diff options
author | Andrew Cagney <cagney@redhat.com> | 2004-11-01 14:44:58 +0000 |
---|---|---|
committer | Andrew Cagney <cagney@redhat.com> | 2004-11-01 14:44:58 +0000 |
commit | 4917663a01fa6930f024b648d1c1b9bbb144f50b (patch) | |
tree | 5c3184856a8bb5e8f6200e03c964a1a8cbfbeb1c /gdb/d10v-tdep.c | |
parent | 2f62d0715ca68a8453e7f887fd3bfacd508adc53 (diff) | |
download | gdb-4917663a01fa6930f024b648d1c1b9bbb144f50b.tar.gz |
2004-11-01 Andrew Cagney <cagney@gnu.org>
* configure.tgt: Mark d10v-*-* as obsolete.
* config/d10v/d10v.mt, d10v-tdep.c: Obsolete files.
Diffstat (limited to 'gdb/d10v-tdep.c')
-rw-r--r-- | gdb/d10v-tdep.c | 3158 |
1 files changed, 1579 insertions, 1579 deletions
diff --git a/gdb/d10v-tdep.c b/gdb/d10v-tdep.c index b0da9bee9c0..be59f23c15f 100644 --- a/gdb/d10v-tdep.c +++ b/gdb/d10v-tdep.c @@ -1,1579 +1,1579 @@ -/* Target-dependent code for Renesas D10V, for GDB. - - Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software - Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -/* Contributed by Martin Hunt, hunt@cygnus.com */ - -#include "defs.h" -#include "frame.h" -#include "frame-unwind.h" -#include "frame-base.h" -#include "symtab.h" -#include "gdbtypes.h" -#include "gdbcmd.h" -#include "gdbcore.h" -#include "gdb_string.h" -#include "value.h" -#include "inferior.h" -#include "dis-asm.h" -#include "symfile.h" -#include "objfiles.h" -#include "language.h" -#include "arch-utils.h" -#include "regcache.h" -#include "remote.h" -#include "floatformat.h" -#include "gdb/sim-d10v.h" -#include "sim-regno.h" -#include "disasm.h" -#include "trad-frame.h" - -#include "gdb_assert.h" - -struct gdbarch_tdep - { - int a0_regnum; - int nr_dmap_regs; - unsigned long (*dmap_register) (void *regcache, int nr); - unsigned long (*imap_register) (void *regcache, int nr); - }; - -/* These are the addresses the D10V-EVA board maps data and - instruction memory to. */ - -enum memspace { - DMEM_START = 0x2000000, - IMEM_START = 0x1000000, - STACK_START = 0x200bffe -}; - -/* d10v register names. */ - -enum - { - R0_REGNUM = 0, - R3_REGNUM = 3, - D10V_FP_REGNUM = 11, - LR_REGNUM = 13, - D10V_SP_REGNUM = 15, - PSW_REGNUM = 16, - D10V_PC_REGNUM = 18, - NR_IMAP_REGS = 2, - NR_A_REGS = 2, - TS2_NUM_REGS = 37, - TS3_NUM_REGS = 42, - /* d10v calling convention. */ - ARG1_REGNUM = R0_REGNUM, - ARGN_REGNUM = R3_REGNUM - }; - -static int -nr_dmap_regs (struct gdbarch *gdbarch) -{ - return gdbarch_tdep (gdbarch)->nr_dmap_regs; -} - -static int -a0_regnum (struct gdbarch *gdbarch) -{ - return gdbarch_tdep (gdbarch)->a0_regnum; -} - -/* Local functions */ - -extern void _initialize_d10v_tdep (void); - -static void d10v_eva_prepare_to_trace (void); - -static void d10v_eva_get_trace_data (void); - -static CORE_ADDR -d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) -{ - /* Align to the size of an instruction (so that they can safely be - pushed onto the stack. */ - return sp & ~3; -} - -static const unsigned char * -d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) -{ - static unsigned char breakpoint[] = - {0x2f, 0x90, 0x5e, 0x00}; - *lenptr = sizeof (breakpoint); - return breakpoint; -} - -/* Map the REG_NR onto an ascii name. Return NULL or an empty string - when the reg_nr isn't valid. */ - -enum ts2_regnums - { - TS2_IMAP0_REGNUM = 32, - TS2_DMAP_REGNUM = 34, - TS2_NR_DMAP_REGS = 1, - TS2_A0_REGNUM = 35 - }; - -static const char * -d10v_ts2_register_name (int reg_nr) -{ - static char *register_names[] = - { - "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", - "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", - "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", - "imap0", "imap1", "dmap", "a0", "a1" - }; - if (reg_nr < 0) - return NULL; - if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) - return NULL; - return register_names[reg_nr]; -} - -enum ts3_regnums - { - TS3_IMAP0_REGNUM = 36, - TS3_DMAP0_REGNUM = 38, - TS3_NR_DMAP_REGS = 4, - TS3_A0_REGNUM = 32 - }; - -static const char * -d10v_ts3_register_name (int reg_nr) -{ - static char *register_names[] = - { - "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", - "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", - "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", - "a0", "a1", - "spi", "spu", - "imap0", "imap1", - "dmap0", "dmap1", "dmap2", "dmap3" - }; - if (reg_nr < 0) - return NULL; - if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) - return NULL; - return register_names[reg_nr]; -} - -/* Access the DMAP/IMAP registers in a target independent way. - - Divide the D10V's 64k data space into four 16k segments: - 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and - 0xc000 -- 0xffff. - - On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 -- - 0x7fff) always map to the on-chip data RAM, and the fourth always - maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into - unified memory or instruction memory, under the control of the - single DMAP register. - - On the TS3, there are four DMAP registers, each of which controls - one of the segments. */ - -static unsigned long -d10v_ts2_dmap_register (void *regcache, int reg_nr) -{ - switch (reg_nr) - { - case 0: - case 1: - return 0x2000; - case 2: - { - ULONGEST reg; - regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, ®); - return reg; - } - default: - return 0; - } -} - -static unsigned long -d10v_ts3_dmap_register (void *regcache, int reg_nr) -{ - ULONGEST reg; - regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, ®); - return reg; -} - -static unsigned long -d10v_ts2_imap_register (void *regcache, int reg_nr) -{ - ULONGEST reg; - regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, ®); - return reg; -} - -static unsigned long -d10v_ts3_imap_register (void *regcache, int reg_nr) -{ - ULONGEST reg; - regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, ®); - return reg; -} - -/* MAP GDB's internal register numbering (determined by the layout - from the DEPRECATED_REGISTER_BYTE array) onto the simulator's - register numbering. */ - -static int -d10v_ts2_register_sim_regno (int nr) -{ - /* Only makes sense to supply raw registers. */ - gdb_assert (nr >= 0 && nr < NUM_REGS); - if (nr >= TS2_IMAP0_REGNUM - && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS) - return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; - if (nr == TS2_DMAP_REGNUM) - return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM; - if (nr >= TS2_A0_REGNUM - && nr < TS2_A0_REGNUM + NR_A_REGS) - return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM; - return nr; -} - -static int -d10v_ts3_register_sim_regno (int nr) -{ - /* Only makes sense to supply raw registers. */ - gdb_assert (nr >= 0 && nr < NUM_REGS); - if (nr >= TS3_IMAP0_REGNUM - && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS) - return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; - if (nr >= TS3_DMAP0_REGNUM - && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS) - return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM; - if (nr >= TS3_A0_REGNUM - && nr < TS3_A0_REGNUM + NR_A_REGS) - return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM; - return nr; -} - -/* Return the GDB type object for the "standard" data type - of data in register N. */ - -static struct type * -d10v_register_type (struct gdbarch *gdbarch, int reg_nr) -{ - if (reg_nr == D10V_PC_REGNUM) - return builtin_type (gdbarch)->builtin_func_ptr; - if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM) - return builtin_type (gdbarch)->builtin_data_ptr; - else if (reg_nr >= a0_regnum (gdbarch) - && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS)) - return builtin_type_int64; - else - return builtin_type_int16; -} - -static int -d10v_iaddr_p (CORE_ADDR x) -{ - return (((x) & 0x3000000) == IMEM_START); -} - -static CORE_ADDR -d10v_make_daddr (CORE_ADDR x) -{ - return ((x) | DMEM_START); -} - -static CORE_ADDR -d10v_make_iaddr (CORE_ADDR x) -{ - if (d10v_iaddr_p (x)) - return x; /* Idempotency -- x is already in the IMEM space. */ - else - return (((x) << 2) | IMEM_START); -} - -static CORE_ADDR -d10v_convert_iaddr_to_raw (CORE_ADDR x) -{ - return (((x) >> 2) & 0xffff); -} - -static CORE_ADDR -d10v_convert_daddr_to_raw (CORE_ADDR x) -{ - return ((x) & 0xffff); -} - -static void -d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) -{ - /* Is it a code address? */ - if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC - || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) - { - store_unsigned_integer (buf, TYPE_LENGTH (type), - d10v_convert_iaddr_to_raw (addr)); - } - else - { - /* Strip off any upper segment bits. */ - store_unsigned_integer (buf, TYPE_LENGTH (type), - d10v_convert_daddr_to_raw (addr)); - } -} - -static CORE_ADDR -d10v_pointer_to_address (struct type *type, const void *buf) -{ - CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); - /* Is it a code address? */ - if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC - || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD - || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) - return d10v_make_iaddr (addr); - else - return d10v_make_daddr (addr); -} - -/* Don't do anything if we have an integer, this way users can type 'x - <addr>' w/o having gdb outsmart them. The internal gdb conversions - to the correct space are taken care of in the pointer_to_address - function. If we don't do this, 'x $fp' wouldn't work. */ -static CORE_ADDR -d10v_integer_to_address (struct type *type, void *buf) -{ - LONGEST val; - val = unpack_long (type, buf); - return val; -} - -/* Handle the d10v's return_value convention. */ - -static enum return_value_convention -d10v_return_value (struct gdbarch *gdbarch, struct type *valtype, - struct regcache *regcache, void *readbuf, - const void *writebuf) -{ - if (TYPE_LENGTH (valtype) > 8) - /* Anything larger than 8 bytes (4 registers) goes on the stack. */ - return RETURN_VALUE_STRUCT_CONVENTION; - if (TYPE_LENGTH (valtype) == 5 - || TYPE_LENGTH (valtype) == 6) - /* Anything 5 or 6 bytes in size goes in memory. Contents don't - appear to matter. Note that 7 and 8 byte objects do end up in - registers! */ - return RETURN_VALUE_STRUCT_CONVENTION; - if (TYPE_LENGTH (valtype) == 1) - { - /* All single byte values go in a register stored right-aligned. - Note: 2 byte integer values are handled further down. */ - if (readbuf) - { - /* Since TYPE is smaller than the register, there isn't a - sign extension problem. Let the extraction truncate the - register value. */ - ULONGEST regval; - regcache_cooked_read_unsigned (regcache, R0_REGNUM, - ®val); - store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); - - } - if (writebuf) - { - ULONGEST regval; - if (TYPE_CODE (valtype) == TYPE_CODE_INT) - /* Some sort of integer value stored in R0. Use - unpack_long since that should handle any required sign - extension. */ - regval = unpack_long (valtype, writebuf); - else - /* Some other type. Don't sign-extend the value when - storing it in the register. */ - regval = extract_unsigned_integer (writebuf, 1); - regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval); - } - return RETURN_VALUE_REGISTER_CONVENTION; - } - if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT - || TYPE_CODE (valtype) == TYPE_CODE_UNION) - && TYPE_NFIELDS (valtype) > 1 - && TYPE_FIELD_BITPOS (valtype, 1) == 8) - /* If a composite is 8 bit aligned (determined by looking at the - start address of the second field), put it in memory. */ - return RETURN_VALUE_STRUCT_CONVENTION; - /* Assume it is in registers. */ - if (writebuf || readbuf) - { - int reg; - /* Per above, the value is never more than 8 bytes long. */ - gdb_assert (TYPE_LENGTH (valtype) <= 8); - /* Xfer 2 bytes at a time. */ - for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++) - { - if (readbuf) - regcache_cooked_read (regcache, R0_REGNUM + reg, - (bfd_byte *) readbuf + reg * 2); - if (writebuf) - regcache_cooked_write (regcache, R0_REGNUM + reg, - (bfd_byte *) writebuf + reg * 2); - } - /* Any trailing byte ends up _left_ aligned. */ - if ((reg * 2) < TYPE_LENGTH (valtype)) - { - if (readbuf) - regcache_cooked_read_part (regcache, R0_REGNUM + reg, - 0, 1, (bfd_byte *) readbuf + reg * 2); - if (writebuf) - regcache_cooked_write_part (regcache, R0_REGNUM + reg, - 0, 1, (bfd_byte *) writebuf + reg * 2); - } - } - return RETURN_VALUE_REGISTER_CONVENTION; -} - -static int -check_prologue (unsigned short op) -{ - /* st rn, @-sp */ - if ((op & 0x7E1F) == 0x6C1F) - return 1; - - /* st2w rn, @-sp */ - if ((op & 0x7E3F) == 0x6E1F) - return 1; - - /* subi sp, n */ - if ((op & 0x7FE1) == 0x01E1) - return 1; - - /* mv r11, sp */ - if (op == 0x417E) - return 1; - - /* nop */ - if (op == 0x5E00) - return 1; - - /* st rn, @sp */ - if ((op & 0x7E1F) == 0x681E) - return 1; - - /* st2w rn, @sp */ - if ((op & 0x7E3F) == 0x3A1E) - return 1; - - return 0; -} - -static CORE_ADDR -d10v_skip_prologue (CORE_ADDR pc) -{ - unsigned long op; - unsigned short op1, op2; - CORE_ADDR func_addr, func_end; - struct symtab_and_line sal; - - /* If we have line debugging information, then the end of the prologue - should be the first assembly instruction of the first source line. */ - if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) - { - sal = find_pc_line (func_addr, 0); - if (sal.end && sal.end < func_end) - return sal.end; - } - - if (target_read_memory (pc, (char *) &op, 4)) - return pc; /* Can't access it -- assume no prologue. */ - - while (1) - { - op = (unsigned long) read_memory_integer (pc, 4); - if ((op & 0xC0000000) == 0xC0000000) - { - /* long instruction */ - if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */ - ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */ - ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */ - break; - } - else - { - /* short instructions */ - if ((op & 0xC0000000) == 0x80000000) - { - op2 = (op & 0x3FFF8000) >> 15; - op1 = op & 0x7FFF; - } - else - { - op1 = (op & 0x3FFF8000) >> 15; - op2 = op & 0x7FFF; - } - if (check_prologue (op1)) - { - if (!check_prologue (op2)) - { - /* If the previous opcode was really part of the - prologue and not just a NOP, then we want to - break after both instructions. */ - if (op1 != 0x5E00) - pc += 4; - break; - } - } - else - break; - } - pc += 4; - } - return pc; -} - -struct d10v_unwind_cache -{ - /* The previous frame's inner most stack address. Used as this - frame ID's stack_addr. */ - CORE_ADDR prev_sp; - /* The frame's base, optionally used by the high-level debug info. */ - CORE_ADDR base; - int size; - /* How far the SP and r11 (FP) have been offset from the start of - the stack frame (as defined by the previous frame's stack - pointer). */ - LONGEST sp_offset; - LONGEST r11_offset; - int uses_frame; - /* Table indicating the location of each and every register. */ - struct trad_frame_saved_reg *saved_regs; -}; - -static int -prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op, - CORE_ADDR addr) -{ - int n; - - /* st rn, @-sp */ - if ((op & 0x7E1F) == 0x6C1F) - { - n = (op & 0x1E0) >> 5; - info->sp_offset -= 2; - info->saved_regs[n].addr = info->sp_offset; - return 1; - } - - /* st2w rn, @-sp */ - else if ((op & 0x7E3F) == 0x6E1F) - { - n = (op & 0x1E0) >> 5; - info->sp_offset -= 4; - info->saved_regs[n + 0].addr = info->sp_offset + 0; - info->saved_regs[n + 1].addr = info->sp_offset + 2; - return 1; - } - - /* subi sp, n */ - if ((op & 0x7FE1) == 0x01E1) - { - n = (op & 0x1E) >> 1; - if (n == 0) - n = 16; - info->sp_offset -= n; - return 1; - } - - /* mv r11, sp */ - if (op == 0x417E) - { - info->uses_frame = 1; - info->r11_offset = info->sp_offset; - return 1; - } - - /* st rn, @r11 */ - if ((op & 0x7E1F) == 0x6816) - { - n = (op & 0x1E0) >> 5; - info->saved_regs[n].addr = info->r11_offset; - return 1; - } - - /* nop */ - if (op == 0x5E00) - return 1; - - /* st rn, @sp */ - if ((op & 0x7E1F) == 0x681E) - { - n = (op & 0x1E0) >> 5; - info->saved_regs[n].addr = info->sp_offset; - return 1; - } - - /* st2w rn, @sp */ - if ((op & 0x7E3F) == 0x3A1E) - { - n = (op & 0x1E0) >> 5; - info->saved_regs[n + 0].addr = info->sp_offset + 0; - info->saved_regs[n + 1].addr = info->sp_offset + 2; - return 1; - } - - return 0; -} - -/* Put here the code to store, into fi->saved_regs, the addresses of - the saved registers of frame described by FRAME_INFO. This - includes special registers such as pc and fp saved in special ways - in the stack frame. sp is even more special: the address we return - for it IS the sp for the next frame. */ - -static struct d10v_unwind_cache * -d10v_frame_unwind_cache (struct frame_info *next_frame, - void **this_prologue_cache) -{ - struct gdbarch *gdbarch = get_frame_arch (next_frame); - CORE_ADDR pc; - ULONGEST prev_sp; - ULONGEST this_base; - unsigned long op; - unsigned short op1, op2; - int i; - struct d10v_unwind_cache *info; - - if ((*this_prologue_cache)) - return (*this_prologue_cache); - - info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache); - (*this_prologue_cache) = info; - info->saved_regs = trad_frame_alloc_saved_regs (next_frame); - - info->size = 0; - info->sp_offset = 0; - - info->uses_frame = 0; - for (pc = frame_func_unwind (next_frame); - pc > 0 && pc < frame_pc_unwind (next_frame); - pc += 4) - { - op = get_frame_memory_unsigned (next_frame, pc, 4); - if ((op & 0xC0000000) == 0xC0000000) - { - /* long instruction */ - if ((op & 0x3FFF0000) == 0x01FF0000) - { - /* add3 sp,sp,n */ - short n = op & 0xFFFF; - info->sp_offset += n; - } - else if ((op & 0x3F0F0000) == 0x340F0000) - { - /* st rn, @(offset,sp) */ - short offset = op & 0xFFFF; - short n = (op >> 20) & 0xF; - info->saved_regs[n].addr = info->sp_offset + offset; - } - else if ((op & 0x3F1F0000) == 0x350F0000) - { - /* st2w rn, @(offset,sp) */ - short offset = op & 0xFFFF; - short n = (op >> 20) & 0xF; - info->saved_regs[n + 0].addr = info->sp_offset + offset + 0; - info->saved_regs[n + 1].addr = info->sp_offset + offset + 2; - } - else - break; - } - else - { - /* short instructions */ - if ((op & 0xC0000000) == 0x80000000) - { - op2 = (op & 0x3FFF8000) >> 15; - op1 = op & 0x7FFF; - } - else - { - op1 = (op & 0x3FFF8000) >> 15; - op2 = op & 0x7FFF; - } - if (!prologue_find_regs (info, op1, pc) - || !prologue_find_regs (info, op2, pc)) - break; - } - } - - info->size = -info->sp_offset; - - /* Compute the previous frame's stack pointer (which is also the - frame's ID's stack address), and this frame's base pointer. */ - if (info->uses_frame) - { - /* The SP was moved to the FP. This indicates that a new frame - was created. Get THIS frame's FP value by unwinding it from - the next frame. */ - frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base); - /* The FP points at the last saved register. Adjust the FP back - to before the first saved register giving the SP. */ - prev_sp = this_base + info->size; - } - else - { - /* Assume that the FP is this frame's SP but with that pushed - stack space added back. */ - frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base); - prev_sp = this_base + info->size; - } - - /* Convert that SP/BASE into real addresses. */ - info->prev_sp = d10v_make_daddr (prev_sp); - info->base = d10v_make_daddr (this_base); - - /* Adjust all the saved registers so that they contain addresses and - not offsets. */ - for (i = 0; i < NUM_REGS - 1; i++) - if (trad_frame_addr_p (info->saved_regs, i)) - { - info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); - } - - /* The call instruction moves the caller's PC in the callee's LR. - Since this is an unwind, do the reverse. Copy the location of LR - into PC (the address / regnum) so that a request for PC will be - converted into a request for the LR. */ - info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM]; - - /* The previous frame's SP needed to be computed. Save the computed - value. */ - trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM, - d10v_make_daddr (prev_sp)); - - return info; -} - -static void -d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, - struct frame_info *frame, int regnum, int all) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - if (regnum >= 0) - { - default_print_registers_info (gdbarch, file, frame, regnum, all); - return; - } - - { - ULONGEST pc, psw, rpt_s, rpt_e, rpt_c; - pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM); - psw = get_frame_register_unsigned (frame, PSW_REGNUM); - rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1)); - rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1)); - rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1)); - fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n", - (long) pc, (long) d10v_make_iaddr (pc), (long) psw, - (long) rpt_s, (long) rpt_e, (long) rpt_c); - } - - { - int group; - for (group = 0; group < 16; group += 8) - { - int r; - fprintf_filtered (file, "R%d-R%-2d", group, group + 7); - for (r = group; r < group + 8; r++) - { - ULONGEST tmp; - tmp = get_frame_register_unsigned (frame, r); - fprintf_filtered (file, " %04lx", (long) tmp); - } - fprintf_filtered (file, "\n"); - } - } - - /* Note: The IMAP/DMAP registers don't participate in function - calls. Don't bother trying to unwind them. */ - - { - int a; - for (a = 0; a < NR_IMAP_REGS; a++) - { - if (a > 0) - fprintf_filtered (file, " "); - fprintf_filtered (file, "IMAP%d %04lx", a, - tdep->imap_register (current_regcache, a)); - } - if (nr_dmap_regs (gdbarch) == 1) - /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */ - fprintf_filtered (file, " DMAP %04lx\n", - tdep->dmap_register (current_regcache, 2)); - else - { - for (a = 0; a < nr_dmap_regs (gdbarch); a++) - { - fprintf_filtered (file, " DMAP%d %04lx", a, - tdep->dmap_register (current_regcache, a)); - } - fprintf_filtered (file, "\n"); - } - } - - { - char num[MAX_REGISTER_SIZE]; - int a; - fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1); - for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++) - { - int i; - fprintf_filtered (file, " "); - get_frame_register (frame, a, num); - for (i = 0; i < register_size (gdbarch, a); i++) - { - fprintf_filtered (file, "%02x", (num[i] & 0xff)); - } - } - } - fprintf_filtered (file, "\n"); -} - -static void -show_regs (char *args, int from_tty) -{ - d10v_print_registers_info (current_gdbarch, gdb_stdout, - get_current_frame (), -1, 1); -} - -static CORE_ADDR -d10v_read_pc (ptid_t ptid) -{ - ptid_t save_ptid; - CORE_ADDR pc; - CORE_ADDR retval; - - save_ptid = inferior_ptid; - inferior_ptid = ptid; - pc = (int) read_register (D10V_PC_REGNUM); - inferior_ptid = save_ptid; - retval = d10v_make_iaddr (pc); - return retval; -} - -static void -d10v_write_pc (CORE_ADDR val, ptid_t ptid) -{ - ptid_t save_ptid; - - save_ptid = inferior_ptid; - inferior_ptid = ptid; - write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val)); - inferior_ptid = save_ptid; -} - -static CORE_ADDR -d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) -{ - ULONGEST sp; - frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp); - return d10v_make_daddr (sp); -} - -/* When arguments must be pushed onto the stack, they go on in reverse - order. The below implements a FILO (stack) to do this. */ - -struct stack_item -{ - int len; - struct stack_item *prev; - void *data; -}; - -static struct stack_item *push_stack_item (struct stack_item *prev, - void *contents, int len); -static struct stack_item * -push_stack_item (struct stack_item *prev, void *contents, int len) -{ - struct stack_item *si; - si = xmalloc (sizeof (struct stack_item)); - si->data = xmalloc (len); - si->len = len; - si->prev = prev; - memcpy (si->data, contents, len); - return si; -} - -static struct stack_item *pop_stack_item (struct stack_item *si); -static struct stack_item * -pop_stack_item (struct stack_item *si) -{ - struct stack_item *dead = si; - si = si->prev; - xfree (dead->data); - xfree (dead); - return si; -} - - -static CORE_ADDR -d10v_push_dummy_code (struct gdbarch *gdbarch, - CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, - struct value **args, int nargs, - struct type *value_type, - CORE_ADDR *real_pc, CORE_ADDR *bp_addr) -{ - /* Allocate space sufficient for a breakpoint. */ - sp = (sp - 4) & ~3; - /* Store the address of that breakpoint taking care to first convert - it into a code (IADDR) address from a stack (DADDR) address. - This of course assumes that the two virtual addresses map onto - the same real address. */ - (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp)); - /* d10v always starts the call at the callee's entry point. */ - (*real_pc) = funaddr; - return sp; -} - -static CORE_ADDR -d10v_push_dummy_call (struct gdbarch *gdbarch, struct value *function, - struct regcache *regcache, CORE_ADDR bp_addr, - int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ - int i; - int regnum = ARG1_REGNUM; - struct stack_item *si = NULL; - long val; - - /* Set the return address. For the d10v, the return breakpoint is - always at BP_ADDR. */ - regcache_cooked_write_unsigned (regcache, LR_REGNUM, - d10v_convert_iaddr_to_raw (bp_addr)); - - /* If STRUCT_RETURN is true, then the struct return address (in - STRUCT_ADDR) will consume the first argument-passing register. - Both adjust the register count and store that value. */ - if (struct_return) - { - regcache_cooked_write_unsigned (regcache, regnum, struct_addr); - regnum++; - } - - /* Fill in registers and arg lists */ - for (i = 0; i < nargs; i++) - { - struct value *arg = args[i]; - struct type *type = check_typedef (VALUE_TYPE (arg)); - char *contents = VALUE_CONTENTS (arg); - int len = TYPE_LENGTH (type); - int aligned_regnum = (regnum + 1) & ~1; - - /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */ - if (len <= 2 && regnum <= ARGN_REGNUM) - /* fits in a single register, do not align */ - { - val = extract_unsigned_integer (contents, len); - regcache_cooked_write_unsigned (regcache, regnum++, val); - } - else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2) - /* value fits in remaining registers, store keeping left - aligned */ - { - int b; - regnum = aligned_regnum; - for (b = 0; b < (len & ~1); b += 2) - { - val = extract_unsigned_integer (&contents[b], 2); - regcache_cooked_write_unsigned (regcache, regnum++, val); - } - if (b < len) - { - val = extract_unsigned_integer (&contents[b], 1); - regcache_cooked_write_unsigned (regcache, regnum++, (val << 8)); - } - } - else - { - /* arg will go onto stack */ - regnum = ARGN_REGNUM + 1; - si = push_stack_item (si, contents, len); - } - } - - while (si) - { - sp = (sp - si->len) & ~1; - write_memory (sp, si->data, si->len); - si = pop_stack_item (si); - } - - /* Finally, update the SP register. */ - regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM, - d10v_convert_daddr_to_raw (sp)); - - return sp; -} - -/* Translate a GDB virtual ADDR/LEN into a format the remote target - understands. Returns number of bytes that can be transfered - starting at TARG_ADDR. Return ZERO if no bytes can be transfered - (segmentation fault). Since the simulator knows all about how the - VM system works, we just call that to do the translation. */ - -static void -remote_d10v_translate_xfer_address (struct gdbarch *gdbarch, - struct regcache *regcache, - CORE_ADDR memaddr, int nr_bytes, - CORE_ADDR *targ_addr, int *targ_len) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - long out_addr; - long out_len; - out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache, - tdep->dmap_register, tdep->imap_register); - *targ_addr = out_addr; - *targ_len = out_len; -} - - -/* The following code implements access to, and display of, the D10V's - instruction trace buffer. The buffer consists of 64K or more - 4-byte words of data, of which each words includes an 8-bit count, - an 8-bit segment number, and a 16-bit instruction address. - - In theory, the trace buffer is continuously capturing instruction - data that the CPU presents on its "debug bus", but in practice, the - ROMified GDB stub only enables tracing when it continues or steps - the program, and stops tracing when the program stops; so it - actually works for GDB to read the buffer counter out of memory and - then read each trace word. The counter records where the tracing - stops, but there is no record of where it started, so we remember - the PC when we resumed and then search backwards in the trace - buffer for a word that includes that address. This is not perfect, - because you will miss trace data if the resumption PC is the target - of a branch. (The value of the buffer counter is semi-random, any - trace data from a previous program stop is gone.) */ - -/* The address of the last word recorded in the trace buffer. */ - -#define DBBC_ADDR (0xd80000) - -/* The base of the trace buffer, at least for the "Board_0". */ - -#define TRACE_BUFFER_BASE (0xf40000) - -static void trace_command (char *, int); - -static void untrace_command (char *, int); - -static void trace_info (char *, int); - -static void tdisassemble_command (char *, int); - -static void display_trace (int, int); - -/* True when instruction traces are being collected. */ - -static int tracing; - -/* Remembered PC. */ - -static CORE_ADDR last_pc; - -/* True when trace output should be displayed whenever program stops. */ - -static int trace_display; - -/* True when trace listing should include source lines. */ - -static int default_trace_show_source = 1; - -struct trace_buffer - { - int size; - short *counts; - CORE_ADDR *addrs; - } -trace_data; - -static void -trace_command (char *args, int from_tty) -{ - /* Clear the host-side trace buffer, allocating space if needed. */ - trace_data.size = 0; - if (trace_data.counts == NULL) - trace_data.counts = XCALLOC (65536, short); - if (trace_data.addrs == NULL) - trace_data.addrs = XCALLOC (65536, CORE_ADDR); - - tracing = 1; - - printf_filtered ("Tracing is now on.\n"); -} - -static void -untrace_command (char *args, int from_tty) -{ - tracing = 0; - - printf_filtered ("Tracing is now off.\n"); -} - -static void -trace_info (char *args, int from_tty) -{ - int i; - - if (trace_data.size) - { - printf_filtered ("%d entries in trace buffer:\n", trace_data.size); - - for (i = 0; i < trace_data.size; ++i) - { - printf_filtered ("%d: %d instruction%s at 0x%s\n", - i, - trace_data.counts[i], - (trace_data.counts[i] == 1 ? "" : "s"), - paddr_nz (trace_data.addrs[i])); - } - } - else - printf_filtered ("No entries in trace buffer.\n"); - - printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off")); -} - -static void -d10v_eva_prepare_to_trace (void) -{ - if (!tracing) - return; - - last_pc = read_register (D10V_PC_REGNUM); -} - -/* Collect trace data from the target board and format it into a form - more useful for display. */ - -static void -d10v_eva_get_trace_data (void) -{ - int count, i, j, oldsize; - int trace_addr, trace_seg, trace_cnt, next_cnt; - unsigned int last_trace, trace_word, next_word; - unsigned int *tmpspace; - - if (!tracing) - return; - - tmpspace = xmalloc (65536 * sizeof (unsigned int)); - - last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2; - - /* Collect buffer contents from the target, stopping when we reach - the word recorded when execution resumed. */ - - count = 0; - while (last_trace > 0) - { - QUIT; - trace_word = - read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4); - trace_addr = trace_word & 0xffff; - last_trace -= 4; - /* Ignore an apparently nonsensical entry. */ - if (trace_addr == 0xffd5) - continue; - tmpspace[count++] = trace_word; - if (trace_addr == last_pc) - break; - if (count > 65535) - break; - } - - /* Move the data to the host-side trace buffer, adjusting counts to - include the last instruction executed and transforming the address - into something that GDB likes. */ - - for (i = 0; i < count; ++i) - { - trace_word = tmpspace[i]; - next_word = ((i == 0) ? 0 : tmpspace[i - 1]); - trace_addr = trace_word & 0xffff; - next_cnt = (next_word >> 24) & 0xff; - j = trace_data.size + count - i - 1; - trace_data.addrs[j] = (trace_addr << 2) + 0x1000000; - trace_data.counts[j] = next_cnt + 1; - } - - oldsize = trace_data.size; - trace_data.size += count; - - xfree (tmpspace); - - if (trace_display) - display_trace (oldsize, trace_data.size); -} - -static void -tdisassemble_command (char *arg, int from_tty) -{ - int i, count; - CORE_ADDR low, high; - - if (!arg) - { - low = 0; - high = trace_data.size; - } - else - { - char *space_index = strchr (arg, ' '); - if (space_index == NULL) - { - low = parse_and_eval_address (arg); - high = low + 5; - } - else - { - /* Two arguments. */ - *space_index = '\0'; - low = parse_and_eval_address (arg); - high = parse_and_eval_address (space_index + 1); - if (high < low) - high = low; - } - } - - printf_filtered ("Dump of trace from %s to %s:\n", - paddr_u (low), paddr_u (high)); - - display_trace (low, high); - - printf_filtered ("End of trace dump.\n"); - gdb_flush (gdb_stdout); -} - -static void -display_trace (int low, int high) -{ - int i, count, trace_show_source, first, suppress; - CORE_ADDR next_address; - - trace_show_source = default_trace_show_source; - if (!have_full_symbols () && !have_partial_symbols ()) - { - trace_show_source = 0; - printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n"); - printf_filtered ("Trace will not display any source.\n"); - } - - first = 1; - suppress = 0; - for (i = low; i < high; ++i) - { - next_address = trace_data.addrs[i]; - count = trace_data.counts[i]; - while (count-- > 0) - { - QUIT; - if (trace_show_source) - { - struct symtab_and_line sal, sal_prev; - - sal_prev = find_pc_line (next_address - 4, 0); - sal = find_pc_line (next_address, 0); - - if (sal.symtab) - { - if (first || sal.line != sal_prev.line) - print_source_lines (sal.symtab, sal.line, sal.line + 1, 0); - suppress = 0; - } - else - { - if (!suppress) - /* FIXME-32x64--assumes sal.pc fits in long. */ - printf_filtered ("No source file for address %s.\n", - hex_string ((unsigned long) sal.pc)); - suppress = 1; - } - } - first = 0; - print_address (next_address, gdb_stdout); - printf_filtered (":"); - printf_filtered ("\t"); - wrap_here (" "); - next_address += gdb_print_insn (next_address, gdb_stdout); - printf_filtered ("\n"); - gdb_flush (gdb_stdout); - } - } -} - -static CORE_ADDR -d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) -{ - ULONGEST pc; - frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc); - return d10v_make_iaddr (pc); -} - -/* Given a GDB frame, determine the address of the calling function's - frame. This will be used to create a new GDB frame struct. */ - -static void -d10v_frame_this_id (struct frame_info *next_frame, - void **this_prologue_cache, - struct frame_id *this_id) -{ - struct d10v_unwind_cache *info - = d10v_frame_unwind_cache (next_frame, this_prologue_cache); - CORE_ADDR base; - CORE_ADDR func; - struct frame_id id; - - /* The FUNC is easy. */ - func = frame_func_unwind (next_frame); - - /* Hopefully the prologue analysis either correctly determined the - frame's base (which is the SP from the previous frame), or set - that base to "NULL". */ - base = info->prev_sp; - if (base == STACK_START || base == 0) - return; - - id = frame_id_build (base, func); - - (*this_id) = id; -} - -static void -d10v_frame_prev_register (struct frame_info *next_frame, - void **this_prologue_cache, - int regnum, int *optimizedp, - enum lval_type *lvalp, CORE_ADDR *addrp, - int *realnump, void *bufferp) -{ - struct d10v_unwind_cache *info - = d10v_frame_unwind_cache (next_frame, this_prologue_cache); - trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, - optimizedp, lvalp, addrp, realnump, bufferp); -} - -static const struct frame_unwind d10v_frame_unwind = { - NORMAL_FRAME, - d10v_frame_this_id, - d10v_frame_prev_register -}; - -static const struct frame_unwind * -d10v_frame_sniffer (struct frame_info *next_frame) -{ - return &d10v_frame_unwind; -} - -static CORE_ADDR -d10v_frame_base_address (struct frame_info *next_frame, void **this_cache) -{ - struct d10v_unwind_cache *info - = d10v_frame_unwind_cache (next_frame, this_cache); - return info->base; -} - -static const struct frame_base d10v_frame_base = { - &d10v_frame_unwind, - d10v_frame_base_address, - d10v_frame_base_address, - d10v_frame_base_address -}; - -/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that - dummy frame. The frame ID's base needs to match the TOS value - saved by save_dummy_frame_tos(), and the PC match the dummy frame's - breakpoint. */ - -static struct frame_id -d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) -{ - return frame_id_build (d10v_unwind_sp (gdbarch, next_frame), - frame_pc_unwind (next_frame)); -} - -static gdbarch_init_ftype d10v_gdbarch_init; - -static struct gdbarch * -d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) -{ - struct gdbarch *gdbarch; - int d10v_num_regs; - struct gdbarch_tdep *tdep; - gdbarch_register_name_ftype *d10v_register_name; - gdbarch_register_sim_regno_ftype *d10v_register_sim_regno; - - /* Find a candidate among the list of pre-declared architectures. */ - arches = gdbarch_list_lookup_by_info (arches, &info); - if (arches != NULL) - return arches->gdbarch; - - /* None found, create a new architecture from the information - provided. */ - tdep = XMALLOC (struct gdbarch_tdep); - gdbarch = gdbarch_alloc (&info, tdep); - - switch (info.bfd_arch_info->mach) - { - case bfd_mach_d10v_ts2: - d10v_num_regs = 37; - d10v_register_name = d10v_ts2_register_name; - d10v_register_sim_regno = d10v_ts2_register_sim_regno; - tdep->a0_regnum = TS2_A0_REGNUM; - tdep->nr_dmap_regs = TS2_NR_DMAP_REGS; - tdep->dmap_register = d10v_ts2_dmap_register; - tdep->imap_register = d10v_ts2_imap_register; - break; - default: - case bfd_mach_d10v_ts3: - d10v_num_regs = 42; - d10v_register_name = d10v_ts3_register_name; - d10v_register_sim_regno = d10v_ts3_register_sim_regno; - tdep->a0_regnum = TS3_A0_REGNUM; - tdep->nr_dmap_regs = TS3_NR_DMAP_REGS; - tdep->dmap_register = d10v_ts3_dmap_register; - tdep->imap_register = d10v_ts3_imap_register; - break; - } - - set_gdbarch_read_pc (gdbarch, d10v_read_pc); - set_gdbarch_write_pc (gdbarch, d10v_write_pc); - set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp); - - set_gdbarch_num_regs (gdbarch, d10v_num_regs); - set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM); - set_gdbarch_register_name (gdbarch, d10v_register_name); - set_gdbarch_register_type (gdbarch, d10v_register_type); - - set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); - set_gdbarch_addr_bit (gdbarch, 32); - set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer); - set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address); - set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address); - set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); - set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); - set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); - set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); - /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long - double'' is 64 bits. */ - set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); - set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); - set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); - switch (info.byte_order) - { - case BFD_ENDIAN_BIG: - set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); - set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big); - set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); - break; - case BFD_ENDIAN_LITTLE: - set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); - set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little); - set_gdbarch_long_double_format (gdbarch, - &floatformat_ieee_double_little); - break; - default: - internal_error (__FILE__, __LINE__, - "d10v_gdbarch_init: bad byte order for float format"); - } - - set_gdbarch_return_value (gdbarch, d10v_return_value); - set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code); - set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call); - - set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue); - set_gdbarch_inner_than (gdbarch, core_addr_lessthan); - set_gdbarch_decr_pc_after_break (gdbarch, 4); - set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc); - - set_gdbarch_remote_translate_xfer_address (gdbarch, - remote_d10v_translate_xfer_address); - - set_gdbarch_frame_align (gdbarch, d10v_frame_align); - - set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno); - - set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info); - - frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer); - frame_base_set_default (gdbarch, &d10v_frame_base); - - /* Methods for saving / extracting a dummy frame's ID. The ID's - stack address must match the SP value returned by - PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ - set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id); - - /* Return the unwound PC value. */ - set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc); - - set_gdbarch_print_insn (gdbarch, print_insn_d10v); - - return gdbarch; -} - -void -_initialize_d10v_tdep (void) -{ - register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init); - - deprecated_target_resume_hook = d10v_eva_prepare_to_trace; - deprecated_target_wait_loop_hook = d10v_eva_get_trace_data; - - deprecate_cmd (add_com ("regs", class_vars, show_regs, - "Print all registers"), - "info registers"); - - add_com ("itrace", class_support, trace_command, - "Enable tracing of instruction execution."); - - add_com ("iuntrace", class_support, untrace_command, - "Disable tracing of instruction execution."); - - add_com ("itdisassemble", class_vars, tdisassemble_command, - "Disassemble the trace buffer.\n\ -Two optional arguments specify a range of trace buffer entries\n\ -as reported by info trace (NOT addresses!)."); - - add_info ("itrace", trace_info, - "Display info about the trace data buffer."); - - add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, "\ -Set automatic display of trace.", "\ -Show automatic display of trace.", "\ -Controls the display of d10v specific instruction trace information.", "\ -Automatic display of trace is %s.", - NULL, NULL, &setlist, &showlist); - add_setshow_boolean_cmd ("itracesource", no_class, - &default_trace_show_source, "\ -Set display of source code with trace.", "\ -Show display of source code with trace.", "\ -When on source code is included in the d10v instruction trace display.", "\ -Display of source code with trace is %s.", - NULL, NULL, &setlist, &showlist); -} +// OBSOLETE /* Target-dependent code for Renesas D10V, for GDB. +// OBSOLETE +// OBSOLETE Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software +// OBSOLETE Foundation, Inc. +// OBSOLETE +// OBSOLETE This file is part of GDB. +// OBSOLETE +// OBSOLETE This program is free software; you can redistribute it and/or modify +// OBSOLETE it under the terms of the GNU General Public License as published by +// OBSOLETE the Free Software Foundation; either version 2 of the License, or +// OBSOLETE (at your option) any later version. +// OBSOLETE +// OBSOLETE This program is distributed in the hope that it will be useful, +// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of +// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// OBSOLETE GNU General Public License for more details. +// OBSOLETE +// OBSOLETE You should have received a copy of the GNU General Public License +// OBSOLETE along with this program; if not, write to the Free Software +// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, +// OBSOLETE Boston, MA 02111-1307, USA. */ +// OBSOLETE +// OBSOLETE /* Contributed by Martin Hunt, hunt@cygnus.com */ +// OBSOLETE +// OBSOLETE #include "defs.h" +// OBSOLETE #include "frame.h" +// OBSOLETE #include "frame-unwind.h" +// OBSOLETE #include "frame-base.h" +// OBSOLETE #include "symtab.h" +// OBSOLETE #include "gdbtypes.h" +// OBSOLETE #include "gdbcmd.h" +// OBSOLETE #include "gdbcore.h" +// OBSOLETE #include "gdb_string.h" +// OBSOLETE #include "value.h" +// OBSOLETE #include "inferior.h" +// OBSOLETE #include "dis-asm.h" +// OBSOLETE #include "symfile.h" +// OBSOLETE #include "objfiles.h" +// OBSOLETE #include "language.h" +// OBSOLETE #include "arch-utils.h" +// OBSOLETE #include "regcache.h" +// OBSOLETE #include "remote.h" +// OBSOLETE #include "floatformat.h" +// OBSOLETE #include "gdb/sim-d10v.h" +// OBSOLETE #include "sim-regno.h" +// OBSOLETE #include "disasm.h" +// OBSOLETE #include "trad-frame.h" +// OBSOLETE +// OBSOLETE #include "gdb_assert.h" +// OBSOLETE +// OBSOLETE struct gdbarch_tdep +// OBSOLETE { +// OBSOLETE int a0_regnum; +// OBSOLETE int nr_dmap_regs; +// OBSOLETE unsigned long (*dmap_register) (void *regcache, int nr); +// OBSOLETE unsigned long (*imap_register) (void *regcache, int nr); +// OBSOLETE }; +// OBSOLETE +// OBSOLETE /* These are the addresses the D10V-EVA board maps data and +// OBSOLETE instruction memory to. */ +// OBSOLETE +// OBSOLETE enum memspace { +// OBSOLETE DMEM_START = 0x2000000, +// OBSOLETE IMEM_START = 0x1000000, +// OBSOLETE STACK_START = 0x200bffe +// OBSOLETE }; +// OBSOLETE +// OBSOLETE /* d10v register names. */ +// OBSOLETE +// OBSOLETE enum +// OBSOLETE { +// OBSOLETE R0_REGNUM = 0, +// OBSOLETE R3_REGNUM = 3, +// OBSOLETE D10V_FP_REGNUM = 11, +// OBSOLETE LR_REGNUM = 13, +// OBSOLETE D10V_SP_REGNUM = 15, +// OBSOLETE PSW_REGNUM = 16, +// OBSOLETE D10V_PC_REGNUM = 18, +// OBSOLETE NR_IMAP_REGS = 2, +// OBSOLETE NR_A_REGS = 2, +// OBSOLETE TS2_NUM_REGS = 37, +// OBSOLETE TS3_NUM_REGS = 42, +// OBSOLETE /* d10v calling convention. */ +// OBSOLETE ARG1_REGNUM = R0_REGNUM, +// OBSOLETE ARGN_REGNUM = R3_REGNUM +// OBSOLETE }; +// OBSOLETE +// OBSOLETE static int +// OBSOLETE nr_dmap_regs (struct gdbarch *gdbarch) +// OBSOLETE { +// OBSOLETE return gdbarch_tdep (gdbarch)->nr_dmap_regs; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static int +// OBSOLETE a0_regnum (struct gdbarch *gdbarch) +// OBSOLETE { +// OBSOLETE return gdbarch_tdep (gdbarch)->a0_regnum; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Local functions */ +// OBSOLETE +// OBSOLETE extern void _initialize_d10v_tdep (void); +// OBSOLETE +// OBSOLETE static void d10v_eva_prepare_to_trace (void); +// OBSOLETE +// OBSOLETE static void d10v_eva_get_trace_data (void); +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) +// OBSOLETE { +// OBSOLETE /* Align to the size of an instruction (so that they can safely be +// OBSOLETE pushed onto the stack. */ +// OBSOLETE return sp & ~3; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static const unsigned char * +// OBSOLETE d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) +// OBSOLETE { +// OBSOLETE static unsigned char breakpoint[] = +// OBSOLETE {0x2f, 0x90, 0x5e, 0x00}; +// OBSOLETE *lenptr = sizeof (breakpoint); +// OBSOLETE return breakpoint; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Map the REG_NR onto an ascii name. Return NULL or an empty string +// OBSOLETE when the reg_nr isn't valid. */ +// OBSOLETE +// OBSOLETE enum ts2_regnums +// OBSOLETE { +// OBSOLETE TS2_IMAP0_REGNUM = 32, +// OBSOLETE TS2_DMAP_REGNUM = 34, +// OBSOLETE TS2_NR_DMAP_REGS = 1, +// OBSOLETE TS2_A0_REGNUM = 35 +// OBSOLETE }; +// OBSOLETE +// OBSOLETE static const char * +// OBSOLETE d10v_ts2_register_name (int reg_nr) +// OBSOLETE { +// OBSOLETE static char *register_names[] = +// OBSOLETE { +// OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", +// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", +// OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", +// OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", +// OBSOLETE "imap0", "imap1", "dmap", "a0", "a1" +// OBSOLETE }; +// OBSOLETE if (reg_nr < 0) +// OBSOLETE return NULL; +// OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) +// OBSOLETE return NULL; +// OBSOLETE return register_names[reg_nr]; +// OBSOLETE } +// OBSOLETE +// OBSOLETE enum ts3_regnums +// OBSOLETE { +// OBSOLETE TS3_IMAP0_REGNUM = 36, +// OBSOLETE TS3_DMAP0_REGNUM = 38, +// OBSOLETE TS3_NR_DMAP_REGS = 4, +// OBSOLETE TS3_A0_REGNUM = 32 +// OBSOLETE }; +// OBSOLETE +// OBSOLETE static const char * +// OBSOLETE d10v_ts3_register_name (int reg_nr) +// OBSOLETE { +// OBSOLETE static char *register_names[] = +// OBSOLETE { +// OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", +// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", +// OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", +// OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", +// OBSOLETE "a0", "a1", +// OBSOLETE "spi", "spu", +// OBSOLETE "imap0", "imap1", +// OBSOLETE "dmap0", "dmap1", "dmap2", "dmap3" +// OBSOLETE }; +// OBSOLETE if (reg_nr < 0) +// OBSOLETE return NULL; +// OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) +// OBSOLETE return NULL; +// OBSOLETE return register_names[reg_nr]; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Access the DMAP/IMAP registers in a target independent way. +// OBSOLETE +// OBSOLETE Divide the D10V's 64k data space into four 16k segments: +// OBSOLETE 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and +// OBSOLETE 0xc000 -- 0xffff. +// OBSOLETE +// OBSOLETE On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 -- +// OBSOLETE 0x7fff) always map to the on-chip data RAM, and the fourth always +// OBSOLETE maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into +// OBSOLETE unified memory or instruction memory, under the control of the +// OBSOLETE single DMAP register. +// OBSOLETE +// OBSOLETE On the TS3, there are four DMAP registers, each of which controls +// OBSOLETE one of the segments. */ +// OBSOLETE +// OBSOLETE static unsigned long +// OBSOLETE d10v_ts2_dmap_register (void *regcache, int reg_nr) +// OBSOLETE { +// OBSOLETE switch (reg_nr) +// OBSOLETE { +// OBSOLETE case 0: +// OBSOLETE case 1: +// OBSOLETE return 0x2000; +// OBSOLETE case 2: +// OBSOLETE { +// OBSOLETE ULONGEST reg; +// OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, ®); +// OBSOLETE return reg; +// OBSOLETE } +// OBSOLETE default: +// OBSOLETE return 0; +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE static unsigned long +// OBSOLETE d10v_ts3_dmap_register (void *regcache, int reg_nr) +// OBSOLETE { +// OBSOLETE ULONGEST reg; +// OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, ®); +// OBSOLETE return reg; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static unsigned long +// OBSOLETE d10v_ts2_imap_register (void *regcache, int reg_nr) +// OBSOLETE { +// OBSOLETE ULONGEST reg; +// OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, ®); +// OBSOLETE return reg; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static unsigned long +// OBSOLETE d10v_ts3_imap_register (void *regcache, int reg_nr) +// OBSOLETE { +// OBSOLETE ULONGEST reg; +// OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, ®); +// OBSOLETE return reg; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* MAP GDB's internal register numbering (determined by the layout +// OBSOLETE from the DEPRECATED_REGISTER_BYTE array) onto the simulator's +// OBSOLETE register numbering. */ +// OBSOLETE +// OBSOLETE static int +// OBSOLETE d10v_ts2_register_sim_regno (int nr) +// OBSOLETE { +// OBSOLETE /* Only makes sense to supply raw registers. */ +// OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS); +// OBSOLETE if (nr >= TS2_IMAP0_REGNUM +// OBSOLETE && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS) +// OBSOLETE return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; +// OBSOLETE if (nr == TS2_DMAP_REGNUM) +// OBSOLETE return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM; +// OBSOLETE if (nr >= TS2_A0_REGNUM +// OBSOLETE && nr < TS2_A0_REGNUM + NR_A_REGS) +// OBSOLETE return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM; +// OBSOLETE return nr; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static int +// OBSOLETE d10v_ts3_register_sim_regno (int nr) +// OBSOLETE { +// OBSOLETE /* Only makes sense to supply raw registers. */ +// OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS); +// OBSOLETE if (nr >= TS3_IMAP0_REGNUM +// OBSOLETE && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS) +// OBSOLETE return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; +// OBSOLETE if (nr >= TS3_DMAP0_REGNUM +// OBSOLETE && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS) +// OBSOLETE return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM; +// OBSOLETE if (nr >= TS3_A0_REGNUM +// OBSOLETE && nr < TS3_A0_REGNUM + NR_A_REGS) +// OBSOLETE return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM; +// OBSOLETE return nr; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Return the GDB type object for the "standard" data type +// OBSOLETE of data in register N. */ +// OBSOLETE +// OBSOLETE static struct type * +// OBSOLETE d10v_register_type (struct gdbarch *gdbarch, int reg_nr) +// OBSOLETE { +// OBSOLETE if (reg_nr == D10V_PC_REGNUM) +// OBSOLETE return builtin_type (gdbarch)->builtin_func_ptr; +// OBSOLETE if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM) +// OBSOLETE return builtin_type (gdbarch)->builtin_data_ptr; +// OBSOLETE else if (reg_nr >= a0_regnum (gdbarch) +// OBSOLETE && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS)) +// OBSOLETE return builtin_type_int64; +// OBSOLETE else +// OBSOLETE return builtin_type_int16; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static int +// OBSOLETE d10v_iaddr_p (CORE_ADDR x) +// OBSOLETE { +// OBSOLETE return (((x) & 0x3000000) == IMEM_START); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_make_daddr (CORE_ADDR x) +// OBSOLETE { +// OBSOLETE return ((x) | DMEM_START); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_make_iaddr (CORE_ADDR x) +// OBSOLETE { +// OBSOLETE if (d10v_iaddr_p (x)) +// OBSOLETE return x; /* Idempotency -- x is already in the IMEM space. */ +// OBSOLETE else +// OBSOLETE return (((x) << 2) | IMEM_START); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_convert_iaddr_to_raw (CORE_ADDR x) +// OBSOLETE { +// OBSOLETE return (((x) >> 2) & 0xffff); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_convert_daddr_to_raw (CORE_ADDR x) +// OBSOLETE { +// OBSOLETE return ((x) & 0xffff); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) +// OBSOLETE { +// OBSOLETE /* Is it a code address? */ +// OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC +// OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) +// OBSOLETE { +// OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type), +// OBSOLETE d10v_convert_iaddr_to_raw (addr)); +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE /* Strip off any upper segment bits. */ +// OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type), +// OBSOLETE d10v_convert_daddr_to_raw (addr)); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_pointer_to_address (struct type *type, const void *buf) +// OBSOLETE { +// OBSOLETE CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); +// OBSOLETE /* Is it a code address? */ +// OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC +// OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD +// OBSOLETE || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) +// OBSOLETE return d10v_make_iaddr (addr); +// OBSOLETE else +// OBSOLETE return d10v_make_daddr (addr); +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Don't do anything if we have an integer, this way users can type 'x +// OBSOLETE <addr>' w/o having gdb outsmart them. The internal gdb conversions +// OBSOLETE to the correct space are taken care of in the pointer_to_address +// OBSOLETE function. If we don't do this, 'x $fp' wouldn't work. */ +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_integer_to_address (struct type *type, void *buf) +// OBSOLETE { +// OBSOLETE LONGEST val; +// OBSOLETE val = unpack_long (type, buf); +// OBSOLETE return val; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Handle the d10v's return_value convention. */ +// OBSOLETE +// OBSOLETE static enum return_value_convention +// OBSOLETE d10v_return_value (struct gdbarch *gdbarch, struct type *valtype, +// OBSOLETE struct regcache *regcache, void *readbuf, +// OBSOLETE const void *writebuf) +// OBSOLETE { +// OBSOLETE if (TYPE_LENGTH (valtype) > 8) +// OBSOLETE /* Anything larger than 8 bytes (4 registers) goes on the stack. */ +// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION; +// OBSOLETE if (TYPE_LENGTH (valtype) == 5 +// OBSOLETE || TYPE_LENGTH (valtype) == 6) +// OBSOLETE /* Anything 5 or 6 bytes in size goes in memory. Contents don't +// OBSOLETE appear to matter. Note that 7 and 8 byte objects do end up in +// OBSOLETE registers! */ +// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION; +// OBSOLETE if (TYPE_LENGTH (valtype) == 1) +// OBSOLETE { +// OBSOLETE /* All single byte values go in a register stored right-aligned. +// OBSOLETE Note: 2 byte integer values are handled further down. */ +// OBSOLETE if (readbuf) +// OBSOLETE { +// OBSOLETE /* Since TYPE is smaller than the register, there isn't a +// OBSOLETE sign extension problem. Let the extraction truncate the +// OBSOLETE register value. */ +// OBSOLETE ULONGEST regval; +// OBSOLETE regcache_cooked_read_unsigned (regcache, R0_REGNUM, +// OBSOLETE ®val); +// OBSOLETE store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); +// OBSOLETE +// OBSOLETE } +// OBSOLETE if (writebuf) +// OBSOLETE { +// OBSOLETE ULONGEST regval; +// OBSOLETE if (TYPE_CODE (valtype) == TYPE_CODE_INT) +// OBSOLETE /* Some sort of integer value stored in R0. Use +// OBSOLETE unpack_long since that should handle any required sign +// OBSOLETE extension. */ +// OBSOLETE regval = unpack_long (valtype, writebuf); +// OBSOLETE else +// OBSOLETE /* Some other type. Don't sign-extend the value when +// OBSOLETE storing it in the register. */ +// OBSOLETE regval = extract_unsigned_integer (writebuf, 1); +// OBSOLETE regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval); +// OBSOLETE } +// OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION; +// OBSOLETE } +// OBSOLETE if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT +// OBSOLETE || TYPE_CODE (valtype) == TYPE_CODE_UNION) +// OBSOLETE && TYPE_NFIELDS (valtype) > 1 +// OBSOLETE && TYPE_FIELD_BITPOS (valtype, 1) == 8) +// OBSOLETE /* If a composite is 8 bit aligned (determined by looking at the +// OBSOLETE start address of the second field), put it in memory. */ +// OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION; +// OBSOLETE /* Assume it is in registers. */ +// OBSOLETE if (writebuf || readbuf) +// OBSOLETE { +// OBSOLETE int reg; +// OBSOLETE /* Per above, the value is never more than 8 bytes long. */ +// OBSOLETE gdb_assert (TYPE_LENGTH (valtype) <= 8); +// OBSOLETE /* Xfer 2 bytes at a time. */ +// OBSOLETE for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++) +// OBSOLETE { +// OBSOLETE if (readbuf) +// OBSOLETE regcache_cooked_read (regcache, R0_REGNUM + reg, +// OBSOLETE (bfd_byte *) readbuf + reg * 2); +// OBSOLETE if (writebuf) +// OBSOLETE regcache_cooked_write (regcache, R0_REGNUM + reg, +// OBSOLETE (bfd_byte *) writebuf + reg * 2); +// OBSOLETE } +// OBSOLETE /* Any trailing byte ends up _left_ aligned. */ +// OBSOLETE if ((reg * 2) < TYPE_LENGTH (valtype)) +// OBSOLETE { +// OBSOLETE if (readbuf) +// OBSOLETE regcache_cooked_read_part (regcache, R0_REGNUM + reg, +// OBSOLETE 0, 1, (bfd_byte *) readbuf + reg * 2); +// OBSOLETE if (writebuf) +// OBSOLETE regcache_cooked_write_part (regcache, R0_REGNUM + reg, +// OBSOLETE 0, 1, (bfd_byte *) writebuf + reg * 2); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static int +// OBSOLETE check_prologue (unsigned short op) +// OBSOLETE { +// OBSOLETE /* st rn, @-sp */ +// OBSOLETE if ((op & 0x7E1F) == 0x6C1F) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* st2w rn, @-sp */ +// OBSOLETE if ((op & 0x7E3F) == 0x6E1F) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* subi sp, n */ +// OBSOLETE if ((op & 0x7FE1) == 0x01E1) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* mv r11, sp */ +// OBSOLETE if (op == 0x417E) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* nop */ +// OBSOLETE if (op == 0x5E00) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* st rn, @sp */ +// OBSOLETE if ((op & 0x7E1F) == 0x681E) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* st2w rn, @sp */ +// OBSOLETE if ((op & 0x7E3F) == 0x3A1E) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE return 0; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_skip_prologue (CORE_ADDR pc) +// OBSOLETE { +// OBSOLETE unsigned long op; +// OBSOLETE unsigned short op1, op2; +// OBSOLETE CORE_ADDR func_addr, func_end; +// OBSOLETE struct symtab_and_line sal; +// OBSOLETE +// OBSOLETE /* If we have line debugging information, then the end of the prologue +// OBSOLETE should be the first assembly instruction of the first source line. */ +// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) +// OBSOLETE { +// OBSOLETE sal = find_pc_line (func_addr, 0); +// OBSOLETE if (sal.end && sal.end < func_end) +// OBSOLETE return sal.end; +// OBSOLETE } +// OBSOLETE +// OBSOLETE if (target_read_memory (pc, (char *) &op, 4)) +// OBSOLETE return pc; /* Can't access it -- assume no prologue. */ +// OBSOLETE +// OBSOLETE while (1) +// OBSOLETE { +// OBSOLETE op = (unsigned long) read_memory_integer (pc, 4); +// OBSOLETE if ((op & 0xC0000000) == 0xC0000000) +// OBSOLETE { +// OBSOLETE /* long instruction */ +// OBSOLETE if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */ +// OBSOLETE ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */ +// OBSOLETE ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */ +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE /* short instructions */ +// OBSOLETE if ((op & 0xC0000000) == 0x80000000) +// OBSOLETE { +// OBSOLETE op2 = (op & 0x3FFF8000) >> 15; +// OBSOLETE op1 = op & 0x7FFF; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE op1 = (op & 0x3FFF8000) >> 15; +// OBSOLETE op2 = op & 0x7FFF; +// OBSOLETE } +// OBSOLETE if (check_prologue (op1)) +// OBSOLETE { +// OBSOLETE if (!check_prologue (op2)) +// OBSOLETE { +// OBSOLETE /* If the previous opcode was really part of the +// OBSOLETE prologue and not just a NOP, then we want to +// OBSOLETE break after both instructions. */ +// OBSOLETE if (op1 != 0x5E00) +// OBSOLETE pc += 4; +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE } +// OBSOLETE else +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE pc += 4; +// OBSOLETE } +// OBSOLETE return pc; +// OBSOLETE } +// OBSOLETE +// OBSOLETE struct d10v_unwind_cache +// OBSOLETE { +// OBSOLETE /* The previous frame's inner most stack address. Used as this +// OBSOLETE frame ID's stack_addr. */ +// OBSOLETE CORE_ADDR prev_sp; +// OBSOLETE /* The frame's base, optionally used by the high-level debug info. */ +// OBSOLETE CORE_ADDR base; +// OBSOLETE int size; +// OBSOLETE /* How far the SP and r11 (FP) have been offset from the start of +// OBSOLETE the stack frame (as defined by the previous frame's stack +// OBSOLETE pointer). */ +// OBSOLETE LONGEST sp_offset; +// OBSOLETE LONGEST r11_offset; +// OBSOLETE int uses_frame; +// OBSOLETE /* Table indicating the location of each and every register. */ +// OBSOLETE struct trad_frame_saved_reg *saved_regs; +// OBSOLETE }; +// OBSOLETE +// OBSOLETE static int +// OBSOLETE prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op, +// OBSOLETE CORE_ADDR addr) +// OBSOLETE { +// OBSOLETE int n; +// OBSOLETE +// OBSOLETE /* st rn, @-sp */ +// OBSOLETE if ((op & 0x7E1F) == 0x6C1F) +// OBSOLETE { +// OBSOLETE n = (op & 0x1E0) >> 5; +// OBSOLETE info->sp_offset -= 2; +// OBSOLETE info->saved_regs[n].addr = info->sp_offset; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* st2w rn, @-sp */ +// OBSOLETE else if ((op & 0x7E3F) == 0x6E1F) +// OBSOLETE { +// OBSOLETE n = (op & 0x1E0) >> 5; +// OBSOLETE info->sp_offset -= 4; +// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0; +// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* subi sp, n */ +// OBSOLETE if ((op & 0x7FE1) == 0x01E1) +// OBSOLETE { +// OBSOLETE n = (op & 0x1E) >> 1; +// OBSOLETE if (n == 0) +// OBSOLETE n = 16; +// OBSOLETE info->sp_offset -= n; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* mv r11, sp */ +// OBSOLETE if (op == 0x417E) +// OBSOLETE { +// OBSOLETE info->uses_frame = 1; +// OBSOLETE info->r11_offset = info->sp_offset; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* st rn, @r11 */ +// OBSOLETE if ((op & 0x7E1F) == 0x6816) +// OBSOLETE { +// OBSOLETE n = (op & 0x1E0) >> 5; +// OBSOLETE info->saved_regs[n].addr = info->r11_offset; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* nop */ +// OBSOLETE if (op == 0x5E00) +// OBSOLETE return 1; +// OBSOLETE +// OBSOLETE /* st rn, @sp */ +// OBSOLETE if ((op & 0x7E1F) == 0x681E) +// OBSOLETE { +// OBSOLETE n = (op & 0x1E0) >> 5; +// OBSOLETE info->saved_regs[n].addr = info->sp_offset; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* st2w rn, @sp */ +// OBSOLETE if ((op & 0x7E3F) == 0x3A1E) +// OBSOLETE { +// OBSOLETE n = (op & 0x1E0) >> 5; +// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0; +// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2; +// OBSOLETE return 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE return 0; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Put here the code to store, into fi->saved_regs, the addresses of +// OBSOLETE the saved registers of frame described by FRAME_INFO. This +// OBSOLETE includes special registers such as pc and fp saved in special ways +// OBSOLETE in the stack frame. sp is even more special: the address we return +// OBSOLETE for it IS the sp for the next frame. */ +// OBSOLETE +// OBSOLETE static struct d10v_unwind_cache * +// OBSOLETE d10v_frame_unwind_cache (struct frame_info *next_frame, +// OBSOLETE void **this_prologue_cache) +// OBSOLETE { +// OBSOLETE struct gdbarch *gdbarch = get_frame_arch (next_frame); +// OBSOLETE CORE_ADDR pc; +// OBSOLETE ULONGEST prev_sp; +// OBSOLETE ULONGEST this_base; +// OBSOLETE unsigned long op; +// OBSOLETE unsigned short op1, op2; +// OBSOLETE int i; +// OBSOLETE struct d10v_unwind_cache *info; +// OBSOLETE +// OBSOLETE if ((*this_prologue_cache)) +// OBSOLETE return (*this_prologue_cache); +// OBSOLETE +// OBSOLETE info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache); +// OBSOLETE (*this_prologue_cache) = info; +// OBSOLETE info->saved_regs = trad_frame_alloc_saved_regs (next_frame); +// OBSOLETE +// OBSOLETE info->size = 0; +// OBSOLETE info->sp_offset = 0; +// OBSOLETE +// OBSOLETE info->uses_frame = 0; +// OBSOLETE for (pc = frame_func_unwind (next_frame); +// OBSOLETE pc > 0 && pc < frame_pc_unwind (next_frame); +// OBSOLETE pc += 4) +// OBSOLETE { +// OBSOLETE op = get_frame_memory_unsigned (next_frame, pc, 4); +// OBSOLETE if ((op & 0xC0000000) == 0xC0000000) +// OBSOLETE { +// OBSOLETE /* long instruction */ +// OBSOLETE if ((op & 0x3FFF0000) == 0x01FF0000) +// OBSOLETE { +// OBSOLETE /* add3 sp,sp,n */ +// OBSOLETE short n = op & 0xFFFF; +// OBSOLETE info->sp_offset += n; +// OBSOLETE } +// OBSOLETE else if ((op & 0x3F0F0000) == 0x340F0000) +// OBSOLETE { +// OBSOLETE /* st rn, @(offset,sp) */ +// OBSOLETE short offset = op & 0xFFFF; +// OBSOLETE short n = (op >> 20) & 0xF; +// OBSOLETE info->saved_regs[n].addr = info->sp_offset + offset; +// OBSOLETE } +// OBSOLETE else if ((op & 0x3F1F0000) == 0x350F0000) +// OBSOLETE { +// OBSOLETE /* st2w rn, @(offset,sp) */ +// OBSOLETE short offset = op & 0xFFFF; +// OBSOLETE short n = (op >> 20) & 0xF; +// OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + offset + 0; +// OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + offset + 2; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE /* short instructions */ +// OBSOLETE if ((op & 0xC0000000) == 0x80000000) +// OBSOLETE { +// OBSOLETE op2 = (op & 0x3FFF8000) >> 15; +// OBSOLETE op1 = op & 0x7FFF; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE op1 = (op & 0x3FFF8000) >> 15; +// OBSOLETE op2 = op & 0x7FFF; +// OBSOLETE } +// OBSOLETE if (!prologue_find_regs (info, op1, pc) +// OBSOLETE || !prologue_find_regs (info, op2, pc)) +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE info->size = -info->sp_offset; +// OBSOLETE +// OBSOLETE /* Compute the previous frame's stack pointer (which is also the +// OBSOLETE frame's ID's stack address), and this frame's base pointer. */ +// OBSOLETE if (info->uses_frame) +// OBSOLETE { +// OBSOLETE /* The SP was moved to the FP. This indicates that a new frame +// OBSOLETE was created. Get THIS frame's FP value by unwinding it from +// OBSOLETE the next frame. */ +// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base); +// OBSOLETE /* The FP points at the last saved register. Adjust the FP back +// OBSOLETE to before the first saved register giving the SP. */ +// OBSOLETE prev_sp = this_base + info->size; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE /* Assume that the FP is this frame's SP but with that pushed +// OBSOLETE stack space added back. */ +// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base); +// OBSOLETE prev_sp = this_base + info->size; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Convert that SP/BASE into real addresses. */ +// OBSOLETE info->prev_sp = d10v_make_daddr (prev_sp); +// OBSOLETE info->base = d10v_make_daddr (this_base); +// OBSOLETE +// OBSOLETE /* Adjust all the saved registers so that they contain addresses and +// OBSOLETE not offsets. */ +// OBSOLETE for (i = 0; i < NUM_REGS - 1; i++) +// OBSOLETE if (trad_frame_addr_p (info->saved_regs, i)) +// OBSOLETE { +// OBSOLETE info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* The call instruction moves the caller's PC in the callee's LR. +// OBSOLETE Since this is an unwind, do the reverse. Copy the location of LR +// OBSOLETE into PC (the address / regnum) so that a request for PC will be +// OBSOLETE converted into a request for the LR. */ +// OBSOLETE info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM]; +// OBSOLETE +// OBSOLETE /* The previous frame's SP needed to be computed. Save the computed +// OBSOLETE value. */ +// OBSOLETE trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM, +// OBSOLETE d10v_make_daddr (prev_sp)); +// OBSOLETE +// OBSOLETE return info; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, +// OBSOLETE struct frame_info *frame, int regnum, int all) +// OBSOLETE { +// OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); +// OBSOLETE if (regnum >= 0) +// OBSOLETE { +// OBSOLETE default_print_registers_info (gdbarch, file, frame, regnum, all); +// OBSOLETE return; +// OBSOLETE } +// OBSOLETE +// OBSOLETE { +// OBSOLETE ULONGEST pc, psw, rpt_s, rpt_e, rpt_c; +// OBSOLETE pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM); +// OBSOLETE psw = get_frame_register_unsigned (frame, PSW_REGNUM); +// OBSOLETE rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1)); +// OBSOLETE rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1)); +// OBSOLETE rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1)); +// OBSOLETE fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n", +// OBSOLETE (long) pc, (long) d10v_make_iaddr (pc), (long) psw, +// OBSOLETE (long) rpt_s, (long) rpt_e, (long) rpt_c); +// OBSOLETE } +// OBSOLETE +// OBSOLETE { +// OBSOLETE int group; +// OBSOLETE for (group = 0; group < 16; group += 8) +// OBSOLETE { +// OBSOLETE int r; +// OBSOLETE fprintf_filtered (file, "R%d-R%-2d", group, group + 7); +// OBSOLETE for (r = group; r < group + 8; r++) +// OBSOLETE { +// OBSOLETE ULONGEST tmp; +// OBSOLETE tmp = get_frame_register_unsigned (frame, r); +// OBSOLETE fprintf_filtered (file, " %04lx", (long) tmp); +// OBSOLETE } +// OBSOLETE fprintf_filtered (file, "\n"); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Note: The IMAP/DMAP registers don't participate in function +// OBSOLETE calls. Don't bother trying to unwind them. */ +// OBSOLETE +// OBSOLETE { +// OBSOLETE int a; +// OBSOLETE for (a = 0; a < NR_IMAP_REGS; a++) +// OBSOLETE { +// OBSOLETE if (a > 0) +// OBSOLETE fprintf_filtered (file, " "); +// OBSOLETE fprintf_filtered (file, "IMAP%d %04lx", a, +// OBSOLETE tdep->imap_register (current_regcache, a)); +// OBSOLETE } +// OBSOLETE if (nr_dmap_regs (gdbarch) == 1) +// OBSOLETE /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */ +// OBSOLETE fprintf_filtered (file, " DMAP %04lx\n", +// OBSOLETE tdep->dmap_register (current_regcache, 2)); +// OBSOLETE else +// OBSOLETE { +// OBSOLETE for (a = 0; a < nr_dmap_regs (gdbarch); a++) +// OBSOLETE { +// OBSOLETE fprintf_filtered (file, " DMAP%d %04lx", a, +// OBSOLETE tdep->dmap_register (current_regcache, a)); +// OBSOLETE } +// OBSOLETE fprintf_filtered (file, "\n"); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE { +// OBSOLETE char num[MAX_REGISTER_SIZE]; +// OBSOLETE int a; +// OBSOLETE fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1); +// OBSOLETE for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++) +// OBSOLETE { +// OBSOLETE int i; +// OBSOLETE fprintf_filtered (file, " "); +// OBSOLETE get_frame_register (frame, a, num); +// OBSOLETE for (i = 0; i < register_size (gdbarch, a); i++) +// OBSOLETE { +// OBSOLETE fprintf_filtered (file, "%02x", (num[i] & 0xff)); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE } +// OBSOLETE fprintf_filtered (file, "\n"); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE show_regs (char *args, int from_tty) +// OBSOLETE { +// OBSOLETE d10v_print_registers_info (current_gdbarch, gdb_stdout, +// OBSOLETE get_current_frame (), -1, 1); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_read_pc (ptid_t ptid) +// OBSOLETE { +// OBSOLETE ptid_t save_ptid; +// OBSOLETE CORE_ADDR pc; +// OBSOLETE CORE_ADDR retval; +// OBSOLETE +// OBSOLETE save_ptid = inferior_ptid; +// OBSOLETE inferior_ptid = ptid; +// OBSOLETE pc = (int) read_register (D10V_PC_REGNUM); +// OBSOLETE inferior_ptid = save_ptid; +// OBSOLETE retval = d10v_make_iaddr (pc); +// OBSOLETE return retval; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_write_pc (CORE_ADDR val, ptid_t ptid) +// OBSOLETE { +// OBSOLETE ptid_t save_ptid; +// OBSOLETE +// OBSOLETE save_ptid = inferior_ptid; +// OBSOLETE inferior_ptid = ptid; +// OBSOLETE write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val)); +// OBSOLETE inferior_ptid = save_ptid; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) +// OBSOLETE { +// OBSOLETE ULONGEST sp; +// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp); +// OBSOLETE return d10v_make_daddr (sp); +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* When arguments must be pushed onto the stack, they go on in reverse +// OBSOLETE order. The below implements a FILO (stack) to do this. */ +// OBSOLETE +// OBSOLETE struct stack_item +// OBSOLETE { +// OBSOLETE int len; +// OBSOLETE struct stack_item *prev; +// OBSOLETE void *data; +// OBSOLETE }; +// OBSOLETE +// OBSOLETE static struct stack_item *push_stack_item (struct stack_item *prev, +// OBSOLETE void *contents, int len); +// OBSOLETE static struct stack_item * +// OBSOLETE push_stack_item (struct stack_item *prev, void *contents, int len) +// OBSOLETE { +// OBSOLETE struct stack_item *si; +// OBSOLETE si = xmalloc (sizeof (struct stack_item)); +// OBSOLETE si->data = xmalloc (len); +// OBSOLETE si->len = len; +// OBSOLETE si->prev = prev; +// OBSOLETE memcpy (si->data, contents, len); +// OBSOLETE return si; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static struct stack_item *pop_stack_item (struct stack_item *si); +// OBSOLETE static struct stack_item * +// OBSOLETE pop_stack_item (struct stack_item *si) +// OBSOLETE { +// OBSOLETE struct stack_item *dead = si; +// OBSOLETE si = si->prev; +// OBSOLETE xfree (dead->data); +// OBSOLETE xfree (dead); +// OBSOLETE return si; +// OBSOLETE } +// OBSOLETE +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_push_dummy_code (struct gdbarch *gdbarch, +// OBSOLETE CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, +// OBSOLETE struct value **args, int nargs, +// OBSOLETE struct type *value_type, +// OBSOLETE CORE_ADDR *real_pc, CORE_ADDR *bp_addr) +// OBSOLETE { +// OBSOLETE /* Allocate space sufficient for a breakpoint. */ +// OBSOLETE sp = (sp - 4) & ~3; +// OBSOLETE /* Store the address of that breakpoint taking care to first convert +// OBSOLETE it into a code (IADDR) address from a stack (DADDR) address. +// OBSOLETE This of course assumes that the two virtual addresses map onto +// OBSOLETE the same real address. */ +// OBSOLETE (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp)); +// OBSOLETE /* d10v always starts the call at the callee's entry point. */ +// OBSOLETE (*real_pc) = funaddr; +// OBSOLETE return sp; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_push_dummy_call (struct gdbarch *gdbarch, struct value *function, +// OBSOLETE struct regcache *regcache, CORE_ADDR bp_addr, +// OBSOLETE int nargs, struct value **args, CORE_ADDR sp, +// OBSOLETE int struct_return, CORE_ADDR struct_addr) +// OBSOLETE { +// OBSOLETE int i; +// OBSOLETE int regnum = ARG1_REGNUM; +// OBSOLETE struct stack_item *si = NULL; +// OBSOLETE long val; +// OBSOLETE +// OBSOLETE /* Set the return address. For the d10v, the return breakpoint is +// OBSOLETE always at BP_ADDR. */ +// OBSOLETE regcache_cooked_write_unsigned (regcache, LR_REGNUM, +// OBSOLETE d10v_convert_iaddr_to_raw (bp_addr)); +// OBSOLETE +// OBSOLETE /* If STRUCT_RETURN is true, then the struct return address (in +// OBSOLETE STRUCT_ADDR) will consume the first argument-passing register. +// OBSOLETE Both adjust the register count and store that value. */ +// OBSOLETE if (struct_return) +// OBSOLETE { +// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum, struct_addr); +// OBSOLETE regnum++; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Fill in registers and arg lists */ +// OBSOLETE for (i = 0; i < nargs; i++) +// OBSOLETE { +// OBSOLETE struct value *arg = args[i]; +// OBSOLETE struct type *type = check_typedef (VALUE_TYPE (arg)); +// OBSOLETE char *contents = VALUE_CONTENTS (arg); +// OBSOLETE int len = TYPE_LENGTH (type); +// OBSOLETE int aligned_regnum = (regnum + 1) & ~1; +// OBSOLETE +// OBSOLETE /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */ +// OBSOLETE if (len <= 2 && regnum <= ARGN_REGNUM) +// OBSOLETE /* fits in a single register, do not align */ +// OBSOLETE { +// OBSOLETE val = extract_unsigned_integer (contents, len); +// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val); +// OBSOLETE } +// OBSOLETE else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2) +// OBSOLETE /* value fits in remaining registers, store keeping left +// OBSOLETE aligned */ +// OBSOLETE { +// OBSOLETE int b; +// OBSOLETE regnum = aligned_regnum; +// OBSOLETE for (b = 0; b < (len & ~1); b += 2) +// OBSOLETE { +// OBSOLETE val = extract_unsigned_integer (&contents[b], 2); +// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val); +// OBSOLETE } +// OBSOLETE if (b < len) +// OBSOLETE { +// OBSOLETE val = extract_unsigned_integer (&contents[b], 1); +// OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, (val << 8)); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE /* arg will go onto stack */ +// OBSOLETE regnum = ARGN_REGNUM + 1; +// OBSOLETE si = push_stack_item (si, contents, len); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE while (si) +// OBSOLETE { +// OBSOLETE sp = (sp - si->len) & ~1; +// OBSOLETE write_memory (sp, si->data, si->len); +// OBSOLETE si = pop_stack_item (si); +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Finally, update the SP register. */ +// OBSOLETE regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM, +// OBSOLETE d10v_convert_daddr_to_raw (sp)); +// OBSOLETE +// OBSOLETE return sp; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Translate a GDB virtual ADDR/LEN into a format the remote target +// OBSOLETE understands. Returns number of bytes that can be transfered +// OBSOLETE starting at TARG_ADDR. Return ZERO if no bytes can be transfered +// OBSOLETE (segmentation fault). Since the simulator knows all about how the +// OBSOLETE VM system works, we just call that to do the translation. */ +// OBSOLETE +// OBSOLETE static void +// OBSOLETE remote_d10v_translate_xfer_address (struct gdbarch *gdbarch, +// OBSOLETE struct regcache *regcache, +// OBSOLETE CORE_ADDR memaddr, int nr_bytes, +// OBSOLETE CORE_ADDR *targ_addr, int *targ_len) +// OBSOLETE { +// OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); +// OBSOLETE long out_addr; +// OBSOLETE long out_len; +// OBSOLETE out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache, +// OBSOLETE tdep->dmap_register, tdep->imap_register); +// OBSOLETE *targ_addr = out_addr; +// OBSOLETE *targ_len = out_len; +// OBSOLETE } +// OBSOLETE +// OBSOLETE +// OBSOLETE /* The following code implements access to, and display of, the D10V's +// OBSOLETE instruction trace buffer. The buffer consists of 64K or more +// OBSOLETE 4-byte words of data, of which each words includes an 8-bit count, +// OBSOLETE an 8-bit segment number, and a 16-bit instruction address. +// OBSOLETE +// OBSOLETE In theory, the trace buffer is continuously capturing instruction +// OBSOLETE data that the CPU presents on its "debug bus", but in practice, the +// OBSOLETE ROMified GDB stub only enables tracing when it continues or steps +// OBSOLETE the program, and stops tracing when the program stops; so it +// OBSOLETE actually works for GDB to read the buffer counter out of memory and +// OBSOLETE then read each trace word. The counter records where the tracing +// OBSOLETE stops, but there is no record of where it started, so we remember +// OBSOLETE the PC when we resumed and then search backwards in the trace +// OBSOLETE buffer for a word that includes that address. This is not perfect, +// OBSOLETE because you will miss trace data if the resumption PC is the target +// OBSOLETE of a branch. (The value of the buffer counter is semi-random, any +// OBSOLETE trace data from a previous program stop is gone.) */ +// OBSOLETE +// OBSOLETE /* The address of the last word recorded in the trace buffer. */ +// OBSOLETE +// OBSOLETE #define DBBC_ADDR (0xd80000) +// OBSOLETE +// OBSOLETE /* The base of the trace buffer, at least for the "Board_0". */ +// OBSOLETE +// OBSOLETE #define TRACE_BUFFER_BASE (0xf40000) +// OBSOLETE +// OBSOLETE static void trace_command (char *, int); +// OBSOLETE +// OBSOLETE static void untrace_command (char *, int); +// OBSOLETE +// OBSOLETE static void trace_info (char *, int); +// OBSOLETE +// OBSOLETE static void tdisassemble_command (char *, int); +// OBSOLETE +// OBSOLETE static void display_trace (int, int); +// OBSOLETE +// OBSOLETE /* True when instruction traces are being collected. */ +// OBSOLETE +// OBSOLETE static int tracing; +// OBSOLETE +// OBSOLETE /* Remembered PC. */ +// OBSOLETE +// OBSOLETE static CORE_ADDR last_pc; +// OBSOLETE +// OBSOLETE /* True when trace output should be displayed whenever program stops. */ +// OBSOLETE +// OBSOLETE static int trace_display; +// OBSOLETE +// OBSOLETE /* True when trace listing should include source lines. */ +// OBSOLETE +// OBSOLETE static int default_trace_show_source = 1; +// OBSOLETE +// OBSOLETE struct trace_buffer +// OBSOLETE { +// OBSOLETE int size; +// OBSOLETE short *counts; +// OBSOLETE CORE_ADDR *addrs; +// OBSOLETE } +// OBSOLETE trace_data; +// OBSOLETE +// OBSOLETE static void +// OBSOLETE trace_command (char *args, int from_tty) +// OBSOLETE { +// OBSOLETE /* Clear the host-side trace buffer, allocating space if needed. */ +// OBSOLETE trace_data.size = 0; +// OBSOLETE if (trace_data.counts == NULL) +// OBSOLETE trace_data.counts = XCALLOC (65536, short); +// OBSOLETE if (trace_data.addrs == NULL) +// OBSOLETE trace_data.addrs = XCALLOC (65536, CORE_ADDR); +// OBSOLETE +// OBSOLETE tracing = 1; +// OBSOLETE +// OBSOLETE printf_filtered ("Tracing is now on.\n"); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE untrace_command (char *args, int from_tty) +// OBSOLETE { +// OBSOLETE tracing = 0; +// OBSOLETE +// OBSOLETE printf_filtered ("Tracing is now off.\n"); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE trace_info (char *args, int from_tty) +// OBSOLETE { +// OBSOLETE int i; +// OBSOLETE +// OBSOLETE if (trace_data.size) +// OBSOLETE { +// OBSOLETE printf_filtered ("%d entries in trace buffer:\n", trace_data.size); +// OBSOLETE +// OBSOLETE for (i = 0; i < trace_data.size; ++i) +// OBSOLETE { +// OBSOLETE printf_filtered ("%d: %d instruction%s at 0x%s\n", +// OBSOLETE i, +// OBSOLETE trace_data.counts[i], +// OBSOLETE (trace_data.counts[i] == 1 ? "" : "s"), +// OBSOLETE paddr_nz (trace_data.addrs[i])); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE else +// OBSOLETE printf_filtered ("No entries in trace buffer.\n"); +// OBSOLETE +// OBSOLETE printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off")); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_eva_prepare_to_trace (void) +// OBSOLETE { +// OBSOLETE if (!tracing) +// OBSOLETE return; +// OBSOLETE +// OBSOLETE last_pc = read_register (D10V_PC_REGNUM); +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Collect trace data from the target board and format it into a form +// OBSOLETE more useful for display. */ +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_eva_get_trace_data (void) +// OBSOLETE { +// OBSOLETE int count, i, j, oldsize; +// OBSOLETE int trace_addr, trace_seg, trace_cnt, next_cnt; +// OBSOLETE unsigned int last_trace, trace_word, next_word; +// OBSOLETE unsigned int *tmpspace; +// OBSOLETE +// OBSOLETE if (!tracing) +// OBSOLETE return; +// OBSOLETE +// OBSOLETE tmpspace = xmalloc (65536 * sizeof (unsigned int)); +// OBSOLETE +// OBSOLETE last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2; +// OBSOLETE +// OBSOLETE /* Collect buffer contents from the target, stopping when we reach +// OBSOLETE the word recorded when execution resumed. */ +// OBSOLETE +// OBSOLETE count = 0; +// OBSOLETE while (last_trace > 0) +// OBSOLETE { +// OBSOLETE QUIT; +// OBSOLETE trace_word = +// OBSOLETE read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4); +// OBSOLETE trace_addr = trace_word & 0xffff; +// OBSOLETE last_trace -= 4; +// OBSOLETE /* Ignore an apparently nonsensical entry. */ +// OBSOLETE if (trace_addr == 0xffd5) +// OBSOLETE continue; +// OBSOLETE tmpspace[count++] = trace_word; +// OBSOLETE if (trace_addr == last_pc) +// OBSOLETE break; +// OBSOLETE if (count > 65535) +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Move the data to the host-side trace buffer, adjusting counts to +// OBSOLETE include the last instruction executed and transforming the address +// OBSOLETE into something that GDB likes. */ +// OBSOLETE +// OBSOLETE for (i = 0; i < count; ++i) +// OBSOLETE { +// OBSOLETE trace_word = tmpspace[i]; +// OBSOLETE next_word = ((i == 0) ? 0 : tmpspace[i - 1]); +// OBSOLETE trace_addr = trace_word & 0xffff; +// OBSOLETE next_cnt = (next_word >> 24) & 0xff; +// OBSOLETE j = trace_data.size + count - i - 1; +// OBSOLETE trace_data.addrs[j] = (trace_addr << 2) + 0x1000000; +// OBSOLETE trace_data.counts[j] = next_cnt + 1; +// OBSOLETE } +// OBSOLETE +// OBSOLETE oldsize = trace_data.size; +// OBSOLETE trace_data.size += count; +// OBSOLETE +// OBSOLETE xfree (tmpspace); +// OBSOLETE +// OBSOLETE if (trace_display) +// OBSOLETE display_trace (oldsize, trace_data.size); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE tdisassemble_command (char *arg, int from_tty) +// OBSOLETE { +// OBSOLETE int i, count; +// OBSOLETE CORE_ADDR low, high; +// OBSOLETE +// OBSOLETE if (!arg) +// OBSOLETE { +// OBSOLETE low = 0; +// OBSOLETE high = trace_data.size; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE char *space_index = strchr (arg, ' '); +// OBSOLETE if (space_index == NULL) +// OBSOLETE { +// OBSOLETE low = parse_and_eval_address (arg); +// OBSOLETE high = low + 5; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE /* Two arguments. */ +// OBSOLETE *space_index = '\0'; +// OBSOLETE low = parse_and_eval_address (arg); +// OBSOLETE high = parse_and_eval_address (space_index + 1); +// OBSOLETE if (high < low) +// OBSOLETE high = low; +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE printf_filtered ("Dump of trace from %s to %s:\n", +// OBSOLETE paddr_u (low), paddr_u (high)); +// OBSOLETE +// OBSOLETE display_trace (low, high); +// OBSOLETE +// OBSOLETE printf_filtered ("End of trace dump.\n"); +// OBSOLETE gdb_flush (gdb_stdout); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE display_trace (int low, int high) +// OBSOLETE { +// OBSOLETE int i, count, trace_show_source, first, suppress; +// OBSOLETE CORE_ADDR next_address; +// OBSOLETE +// OBSOLETE trace_show_source = default_trace_show_source; +// OBSOLETE if (!have_full_symbols () && !have_partial_symbols ()) +// OBSOLETE { +// OBSOLETE trace_show_source = 0; +// OBSOLETE printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n"); +// OBSOLETE printf_filtered ("Trace will not display any source.\n"); +// OBSOLETE } +// OBSOLETE +// OBSOLETE first = 1; +// OBSOLETE suppress = 0; +// OBSOLETE for (i = low; i < high; ++i) +// OBSOLETE { +// OBSOLETE next_address = trace_data.addrs[i]; +// OBSOLETE count = trace_data.counts[i]; +// OBSOLETE while (count-- > 0) +// OBSOLETE { +// OBSOLETE QUIT; +// OBSOLETE if (trace_show_source) +// OBSOLETE { +// OBSOLETE struct symtab_and_line sal, sal_prev; +// OBSOLETE +// OBSOLETE sal_prev = find_pc_line (next_address - 4, 0); +// OBSOLETE sal = find_pc_line (next_address, 0); +// OBSOLETE +// OBSOLETE if (sal.symtab) +// OBSOLETE { +// OBSOLETE if (first || sal.line != sal_prev.line) +// OBSOLETE print_source_lines (sal.symtab, sal.line, sal.line + 1, 0); +// OBSOLETE suppress = 0; +// OBSOLETE } +// OBSOLETE else +// OBSOLETE { +// OBSOLETE if (!suppress) +// OBSOLETE /* FIXME-32x64--assumes sal.pc fits in long. */ +// OBSOLETE printf_filtered ("No source file for address %s.\n", +// OBSOLETE hex_string ((unsigned long) sal.pc)); +// OBSOLETE suppress = 1; +// OBSOLETE } +// OBSOLETE } +// OBSOLETE first = 0; +// OBSOLETE print_address (next_address, gdb_stdout); +// OBSOLETE printf_filtered (":"); +// OBSOLETE printf_filtered ("\t"); +// OBSOLETE wrap_here (" "); +// OBSOLETE next_address += gdb_print_insn (next_address, gdb_stdout); +// OBSOLETE printf_filtered ("\n"); +// OBSOLETE gdb_flush (gdb_stdout); +// OBSOLETE } +// OBSOLETE } +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +// OBSOLETE { +// OBSOLETE ULONGEST pc; +// OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc); +// OBSOLETE return d10v_make_iaddr (pc); +// OBSOLETE } +// OBSOLETE +// OBSOLETE /* Given a GDB frame, determine the address of the calling function's +// OBSOLETE frame. This will be used to create a new GDB frame struct. */ +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_frame_this_id (struct frame_info *next_frame, +// OBSOLETE void **this_prologue_cache, +// OBSOLETE struct frame_id *this_id) +// OBSOLETE { +// OBSOLETE struct d10v_unwind_cache *info +// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache); +// OBSOLETE CORE_ADDR base; +// OBSOLETE CORE_ADDR func; +// OBSOLETE struct frame_id id; +// OBSOLETE +// OBSOLETE /* The FUNC is easy. */ +// OBSOLETE func = frame_func_unwind (next_frame); +// OBSOLETE +// OBSOLETE /* Hopefully the prologue analysis either correctly determined the +// OBSOLETE frame's base (which is the SP from the previous frame), or set +// OBSOLETE that base to "NULL". */ +// OBSOLETE base = info->prev_sp; +// OBSOLETE if (base == STACK_START || base == 0) +// OBSOLETE return; +// OBSOLETE +// OBSOLETE id = frame_id_build (base, func); +// OBSOLETE +// OBSOLETE (*this_id) = id; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static void +// OBSOLETE d10v_frame_prev_register (struct frame_info *next_frame, +// OBSOLETE void **this_prologue_cache, +// OBSOLETE int regnum, int *optimizedp, +// OBSOLETE enum lval_type *lvalp, CORE_ADDR *addrp, +// OBSOLETE int *realnump, void *bufferp) +// OBSOLETE { +// OBSOLETE struct d10v_unwind_cache *info +// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache); +// OBSOLETE trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, +// OBSOLETE optimizedp, lvalp, addrp, realnump, bufferp); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static const struct frame_unwind d10v_frame_unwind = { +// OBSOLETE NORMAL_FRAME, +// OBSOLETE d10v_frame_this_id, +// OBSOLETE d10v_frame_prev_register +// OBSOLETE }; +// OBSOLETE +// OBSOLETE static const struct frame_unwind * +// OBSOLETE d10v_frame_sniffer (struct frame_info *next_frame) +// OBSOLETE { +// OBSOLETE return &d10v_frame_unwind; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static CORE_ADDR +// OBSOLETE d10v_frame_base_address (struct frame_info *next_frame, void **this_cache) +// OBSOLETE { +// OBSOLETE struct d10v_unwind_cache *info +// OBSOLETE = d10v_frame_unwind_cache (next_frame, this_cache); +// OBSOLETE return info->base; +// OBSOLETE } +// OBSOLETE +// OBSOLETE static const struct frame_base d10v_frame_base = { +// OBSOLETE &d10v_frame_unwind, +// OBSOLETE d10v_frame_base_address, +// OBSOLETE d10v_frame_base_address, +// OBSOLETE d10v_frame_base_address +// OBSOLETE }; +// OBSOLETE +// OBSOLETE /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that +// OBSOLETE dummy frame. The frame ID's base needs to match the TOS value +// OBSOLETE saved by save_dummy_frame_tos(), and the PC match the dummy frame's +// OBSOLETE breakpoint. */ +// OBSOLETE +// OBSOLETE static struct frame_id +// OBSOLETE d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +// OBSOLETE { +// OBSOLETE return frame_id_build (d10v_unwind_sp (gdbarch, next_frame), +// OBSOLETE frame_pc_unwind (next_frame)); +// OBSOLETE } +// OBSOLETE +// OBSOLETE static gdbarch_init_ftype d10v_gdbarch_init; +// OBSOLETE +// OBSOLETE static struct gdbarch * +// OBSOLETE d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +// OBSOLETE { +// OBSOLETE struct gdbarch *gdbarch; +// OBSOLETE int d10v_num_regs; +// OBSOLETE struct gdbarch_tdep *tdep; +// OBSOLETE gdbarch_register_name_ftype *d10v_register_name; +// OBSOLETE gdbarch_register_sim_regno_ftype *d10v_register_sim_regno; +// OBSOLETE +// OBSOLETE /* Find a candidate among the list of pre-declared architectures. */ +// OBSOLETE arches = gdbarch_list_lookup_by_info (arches, &info); +// OBSOLETE if (arches != NULL) +// OBSOLETE return arches->gdbarch; +// OBSOLETE +// OBSOLETE /* None found, create a new architecture from the information +// OBSOLETE provided. */ +// OBSOLETE tdep = XMALLOC (struct gdbarch_tdep); +// OBSOLETE gdbarch = gdbarch_alloc (&info, tdep); +// OBSOLETE +// OBSOLETE switch (info.bfd_arch_info->mach) +// OBSOLETE { +// OBSOLETE case bfd_mach_d10v_ts2: +// OBSOLETE d10v_num_regs = 37; +// OBSOLETE d10v_register_name = d10v_ts2_register_name; +// OBSOLETE d10v_register_sim_regno = d10v_ts2_register_sim_regno; +// OBSOLETE tdep->a0_regnum = TS2_A0_REGNUM; +// OBSOLETE tdep->nr_dmap_regs = TS2_NR_DMAP_REGS; +// OBSOLETE tdep->dmap_register = d10v_ts2_dmap_register; +// OBSOLETE tdep->imap_register = d10v_ts2_imap_register; +// OBSOLETE break; +// OBSOLETE default: +// OBSOLETE case bfd_mach_d10v_ts3: +// OBSOLETE d10v_num_regs = 42; +// OBSOLETE d10v_register_name = d10v_ts3_register_name; +// OBSOLETE d10v_register_sim_regno = d10v_ts3_register_sim_regno; +// OBSOLETE tdep->a0_regnum = TS3_A0_REGNUM; +// OBSOLETE tdep->nr_dmap_regs = TS3_NR_DMAP_REGS; +// OBSOLETE tdep->dmap_register = d10v_ts3_dmap_register; +// OBSOLETE tdep->imap_register = d10v_ts3_imap_register; +// OBSOLETE break; +// OBSOLETE } +// OBSOLETE +// OBSOLETE set_gdbarch_read_pc (gdbarch, d10v_read_pc); +// OBSOLETE set_gdbarch_write_pc (gdbarch, d10v_write_pc); +// OBSOLETE set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp); +// OBSOLETE +// OBSOLETE set_gdbarch_num_regs (gdbarch, d10v_num_regs); +// OBSOLETE set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM); +// OBSOLETE set_gdbarch_register_name (gdbarch, d10v_register_name); +// OBSOLETE set_gdbarch_register_type (gdbarch, d10v_register_type); +// OBSOLETE +// OBSOLETE set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); +// OBSOLETE set_gdbarch_addr_bit (gdbarch, 32); +// OBSOLETE set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer); +// OBSOLETE set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address); +// OBSOLETE set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address); +// OBSOLETE set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); +// OBSOLETE set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); +// OBSOLETE set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); +// OBSOLETE set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); +// OBSOLETE /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long +// OBSOLETE double'' is 64 bits. */ +// OBSOLETE set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); +// OBSOLETE set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); +// OBSOLETE set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); +// OBSOLETE switch (info.byte_order) +// OBSOLETE { +// OBSOLETE case BFD_ENDIAN_BIG: +// OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); +// OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big); +// OBSOLETE set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); +// OBSOLETE break; +// OBSOLETE case BFD_ENDIAN_LITTLE: +// OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); +// OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little); +// OBSOLETE set_gdbarch_long_double_format (gdbarch, +// OBSOLETE &floatformat_ieee_double_little); +// OBSOLETE break; +// OBSOLETE default: +// OBSOLETE internal_error (__FILE__, __LINE__, +// OBSOLETE "d10v_gdbarch_init: bad byte order for float format"); +// OBSOLETE } +// OBSOLETE +// OBSOLETE set_gdbarch_return_value (gdbarch, d10v_return_value); +// OBSOLETE set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code); +// OBSOLETE set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call); +// OBSOLETE +// OBSOLETE set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue); +// OBSOLETE set_gdbarch_inner_than (gdbarch, core_addr_lessthan); +// OBSOLETE set_gdbarch_decr_pc_after_break (gdbarch, 4); +// OBSOLETE set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc); +// OBSOLETE +// OBSOLETE set_gdbarch_remote_translate_xfer_address (gdbarch, +// OBSOLETE remote_d10v_translate_xfer_address); +// OBSOLETE +// OBSOLETE set_gdbarch_frame_align (gdbarch, d10v_frame_align); +// OBSOLETE +// OBSOLETE set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno); +// OBSOLETE +// OBSOLETE set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info); +// OBSOLETE +// OBSOLETE frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer); +// OBSOLETE frame_base_set_default (gdbarch, &d10v_frame_base); +// OBSOLETE +// OBSOLETE /* Methods for saving / extracting a dummy frame's ID. The ID's +// OBSOLETE stack address must match the SP value returned by +// OBSOLETE PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ +// OBSOLETE set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id); +// OBSOLETE +// OBSOLETE /* Return the unwound PC value. */ +// OBSOLETE set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc); +// OBSOLETE +// OBSOLETE set_gdbarch_print_insn (gdbarch, print_insn_d10v); +// OBSOLETE +// OBSOLETE return gdbarch; +// OBSOLETE } +// OBSOLETE +// OBSOLETE void +// OBSOLETE _initialize_d10v_tdep (void) +// OBSOLETE { +// OBSOLETE register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init); +// OBSOLETE +// OBSOLETE deprecated_target_resume_hook = d10v_eva_prepare_to_trace; +// OBSOLETE deprecated_target_wait_loop_hook = d10v_eva_get_trace_data; +// OBSOLETE +// OBSOLETE deprecate_cmd (add_com ("regs", class_vars, show_regs, +// OBSOLETE "Print all registers"), +// OBSOLETE "info registers"); +// OBSOLETE +// OBSOLETE add_com ("itrace", class_support, trace_command, +// OBSOLETE "Enable tracing of instruction execution."); +// OBSOLETE +// OBSOLETE add_com ("iuntrace", class_support, untrace_command, +// OBSOLETE "Disable tracing of instruction execution."); +// OBSOLETE +// OBSOLETE add_com ("itdisassemble", class_vars, tdisassemble_command, +// OBSOLETE "Disassemble the trace buffer.\n\ +// OBSOLETE Two optional arguments specify a range of trace buffer entries\n\ +// OBSOLETE as reported by info trace (NOT addresses!)."); +// OBSOLETE +// OBSOLETE add_info ("itrace", trace_info, +// OBSOLETE "Display info about the trace data buffer."); +// OBSOLETE +// OBSOLETE add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, "\ +// OBSOLETE Set automatic display of trace.", "\ +// OBSOLETE Show automatic display of trace.", "\ +// OBSOLETE Controls the display of d10v specific instruction trace information.", "\ +// OBSOLETE Automatic display of trace is %s.", +// OBSOLETE NULL, NULL, &setlist, &showlist); +// OBSOLETE add_setshow_boolean_cmd ("itracesource", no_class, +// OBSOLETE &default_trace_show_source, "\ +// OBSOLETE Set display of source code with trace.", "\ +// OBSOLETE Show display of source code with trace.", "\ +// OBSOLETE When on source code is included in the d10v instruction trace display.", "\ +// OBSOLETE Display of source code with trace is %s.", +// OBSOLETE NULL, NULL, &setlist, &showlist); +// OBSOLETE } |