f$[0, n)@f$.
*
* This function is aimed at use with std::random_shuffle.
*/
template<typename _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng, result_type __n)
{
typedef typename _UniformRandomNumberGenerator::result_type
_UResult_type;
return _M_call(__urng, 0, __n - 1,
typename is_integral<_UResult_type>::type());
}
/**
* Inserts a %uniform_int random number distribution @p __x into the
* output stream @p os.
*
* @param __os An output stream.
* @param __x A %uniform_int random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const uniform_int<_IntType1>& __x);
/**
* Extracts a %uniform_int random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %uniform_int random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _IntType1, typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
uniform_int<_IntType1>& __x);
private:
template<typename _UniformRandomNumberGenerator>
result_type
_M_call(_UniformRandomNumberGenerator& __urng,
result_type __min, result_type __max, true_type);
template<typename _UniformRandomNumberGenerator>
result_type
_M_call(_UniformRandomNumberGenerator& __urng,
result_type __min, result_type __max, false_type)
{
return result_type((__urng() - __urng.min())
/ (__urng.max() - __urng.min())
* (__max - __min + 1)) + __min;
}
_IntType _M_min;
_IntType _M_max;
};
/**
* @brief A Bernoulli random number distribution.
*
* Generates a sequence of true and false values with likelihood @f$ p @f$
* that true will come up and @f$ (1 - p) @f$ that false will appear.
*/
class bernoulli_distribution
{
public:
typedef int input_type;
typedef bool result_type;
public:
/**
* Constructs a Bernoulli distribution with likelihood @p p.
*
* @param __p [IN] The likelihood of a true result being returned. Must
* be in the interval @f$ [0, 1] @f$.
*/
explicit
bernoulli_distribution(double __p = 0.5)
: _M_p(__p)
{
_GLIBCXX_DEBUG_ASSERT((_M_p >= 0.0) && (_M_p <= 1.0));
}
/**
* Gets the @p p parameter of the distribution.
*/
double
p() const
{ return _M_p; }
/**
* Resets the distribution state.
*
* Does nothing for a Bernoulli distribution.
*/
void
reset() { }
/**
* Gets the next value in the Bernoullian sequence.
*/
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{
if ((__urng() - __urng.min()) < _M_p * (__urng.max() - __urng.min()))
return true;
return false;
}
/**
* Inserts a %bernoulli_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %bernoulli_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const bernoulli_distribution& __x);
/**
* Extracts a %bernoulli_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %bernoulli_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
bernoulli_distribution& __x)
{ return __is >> __x._M_p; }
private:
double _M_p;
};
/**
* @brief A discrete geometric random number distribution.
*
* The formula for the geometric probability mass function is
* @f$ p(i) = (1 - p)p^{i-1} @f$ where @f$ p @f$ is the parameter of the
* distribution.
*/
template<typename _IntType = int, typename _RealType = double>
class geometric_distribution
{
public:
// types
typedef _RealType input_type;
typedef _IntType result_type;
// constructors and member function
explicit
geometric_distribution(const _RealType& __p = _RealType(0.5))
: _M_p(__p)
{
_GLIBCXX_DEBUG_ASSERT((_M_p > 0.0) && (_M_p < 1.0));
_M_initialize();
}
/**
* Gets the distribution parameter @p p.
*/
_RealType
p() const
{ return _M_p; }
void
reset() { }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
/**
* Inserts a %geometric_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %geometric_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const geometric_distribution<_IntType1, _RealType1>& __x);
/**
* Extracts a %geometric_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %geometric_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
geometric_distribution& __x)
{
__is >> __x._M_p;
__x._M_initialize();
return __is;
}
private:
void
_M_initialize()
{ _M_log_p = std::log(_M_p); }
_RealType _M_p;
_RealType _M_log_p;
};
template<typename _RealType>
class normal_distribution;
/**
* @brief A discrete Poisson random number distribution.
*
* The formula for the Poisson probability mass function is
* @f$ p(i) = \frac{mean^i}{i!} e^{-mean} @f$ where @f$ mean @f$ is the
* parameter of the distribution.
*/
template<typename _IntType = int, typename _RealType = double>
class poisson_distribution
{
public:
// types
typedef _RealType input_type;
typedef _IntType result_type;
// constructors and member function
explicit
poisson_distribution(const _RealType& __mean = _RealType(1))
: _M_mean(__mean), _M_nd()
{
_GLIBCXX_DEBUG_ASSERT(_M_mean > 0.0);
_M_initialize();
}
/**
* Gets the distribution parameter @p mean.
*/
_RealType
mean() const
{ return _M_mean; }
void
reset()
{ _M_nd.reset(); }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
/**
* Inserts a %poisson_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %poisson_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const poisson_distribution<_IntType1, _RealType1>& __x);
/**
* Extracts a %poisson_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %poisson_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
poisson_distribution<_IntType1, _RealType1>& __x);
private:
void
_M_initialize();
// NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
normal_distribution<_RealType> _M_nd;
_RealType _M_mean;
// Hosts either log(mean) or the threshold of the simple method.
_RealType _M_lm_thr;
#if _GLIBCXX_USE_C99_MATH_TR1
_RealType _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
#endif
};
/**
* @brief A discrete binomial random number distribution.
*
* The formula for the binomial probability mass function is
* @f$ p(i) = \binom{n}{i} p^i (1 - p)^{t - i} @f$ where @f$ t @f$
* and @f$ p @f$ are the parameters of the distribution.
*/
template<typename _IntType = int, typename _RealType = double>
class binomial_distribution
{
public:
// types
typedef _RealType input_type;
typedef _IntType result_type;
// constructors and member function
explicit
binomial_distribution(_IntType __t = 1,
const _RealType& __p = _RealType(0.5))
: _M_t(__t), _M_p(__p), _M_nd()
{
_GLIBCXX_DEBUG_ASSERT((_M_t >= 0) && (_M_p >= 0.0) && (_M_p <= 1.0));
_M_initialize();
}
/**
* Gets the distribution @p t parameter.
*/
_IntType
t() const
{ return _M_t; }
/**
* Gets the distribution @p p parameter.
*/
_RealType
p() const
{ return _M_p; }
void
reset()
{ _M_nd.reset(); }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
/**
* Inserts a %binomial_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %binomial_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const binomial_distribution<_IntType1, _RealType1>& __x);
/**
* Extracts a %binomial_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %binomial_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
binomial_distribution<_IntType1, _RealType1>& __x);
private:
void
_M_initialize();
template<class _UniformRandomNumberGenerator>
result_type
_M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t);
// NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
normal_distribution<_RealType> _M_nd;
_RealType _M_q;
#if _GLIBCXX_USE_C99_MATH_TR1
_RealType _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
_M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
#endif
_RealType _M_p;
_IntType _M_t;
bool _M_easy;
};
/* @} */ // group tr1_random_distributions_discrete
/**
* @addtogroup tr1_random_distributions_continuous Continuous Distributions
* @ingroup tr1_random_distributions
* @{
*/
/**
* @brief Uniform continuous distribution for random numbers.
*
* A continuous random distribution on the range [min, max) with equal
* probability throughout the range. The URNG should be real-valued and
* deliver number in the range [0, 1).
*/
template<typename _RealType = double>
class uniform_real
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
public:
/**
* Constructs a uniform_real object.
*
* @param __min [IN] The lower bound of the distribution.
* @param __max [IN] The upper bound of the distribution.
*/
explicit
uniform_real(_RealType __min = _RealType(0),
_RealType __max = _RealType(1))
: _M_min(__min), _M_max(__max)
{
_GLIBCXX_DEBUG_ASSERT(_M_min <= _M_max);
}
result_type
min() const
{ return _M_min; }
result_type
max() const
{ return _M_max; }
void
reset() { }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{ return (__urng() * (_M_max - _M_min)) + _M_min; }
/**
* Inserts a %uniform_real random number distribution @p __x into the
* output stream @p __os.
*
* @param __os An output stream.
* @param __x A %uniform_real random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const uniform_real<_RealType1>& __x);
/**
* Extracts a %uniform_real random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %uniform_real random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
uniform_real<_RealType1>& __x);
private:
_RealType _M_min;
_RealType _M_max;
};
/**
* @brief An exponential continuous distribution for random numbers.
*
* The formula for the exponential probability mass function is
* @f$ p(x) = \lambda e^{-\lambda x} @f$.
*
* <table border=1 cellpadding=10 cellspacing=0>
* <caption align=top>Distribution Statistics</caption>
* <tr><td>Mean</td><td>@f$ \frac{1}{\lambda} @f$</td></tr>
* <tr><td>Median</td><td>@f$ \frac{\ln 2}{\lambda} @f$</td></tr>
* <tr><td>Mode</td><td>@f$ zero @f$</td></tr>
* <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
* <tr><td>Standard Deviation</td><td>@f$ \frac{1}{\lambda} @f$</td></tr>
* </table>
*/
template<typename _RealType = double>
class exponential_distribution
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
public:
/**
* Constructs an exponential distribution with inverse scale parameter
* @f$ \lambda @f$.
*/
explicit
exponential_distribution(const result_type& __lambda = result_type(1))
: _M_lambda(__lambda)
{
_GLIBCXX_DEBUG_ASSERT(_M_lambda > 0);
}
/**
* Gets the inverse scale parameter of the distribution.
*/
_RealType
lambda() const
{ return _M_lambda; }
/**
* Resets the distribution.
*
* Has no effect on exponential distributions.
*/
void
reset() { }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{ return -std::log(__urng()) / _M_lambda; }
/**
* Inserts a %exponential_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %exponential_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const exponential_distribution<_RealType1>& __x);
/**
* Extracts a %exponential_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %exponential_distribution random number
* generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
exponential_distribution& __x)
{ return __is >> __x._M_lambda; }
private:
result_type _M_lambda;
};
/**
* @brief A normal continuous distribution for random numbers.
*
* The formula for the normal probability mass function is
* @f$ p(x) = \frac{1}{\sigma \sqrt{2 \pi}}
* e^{- \frac{{x - mean}^ {2}}{2 \sigma ^ {2}} } @f$.
*/
template<typename _RealType = double>
class normal_distribution
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
public:
/**
* Constructs a normal distribution with parameters @f$ mean @f$ and
* @f$ \sigma @f$.
*/
explicit
normal_distribution(const result_type& __mean = result_type(0),
const result_type& __sigma = result_type(1))
: _M_mean(__mean), _M_sigma(__sigma), _M_saved_available(false)
{
_GLIBCXX_DEBUG_ASSERT(_M_sigma > 0);
}
/**
* Gets the mean of the distribution.
*/
_RealType
mean() const
{ return _M_mean; }
/**
* Gets the @f$ \sigma @f$ of the distribution.
*/
_RealType
sigma() const
{ return _M_sigma; }
/**
* Resets the distribution.
*/
void
reset()
{ _M_saved_available = false; }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
/**
* Inserts a %normal_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %normal_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const normal_distribution<_RealType1>& __x);
/**
* Extracts a %normal_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %normal_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
normal_distribution<_RealType1>& __x);
private:
result_type _M_mean;
result_type _M_sigma;
result_type _M_saved;
bool _M_saved_available;
};
/**
* @brief A gamma continuous distribution for random numbers.
*
* The formula for the gamma probability mass function is
* @f$ p(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} @f$.
*/
template<typename _RealType = double>
class gamma_distribution
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
public:
/**
* Constructs a gamma distribution with parameters @f$ \alpha @f$.
*/
explicit
gamma_distribution(const result_type& __alpha_val = result_type(1))
: _M_alpha(__alpha_val)
{
_GLIBCXX_DEBUG_ASSERT(_M_alpha > 0);
_M_initialize();
}
/**
* Gets the @f$ \alpha @f$ of the distribution.
*/
_RealType
alpha() const
{ return _M_alpha; }
/**
* Resets the distribution.
*/
void
reset() { }
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
/**
* Inserts a %gamma_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %gamma_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gamma_distribution<_RealType1>& __x);
/**
* Extracts a %gamma_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %gamma_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gamma_distribution& __x)
{
__is >> __x._M_alpha;
__x._M_initialize();
return __is;
}
private:
void
_M_initialize();
result_type _M_alpha;
// Hosts either lambda of GB or d of modified Vaduva's.
result_type _M_l_d;
};
/* @} */ // group tr1_random_distributions_continuous
/* @} */ // group tr1_random_distributions
/* @} */ // group tr1_random
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_RANDOM_H
|