summaryrefslogtreecommitdiff
path: root/gdb/dwarfread.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@apple.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@apple.com>1999-04-16 01:35:26 +0000
commit14cd51f7793a9ce07bc435069f57269450141363 (patch)
tree280a2da48f771d61be5b451ddbacdf9ef8e9ad13 /gdb/dwarfread.c
downloadgdb-14cd51f7793a9ce07bc435069f57269450141363.tar.gz
Initial revision
Diffstat (limited to 'gdb/dwarfread.c')
-rw-r--r--gdb/dwarfread.c3915
1 files changed, 3915 insertions, 0 deletions
diff --git a/gdb/dwarfread.c b/gdb/dwarfread.c
new file mode 100644
index 00000000000..9de03123d7d
--- /dev/null
+++ b/gdb/dwarfread.c
@@ -0,0 +1,3915 @@
+/* DWARF debugging format support for GDB.
+ Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
+ Free Software Foundation, Inc.
+ Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
+ mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+/*
+
+FIXME: Do we need to generate dependencies in partial symtabs?
+(Perhaps we don't need to).
+
+FIXME: Resolve minor differences between what information we put in the
+partial symbol table and what dbxread puts in. For example, we don't yet
+put enum constants there. And dbxread seems to invent a lot of typedefs
+we never see. Use the new printpsym command to see the partial symbol table
+contents.
+
+FIXME: Figure out a better way to tell gdb about the name of the function
+contain the user's entry point (I.E. main())
+
+FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
+other things to work on, if you get bored. :-)
+
+*/
+
+#include "defs.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "elf/dwarf.h"
+#include "buildsym.h"
+#include "demangle.h"
+#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
+#include "language.h"
+#include "complaints.h"
+
+#include <fcntl.h>
+#include "gdb_string.h"
+
+/* Some macros to provide DIE info for complaints. */
+
+#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
+#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
+
+/* Complaints that can be issued during DWARF debug info reading. */
+
+struct complaint no_bfd_get_N =
+{
+ "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
+};
+
+struct complaint malformed_die =
+{
+ "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
+};
+
+struct complaint bad_die_ref =
+{
+ "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
+};
+
+struct complaint unknown_attribute_form =
+{
+ "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
+};
+
+struct complaint unknown_attribute_length =
+{
+ "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
+};
+
+struct complaint unexpected_fund_type =
+{
+ "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
+};
+
+struct complaint unknown_type_modifier =
+{
+ "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
+};
+
+struct complaint volatile_ignored =
+{
+ "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
+};
+
+struct complaint const_ignored =
+{
+ "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
+};
+
+struct complaint botched_modified_type =
+{
+ "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
+};
+
+struct complaint op_deref2 =
+{
+ "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
+};
+
+struct complaint op_deref4 =
+{
+ "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
+};
+
+struct complaint basereg_not_handled =
+{
+ "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
+};
+
+struct complaint dup_user_type_allocation =
+{
+ "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
+};
+
+struct complaint dup_user_type_definition =
+{
+ "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
+};
+
+struct complaint missing_tag =
+{
+ "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
+};
+
+struct complaint bad_array_element_type =
+{
+ "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
+};
+
+struct complaint subscript_data_items =
+{
+ "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
+};
+
+struct complaint unhandled_array_subscript_format =
+{
+ "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
+};
+
+struct complaint unknown_array_subscript_format =
+{
+ "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
+};
+
+struct complaint not_row_major =
+{
+ "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
+};
+
+struct complaint missing_at_name =
+{
+ "DIE @ 0x%x, AT_name tag missing", 0, 0
+};
+
+typedef unsigned int DIE_REF; /* Reference to a DIE */
+
+#ifndef GCC_PRODUCER
+#define GCC_PRODUCER "GNU C "
+#endif
+
+#ifndef GPLUS_PRODUCER
+#define GPLUS_PRODUCER "GNU C++ "
+#endif
+
+#ifndef LCC_PRODUCER
+#define LCC_PRODUCER "NCR C/C++"
+#endif
+
+#ifndef CHILL_PRODUCER
+#define CHILL_PRODUCER "GNU Chill "
+#endif
+
+/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
+#ifndef DWARF_REG_TO_REGNUM
+#define DWARF_REG_TO_REGNUM(num) (num)
+#endif
+
+/* Flags to target_to_host() that tell whether or not the data object is
+ expected to be signed. Used, for example, when fetching a signed
+ integer in the target environment which is used as a signed integer
+ in the host environment, and the two environments have different sized
+ ints. In this case, *somebody* has to sign extend the smaller sized
+ int. */
+
+#define GET_UNSIGNED 0 /* No sign extension required */
+#define GET_SIGNED 1 /* Sign extension required */
+
+/* Defines for things which are specified in the document "DWARF Debugging
+ Information Format" published by UNIX International, Programming Languages
+ SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
+
+#define SIZEOF_DIE_LENGTH 4
+#define SIZEOF_DIE_TAG 2
+#define SIZEOF_ATTRIBUTE 2
+#define SIZEOF_FORMAT_SPECIFIER 1
+#define SIZEOF_FMT_FT 2
+#define SIZEOF_LINETBL_LENGTH 4
+#define SIZEOF_LINETBL_LINENO 4
+#define SIZEOF_LINETBL_STMT 2
+#define SIZEOF_LINETBL_DELTA 4
+#define SIZEOF_LOC_ATOM_CODE 1
+
+#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
+
+/* Macros that return the sizes of various types of data in the target
+ environment.
+
+ FIXME: Currently these are just compile time constants (as they are in
+ other parts of gdb as well). They need to be able to get the right size
+ either from the bfd or possibly from the DWARF info. It would be nice if
+ the DWARF producer inserted DIES that describe the fundamental types in
+ the target environment into the DWARF info, similar to the way dbx stabs
+ producers produce information about their fundamental types. */
+
+#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
+#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
+
+/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
+ FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
+ However, the Issue 2 DWARF specification from AT&T defines it as
+ a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
+ For backwards compatibility with the AT&T compiler produced executables
+ we define AT_short_element_list for this variant. */
+
+#define AT_short_element_list (0x00f0|FORM_BLOCK2)
+
+/* External variables referenced. */
+
+extern int info_verbose; /* From main.c; nonzero => verbose */
+extern char *warning_pre_print; /* From utils.c */
+
+/* The DWARF debugging information consists of two major pieces,
+ one is a block of DWARF Information Entries (DIE's) and the other
+ is a line number table. The "struct dieinfo" structure contains
+ the information for a single DIE, the one currently being processed.
+
+ In order to make it easier to randomly access the attribute fields
+ of the current DIE, which are specifically unordered within the DIE,
+ each DIE is scanned and an instance of the "struct dieinfo"
+ structure is initialized.
+
+ Initialization is done in two levels. The first, done by basicdieinfo(),
+ just initializes those fields that are vital to deciding whether or not
+ to use this DIE, how to skip past it, etc. The second, done by the
+ function completedieinfo(), fills in the rest of the information.
+
+ Attributes which have block forms are not interpreted at the time
+ the DIE is scanned, instead we just save pointers to the start
+ of their value fields.
+
+ Some fields have a flag <name>_p that is set when the value of the
+ field is valid (I.E. we found a matching attribute in the DIE). Since
+ we may want to test for the presence of some attributes in the DIE,
+ such as AT_low_pc, without restricting the values of the field,
+ we need someway to note that we found such an attribute.
+
+ */
+
+typedef char BLOCK;
+
+struct dieinfo {
+ char * die; /* Pointer to the raw DIE data */
+ unsigned long die_length; /* Length of the raw DIE data */
+ DIE_REF die_ref; /* Offset of this DIE */
+ unsigned short die_tag; /* Tag for this DIE */
+ unsigned long at_padding;
+ unsigned long at_sibling;
+ BLOCK * at_location;
+ char * at_name;
+ unsigned short at_fund_type;
+ BLOCK * at_mod_fund_type;
+ unsigned long at_user_def_type;
+ BLOCK * at_mod_u_d_type;
+ unsigned short at_ordering;
+ BLOCK * at_subscr_data;
+ unsigned long at_byte_size;
+ unsigned short at_bit_offset;
+ unsigned long at_bit_size;
+ BLOCK * at_element_list;
+ unsigned long at_stmt_list;
+ CORE_ADDR at_low_pc;
+ CORE_ADDR at_high_pc;
+ unsigned long at_language;
+ unsigned long at_member;
+ unsigned long at_discr;
+ BLOCK * at_discr_value;
+ BLOCK * at_string_length;
+ char * at_comp_dir;
+ char * at_producer;
+ unsigned long at_start_scope;
+ unsigned long at_stride_size;
+ unsigned long at_src_info;
+ char * at_prototyped;
+ unsigned int has_at_low_pc:1;
+ unsigned int has_at_stmt_list:1;
+ unsigned int has_at_byte_size:1;
+ unsigned int short_element_list:1;
+
+ /* Kludge to identify register variables */
+
+ unsigned int isreg;
+
+ /* Kludge to identify optimized out variables */
+
+ unsigned int optimized_out;
+
+ /* Kludge to identify basereg references.
+ Nonzero if we have an offset relative to a basereg. */
+
+ unsigned int offreg;
+
+ /* Kludge to identify which base register is it relative to. */
+
+ unsigned int basereg;
+};
+
+static int diecount; /* Approximate count of dies for compilation unit */
+static struct dieinfo *curdie; /* For warnings and such */
+
+static char *dbbase; /* Base pointer to dwarf info */
+static int dbsize; /* Size of dwarf info in bytes */
+static int dbroff; /* Relative offset from start of .debug section */
+static char *lnbase; /* Base pointer to line section */
+
+/* This value is added to each symbol value. FIXME: Generalize to
+ the section_offsets structure used by dbxread (once this is done,
+ pass the appropriate section number to end_symtab). */
+static CORE_ADDR baseaddr; /* Add to each symbol value */
+
+/* The section offsets used in the current psymtab or symtab. FIXME,
+ only used to pass one value (baseaddr) at the moment. */
+static struct section_offsets *base_section_offsets;
+
+/* We put a pointer to this structure in the read_symtab_private field
+ of the psymtab. */
+
+struct dwfinfo {
+ /* Always the absolute file offset to the start of the ".debug"
+ section for the file containing the DIE's being accessed. */
+ file_ptr dbfoff;
+ /* Relative offset from the start of the ".debug" section to the
+ first DIE to be accessed. When building the partial symbol
+ table, this value will be zero since we are accessing the
+ entire ".debug" section. When expanding a partial symbol
+ table entry, this value will be the offset to the first
+ DIE for the compilation unit containing the symbol that
+ triggers the expansion. */
+ int dbroff;
+ /* The size of the chunk of DIE's being examined, in bytes. */
+ int dblength;
+ /* The absolute file offset to the line table fragment. Ignored
+ when building partial symbol tables, but used when expanding
+ them, and contains the absolute file offset to the fragment
+ of the ".line" section containing the line numbers for the
+ current compilation unit. */
+ file_ptr lnfoff;
+};
+
+#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
+#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
+#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
+#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
+
+/* The generic symbol table building routines have separate lists for
+ file scope symbols and all all other scopes (local scopes). So
+ we need to select the right one to pass to add_symbol_to_list().
+ We do it by keeping a pointer to the correct list in list_in_scope.
+
+ FIXME: The original dwarf code just treated the file scope as the first
+ local scope, and all other local scopes as nested local scopes, and worked
+ fine. Check to see if we really need to distinguish these in buildsym.c */
+
+struct pending **list_in_scope = &file_symbols;
+
+/* DIES which have user defined types or modified user defined types refer to
+ other DIES for the type information. Thus we need to associate the offset
+ of a DIE for a user defined type with a pointer to the type information.
+
+ Originally this was done using a simple but expensive algorithm, with an
+ array of unsorted structures, each containing an offset/type-pointer pair.
+ This array was scanned linearly each time a lookup was done. The result
+ was that gdb was spending over half it's startup time munging through this
+ array of pointers looking for a structure that had the right offset member.
+
+ The second attempt used the same array of structures, but the array was
+ sorted using qsort each time a new offset/type was recorded, and a binary
+ search was used to find the type pointer for a given DIE offset. This was
+ even slower, due to the overhead of sorting the array each time a new
+ offset/type pair was entered.
+
+ The third attempt uses a fixed size array of type pointers, indexed by a
+ value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
+ we can divide any DIE offset by 4 to obtain a unique index into this fixed
+ size array. Since each element is a 4 byte pointer, it takes exactly as
+ much memory to hold this array as to hold the DWARF info for a given
+ compilation unit. But it gets freed as soon as we are done with it.
+ This has worked well in practice, as a reasonable tradeoff between memory
+ consumption and speed, without having to resort to much more complicated
+ algorithms. */
+
+static struct type **utypes; /* Pointer to array of user type pointers */
+static int numutypes; /* Max number of user type pointers */
+
+/* Maintain an array of referenced fundamental types for the current
+ compilation unit being read. For DWARF version 1, we have to construct
+ the fundamental types on the fly, since no information about the
+ fundamental types is supplied. Each such fundamental type is created by
+ calling a language dependent routine to create the type, and then a
+ pointer to that type is then placed in the array at the index specified
+ by it's FT_<TYPENAME> value. The array has a fixed size set by the
+ FT_NUM_MEMBERS compile time constant, which is the number of predefined
+ fundamental types gdb knows how to construct. */
+
+static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
+
+/* Record the language for the compilation unit which is currently being
+ processed. We know it once we have seen the TAG_compile_unit DIE,
+ and we need it while processing the DIE's for that compilation unit.
+ It is eventually saved in the symtab structure, but we don't finalize
+ the symtab struct until we have processed all the DIE's for the
+ compilation unit. We also need to get and save a pointer to the
+ language struct for this language, so we can call the language
+ dependent routines for doing things such as creating fundamental
+ types. */
+
+static enum language cu_language;
+static const struct language_defn *cu_language_defn;
+
+/* Forward declarations of static functions so we don't have to worry
+ about ordering within this file. */
+
+static void
+free_utypes PARAMS ((PTR));
+
+static int
+attribute_size PARAMS ((unsigned int));
+
+static CORE_ADDR
+target_to_host PARAMS ((char *, int, int, struct objfile *));
+
+static void
+add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
+
+static void
+handle_producer PARAMS ((char *));
+
+static void
+read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
+
+static void
+read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
+
+static void
+read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
+ struct objfile *));
+
+static void
+scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
+
+static void
+scan_compilation_units PARAMS ((char *, char *, file_ptr,
+ file_ptr, struct objfile *));
+
+static void
+add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
+
+static void
+basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
+
+static void
+completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
+
+static void
+dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
+
+static void
+psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
+
+static void
+read_ofile_symtab PARAMS ((struct partial_symtab *));
+
+static void
+process_dies PARAMS ((char *, char *, struct objfile *));
+
+static void
+read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
+ struct objfile *));
+
+static struct type *
+decode_array_element_type PARAMS ((char *));
+
+static struct type *
+decode_subscript_data_item PARAMS ((char *, char *));
+
+static void
+dwarf_read_array_type PARAMS ((struct dieinfo *));
+
+static void
+read_tag_pointer_type PARAMS ((struct dieinfo *dip));
+
+static void
+read_tag_string_type PARAMS ((struct dieinfo *dip));
+
+static void
+read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
+
+static void
+read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
+
+static struct type *
+struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
+
+static struct type *
+enum_type PARAMS ((struct dieinfo *, struct objfile *));
+
+static void
+decode_line_numbers PARAMS ((char *));
+
+static struct type *
+decode_die_type PARAMS ((struct dieinfo *));
+
+static struct type *
+decode_mod_fund_type PARAMS ((char *));
+
+static struct type *
+decode_mod_u_d_type PARAMS ((char *));
+
+static struct type *
+decode_modified_type PARAMS ((char *, unsigned int, int));
+
+static struct type *
+decode_fund_type PARAMS ((unsigned int));
+
+static char *
+create_name PARAMS ((char *, struct obstack *));
+
+static struct type *
+lookup_utype PARAMS ((DIE_REF));
+
+static struct type *
+alloc_utype PARAMS ((DIE_REF, struct type *));
+
+static struct symbol *
+new_symbol PARAMS ((struct dieinfo *, struct objfile *));
+
+static void
+synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
+ struct type *));
+
+static int
+locval PARAMS ((struct dieinfo *));
+
+static void
+set_cu_language PARAMS ((struct dieinfo *));
+
+static struct type *
+dwarf_fundamental_type PARAMS ((struct objfile *, int));
+
+
+/*
+
+LOCAL FUNCTION
+
+ dwarf_fundamental_type -- lookup or create a fundamental type
+
+SYNOPSIS
+
+ struct type *
+ dwarf_fundamental_type (struct objfile *objfile, int typeid)
+
+DESCRIPTION
+
+ DWARF version 1 doesn't supply any fundamental type information,
+ so gdb has to construct such types. It has a fixed number of
+ fundamental types that it knows how to construct, which is the
+ union of all types that it knows how to construct for all languages
+ that it knows about. These are enumerated in gdbtypes.h.
+
+ As an example, assume we find a DIE that references a DWARF
+ fundamental type of FT_integer. We first look in the ftypes
+ array to see if we already have such a type, indexed by the
+ gdb internal value of FT_INTEGER. If so, we simply return a
+ pointer to that type. If not, then we ask an appropriate
+ language dependent routine to create a type FT_INTEGER, using
+ defaults reasonable for the current target machine, and install
+ that type in ftypes for future reference.
+
+RETURNS
+
+ Pointer to a fundamental type.
+
+*/
+
+static struct type *
+dwarf_fundamental_type (objfile, typeid)
+ struct objfile *objfile;
+ int typeid;
+{
+ if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
+ {
+ error ("internal error - invalid fundamental type id %d", typeid);
+ }
+
+ /* Look for this particular type in the fundamental type vector. If one is
+ not found, create and install one appropriate for the current language
+ and the current target machine. */
+
+ if (ftypes[typeid] == NULL)
+ {
+ ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
+ }
+
+ return (ftypes[typeid]);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ set_cu_language -- set local copy of language for compilation unit
+
+SYNOPSIS
+
+ void
+ set_cu_language (struct dieinfo *dip)
+
+DESCRIPTION
+
+ Decode the language attribute for a compilation unit DIE and
+ remember what the language was. We use this at various times
+ when processing DIE's for a given compilation unit.
+
+RETURNS
+
+ No return value.
+
+ */
+
+static void
+set_cu_language (dip)
+ struct dieinfo *dip;
+{
+ switch (dip -> at_language)
+ {
+ case LANG_C89:
+ case LANG_C:
+ cu_language = language_c;
+ break;
+ case LANG_C_PLUS_PLUS:
+ cu_language = language_cplus;
+ break;
+ case LANG_CHILL:
+ cu_language = language_chill;
+ break;
+ case LANG_MODULA2:
+ cu_language = language_m2;
+ break;
+ case LANG_FORTRAN77:
+ case LANG_FORTRAN90:
+ cu_language = language_fortran;
+ break;
+ case LANG_ADA83:
+ case LANG_COBOL74:
+ case LANG_COBOL85:
+ case LANG_PASCAL83:
+ /* We don't know anything special about these yet. */
+ cu_language = language_unknown;
+ break;
+ default:
+ /* If no at_language, try to deduce one from the filename */
+ cu_language = deduce_language_from_filename (dip -> at_name);
+ break;
+ }
+ cu_language_defn = language_def (cu_language);
+}
+
+/*
+
+GLOBAL FUNCTION
+
+ dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
+
+SYNOPSIS
+
+ void dwarf_build_psymtabs (struct objfile *objfile,
+ struct section_offsets *section_offsets,
+ int mainline, file_ptr dbfoff, unsigned int dbfsize,
+ file_ptr lnoffset, unsigned int lnsize)
+
+DESCRIPTION
+
+ This function is called upon to build partial symtabs from files
+ containing DIE's (Dwarf Information Entries) and DWARF line numbers.
+
+ It is passed a bfd* containing the DIES
+ and line number information, the corresponding filename for that
+ file, a base address for relocating the symbols, a flag indicating
+ whether or not this debugging information is from a "main symbol
+ table" rather than a shared library or dynamically linked file,
+ and file offset/size pairs for the DIE information and line number
+ information.
+
+RETURNS
+
+ No return value.
+
+ */
+
+void
+dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
+ lnoffset, lnsize)
+ struct objfile *objfile;
+ struct section_offsets *section_offsets;
+ int mainline;
+ file_ptr dbfoff;
+ unsigned int dbfsize;
+ file_ptr lnoffset;
+ unsigned int lnsize;
+{
+ bfd *abfd = objfile->obfd;
+ struct cleanup *back_to;
+
+ current_objfile = objfile;
+ dbsize = dbfsize;
+ dbbase = xmalloc (dbsize);
+ dbroff = 0;
+ if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
+ (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
+ {
+ free (dbbase);
+ error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
+ }
+ back_to = make_cleanup (free, dbbase);
+
+ /* If we are reinitializing, or if we have never loaded syms yet, init.
+ Since we have no idea how many DIES we are looking at, we just guess
+ some arbitrary value. */
+
+ if (mainline || objfile -> global_psymbols.size == 0 ||
+ objfile -> static_psymbols.size == 0)
+ {
+ init_psymbol_list (objfile, 1024);
+ }
+
+ /* Save the relocation factor where everybody can see it. */
+
+ base_section_offsets = section_offsets;
+ baseaddr = ANOFFSET (section_offsets, 0);
+
+ /* Follow the compilation unit sibling chain, building a partial symbol
+ table entry for each one. Save enough information about each compilation
+ unit to locate the full DWARF information later. */
+
+ scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
+
+ do_cleanups (back_to);
+ current_objfile = NULL;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_lexical_block_scope -- process all dies in a lexical block
+
+SYNOPSIS
+
+ static void read_lexical_block_scope (struct dieinfo *dip,
+ char *thisdie, char *enddie)
+
+DESCRIPTION
+
+ Process all the DIES contained within a lexical block scope.
+ Start a new scope, process the dies, and then close the scope.
+
+ */
+
+static void
+read_lexical_block_scope (dip, thisdie, enddie, objfile)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ register struct context_stack *new;
+
+ push_context (0, dip -> at_low_pc);
+ process_dies (thisdie + dip -> die_length, enddie, objfile);
+ new = pop_context ();
+ if (local_symbols != NULL)
+ {
+ finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
+ dip -> at_high_pc, objfile);
+ }
+ local_symbols = new -> locals;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ lookup_utype -- look up a user defined type from die reference
+
+SYNOPSIS
+
+ static type *lookup_utype (DIE_REF die_ref)
+
+DESCRIPTION
+
+ Given a DIE reference, lookup the user defined type associated with
+ that DIE, if it has been registered already. If not registered, then
+ return NULL. Alloc_utype() can be called to register an empty
+ type for this reference, which will be filled in later when the
+ actual referenced DIE is processed.
+ */
+
+static struct type *
+lookup_utype (die_ref)
+ DIE_REF die_ref;
+{
+ struct type *type = NULL;
+ int utypeidx;
+
+ utypeidx = (die_ref - dbroff) / 4;
+ if ((utypeidx < 0) || (utypeidx >= numutypes))
+ {
+ complain (&bad_die_ref, DIE_ID, DIE_NAME);
+ }
+ else
+ {
+ type = *(utypes + utypeidx);
+ }
+ return (type);
+}
+
+
+/*
+
+LOCAL FUNCTION
+
+ alloc_utype -- add a user defined type for die reference
+
+SYNOPSIS
+
+ static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
+
+DESCRIPTION
+
+ Given a die reference DIE_REF, and a possible pointer to a user
+ defined type UTYPEP, register that this reference has a user
+ defined type and either use the specified type in UTYPEP or
+ make a new empty type that will be filled in later.
+
+ We should only be called after calling lookup_utype() to verify that
+ there is not currently a type registered for DIE_REF.
+ */
+
+static struct type *
+alloc_utype (die_ref, utypep)
+ DIE_REF die_ref;
+ struct type *utypep;
+{
+ struct type **typep;
+ int utypeidx;
+
+ utypeidx = (die_ref - dbroff) / 4;
+ typep = utypes + utypeidx;
+ if ((utypeidx < 0) || (utypeidx >= numutypes))
+ {
+ utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ complain (&bad_die_ref, DIE_ID, DIE_NAME);
+ }
+ else if (*typep != NULL)
+ {
+ utypep = *typep;
+ complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
+ }
+ else
+ {
+ if (utypep == NULL)
+ {
+ utypep = alloc_type (current_objfile);
+ }
+ *typep = utypep;
+ }
+ return (utypep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ free_utypes -- free the utypes array and reset pointer & count
+
+SYNOPSIS
+
+ static void free_utypes (PTR dummy)
+
+DESCRIPTION
+
+ Called via do_cleanups to free the utypes array, reset the pointer to NULL,
+ and set numutypes back to zero. This ensures that the utypes does not get
+ referenced after being freed.
+ */
+
+static void
+free_utypes (dummy)
+ PTR dummy;
+{
+ free (utypes);
+ utypes = NULL;
+ numutypes = 0;
+}
+
+
+/*
+
+LOCAL FUNCTION
+
+ decode_die_type -- return a type for a specified die
+
+SYNOPSIS
+
+ static struct type *decode_die_type (struct dieinfo *dip)
+
+DESCRIPTION
+
+ Given a pointer to a die information structure DIP, decode the
+ type of the die and return a pointer to the decoded type. All
+ dies without specific types default to type int.
+ */
+
+static struct type *
+decode_die_type (dip)
+ struct dieinfo *dip;
+{
+ struct type *type = NULL;
+
+ if (dip -> at_fund_type != 0)
+ {
+ type = decode_fund_type (dip -> at_fund_type);
+ }
+ else if (dip -> at_mod_fund_type != NULL)
+ {
+ type = decode_mod_fund_type (dip -> at_mod_fund_type);
+ }
+ else if (dip -> at_user_def_type)
+ {
+ if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
+ {
+ type = alloc_utype (dip -> at_user_def_type, NULL);
+ }
+ }
+ else if (dip -> at_mod_u_d_type)
+ {
+ type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
+ }
+ else
+ {
+ type = dwarf_fundamental_type (current_objfile, FT_VOID);
+ }
+ return (type);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ struct_type -- compute and return the type for a struct or union
+
+SYNOPSIS
+
+ static struct type *struct_type (struct dieinfo *dip, char *thisdie,
+ char *enddie, struct objfile *objfile)
+
+DESCRIPTION
+
+ Given pointer to a die information structure for a die which
+ defines a union or structure (and MUST define one or the other),
+ and pointers to the raw die data that define the range of dies which
+ define the members, compute and return the user defined type for the
+ structure or union.
+ */
+
+static struct type *
+struct_type (dip, thisdie, enddie, objfile)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ struct type *type;
+ struct nextfield {
+ struct nextfield *next;
+ struct field field;
+ };
+ struct nextfield *list = NULL;
+ struct nextfield *new;
+ int nfields = 0;
+ int n;
+ struct dieinfo mbr;
+ char *nextdie;
+ int anonymous_size;
+
+ if ((type = lookup_utype (dip -> die_ref)) == NULL)
+ {
+ /* No forward references created an empty type, so install one now */
+ type = alloc_utype (dip -> die_ref, NULL);
+ }
+ INIT_CPLUS_SPECIFIC(type);
+ switch (dip -> die_tag)
+ {
+ case TAG_class_type:
+ TYPE_CODE (type) = TYPE_CODE_CLASS;
+ break;
+ case TAG_structure_type:
+ TYPE_CODE (type) = TYPE_CODE_STRUCT;
+ break;
+ case TAG_union_type:
+ TYPE_CODE (type) = TYPE_CODE_UNION;
+ break;
+ default:
+ /* Should never happen */
+ TYPE_CODE (type) = TYPE_CODE_UNDEF;
+ complain (&missing_tag, DIE_ID, DIE_NAME);
+ break;
+ }
+ /* Some compilers try to be helpful by inventing "fake" names for
+ anonymous enums, structures, and unions, like "~0fake" or ".0fake".
+ Thanks, but no thanks... */
+ if (dip -> at_name != NULL
+ && *dip -> at_name != '~'
+ && *dip -> at_name != '.')
+ {
+ TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
+ "", "", dip -> at_name);
+ }
+ /* Use whatever size is known. Zero is a valid size. We might however
+ wish to check has_at_byte_size to make sure that some byte size was
+ given explicitly, but DWARF doesn't specify that explicit sizes of
+ zero have to present, so complaining about missing sizes should
+ probably not be the default. */
+ TYPE_LENGTH (type) = dip -> at_byte_size;
+ thisdie += dip -> die_length;
+ while (thisdie < enddie)
+ {
+ basicdieinfo (&mbr, thisdie, objfile);
+ completedieinfo (&mbr, objfile);
+ if (mbr.die_length <= SIZEOF_DIE_LENGTH)
+ {
+ break;
+ }
+ else if (mbr.at_sibling != 0)
+ {
+ nextdie = dbbase + mbr.at_sibling - dbroff;
+ }
+ else
+ {
+ nextdie = thisdie + mbr.die_length;
+ }
+ switch (mbr.die_tag)
+ {
+ case TAG_member:
+ /* Get space to record the next field's data. */
+ new = (struct nextfield *) alloca (sizeof (struct nextfield));
+ new -> next = list;
+ list = new;
+ /* Save the data. */
+ list -> field.name =
+ obsavestring (mbr.at_name, strlen (mbr.at_name),
+ &objfile -> type_obstack);
+ FIELD_TYPE (list->field) = decode_die_type (&mbr);
+ FIELD_BITPOS (list->field) = 8 * locval (&mbr);
+ /* Handle bit fields. */
+ FIELD_BITSIZE (list->field) = mbr.at_bit_size;
+ if (BITS_BIG_ENDIAN)
+ {
+ /* For big endian bits, the at_bit_offset gives the
+ additional bit offset from the MSB of the containing
+ anonymous object to the MSB of the field. We don't
+ have to do anything special since we don't need to
+ know the size of the anonymous object. */
+ FIELD_BITPOS (list->field) += mbr.at_bit_offset;
+ }
+ else
+ {
+ /* For little endian bits, we need to have a non-zero
+ at_bit_size, so that we know we are in fact dealing
+ with a bitfield. Compute the bit offset to the MSB
+ of the anonymous object, subtract off the number of
+ bits from the MSB of the field to the MSB of the
+ object, and then subtract off the number of bits of
+ the field itself. The result is the bit offset of
+ the LSB of the field. */
+ if (mbr.at_bit_size > 0)
+ {
+ if (mbr.has_at_byte_size)
+ {
+ /* The size of the anonymous object containing
+ the bit field is explicit, so use the
+ indicated size (in bytes). */
+ anonymous_size = mbr.at_byte_size;
+ }
+ else
+ {
+ /* The size of the anonymous object containing
+ the bit field matches the size of an object
+ of the bit field's type. DWARF allows
+ at_byte_size to be left out in such cases, as
+ a debug information size optimization. */
+ anonymous_size = TYPE_LENGTH (list -> field.type);
+ }
+ FIELD_BITPOS (list->field) +=
+ anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
+ }
+ }
+ nfields++;
+ break;
+ default:
+ process_dies (thisdie, nextdie, objfile);
+ break;
+ }
+ thisdie = nextdie;
+ }
+ /* Now create the vector of fields, and record how big it is. We may
+ not even have any fields, if this DIE was generated due to a reference
+ to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
+ set, which clues gdb in to the fact that it needs to search elsewhere
+ for the full structure definition. */
+ if (nfields == 0)
+ {
+ TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
+ }
+ else
+ {
+ TYPE_NFIELDS (type) = nfields;
+ TYPE_FIELDS (type) = (struct field *)
+ TYPE_ALLOC (type, sizeof (struct field) * nfields);
+ /* Copy the saved-up fields into the field vector. */
+ for (n = nfields; list; list = list -> next)
+ {
+ TYPE_FIELD (type, --n) = list -> field;
+ }
+ }
+ return (type);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_structure_scope -- process all dies within struct or union
+
+SYNOPSIS
+
+ static void read_structure_scope (struct dieinfo *dip,
+ char *thisdie, char *enddie, struct objfile *objfile)
+
+DESCRIPTION
+
+ Called when we find the DIE that starts a structure or union
+ scope (definition) to process all dies that define the members
+ of the structure or union. DIP is a pointer to the die info
+ struct for the DIE that names the structure or union.
+
+NOTES
+
+ Note that we need to call struct_type regardless of whether or not
+ the DIE has an at_name attribute, since it might be an anonymous
+ structure or union. This gets the type entered into our set of
+ user defined types.
+
+ However, if the structure is incomplete (an opaque struct/union)
+ then suppress creating a symbol table entry for it since gdb only
+ wants to find the one with the complete definition. Note that if
+ it is complete, we just call new_symbol, which does it's own
+ checking about whether the struct/union is anonymous or not (and
+ suppresses creating a symbol table entry itself).
+
+ */
+
+static void
+read_structure_scope (dip, thisdie, enddie, objfile)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ struct type *type;
+ struct symbol *sym;
+
+ type = struct_type (dip, thisdie, enddie, objfile);
+ if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
+ {
+ sym = new_symbol (dip, objfile);
+ if (sym != NULL)
+ {
+ SYMBOL_TYPE (sym) = type;
+ if (cu_language == language_cplus)
+ {
+ synthesize_typedef (dip, objfile, type);
+ }
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_array_element_type -- decode type of the array elements
+
+SYNOPSIS
+
+ static struct type *decode_array_element_type (char *scan, char *end)
+
+DESCRIPTION
+
+ As the last step in decoding the array subscript information for an
+ array DIE, we need to decode the type of the array elements. We are
+ passed a pointer to this last part of the subscript information and
+ must return the appropriate type. If the type attribute is not
+ recognized, just warn about the problem and return type int.
+ */
+
+static struct type *
+decode_array_element_type (scan)
+ char *scan;
+{
+ struct type *typep;
+ DIE_REF die_ref;
+ unsigned short attribute;
+ unsigned short fundtype;
+ int nbytes;
+
+ attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
+ current_objfile);
+ scan += SIZEOF_ATTRIBUTE;
+ if ((nbytes = attribute_size (attribute)) == -1)
+ {
+ complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
+ typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ }
+ else
+ {
+ switch (attribute)
+ {
+ case AT_fund_type:
+ fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
+ current_objfile);
+ typep = decode_fund_type (fundtype);
+ break;
+ case AT_mod_fund_type:
+ typep = decode_mod_fund_type (scan);
+ break;
+ case AT_user_def_type:
+ die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
+ current_objfile);
+ if ((typep = lookup_utype (die_ref)) == NULL)
+ {
+ typep = alloc_utype (die_ref, NULL);
+ }
+ break;
+ case AT_mod_u_d_type:
+ typep = decode_mod_u_d_type (scan);
+ break;
+ default:
+ complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
+ typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ break;
+ }
+ }
+ return (typep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_subscript_data_item -- decode array subscript item
+
+SYNOPSIS
+
+ static struct type *
+ decode_subscript_data_item (char *scan, char *end)
+
+DESCRIPTION
+
+ The array subscripts and the data type of the elements of an
+ array are described by a list of data items, stored as a block
+ of contiguous bytes. There is a data item describing each array
+ dimension, and a final data item describing the element type.
+ The data items are ordered the same as their appearance in the
+ source (I.E. leftmost dimension first, next to leftmost second,
+ etc).
+
+ The data items describing each array dimension consist of four
+ parts: (1) a format specifier, (2) type type of the subscript
+ index, (3) a description of the low bound of the array dimension,
+ and (4) a description of the high bound of the array dimension.
+
+ The last data item is the description of the type of each of
+ the array elements.
+
+ We are passed a pointer to the start of the block of bytes
+ containing the remaining data items, and a pointer to the first
+ byte past the data. This function recursively decodes the
+ remaining data items and returns a type.
+
+ If we somehow fail to decode some data, we complain about it
+ and return a type "array of int".
+
+BUGS
+ FIXME: This code only implements the forms currently used
+ by the AT&T and GNU C compilers.
+
+ The end pointer is supplied for error checking, maybe we should
+ use it for that...
+ */
+
+static struct type *
+decode_subscript_data_item (scan, end)
+ char *scan;
+ char *end;
+{
+ struct type *typep = NULL; /* Array type we are building */
+ struct type *nexttype; /* Type of each element (may be array) */
+ struct type *indextype; /* Type of this index */
+ struct type *rangetype;
+ unsigned int format;
+ unsigned short fundtype;
+ unsigned long lowbound;
+ unsigned long highbound;
+ int nbytes;
+
+ format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
+ current_objfile);
+ scan += SIZEOF_FORMAT_SPECIFIER;
+ switch (format)
+ {
+ case FMT_ET:
+ typep = decode_array_element_type (scan);
+ break;
+ case FMT_FT_C_C:
+ fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
+ current_objfile);
+ indextype = decode_fund_type (fundtype);
+ scan += SIZEOF_FMT_FT;
+ nbytes = TARGET_FT_LONG_SIZE (current_objfile);
+ lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
+ scan += nbytes;
+ highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
+ scan += nbytes;
+ nexttype = decode_subscript_data_item (scan, end);
+ if (nexttype == NULL)
+ {
+ /* Munged subscript data or other problem, fake it. */
+ complain (&subscript_data_items, DIE_ID, DIE_NAME);
+ nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ }
+ rangetype = create_range_type ((struct type *) NULL, indextype,
+ lowbound, highbound);
+ typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
+ break;
+ case FMT_FT_C_X:
+ case FMT_FT_X_C:
+ case FMT_FT_X_X:
+ case FMT_UT_C_C:
+ case FMT_UT_C_X:
+ case FMT_UT_X_C:
+ case FMT_UT_X_X:
+ complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
+ nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
+ typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
+ break;
+ default:
+ complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
+ nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
+ typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
+ break;
+ }
+ return (typep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ dwarf_read_array_type -- read TAG_array_type DIE
+
+SYNOPSIS
+
+ static void dwarf_read_array_type (struct dieinfo *dip)
+
+DESCRIPTION
+
+ Extract all information from a TAG_array_type DIE and add to
+ the user defined type vector.
+ */
+
+static void
+dwarf_read_array_type (dip)
+ struct dieinfo *dip;
+{
+ struct type *type;
+ struct type *utype;
+ char *sub;
+ char *subend;
+ unsigned short blocksz;
+ int nbytes;
+
+ if (dip -> at_ordering != ORD_row_major)
+ {
+ /* FIXME: Can gdb even handle column major arrays? */
+ complain (&not_row_major, DIE_ID, DIE_NAME);
+ }
+ if ((sub = dip -> at_subscr_data) != NULL)
+ {
+ nbytes = attribute_size (AT_subscr_data);
+ blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
+ subend = sub + nbytes + blocksz;
+ sub += nbytes;
+ type = decode_subscript_data_item (sub, subend);
+ if ((utype = lookup_utype (dip -> die_ref)) == NULL)
+ {
+ /* Install user defined type that has not been referenced yet. */
+ alloc_utype (dip -> die_ref, type);
+ }
+ else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
+ {
+ /* Ick! A forward ref has already generated a blank type in our
+ slot, and this type probably already has things pointing to it
+ (which is what caused it to be created in the first place).
+ If it's just a place holder we can plop our fully defined type
+ on top of it. We can't recover the space allocated for our
+ new type since it might be on an obstack, but we could reuse
+ it if we kept a list of them, but it might not be worth it
+ (FIXME). */
+ *utype = *type;
+ }
+ else
+ {
+ /* Double ick! Not only is a type already in our slot, but
+ someone has decorated it. Complain and leave it alone. */
+ complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_tag_pointer_type -- read TAG_pointer_type DIE
+
+SYNOPSIS
+
+ static void read_tag_pointer_type (struct dieinfo *dip)
+
+DESCRIPTION
+
+ Extract all information from a TAG_pointer_type DIE and add to
+ the user defined type vector.
+ */
+
+static void
+read_tag_pointer_type (dip)
+ struct dieinfo *dip;
+{
+ struct type *type;
+ struct type *utype;
+
+ type = decode_die_type (dip);
+ if ((utype = lookup_utype (dip -> die_ref)) == NULL)
+ {
+ utype = lookup_pointer_type (type);
+ alloc_utype (dip -> die_ref, utype);
+ }
+ else
+ {
+ TYPE_TARGET_TYPE (utype) = type;
+ TYPE_POINTER_TYPE (type) = utype;
+
+ /* We assume the machine has only one representation for pointers! */
+ /* FIXME: Possably a poor assumption */
+ TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT ;
+ TYPE_CODE (utype) = TYPE_CODE_PTR;
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_tag_string_type -- read TAG_string_type DIE
+
+SYNOPSIS
+
+ static void read_tag_string_type (struct dieinfo *dip)
+
+DESCRIPTION
+
+ Extract all information from a TAG_string_type DIE and add to
+ the user defined type vector. It isn't really a user defined
+ type, but it behaves like one, with other DIE's using an
+ AT_user_def_type attribute to reference it.
+ */
+
+static void
+read_tag_string_type (dip)
+ struct dieinfo *dip;
+{
+ struct type *utype;
+ struct type *indextype;
+ struct type *rangetype;
+ unsigned long lowbound = 0;
+ unsigned long highbound;
+
+ if (dip -> has_at_byte_size)
+ {
+ /* A fixed bounds string */
+ highbound = dip -> at_byte_size - 1;
+ }
+ else
+ {
+ /* A varying length string. Stub for now. (FIXME) */
+ highbound = 1;
+ }
+ indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
+ highbound);
+
+ utype = lookup_utype (dip -> die_ref);
+ if (utype == NULL)
+ {
+ /* No type defined, go ahead and create a blank one to use. */
+ utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
+ }
+ else
+ {
+ /* Already a type in our slot due to a forward reference. Make sure it
+ is a blank one. If not, complain and leave it alone. */
+ if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
+ {
+ complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
+ return;
+ }
+ }
+
+ /* Create the string type using the blank type we either found or created. */
+ utype = create_string_type (utype, rangetype);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_subroutine_type -- process TAG_subroutine_type dies
+
+SYNOPSIS
+
+ static void read_subroutine_type (struct dieinfo *dip, char thisdie,
+ char *enddie)
+
+DESCRIPTION
+
+ Handle DIES due to C code like:
+
+ struct foo {
+ int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
+ int b;
+ };
+
+NOTES
+
+ The parameter DIES are currently ignored. See if gdb has a way to
+ include this info in it's type system, and decode them if so. Is
+ this what the type structure's "arg_types" field is for? (FIXME)
+ */
+
+static void
+read_subroutine_type (dip, thisdie, enddie)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+{
+ struct type *type; /* Type that this function returns */
+ struct type *ftype; /* Function that returns above type */
+
+ /* Decode the type that this subroutine returns */
+
+ type = decode_die_type (dip);
+
+ /* Check to see if we already have a partially constructed user
+ defined type for this DIE, from a forward reference. */
+
+ if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
+ {
+ /* This is the first reference to one of these types. Make
+ a new one and place it in the user defined types. */
+ ftype = lookup_function_type (type);
+ alloc_utype (dip -> die_ref, ftype);
+ }
+ else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
+ {
+ /* We have an existing partially constructed type, so bash it
+ into the correct type. */
+ TYPE_TARGET_TYPE (ftype) = type;
+ TYPE_LENGTH (ftype) = 1;
+ TYPE_CODE (ftype) = TYPE_CODE_FUNC;
+ }
+ else
+ {
+ complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_enumeration -- process dies which define an enumeration
+
+SYNOPSIS
+
+ static void read_enumeration (struct dieinfo *dip, char *thisdie,
+ char *enddie, struct objfile *objfile)
+
+DESCRIPTION
+
+ Given a pointer to a die which begins an enumeration, process all
+ the dies that define the members of the enumeration.
+
+NOTES
+
+ Note that we need to call enum_type regardless of whether or not we
+ have a symbol, since we might have an enum without a tag name (thus
+ no symbol for the tagname).
+ */
+
+static void
+read_enumeration (dip, thisdie, enddie, objfile)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ struct type *type;
+ struct symbol *sym;
+
+ type = enum_type (dip, objfile);
+ sym = new_symbol (dip, objfile);
+ if (sym != NULL)
+ {
+ SYMBOL_TYPE (sym) = type;
+ if (cu_language == language_cplus)
+ {
+ synthesize_typedef (dip, objfile, type);
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ enum_type -- decode and return a type for an enumeration
+
+SYNOPSIS
+
+ static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
+
+DESCRIPTION
+
+ Given a pointer to a die information structure for the die which
+ starts an enumeration, process all the dies that define the members
+ of the enumeration and return a type pointer for the enumeration.
+
+ At the same time, for each member of the enumeration, create a
+ symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
+ and give it the type of the enumeration itself.
+
+NOTES
+
+ Note that the DWARF specification explicitly mandates that enum
+ constants occur in reverse order from the source program order,
+ for "consistency" and because this ordering is easier for many
+ compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
+ Entries). Because gdb wants to see the enum members in program
+ source order, we have to ensure that the order gets reversed while
+ we are processing them.
+ */
+
+static struct type *
+enum_type (dip, objfile)
+ struct dieinfo *dip;
+ struct objfile *objfile;
+{
+ struct type *type;
+ struct nextfield {
+ struct nextfield *next;
+ struct field field;
+ };
+ struct nextfield *list = NULL;
+ struct nextfield *new;
+ int nfields = 0;
+ int n;
+ char *scan;
+ char *listend;
+ unsigned short blocksz;
+ struct symbol *sym;
+ int nbytes;
+ int unsigned_enum = 1;
+
+ if ((type = lookup_utype (dip -> die_ref)) == NULL)
+ {
+ /* No forward references created an empty type, so install one now */
+ type = alloc_utype (dip -> die_ref, NULL);
+ }
+ TYPE_CODE (type) = TYPE_CODE_ENUM;
+ /* Some compilers try to be helpful by inventing "fake" names for
+ anonymous enums, structures, and unions, like "~0fake" or ".0fake".
+ Thanks, but no thanks... */
+ if (dip -> at_name != NULL
+ && *dip -> at_name != '~'
+ && *dip -> at_name != '.')
+ {
+ TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
+ "", "", dip -> at_name);
+ }
+ if (dip -> at_byte_size != 0)
+ {
+ TYPE_LENGTH (type) = dip -> at_byte_size;
+ }
+ if ((scan = dip -> at_element_list) != NULL)
+ {
+ if (dip -> short_element_list)
+ {
+ nbytes = attribute_size (AT_short_element_list);
+ }
+ else
+ {
+ nbytes = attribute_size (AT_element_list);
+ }
+ blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
+ listend = scan + nbytes + blocksz;
+ scan += nbytes;
+ while (scan < listend)
+ {
+ new = (struct nextfield *) alloca (sizeof (struct nextfield));
+ new -> next = list;
+ list = new;
+ FIELD_TYPE (list->field) = NULL;
+ FIELD_BITSIZE (list->field) = 0;
+ FIELD_BITPOS (list->field) =
+ target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
+ objfile);
+ scan += TARGET_FT_LONG_SIZE (objfile);
+ list -> field.name = obsavestring (scan, strlen (scan),
+ &objfile -> type_obstack);
+ scan += strlen (scan) + 1;
+ nfields++;
+ /* Handcraft a new symbol for this enum member. */
+ sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
+ sizeof (struct symbol));
+ memset (sym, 0, sizeof (struct symbol));
+ SYMBOL_NAME (sym) = create_name (list -> field.name,
+ &objfile->symbol_obstack);
+ SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ SYMBOL_CLASS (sym) = LOC_CONST;
+ SYMBOL_TYPE (sym) = type;
+ SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
+ if (SYMBOL_VALUE (sym) < 0)
+ unsigned_enum = 0;
+ add_symbol_to_list (sym, list_in_scope);
+ }
+ /* Now create the vector of fields, and record how big it is. This is
+ where we reverse the order, by pulling the members off the list in
+ reverse order from how they were inserted. If we have no fields
+ (this is apparently possible in C++) then skip building a field
+ vector. */
+ if (nfields > 0)
+ {
+ if (unsigned_enum)
+ TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
+ TYPE_NFIELDS (type) = nfields;
+ TYPE_FIELDS (type) = (struct field *)
+ obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
+ /* Copy the saved-up fields into the field vector. */
+ for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
+ {
+ TYPE_FIELD (type, n++) = list -> field;
+ }
+ }
+ }
+ return (type);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_func_scope -- process all dies within a function scope
+
+DESCRIPTION
+
+ Process all dies within a given function scope. We are passed
+ a die information structure pointer DIP for the die which
+ starts the function scope, and pointers into the raw die data
+ that define the dies within the function scope.
+
+ For now, we ignore lexical block scopes within the function.
+ The problem is that AT&T cc does not define a DWARF lexical
+ block scope for the function itself, while gcc defines a
+ lexical block scope for the function. We need to think about
+ how to handle this difference, or if it is even a problem.
+ (FIXME)
+ */
+
+static void
+read_func_scope (dip, thisdie, enddie, objfile)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ register struct context_stack *new;
+
+ /* AT_name is absent if the function is described with an
+ AT_abstract_origin tag.
+ Ignore the function description for now to avoid GDB core dumps.
+ FIXME: Add code to handle AT_abstract_origin tags properly. */
+ if (dip -> at_name == NULL)
+ {
+ complain (&missing_at_name, DIE_ID);
+ return;
+ }
+
+ if (objfile -> ei.entry_point >= dip -> at_low_pc &&
+ objfile -> ei.entry_point < dip -> at_high_pc)
+ {
+ objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
+ objfile -> ei.entry_func_highpc = dip -> at_high_pc;
+ }
+ if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
+ {
+ objfile -> ei.main_func_lowpc = dip -> at_low_pc;
+ objfile -> ei.main_func_highpc = dip -> at_high_pc;
+ }
+ new = push_context (0, dip -> at_low_pc);
+ new -> name = new_symbol (dip, objfile);
+ list_in_scope = &local_symbols;
+ process_dies (thisdie + dip -> die_length, enddie, objfile);
+ new = pop_context ();
+ /* Make a block for the local symbols within. */
+ finish_block (new -> name, &local_symbols, new -> old_blocks,
+ new -> start_addr, dip -> at_high_pc, objfile);
+ list_in_scope = &file_symbols;
+}
+
+
+/*
+
+LOCAL FUNCTION
+
+ handle_producer -- process the AT_producer attribute
+
+DESCRIPTION
+
+ Perform any operations that depend on finding a particular
+ AT_producer attribute.
+
+ */
+
+static void
+handle_producer (producer)
+ char *producer;
+{
+
+ /* If this compilation unit was compiled with g++ or gcc, then set the
+ processing_gcc_compilation flag. */
+
+ if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
+ {
+ char version = producer[strlen (GCC_PRODUCER)];
+ processing_gcc_compilation = (version == '2' ? 2 : 1);
+ }
+ else
+ {
+ processing_gcc_compilation =
+ STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
+ || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
+ }
+
+ /* Select a demangling style if we can identify the producer and if
+ the current style is auto. We leave the current style alone if it
+ is not auto. We also leave the demangling style alone if we find a
+ gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
+
+ if (AUTO_DEMANGLING)
+ {
+ if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
+ {
+ set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
+ }
+ else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
+ {
+ set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
+ }
+ }
+}
+
+
+/*
+
+LOCAL FUNCTION
+
+ read_file_scope -- process all dies within a file scope
+
+DESCRIPTION
+
+ Process all dies within a given file scope. We are passed a
+ pointer to the die information structure for the die which
+ starts the file scope, and pointers into the raw die data which
+ mark the range of dies within the file scope.
+
+ When the partial symbol table is built, the file offset for the line
+ number table for each compilation unit is saved in the partial symbol
+ table entry for that compilation unit. As the symbols for each
+ compilation unit are read, the line number table is read into memory
+ and the variable lnbase is set to point to it. Thus all we have to
+ do is use lnbase to access the line number table for the current
+ compilation unit.
+ */
+
+static void
+read_file_scope (dip, thisdie, enddie, objfile)
+ struct dieinfo *dip;
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ struct cleanup *back_to;
+ struct symtab *symtab;
+
+ if (objfile -> ei.entry_point >= dip -> at_low_pc &&
+ objfile -> ei.entry_point < dip -> at_high_pc)
+ {
+ objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
+ objfile -> ei.entry_file_highpc = dip -> at_high_pc;
+ }
+ set_cu_language (dip);
+ if (dip -> at_producer != NULL)
+ {
+ handle_producer (dip -> at_producer);
+ }
+ numutypes = (enddie - thisdie) / 4;
+ utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
+ back_to = make_cleanup (free_utypes, NULL);
+ memset (utypes, 0, numutypes * sizeof (struct type *));
+ memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
+ start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
+ record_debugformat ("DWARF 1");
+ decode_line_numbers (lnbase);
+ process_dies (thisdie + dip -> die_length, enddie, objfile);
+
+ symtab = end_symtab (dip -> at_high_pc, objfile, 0);
+ if (symtab != NULL)
+ {
+ symtab -> language = cu_language;
+ }
+ do_cleanups (back_to);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ process_dies -- process a range of DWARF Information Entries
+
+SYNOPSIS
+
+ static void process_dies (char *thisdie, char *enddie,
+ struct objfile *objfile)
+
+DESCRIPTION
+
+ Process all DIE's in a specified range. May be (and almost
+ certainly will be) called recursively.
+ */
+
+static void
+process_dies (thisdie, enddie, objfile)
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ char *nextdie;
+ struct dieinfo di;
+
+ while (thisdie < enddie)
+ {
+ basicdieinfo (&di, thisdie, objfile);
+ if (di.die_length < SIZEOF_DIE_LENGTH)
+ {
+ break;
+ }
+ else if (di.die_tag == TAG_padding)
+ {
+ nextdie = thisdie + di.die_length;
+ }
+ else
+ {
+ completedieinfo (&di, objfile);
+ if (di.at_sibling != 0)
+ {
+ nextdie = dbbase + di.at_sibling - dbroff;
+ }
+ else
+ {
+ nextdie = thisdie + di.die_length;
+ }
+#ifdef SMASH_TEXT_ADDRESS
+ /* I think that these are always text, not data, addresses. */
+ SMASH_TEXT_ADDRESS (di.at_low_pc);
+ SMASH_TEXT_ADDRESS (di.at_high_pc);
+#endif
+ switch (di.die_tag)
+ {
+ case TAG_compile_unit:
+ /* Skip Tag_compile_unit if we are already inside a compilation
+ unit, we are unable to handle nested compilation units
+ properly (FIXME). */
+ if (current_subfile == NULL)
+ read_file_scope (&di, thisdie, nextdie, objfile);
+ else
+ nextdie = thisdie + di.die_length;
+ break;
+ case TAG_global_subroutine:
+ case TAG_subroutine:
+ if (di.has_at_low_pc)
+ {
+ read_func_scope (&di, thisdie, nextdie, objfile);
+ }
+ break;
+ case TAG_lexical_block:
+ read_lexical_block_scope (&di, thisdie, nextdie, objfile);
+ break;
+ case TAG_class_type:
+ case TAG_structure_type:
+ case TAG_union_type:
+ read_structure_scope (&di, thisdie, nextdie, objfile);
+ break;
+ case TAG_enumeration_type:
+ read_enumeration (&di, thisdie, nextdie, objfile);
+ break;
+ case TAG_subroutine_type:
+ read_subroutine_type (&di, thisdie, nextdie);
+ break;
+ case TAG_array_type:
+ dwarf_read_array_type (&di);
+ break;
+ case TAG_pointer_type:
+ read_tag_pointer_type (&di);
+ break;
+ case TAG_string_type:
+ read_tag_string_type (&di);
+ break;
+ default:
+ new_symbol (&di, objfile);
+ break;
+ }
+ }
+ thisdie = nextdie;
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_line_numbers -- decode a line number table fragment
+
+SYNOPSIS
+
+ static void decode_line_numbers (char *tblscan, char *tblend,
+ long length, long base, long line, long pc)
+
+DESCRIPTION
+
+ Translate the DWARF line number information to gdb form.
+
+ The ".line" section contains one or more line number tables, one for
+ each ".line" section from the objects that were linked.
+
+ The AT_stmt_list attribute for each TAG_source_file entry in the
+ ".debug" section contains the offset into the ".line" section for the
+ start of the table for that file.
+
+ The table itself has the following structure:
+
+ <table length><base address><source statement entry>
+ 4 bytes 4 bytes 10 bytes
+
+ The table length is the total size of the table, including the 4 bytes
+ for the length information.
+
+ The base address is the address of the first instruction generated
+ for the source file.
+
+ Each source statement entry has the following structure:
+
+ <line number><statement position><address delta>
+ 4 bytes 2 bytes 4 bytes
+
+ The line number is relative to the start of the file, starting with
+ line 1.
+
+ The statement position either -1 (0xFFFF) or the number of characters
+ from the beginning of the line to the beginning of the statement.
+
+ The address delta is the difference between the base address and
+ the address of the first instruction for the statement.
+
+ Note that we must copy the bytes from the packed table to our local
+ variables before attempting to use them, to avoid alignment problems
+ on some machines, particularly RISC processors.
+
+BUGS
+
+ Does gdb expect the line numbers to be sorted? They are now by
+ chance/luck, but are not required to be. (FIXME)
+
+ The line with number 0 is unused, gdb apparently can discover the
+ span of the last line some other way. How? (FIXME)
+ */
+
+static void
+decode_line_numbers (linetable)
+ char *linetable;
+{
+ char *tblscan;
+ char *tblend;
+ unsigned long length;
+ unsigned long base;
+ unsigned long line;
+ unsigned long pc;
+
+ if (linetable != NULL)
+ {
+ tblscan = tblend = linetable;
+ length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
+ current_objfile);
+ tblscan += SIZEOF_LINETBL_LENGTH;
+ tblend += length;
+ base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
+ GET_UNSIGNED, current_objfile);
+ tblscan += TARGET_FT_POINTER_SIZE (objfile);
+ base += baseaddr;
+ while (tblscan < tblend)
+ {
+ line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
+ current_objfile);
+ tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
+ pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
+ current_objfile);
+ tblscan += SIZEOF_LINETBL_DELTA;
+ pc += base;
+ if (line != 0)
+ {
+ record_line (current_subfile, line, pc);
+ }
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ locval -- compute the value of a location attribute
+
+SYNOPSIS
+
+ static int locval (struct dieinfo *dip)
+
+DESCRIPTION
+
+ Given pointer to a string of bytes that define a location, compute
+ the location and return the value.
+ A location description containing no atoms indicates that the
+ object is optimized out. The optimized_out flag is set for those,
+ the return value is meaningless.
+
+ When computing values involving the current value of the frame pointer,
+ the value zero is used, which results in a value relative to the frame
+ pointer, rather than the absolute value. This is what GDB wants
+ anyway.
+
+ When the result is a register number, the isreg flag is set, otherwise
+ it is cleared. This is a kludge until we figure out a better
+ way to handle the problem. Gdb's design does not mesh well with the
+ DWARF notion of a location computing interpreter, which is a shame
+ because the flexibility goes unused.
+
+NOTES
+
+ Note that stack[0] is unused except as a default error return.
+ Note that stack overflow is not yet handled.
+ */
+
+static int
+locval (dip)
+ struct dieinfo *dip;
+{
+ unsigned short nbytes;
+ unsigned short locsize;
+ auto long stack[64];
+ int stacki;
+ char *loc;
+ char *end;
+ int loc_atom_code;
+ int loc_value_size;
+
+ loc = dip -> at_location;
+ nbytes = attribute_size (AT_location);
+ locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
+ loc += nbytes;
+ end = loc + locsize;
+ stacki = 0;
+ stack[stacki] = 0;
+ dip -> isreg = 0;
+ dip -> offreg = 0;
+ dip -> optimized_out = 1;
+ loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
+ while (loc < end)
+ {
+ dip -> optimized_out = 0;
+ loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
+ current_objfile);
+ loc += SIZEOF_LOC_ATOM_CODE;
+ switch (loc_atom_code)
+ {
+ case 0:
+ /* error */
+ loc = end;
+ break;
+ case OP_REG:
+ /* push register (number) */
+ stack[++stacki]
+ = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
+ GET_UNSIGNED,
+ current_objfile));
+ loc += loc_value_size;
+ dip -> isreg = 1;
+ break;
+ case OP_BASEREG:
+ /* push value of register (number) */
+ /* Actually, we compute the value as if register has 0, so the
+ value ends up being the offset from that register. */
+ dip -> offreg = 1;
+ dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
+ current_objfile);
+ loc += loc_value_size;
+ stack[++stacki] = 0;
+ break;
+ case OP_ADDR:
+ /* push address (relocated address) */
+ stack[++stacki] = target_to_host (loc, loc_value_size,
+ GET_UNSIGNED, current_objfile);
+ loc += loc_value_size;
+ break;
+ case OP_CONST:
+ /* push constant (number) FIXME: signed or unsigned! */
+ stack[++stacki] = target_to_host (loc, loc_value_size,
+ GET_SIGNED, current_objfile);
+ loc += loc_value_size;
+ break;
+ case OP_DEREF2:
+ /* pop, deref and push 2 bytes (as a long) */
+ complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
+ break;
+ case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
+ complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
+ break;
+ case OP_ADD: /* pop top 2 items, add, push result */
+ stack[stacki - 1] += stack[stacki];
+ stacki--;
+ break;
+ }
+ }
+ return (stack[stacki]);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ read_ofile_symtab -- build a full symtab entry from chunk of DIE's
+
+SYNOPSIS
+
+ static void read_ofile_symtab (struct partial_symtab *pst)
+
+DESCRIPTION
+
+ When expanding a partial symbol table entry to a full symbol table
+ entry, this is the function that gets called to read in the symbols
+ for the compilation unit. A pointer to the newly constructed symtab,
+ which is now the new first one on the objfile's symtab list, is
+ stashed in the partial symbol table entry.
+ */
+
+static void
+read_ofile_symtab (pst)
+ struct partial_symtab *pst;
+{
+ struct cleanup *back_to;
+ unsigned long lnsize;
+ file_ptr foffset;
+ bfd *abfd;
+ char lnsizedata[SIZEOF_LINETBL_LENGTH];
+
+ abfd = pst -> objfile -> obfd;
+ current_objfile = pst -> objfile;
+
+ /* Allocate a buffer for the entire chunk of DIE's for this compilation
+ unit, seek to the location in the file, and read in all the DIE's. */
+
+ diecount = 0;
+ dbsize = DBLENGTH (pst);
+ dbbase = xmalloc (dbsize);
+ dbroff = DBROFF(pst);
+ foffset = DBFOFF(pst) + dbroff;
+ base_section_offsets = pst->section_offsets;
+ baseaddr = ANOFFSET (pst->section_offsets, 0);
+ if (bfd_seek (abfd, foffset, SEEK_SET) ||
+ (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
+ {
+ free (dbbase);
+ error ("can't read DWARF data");
+ }
+ back_to = make_cleanup (free, dbbase);
+
+ /* If there is a line number table associated with this compilation unit
+ then read the size of this fragment in bytes, from the fragment itself.
+ Allocate a buffer for the fragment and read it in for future
+ processing. */
+
+ lnbase = NULL;
+ if (LNFOFF (pst))
+ {
+ if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
+ (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
+ sizeof (lnsizedata)))
+ {
+ error ("can't read DWARF line number table size");
+ }
+ lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
+ GET_UNSIGNED, pst -> objfile);
+ lnbase = xmalloc (lnsize);
+ if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
+ (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
+ {
+ free (lnbase);
+ error ("can't read DWARF line numbers");
+ }
+ make_cleanup (free, lnbase);
+ }
+
+ process_dies (dbbase, dbbase + dbsize, pst -> objfile);
+ do_cleanups (back_to);
+ current_objfile = NULL;
+ pst -> symtab = pst -> objfile -> symtabs;
+}
+
+/*
+
+LOCAL FUNCTION
+
+ psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
+
+SYNOPSIS
+
+ static void psymtab_to_symtab_1 (struct partial_symtab *pst)
+
+DESCRIPTION
+
+ Called once for each partial symbol table entry that needs to be
+ expanded into a full symbol table entry.
+
+*/
+
+static void
+psymtab_to_symtab_1 (pst)
+ struct partial_symtab *pst;
+{
+ int i;
+ struct cleanup *old_chain;
+
+ if (pst != NULL)
+ {
+ if (pst->readin)
+ {
+ warning ("psymtab for %s already read in. Shouldn't happen.",
+ pst -> filename);
+ }
+ else
+ {
+ /* Read in all partial symtabs on which this one is dependent */
+ for (i = 0; i < pst -> number_of_dependencies; i++)
+ {
+ if (!pst -> dependencies[i] -> readin)
+ {
+ /* Inform about additional files that need to be read in. */
+ if (info_verbose)
+ {
+ fputs_filtered (" ", gdb_stdout);
+ wrap_here ("");
+ fputs_filtered ("and ", gdb_stdout);
+ wrap_here ("");
+ printf_filtered ("%s...",
+ pst -> dependencies[i] -> filename);
+ wrap_here ("");
+ gdb_flush (gdb_stdout); /* Flush output */
+ }
+ psymtab_to_symtab_1 (pst -> dependencies[i]);
+ }
+ }
+ if (DBLENGTH (pst)) /* Otherwise it's a dummy */
+ {
+ buildsym_init ();
+ old_chain = make_cleanup ((make_cleanup_func)
+ really_free_pendings, 0);
+ read_ofile_symtab (pst);
+ if (info_verbose)
+ {
+ printf_filtered ("%d DIE's, sorting...", diecount);
+ wrap_here ("");
+ gdb_flush (gdb_stdout);
+ }
+ sort_symtab_syms (pst -> symtab);
+ do_cleanups (old_chain);
+ }
+ pst -> readin = 1;
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
+
+SYNOPSIS
+
+ static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
+
+DESCRIPTION
+
+ This is the DWARF support entry point for building a full symbol
+ table entry from a partial symbol table entry. We are passed a
+ pointer to the partial symbol table entry that needs to be expanded.
+
+*/
+
+static void
+dwarf_psymtab_to_symtab (pst)
+ struct partial_symtab *pst;
+{
+
+ if (pst != NULL)
+ {
+ if (pst -> readin)
+ {
+ warning ("psymtab for %s already read in. Shouldn't happen.",
+ pst -> filename);
+ }
+ else
+ {
+ if (DBLENGTH (pst) || pst -> number_of_dependencies)
+ {
+ /* Print the message now, before starting serious work, to avoid
+ disconcerting pauses. */
+ if (info_verbose)
+ {
+ printf_filtered ("Reading in symbols for %s...",
+ pst -> filename);
+ gdb_flush (gdb_stdout);
+ }
+
+ psymtab_to_symtab_1 (pst);
+
+#if 0 /* FIXME: Check to see what dbxread is doing here and see if
+ we need to do an equivalent or is this something peculiar to
+ stabs/a.out format.
+ Match with global symbols. This only needs to be done once,
+ after all of the symtabs and dependencies have been read in.
+ */
+ scan_file_globals (pst -> objfile);
+#endif
+
+ /* Finish up the verbose info message. */
+ if (info_verbose)
+ {
+ printf_filtered ("done.\n");
+ gdb_flush (gdb_stdout);
+ }
+ }
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ add_enum_psymbol -- add enumeration members to partial symbol table
+
+DESCRIPTION
+
+ Given pointer to a DIE that is known to be for an enumeration,
+ extract the symbolic names of the enumeration members and add
+ partial symbols for them.
+*/
+
+static void
+add_enum_psymbol (dip, objfile)
+ struct dieinfo *dip;
+ struct objfile *objfile;
+{
+ char *scan;
+ char *listend;
+ unsigned short blocksz;
+ int nbytes;
+
+ if ((scan = dip -> at_element_list) != NULL)
+ {
+ if (dip -> short_element_list)
+ {
+ nbytes = attribute_size (AT_short_element_list);
+ }
+ else
+ {
+ nbytes = attribute_size (AT_element_list);
+ }
+ blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
+ scan += nbytes;
+ listend = scan + blocksz;
+ while (scan < listend)
+ {
+ scan += TARGET_FT_LONG_SIZE (objfile);
+ add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
+ &objfile -> static_psymbols, 0, 0, cu_language,
+ objfile);
+ scan += strlen (scan) + 1;
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ add_partial_symbol -- add symbol to partial symbol table
+
+DESCRIPTION
+
+ Given a DIE, if it is one of the types that we want to
+ add to a partial symbol table, finish filling in the die info
+ and then add a partial symbol table entry for it.
+
+NOTES
+
+ The caller must ensure that the DIE has a valid name attribute.
+*/
+
+static void
+add_partial_symbol (dip, objfile)
+ struct dieinfo *dip;
+ struct objfile *objfile;
+{
+ switch (dip -> die_tag)
+ {
+ case TAG_global_subroutine:
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ VAR_NAMESPACE, LOC_BLOCK,
+ &objfile -> global_psymbols,
+ 0, dip -> at_low_pc, cu_language, objfile);
+ break;
+ case TAG_global_variable:
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ VAR_NAMESPACE, LOC_STATIC,
+ &objfile -> global_psymbols,
+ 0, 0, cu_language, objfile);
+ break;
+ case TAG_subroutine:
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ VAR_NAMESPACE, LOC_BLOCK,
+ &objfile -> static_psymbols,
+ 0, dip -> at_low_pc, cu_language, objfile);
+ break;
+ case TAG_local_variable:
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ VAR_NAMESPACE, LOC_STATIC,
+ &objfile -> static_psymbols,
+ 0, 0, cu_language, objfile);
+ break;
+ case TAG_typedef:
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ VAR_NAMESPACE, LOC_TYPEDEF,
+ &objfile -> static_psymbols,
+ 0, 0, cu_language, objfile);
+ break;
+ case TAG_class_type:
+ case TAG_structure_type:
+ case TAG_union_type:
+ case TAG_enumeration_type:
+ /* Do not add opaque aggregate definitions to the psymtab. */
+ if (!dip -> has_at_byte_size)
+ break;
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ STRUCT_NAMESPACE, LOC_TYPEDEF,
+ &objfile -> static_psymbols,
+ 0, 0, cu_language, objfile);
+ if (cu_language == language_cplus)
+ {
+ /* For C++, these implicitly act as typedefs as well. */
+ add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
+ VAR_NAMESPACE, LOC_TYPEDEF,
+ &objfile -> static_psymbols,
+ 0, 0, cu_language, objfile);
+ }
+ break;
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ scan_partial_symbols -- scan DIE's within a single compilation unit
+
+DESCRIPTION
+
+ Process the DIE's within a single compilation unit, looking for
+ interesting DIE's that contribute to the partial symbol table entry
+ for this compilation unit.
+
+NOTES
+
+ There are some DIE's that may appear both at file scope and within
+ the scope of a function. We are only interested in the ones at file
+ scope, and the only way to tell them apart is to keep track of the
+ scope. For example, consider the test case:
+
+ static int i;
+ main () { int j; }
+
+ for which the relevant DWARF segment has the structure:
+
+ 0x51:
+ 0x23 global subrtn sibling 0x9b
+ name main
+ fund_type FT_integer
+ low_pc 0x800004cc
+ high_pc 0x800004d4
+
+ 0x74:
+ 0x23 local var sibling 0x97
+ name j
+ fund_type FT_integer
+ location OP_BASEREG 0xe
+ OP_CONST 0xfffffffc
+ OP_ADD
+ 0x97:
+ 0x4
+
+ 0x9b:
+ 0x1d local var sibling 0xb8
+ name i
+ fund_type FT_integer
+ location OP_ADDR 0x800025dc
+
+ 0xb8:
+ 0x4
+
+ We want to include the symbol 'i' in the partial symbol table, but
+ not the symbol 'j'. In essence, we want to skip all the dies within
+ the scope of a TAG_global_subroutine DIE.
+
+ Don't attempt to add anonymous structures or unions since they have
+ no name. Anonymous enumerations however are processed, because we
+ want to extract their member names (the check for a tag name is
+ done later).
+
+ Also, for variables and subroutines, check that this is the place
+ where the actual definition occurs, rather than just a reference
+ to an external.
+ */
+
+static void
+scan_partial_symbols (thisdie, enddie, objfile)
+ char *thisdie;
+ char *enddie;
+ struct objfile *objfile;
+{
+ char *nextdie;
+ char *temp;
+ struct dieinfo di;
+
+ while (thisdie < enddie)
+ {
+ basicdieinfo (&di, thisdie, objfile);
+ if (di.die_length < SIZEOF_DIE_LENGTH)
+ {
+ break;
+ }
+ else
+ {
+ nextdie = thisdie + di.die_length;
+ /* To avoid getting complete die information for every die, we
+ only do it (below) for the cases we are interested in. */
+ switch (di.die_tag)
+ {
+ case TAG_global_subroutine:
+ case TAG_subroutine:
+ completedieinfo (&di, objfile);
+ if (di.at_name && (di.has_at_low_pc || di.at_location))
+ {
+ add_partial_symbol (&di, objfile);
+ /* If there is a sibling attribute, adjust the nextdie
+ pointer to skip the entire scope of the subroutine.
+ Apply some sanity checking to make sure we don't
+ overrun or underrun the range of remaining DIE's */
+ if (di.at_sibling != 0)
+ {
+ temp = dbbase + di.at_sibling - dbroff;
+ if ((temp < thisdie) || (temp >= enddie))
+ {
+ complain (&bad_die_ref, DIE_ID, DIE_NAME,
+ di.at_sibling);
+ }
+ else
+ {
+ nextdie = temp;
+ }
+ }
+ }
+ break;
+ case TAG_global_variable:
+ case TAG_local_variable:
+ completedieinfo (&di, objfile);
+ if (di.at_name && (di.has_at_low_pc || di.at_location))
+ {
+ add_partial_symbol (&di, objfile);
+ }
+ break;
+ case TAG_typedef:
+ case TAG_class_type:
+ case TAG_structure_type:
+ case TAG_union_type:
+ completedieinfo (&di, objfile);
+ if (di.at_name)
+ {
+ add_partial_symbol (&di, objfile);
+ }
+ break;
+ case TAG_enumeration_type:
+ completedieinfo (&di, objfile);
+ if (di.at_name)
+ {
+ add_partial_symbol (&di, objfile);
+ }
+ add_enum_psymbol (&di, objfile);
+ break;
+ }
+ }
+ thisdie = nextdie;
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ scan_compilation_units -- build a psymtab entry for each compilation
+
+DESCRIPTION
+
+ This is the top level dwarf parsing routine for building partial
+ symbol tables.
+
+ It scans from the beginning of the DWARF table looking for the first
+ TAG_compile_unit DIE, and then follows the sibling chain to locate
+ each additional TAG_compile_unit DIE.
+
+ For each TAG_compile_unit DIE it creates a partial symtab structure,
+ calls a subordinate routine to collect all the compilation unit's
+ global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
+ new partial symtab structure into the partial symbol table. It also
+ records the appropriate information in the partial symbol table entry
+ to allow the chunk of DIE's and line number table for this compilation
+ unit to be located and re-read later, to generate a complete symbol
+ table entry for the compilation unit.
+
+ Thus it effectively partitions up a chunk of DIE's for multiple
+ compilation units into smaller DIE chunks and line number tables,
+ and associates them with a partial symbol table entry.
+
+NOTES
+
+ If any compilation unit has no line number table associated with
+ it for some reason (a missing at_stmt_list attribute, rather than
+ just one with a value of zero, which is valid) then we ensure that
+ the recorded file offset is zero so that the routine which later
+ reads line number table fragments knows that there is no fragment
+ to read.
+
+RETURNS
+
+ Returns no value.
+
+ */
+
+static void
+scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
+ char *thisdie;
+ char *enddie;
+ file_ptr dbfoff;
+ file_ptr lnoffset;
+ struct objfile *objfile;
+{
+ char *nextdie;
+ struct dieinfo di;
+ struct partial_symtab *pst;
+ int culength;
+ int curoff;
+ file_ptr curlnoffset;
+
+ while (thisdie < enddie)
+ {
+ basicdieinfo (&di, thisdie, objfile);
+ if (di.die_length < SIZEOF_DIE_LENGTH)
+ {
+ break;
+ }
+ else if (di.die_tag != TAG_compile_unit)
+ {
+ nextdie = thisdie + di.die_length;
+ }
+ else
+ {
+ completedieinfo (&di, objfile);
+ set_cu_language (&di);
+ if (di.at_sibling != 0)
+ {
+ nextdie = dbbase + di.at_sibling - dbroff;
+ }
+ else
+ {
+ nextdie = thisdie + di.die_length;
+ }
+ curoff = thisdie - dbbase;
+ culength = nextdie - thisdie;
+ curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
+
+ /* First allocate a new partial symbol table structure */
+
+ pst = start_psymtab_common (objfile, base_section_offsets,
+ di.at_name, di.at_low_pc,
+ objfile -> global_psymbols.next,
+ objfile -> static_psymbols.next);
+
+ pst -> texthigh = di.at_high_pc;
+ pst -> read_symtab_private = (char *)
+ obstack_alloc (&objfile -> psymbol_obstack,
+ sizeof (struct dwfinfo));
+ DBFOFF (pst) = dbfoff;
+ DBROFF (pst) = curoff;
+ DBLENGTH (pst) = culength;
+ LNFOFF (pst) = curlnoffset;
+ pst -> read_symtab = dwarf_psymtab_to_symtab;
+
+ /* Now look for partial symbols */
+
+ scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
+
+ pst -> n_global_syms = objfile -> global_psymbols.next -
+ (objfile -> global_psymbols.list + pst -> globals_offset);
+ pst -> n_static_syms = objfile -> static_psymbols.next -
+ (objfile -> static_psymbols.list + pst -> statics_offset);
+ sort_pst_symbols (pst);
+ /* If there is already a psymtab or symtab for a file of this name,
+ remove it. (If there is a symtab, more drastic things also
+ happen.) This happens in VxWorks. */
+ free_named_symtabs (pst -> filename);
+ }
+ thisdie = nextdie;
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ new_symbol -- make a symbol table entry for a new symbol
+
+SYNOPSIS
+
+ static struct symbol *new_symbol (struct dieinfo *dip,
+ struct objfile *objfile)
+
+DESCRIPTION
+
+ Given a pointer to a DWARF information entry, figure out if we need
+ to make a symbol table entry for it, and if so, create a new entry
+ and return a pointer to it.
+ */
+
+static struct symbol *
+new_symbol (dip, objfile)
+ struct dieinfo *dip;
+ struct objfile *objfile;
+{
+ struct symbol *sym = NULL;
+
+ if (dip -> at_name != NULL)
+ {
+ sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
+ sizeof (struct symbol));
+ OBJSTAT (objfile, n_syms++);
+ memset (sym, 0, sizeof (struct symbol));
+ SYMBOL_NAME (sym) = create_name (dip -> at_name,
+ &objfile->symbol_obstack);
+ /* default assumptions */
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ SYMBOL_TYPE (sym) = decode_die_type (dip);
+
+ /* If this symbol is from a C++ compilation, then attempt to cache the
+ demangled form for future reference. This is a typical time versus
+ space tradeoff, that was decided in favor of time because it sped up
+ C++ symbol lookups by a factor of about 20. */
+
+ SYMBOL_LANGUAGE (sym) = cu_language;
+ SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
+ switch (dip -> die_tag)
+ {
+ case TAG_label:
+ SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
+ SYMBOL_CLASS (sym) = LOC_LABEL;
+ break;
+ case TAG_global_subroutine:
+ case TAG_subroutine:
+ SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
+ SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
+ if (dip -> at_prototyped)
+ TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
+ SYMBOL_CLASS (sym) = LOC_BLOCK;
+ if (dip -> die_tag == TAG_global_subroutine)
+ {
+ add_symbol_to_list (sym, &global_symbols);
+ }
+ else
+ {
+ add_symbol_to_list (sym, list_in_scope);
+ }
+ break;
+ case TAG_global_variable:
+ if (dip -> at_location != NULL)
+ {
+ SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
+ add_symbol_to_list (sym, &global_symbols);
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ SYMBOL_VALUE (sym) += baseaddr;
+ }
+ break;
+ case TAG_local_variable:
+ if (dip -> at_location != NULL)
+ {
+ int loc = locval (dip);
+ if (dip -> optimized_out)
+ {
+ SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
+ }
+ else if (dip -> isreg)
+ {
+ SYMBOL_CLASS (sym) = LOC_REGISTER;
+ }
+ else if (dip -> offreg)
+ {
+ SYMBOL_CLASS (sym) = LOC_BASEREG;
+ SYMBOL_BASEREG (sym) = dip -> basereg;
+ }
+ else
+ {
+ SYMBOL_CLASS (sym) = LOC_STATIC;
+ SYMBOL_VALUE (sym) += baseaddr;
+ }
+ if (SYMBOL_CLASS (sym) == LOC_STATIC)
+ {
+ /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
+ which may store to a bigger location than SYMBOL_VALUE. */
+ SYMBOL_VALUE_ADDRESS (sym) = loc;
+ }
+ else
+ {
+ SYMBOL_VALUE (sym) = loc;
+ }
+ add_symbol_to_list (sym, list_in_scope);
+ }
+ break;
+ case TAG_formal_parameter:
+ if (dip -> at_location != NULL)
+ {
+ SYMBOL_VALUE (sym) = locval (dip);
+ }
+ add_symbol_to_list (sym, list_in_scope);
+ if (dip -> isreg)
+ {
+ SYMBOL_CLASS (sym) = LOC_REGPARM;
+ }
+ else if (dip -> offreg)
+ {
+ SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
+ SYMBOL_BASEREG (sym) = dip -> basereg;
+ }
+ else
+ {
+ SYMBOL_CLASS (sym) = LOC_ARG;
+ }
+ break;
+ case TAG_unspecified_parameters:
+ /* From varargs functions; gdb doesn't seem to have any interest in
+ this information, so just ignore it for now. (FIXME?) */
+ break;
+ case TAG_class_type:
+ case TAG_structure_type:
+ case TAG_union_type:
+ case TAG_enumeration_type:
+ SYMBOL_CLASS (sym) = LOC_TYPEDEF;
+ SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
+ add_symbol_to_list (sym, list_in_scope);
+ break;
+ case TAG_typedef:
+ SYMBOL_CLASS (sym) = LOC_TYPEDEF;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, list_in_scope);
+ break;
+ default:
+ /* Not a tag we recognize. Hopefully we aren't processing trash
+ data, but since we must specifically ignore things we don't
+ recognize, there is nothing else we should do at this point. */
+ break;
+ }
+ }
+ return (sym);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ synthesize_typedef -- make a symbol table entry for a "fake" typedef
+
+SYNOPSIS
+
+ static void synthesize_typedef (struct dieinfo *dip,
+ struct objfile *objfile,
+ struct type *type);
+
+DESCRIPTION
+
+ Given a pointer to a DWARF information entry, synthesize a typedef
+ for the name in the DIE, using the specified type.
+
+ This is used for C++ class, structs, unions, and enumerations to
+ set up the tag name as a type.
+
+ */
+
+static void
+synthesize_typedef (dip, objfile, type)
+ struct dieinfo *dip;
+ struct objfile *objfile;
+ struct type *type;
+{
+ struct symbol *sym = NULL;
+
+ if (dip -> at_name != NULL)
+ {
+ sym = (struct symbol *)
+ obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
+ OBJSTAT (objfile, n_syms++);
+ memset (sym, 0, sizeof (struct symbol));
+ SYMBOL_NAME (sym) = create_name (dip -> at_name,
+ &objfile->symbol_obstack);
+ SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
+ SYMBOL_TYPE (sym) = type;
+ SYMBOL_CLASS (sym) = LOC_TYPEDEF;
+ SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
+ add_symbol_to_list (sym, list_in_scope);
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_mod_fund_type -- decode a modified fundamental type
+
+SYNOPSIS
+
+ static struct type *decode_mod_fund_type (char *typedata)
+
+DESCRIPTION
+
+ Decode a block of data containing a modified fundamental
+ type specification. TYPEDATA is a pointer to the block,
+ which starts with a length containing the size of the rest
+ of the block. At the end of the block is a fundmental type
+ code value that gives the fundamental type. Everything
+ in between are type modifiers.
+
+ We simply compute the number of modifiers and call the general
+ function decode_modified_type to do the actual work.
+*/
+
+static struct type *
+decode_mod_fund_type (typedata)
+ char *typedata;
+{
+ struct type *typep = NULL;
+ unsigned short modcount;
+ int nbytes;
+
+ /* Get the total size of the block, exclusive of the size itself */
+
+ nbytes = attribute_size (AT_mod_fund_type);
+ modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
+ typedata += nbytes;
+
+ /* Deduct the size of the fundamental type bytes at the end of the block. */
+
+ modcount -= attribute_size (AT_fund_type);
+
+ /* Now do the actual decoding */
+
+ typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
+ return (typep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_mod_u_d_type -- decode a modified user defined type
+
+SYNOPSIS
+
+ static struct type *decode_mod_u_d_type (char *typedata)
+
+DESCRIPTION
+
+ Decode a block of data containing a modified user defined
+ type specification. TYPEDATA is a pointer to the block,
+ which consists of a two byte length, containing the size
+ of the rest of the block. At the end of the block is a
+ four byte value that gives a reference to a user defined type.
+ Everything in between are type modifiers.
+
+ We simply compute the number of modifiers and call the general
+ function decode_modified_type to do the actual work.
+*/
+
+static struct type *
+decode_mod_u_d_type (typedata)
+ char *typedata;
+{
+ struct type *typep = NULL;
+ unsigned short modcount;
+ int nbytes;
+
+ /* Get the total size of the block, exclusive of the size itself */
+
+ nbytes = attribute_size (AT_mod_u_d_type);
+ modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
+ typedata += nbytes;
+
+ /* Deduct the size of the reference type bytes at the end of the block. */
+
+ modcount -= attribute_size (AT_user_def_type);
+
+ /* Now do the actual decoding */
+
+ typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
+ return (typep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_modified_type -- decode modified user or fundamental type
+
+SYNOPSIS
+
+ static struct type *decode_modified_type (char *modifiers,
+ unsigned short modcount, int mtype)
+
+DESCRIPTION
+
+ Decode a modified type, either a modified fundamental type or
+ a modified user defined type. MODIFIERS is a pointer to the
+ block of bytes that define MODCOUNT modifiers. Immediately
+ following the last modifier is a short containing the fundamental
+ type or a long containing the reference to the user defined
+ type. Which one is determined by MTYPE, which is either
+ AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
+ type we are generating.
+
+ We call ourself recursively to generate each modified type,`
+ until MODCOUNT reaches zero, at which point we have consumed
+ all the modifiers and generate either the fundamental type or
+ user defined type. When the recursion unwinds, each modifier
+ is applied in turn to generate the full modified type.
+
+NOTES
+
+ If we find a modifier that we don't recognize, and it is not one
+ of those reserved for application specific use, then we issue a
+ warning and simply ignore the modifier.
+
+BUGS
+
+ We currently ignore MOD_const and MOD_volatile. (FIXME)
+
+ */
+
+static struct type *
+decode_modified_type (modifiers, modcount, mtype)
+ char *modifiers;
+ unsigned int modcount;
+ int mtype;
+{
+ struct type *typep = NULL;
+ unsigned short fundtype;
+ DIE_REF die_ref;
+ char modifier;
+ int nbytes;
+
+ if (modcount == 0)
+ {
+ switch (mtype)
+ {
+ case AT_mod_fund_type:
+ nbytes = attribute_size (AT_fund_type);
+ fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
+ current_objfile);
+ typep = decode_fund_type (fundtype);
+ break;
+ case AT_mod_u_d_type:
+ nbytes = attribute_size (AT_user_def_type);
+ die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
+ current_objfile);
+ if ((typep = lookup_utype (die_ref)) == NULL)
+ {
+ typep = alloc_utype (die_ref, NULL);
+ }
+ break;
+ default:
+ complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
+ typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ break;
+ }
+ }
+ else
+ {
+ modifier = *modifiers++;
+ typep = decode_modified_type (modifiers, --modcount, mtype);
+ switch (modifier)
+ {
+ case MOD_pointer_to:
+ typep = lookup_pointer_type (typep);
+ break;
+ case MOD_reference_to:
+ typep = lookup_reference_type (typep);
+ break;
+ case MOD_const:
+ complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
+ break;
+ case MOD_volatile:
+ complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
+ break;
+ default:
+ if (!(MOD_lo_user <= (unsigned char) modifier
+ && (unsigned char) modifier <= MOD_hi_user))
+ {
+ complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
+ }
+ break;
+ }
+ }
+ return (typep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ decode_fund_type -- translate basic DWARF type to gdb base type
+
+DESCRIPTION
+
+ Given an integer that is one of the fundamental DWARF types,
+ translate it to one of the basic internal gdb types and return
+ a pointer to the appropriate gdb type (a "struct type *").
+
+NOTES
+
+ For robustness, if we are asked to translate a fundamental
+ type that we are unprepared to deal with, we return int so
+ callers can always depend upon a valid type being returned,
+ and so gdb may at least do something reasonable by default.
+ If the type is not in the range of those types defined as
+ application specific types, we also issue a warning.
+*/
+
+static struct type *
+decode_fund_type (fundtype)
+ unsigned int fundtype;
+{
+ struct type *typep = NULL;
+
+ switch (fundtype)
+ {
+
+ case FT_void:
+ typep = dwarf_fundamental_type (current_objfile, FT_VOID);
+ break;
+
+ case FT_boolean: /* Was FT_set in AT&T version */
+ typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
+ break;
+
+ case FT_pointer: /* (void *) */
+ typep = dwarf_fundamental_type (current_objfile, FT_VOID);
+ typep = lookup_pointer_type (typep);
+ break;
+
+ case FT_char:
+ typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
+ break;
+
+ case FT_signed_char:
+ typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
+ break;
+
+ case FT_unsigned_char:
+ typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
+ break;
+
+ case FT_short:
+ typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
+ break;
+
+ case FT_signed_short:
+ typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
+ break;
+
+ case FT_unsigned_short:
+ typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
+ break;
+
+ case FT_integer:
+ typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ break;
+
+ case FT_signed_integer:
+ typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
+ break;
+
+ case FT_unsigned_integer:
+ typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
+ break;
+
+ case FT_long:
+ typep = dwarf_fundamental_type (current_objfile, FT_LONG);
+ break;
+
+ case FT_signed_long:
+ typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
+ break;
+
+ case FT_unsigned_long:
+ typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
+ break;
+
+ case FT_long_long:
+ typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
+ break;
+
+ case FT_signed_long_long:
+ typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
+ break;
+
+ case FT_unsigned_long_long:
+ typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
+ break;
+
+ case FT_float:
+ typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
+ break;
+
+ case FT_dbl_prec_float:
+ typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
+ break;
+
+ case FT_ext_prec_float:
+ typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
+ break;
+
+ case FT_complex:
+ typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
+ break;
+
+ case FT_dbl_prec_complex:
+ typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
+ break;
+
+ case FT_ext_prec_complex:
+ typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
+ break;
+
+ }
+
+ if (typep == NULL)
+ {
+ typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
+ if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
+ {
+ complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
+ }
+ }
+
+ return (typep);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ create_name -- allocate a fresh copy of a string on an obstack
+
+DESCRIPTION
+
+ Given a pointer to a string and a pointer to an obstack, allocates
+ a fresh copy of the string on the specified obstack.
+
+*/
+
+static char *
+create_name (name, obstackp)
+ char *name;
+ struct obstack *obstackp;
+{
+ int length;
+ char *newname;
+
+ length = strlen (name) + 1;
+ newname = (char *) obstack_alloc (obstackp, length);
+ strcpy (newname, name);
+ return (newname);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ basicdieinfo -- extract the minimal die info from raw die data
+
+SYNOPSIS
+
+ void basicdieinfo (char *diep, struct dieinfo *dip,
+ struct objfile *objfile)
+
+DESCRIPTION
+
+ Given a pointer to raw DIE data, and a pointer to an instance of a
+ die info structure, this function extracts the basic information
+ from the DIE data required to continue processing this DIE, along
+ with some bookkeeping information about the DIE.
+
+ The information we absolutely must have includes the DIE tag,
+ and the DIE length. If we need the sibling reference, then we
+ will have to call completedieinfo() to process all the remaining
+ DIE information.
+
+ Note that since there is no guarantee that the data is properly
+ aligned in memory for the type of access required (indirection
+ through anything other than a char pointer), and there is no
+ guarantee that it is in the same byte order as the gdb host,
+ we call a function which deals with both alignment and byte
+ swapping issues. Possibly inefficient, but quite portable.
+
+ We also take care of some other basic things at this point, such
+ as ensuring that the instance of the die info structure starts
+ out completely zero'd and that curdie is initialized for use
+ in error reporting if we have a problem with the current die.
+
+NOTES
+
+ All DIE's must have at least a valid length, thus the minimum
+ DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
+ DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
+ are forced to be TAG_padding DIES.
+
+ Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
+ that if a padding DIE is used for alignment and the amount needed is
+ less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
+ enough to align to the next alignment boundry.
+
+ We do some basic sanity checking here, such as verifying that the
+ length of the die would not cause it to overrun the recorded end of
+ the buffer holding the DIE info. If we find a DIE that is either
+ too small or too large, we force it's length to zero which should
+ cause the caller to take appropriate action.
+ */
+
+static void
+basicdieinfo (dip, diep, objfile)
+ struct dieinfo *dip;
+ char *diep;
+ struct objfile *objfile;
+{
+ curdie = dip;
+ memset (dip, 0, sizeof (struct dieinfo));
+ dip -> die = diep;
+ dip -> die_ref = dbroff + (diep - dbbase);
+ dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
+ objfile);
+ if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
+ ((diep + dip -> die_length) > (dbbase + dbsize)))
+ {
+ complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
+ dip -> die_length = 0;
+ }
+ else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
+ {
+ dip -> die_tag = TAG_padding;
+ }
+ else
+ {
+ diep += SIZEOF_DIE_LENGTH;
+ dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
+ objfile);
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ completedieinfo -- finish reading the information for a given DIE
+
+SYNOPSIS
+
+ void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
+
+DESCRIPTION
+
+ Given a pointer to an already partially initialized die info structure,
+ scan the raw DIE data and finish filling in the die info structure
+ from the various attributes found.
+
+ Note that since there is no guarantee that the data is properly
+ aligned in memory for the type of access required (indirection
+ through anything other than a char pointer), and there is no
+ guarantee that it is in the same byte order as the gdb host,
+ we call a function which deals with both alignment and byte
+ swapping issues. Possibly inefficient, but quite portable.
+
+NOTES
+
+ Each time we are called, we increment the diecount variable, which
+ keeps an approximate count of the number of dies processed for
+ each compilation unit. This information is presented to the user
+ if the info_verbose flag is set.
+
+ */
+
+static void
+completedieinfo (dip, objfile)
+ struct dieinfo *dip;
+ struct objfile *objfile;
+{
+ char *diep; /* Current pointer into raw DIE data */
+ char *end; /* Terminate DIE scan here */
+ unsigned short attr; /* Current attribute being scanned */
+ unsigned short form; /* Form of the attribute */
+ int nbytes; /* Size of next field to read */
+
+ diecount++;
+ diep = dip -> die;
+ end = diep + dip -> die_length;
+ diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
+ while (diep < end)
+ {
+ attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
+ diep += SIZEOF_ATTRIBUTE;
+ if ((nbytes = attribute_size (attr)) == -1)
+ {
+ complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
+ diep = end;
+ continue;
+ }
+ switch (attr)
+ {
+ case AT_fund_type:
+ dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_ordering:
+ dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_bit_offset:
+ dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_sibling:
+ dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_stmt_list:
+ dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ dip -> has_at_stmt_list = 1;
+ break;
+ case AT_low_pc:
+ dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ dip -> at_low_pc += baseaddr;
+ dip -> has_at_low_pc = 1;
+ break;
+ case AT_high_pc:
+ dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ dip -> at_high_pc += baseaddr;
+ break;
+ case AT_language:
+ dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_user_def_type:
+ dip -> at_user_def_type = target_to_host (diep, nbytes,
+ GET_UNSIGNED, objfile);
+ break;
+ case AT_byte_size:
+ dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ dip -> has_at_byte_size = 1;
+ break;
+ case AT_bit_size:
+ dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_member:
+ dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_discr:
+ dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_location:
+ dip -> at_location = diep;
+ break;
+ case AT_mod_fund_type:
+ dip -> at_mod_fund_type = diep;
+ break;
+ case AT_subscr_data:
+ dip -> at_subscr_data = diep;
+ break;
+ case AT_mod_u_d_type:
+ dip -> at_mod_u_d_type = diep;
+ break;
+ case AT_element_list:
+ dip -> at_element_list = diep;
+ dip -> short_element_list = 0;
+ break;
+ case AT_short_element_list:
+ dip -> at_element_list = diep;
+ dip -> short_element_list = 1;
+ break;
+ case AT_discr_value:
+ dip -> at_discr_value = diep;
+ break;
+ case AT_string_length:
+ dip -> at_string_length = diep;
+ break;
+ case AT_name:
+ dip -> at_name = diep;
+ break;
+ case AT_comp_dir:
+ /* For now, ignore any "hostname:" portion, since gdb doesn't
+ know how to deal with it. (FIXME). */
+ dip -> at_comp_dir = strrchr (diep, ':');
+ if (dip -> at_comp_dir != NULL)
+ {
+ dip -> at_comp_dir++;
+ }
+ else
+ {
+ dip -> at_comp_dir = diep;
+ }
+ break;
+ case AT_producer:
+ dip -> at_producer = diep;
+ break;
+ case AT_start_scope:
+ dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_stride_size:
+ dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_src_info:
+ dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
+ objfile);
+ break;
+ case AT_prototyped:
+ dip -> at_prototyped = diep;
+ break;
+ default:
+ /* Found an attribute that we are unprepared to handle. However
+ it is specifically one of the design goals of DWARF that
+ consumers should ignore unknown attributes. As long as the
+ form is one that we recognize (so we know how to skip it),
+ we can just ignore the unknown attribute. */
+ break;
+ }
+ form = FORM_FROM_ATTR (attr);
+ switch (form)
+ {
+ case FORM_DATA2:
+ diep += 2;
+ break;
+ case FORM_DATA4:
+ case FORM_REF:
+ diep += 4;
+ break;
+ case FORM_DATA8:
+ diep += 8;
+ break;
+ case FORM_ADDR:
+ diep += TARGET_FT_POINTER_SIZE (objfile);
+ break;
+ case FORM_BLOCK2:
+ diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
+ break;
+ case FORM_BLOCK4:
+ diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
+ break;
+ case FORM_STRING:
+ diep += strlen (diep) + 1;
+ break;
+ default:
+ complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
+ diep = end;
+ break;
+ }
+ }
+}
+
+/*
+
+LOCAL FUNCTION
+
+ target_to_host -- swap in target data to host
+
+SYNOPSIS
+
+ target_to_host (char *from, int nbytes, int signextend,
+ struct objfile *objfile)
+
+DESCRIPTION
+
+ Given pointer to data in target format in FROM, a byte count for
+ the size of the data in NBYTES, a flag indicating whether or not
+ the data is signed in SIGNEXTEND, and a pointer to the current
+ objfile in OBJFILE, convert the data to host format and return
+ the converted value.
+
+NOTES
+
+ FIXME: If we read data that is known to be signed, and expect to
+ use it as signed data, then we need to explicitly sign extend the
+ result until the bfd library is able to do this for us.
+
+ FIXME: Would a 32 bit target ever need an 8 byte result?
+
+ */
+
+static CORE_ADDR
+target_to_host (from, nbytes, signextend, objfile)
+ char *from;
+ int nbytes;
+ int signextend; /* FIXME: Unused */
+ struct objfile *objfile;
+{
+ CORE_ADDR rtnval;
+
+ switch (nbytes)
+ {
+ case 8:
+ rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
+ break;
+ case 4:
+ rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
+ break;
+ case 2:
+ rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
+ break;
+ case 1:
+ rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
+ break;
+ default:
+ complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
+ rtnval = 0;
+ break;
+ }
+ return (rtnval);
+}
+
+/*
+
+LOCAL FUNCTION
+
+ attribute_size -- compute size of data for a DWARF attribute
+
+SYNOPSIS
+
+ static int attribute_size (unsigned int attr)
+
+DESCRIPTION
+
+ Given a DWARF attribute in ATTR, compute the size of the first
+ piece of data associated with this attribute and return that
+ size.
+
+ Returns -1 for unrecognized attributes.
+
+ */
+
+static int
+attribute_size (attr)
+ unsigned int attr;
+{
+ int nbytes; /* Size of next data for this attribute */
+ unsigned short form; /* Form of the attribute */
+
+ form = FORM_FROM_ATTR (attr);
+ switch (form)
+ {
+ case FORM_STRING: /* A variable length field is next */
+ nbytes = 0;
+ break;
+ case FORM_DATA2: /* Next 2 byte field is the data itself */
+ case FORM_BLOCK2: /* Next 2 byte field is a block length */
+ nbytes = 2;
+ break;
+ case FORM_DATA4: /* Next 4 byte field is the data itself */
+ case FORM_BLOCK4: /* Next 4 byte field is a block length */
+ case FORM_REF: /* Next 4 byte field is a DIE offset */
+ nbytes = 4;
+ break;
+ case FORM_DATA8: /* Next 8 byte field is the data itself */
+ nbytes = 8;
+ break;
+ case FORM_ADDR: /* Next field size is target sizeof(void *) */
+ nbytes = TARGET_FT_POINTER_SIZE (objfile);
+ break;
+ default:
+ complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
+ nbytes = -1;
+ break;
+ }
+ return (nbytes);
+}