diff options
author | Stan Shebs <shebs@apple.com> | 1999-04-16 01:35:26 +0000 |
---|---|---|
committer | Stan Shebs <shebs@apple.com> | 1999-04-16 01:35:26 +0000 |
commit | 14cd51f7793a9ce07bc435069f57269450141363 (patch) | |
tree | 280a2da48f771d61be5b451ddbacdf9ef8e9ad13 /gdb/dwarfread.c | |
download | gdb-14cd51f7793a9ce07bc435069f57269450141363.tar.gz |
Initial revision
Diffstat (limited to 'gdb/dwarfread.c')
-rw-r--r-- | gdb/dwarfread.c | 3915 |
1 files changed, 3915 insertions, 0 deletions
diff --git a/gdb/dwarfread.c b/gdb/dwarfread.c new file mode 100644 index 00000000000..9de03123d7d --- /dev/null +++ b/gdb/dwarfread.c @@ -0,0 +1,3915 @@ +/* DWARF debugging format support for GDB. + Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998 + Free Software Foundation, Inc. + Written by Fred Fish at Cygnus Support. Portions based on dbxread.c, + mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +/* + +FIXME: Do we need to generate dependencies in partial symtabs? +(Perhaps we don't need to). + +FIXME: Resolve minor differences between what information we put in the +partial symbol table and what dbxread puts in. For example, we don't yet +put enum constants there. And dbxread seems to invent a lot of typedefs +we never see. Use the new printpsym command to see the partial symbol table +contents. + +FIXME: Figure out a better way to tell gdb about the name of the function +contain the user's entry point (I.E. main()) + +FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for +other things to work on, if you get bored. :-) + +*/ + +#include "defs.h" +#include "symtab.h" +#include "gdbtypes.h" +#include "symfile.h" +#include "objfiles.h" +#include "elf/dwarf.h" +#include "buildsym.h" +#include "demangle.h" +#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */ +#include "language.h" +#include "complaints.h" + +#include <fcntl.h> +#include "gdb_string.h" + +/* Some macros to provide DIE info for complaints. */ + +#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0) +#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : "" + +/* Complaints that can be issued during DWARF debug info reading. */ + +struct complaint no_bfd_get_N = +{ + "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0 +}; + +struct complaint malformed_die = +{ + "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0 +}; + +struct complaint bad_die_ref = +{ + "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0 +}; + +struct complaint unknown_attribute_form = +{ + "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0 +}; + +struct complaint unknown_attribute_length = +{ + "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0 +}; + +struct complaint unexpected_fund_type = +{ + "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0 +}; + +struct complaint unknown_type_modifier = +{ + "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0 +}; + +struct complaint volatile_ignored = +{ + "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0 +}; + +struct complaint const_ignored = +{ + "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0 +}; + +struct complaint botched_modified_type = +{ + "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0 +}; + +struct complaint op_deref2 = +{ + "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0 +}; + +struct complaint op_deref4 = +{ + "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0 +}; + +struct complaint basereg_not_handled = +{ + "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0 +}; + +struct complaint dup_user_type_allocation = +{ + "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0 +}; + +struct complaint dup_user_type_definition = +{ + "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0 +}; + +struct complaint missing_tag = +{ + "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0 +}; + +struct complaint bad_array_element_type = +{ + "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0 +}; + +struct complaint subscript_data_items = +{ + "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0 +}; + +struct complaint unhandled_array_subscript_format = +{ + "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0 +}; + +struct complaint unknown_array_subscript_format = +{ + "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0 +}; + +struct complaint not_row_major = +{ + "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0 +}; + +struct complaint missing_at_name = +{ + "DIE @ 0x%x, AT_name tag missing", 0, 0 +}; + +typedef unsigned int DIE_REF; /* Reference to a DIE */ + +#ifndef GCC_PRODUCER +#define GCC_PRODUCER "GNU C " +#endif + +#ifndef GPLUS_PRODUCER +#define GPLUS_PRODUCER "GNU C++ " +#endif + +#ifndef LCC_PRODUCER +#define LCC_PRODUCER "NCR C/C++" +#endif + +#ifndef CHILL_PRODUCER +#define CHILL_PRODUCER "GNU Chill " +#endif + +/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */ +#ifndef DWARF_REG_TO_REGNUM +#define DWARF_REG_TO_REGNUM(num) (num) +#endif + +/* Flags to target_to_host() that tell whether or not the data object is + expected to be signed. Used, for example, when fetching a signed + integer in the target environment which is used as a signed integer + in the host environment, and the two environments have different sized + ints. In this case, *somebody* has to sign extend the smaller sized + int. */ + +#define GET_UNSIGNED 0 /* No sign extension required */ +#define GET_SIGNED 1 /* Sign extension required */ + +/* Defines for things which are specified in the document "DWARF Debugging + Information Format" published by UNIX International, Programming Languages + SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */ + +#define SIZEOF_DIE_LENGTH 4 +#define SIZEOF_DIE_TAG 2 +#define SIZEOF_ATTRIBUTE 2 +#define SIZEOF_FORMAT_SPECIFIER 1 +#define SIZEOF_FMT_FT 2 +#define SIZEOF_LINETBL_LENGTH 4 +#define SIZEOF_LINETBL_LINENO 4 +#define SIZEOF_LINETBL_STMT 2 +#define SIZEOF_LINETBL_DELTA 4 +#define SIZEOF_LOC_ATOM_CODE 1 + +#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */ + +/* Macros that return the sizes of various types of data in the target + environment. + + FIXME: Currently these are just compile time constants (as they are in + other parts of gdb as well). They need to be able to get the right size + either from the bfd or possibly from the DWARF info. It would be nice if + the DWARF producer inserted DIES that describe the fundamental types in + the target environment into the DWARF info, similar to the way dbx stabs + producers produce information about their fundamental types. */ + +#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT) +#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT) + +/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a + FORM_BLOCK2, and this is the value emitted by the AT&T compiler. + However, the Issue 2 DWARF specification from AT&T defines it as + a FORM_BLOCK4, as does the latest specification from UI/PLSIG. + For backwards compatibility with the AT&T compiler produced executables + we define AT_short_element_list for this variant. */ + +#define AT_short_element_list (0x00f0|FORM_BLOCK2) + +/* External variables referenced. */ + +extern int info_verbose; /* From main.c; nonzero => verbose */ +extern char *warning_pre_print; /* From utils.c */ + +/* The DWARF debugging information consists of two major pieces, + one is a block of DWARF Information Entries (DIE's) and the other + is a line number table. The "struct dieinfo" structure contains + the information for a single DIE, the one currently being processed. + + In order to make it easier to randomly access the attribute fields + of the current DIE, which are specifically unordered within the DIE, + each DIE is scanned and an instance of the "struct dieinfo" + structure is initialized. + + Initialization is done in two levels. The first, done by basicdieinfo(), + just initializes those fields that are vital to deciding whether or not + to use this DIE, how to skip past it, etc. The second, done by the + function completedieinfo(), fills in the rest of the information. + + Attributes which have block forms are not interpreted at the time + the DIE is scanned, instead we just save pointers to the start + of their value fields. + + Some fields have a flag <name>_p that is set when the value of the + field is valid (I.E. we found a matching attribute in the DIE). Since + we may want to test for the presence of some attributes in the DIE, + such as AT_low_pc, without restricting the values of the field, + we need someway to note that we found such an attribute. + + */ + +typedef char BLOCK; + +struct dieinfo { + char * die; /* Pointer to the raw DIE data */ + unsigned long die_length; /* Length of the raw DIE data */ + DIE_REF die_ref; /* Offset of this DIE */ + unsigned short die_tag; /* Tag for this DIE */ + unsigned long at_padding; + unsigned long at_sibling; + BLOCK * at_location; + char * at_name; + unsigned short at_fund_type; + BLOCK * at_mod_fund_type; + unsigned long at_user_def_type; + BLOCK * at_mod_u_d_type; + unsigned short at_ordering; + BLOCK * at_subscr_data; + unsigned long at_byte_size; + unsigned short at_bit_offset; + unsigned long at_bit_size; + BLOCK * at_element_list; + unsigned long at_stmt_list; + CORE_ADDR at_low_pc; + CORE_ADDR at_high_pc; + unsigned long at_language; + unsigned long at_member; + unsigned long at_discr; + BLOCK * at_discr_value; + BLOCK * at_string_length; + char * at_comp_dir; + char * at_producer; + unsigned long at_start_scope; + unsigned long at_stride_size; + unsigned long at_src_info; + char * at_prototyped; + unsigned int has_at_low_pc:1; + unsigned int has_at_stmt_list:1; + unsigned int has_at_byte_size:1; + unsigned int short_element_list:1; + + /* Kludge to identify register variables */ + + unsigned int isreg; + + /* Kludge to identify optimized out variables */ + + unsigned int optimized_out; + + /* Kludge to identify basereg references. + Nonzero if we have an offset relative to a basereg. */ + + unsigned int offreg; + + /* Kludge to identify which base register is it relative to. */ + + unsigned int basereg; +}; + +static int diecount; /* Approximate count of dies for compilation unit */ +static struct dieinfo *curdie; /* For warnings and such */ + +static char *dbbase; /* Base pointer to dwarf info */ +static int dbsize; /* Size of dwarf info in bytes */ +static int dbroff; /* Relative offset from start of .debug section */ +static char *lnbase; /* Base pointer to line section */ + +/* This value is added to each symbol value. FIXME: Generalize to + the section_offsets structure used by dbxread (once this is done, + pass the appropriate section number to end_symtab). */ +static CORE_ADDR baseaddr; /* Add to each symbol value */ + +/* The section offsets used in the current psymtab or symtab. FIXME, + only used to pass one value (baseaddr) at the moment. */ +static struct section_offsets *base_section_offsets; + +/* We put a pointer to this structure in the read_symtab_private field + of the psymtab. */ + +struct dwfinfo { + /* Always the absolute file offset to the start of the ".debug" + section for the file containing the DIE's being accessed. */ + file_ptr dbfoff; + /* Relative offset from the start of the ".debug" section to the + first DIE to be accessed. When building the partial symbol + table, this value will be zero since we are accessing the + entire ".debug" section. When expanding a partial symbol + table entry, this value will be the offset to the first + DIE for the compilation unit containing the symbol that + triggers the expansion. */ + int dbroff; + /* The size of the chunk of DIE's being examined, in bytes. */ + int dblength; + /* The absolute file offset to the line table fragment. Ignored + when building partial symbol tables, but used when expanding + them, and contains the absolute file offset to the fragment + of the ".line" section containing the line numbers for the + current compilation unit. */ + file_ptr lnfoff; +}; + +#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff) +#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff) +#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength) +#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff) + +/* The generic symbol table building routines have separate lists for + file scope symbols and all all other scopes (local scopes). So + we need to select the right one to pass to add_symbol_to_list(). + We do it by keeping a pointer to the correct list in list_in_scope. + + FIXME: The original dwarf code just treated the file scope as the first + local scope, and all other local scopes as nested local scopes, and worked + fine. Check to see if we really need to distinguish these in buildsym.c */ + +struct pending **list_in_scope = &file_symbols; + +/* DIES which have user defined types or modified user defined types refer to + other DIES for the type information. Thus we need to associate the offset + of a DIE for a user defined type with a pointer to the type information. + + Originally this was done using a simple but expensive algorithm, with an + array of unsorted structures, each containing an offset/type-pointer pair. + This array was scanned linearly each time a lookup was done. The result + was that gdb was spending over half it's startup time munging through this + array of pointers looking for a structure that had the right offset member. + + The second attempt used the same array of structures, but the array was + sorted using qsort each time a new offset/type was recorded, and a binary + search was used to find the type pointer for a given DIE offset. This was + even slower, due to the overhead of sorting the array each time a new + offset/type pair was entered. + + The third attempt uses a fixed size array of type pointers, indexed by a + value derived from the DIE offset. Since the minimum DIE size is 4 bytes, + we can divide any DIE offset by 4 to obtain a unique index into this fixed + size array. Since each element is a 4 byte pointer, it takes exactly as + much memory to hold this array as to hold the DWARF info for a given + compilation unit. But it gets freed as soon as we are done with it. + This has worked well in practice, as a reasonable tradeoff between memory + consumption and speed, without having to resort to much more complicated + algorithms. */ + +static struct type **utypes; /* Pointer to array of user type pointers */ +static int numutypes; /* Max number of user type pointers */ + +/* Maintain an array of referenced fundamental types for the current + compilation unit being read. For DWARF version 1, we have to construct + the fundamental types on the fly, since no information about the + fundamental types is supplied. Each such fundamental type is created by + calling a language dependent routine to create the type, and then a + pointer to that type is then placed in the array at the index specified + by it's FT_<TYPENAME> value. The array has a fixed size set by the + FT_NUM_MEMBERS compile time constant, which is the number of predefined + fundamental types gdb knows how to construct. */ + +static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */ + +/* Record the language for the compilation unit which is currently being + processed. We know it once we have seen the TAG_compile_unit DIE, + and we need it while processing the DIE's for that compilation unit. + It is eventually saved in the symtab structure, but we don't finalize + the symtab struct until we have processed all the DIE's for the + compilation unit. We also need to get and save a pointer to the + language struct for this language, so we can call the language + dependent routines for doing things such as creating fundamental + types. */ + +static enum language cu_language; +static const struct language_defn *cu_language_defn; + +/* Forward declarations of static functions so we don't have to worry + about ordering within this file. */ + +static void +free_utypes PARAMS ((PTR)); + +static int +attribute_size PARAMS ((unsigned int)); + +static CORE_ADDR +target_to_host PARAMS ((char *, int, int, struct objfile *)); + +static void +add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *)); + +static void +handle_producer PARAMS ((char *)); + +static void +read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); + +static void +read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); + +static void +read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *, + struct objfile *)); + +static void +scan_partial_symbols PARAMS ((char *, char *, struct objfile *)); + +static void +scan_compilation_units PARAMS ((char *, char *, file_ptr, + file_ptr, struct objfile *)); + +static void +add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *)); + +static void +basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *)); + +static void +completedieinfo PARAMS ((struct dieinfo *, struct objfile *)); + +static void +dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *)); + +static void +psymtab_to_symtab_1 PARAMS ((struct partial_symtab *)); + +static void +read_ofile_symtab PARAMS ((struct partial_symtab *)); + +static void +process_dies PARAMS ((char *, char *, struct objfile *)); + +static void +read_structure_scope PARAMS ((struct dieinfo *, char *, char *, + struct objfile *)); + +static struct type * +decode_array_element_type PARAMS ((char *)); + +static struct type * +decode_subscript_data_item PARAMS ((char *, char *)); + +static void +dwarf_read_array_type PARAMS ((struct dieinfo *)); + +static void +read_tag_pointer_type PARAMS ((struct dieinfo *dip)); + +static void +read_tag_string_type PARAMS ((struct dieinfo *dip)); + +static void +read_subroutine_type PARAMS ((struct dieinfo *, char *, char *)); + +static void +read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); + +static struct type * +struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *)); + +static struct type * +enum_type PARAMS ((struct dieinfo *, struct objfile *)); + +static void +decode_line_numbers PARAMS ((char *)); + +static struct type * +decode_die_type PARAMS ((struct dieinfo *)); + +static struct type * +decode_mod_fund_type PARAMS ((char *)); + +static struct type * +decode_mod_u_d_type PARAMS ((char *)); + +static struct type * +decode_modified_type PARAMS ((char *, unsigned int, int)); + +static struct type * +decode_fund_type PARAMS ((unsigned int)); + +static char * +create_name PARAMS ((char *, struct obstack *)); + +static struct type * +lookup_utype PARAMS ((DIE_REF)); + +static struct type * +alloc_utype PARAMS ((DIE_REF, struct type *)); + +static struct symbol * +new_symbol PARAMS ((struct dieinfo *, struct objfile *)); + +static void +synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *, + struct type *)); + +static int +locval PARAMS ((struct dieinfo *)); + +static void +set_cu_language PARAMS ((struct dieinfo *)); + +static struct type * +dwarf_fundamental_type PARAMS ((struct objfile *, int)); + + +/* + +LOCAL FUNCTION + + dwarf_fundamental_type -- lookup or create a fundamental type + +SYNOPSIS + + struct type * + dwarf_fundamental_type (struct objfile *objfile, int typeid) + +DESCRIPTION + + DWARF version 1 doesn't supply any fundamental type information, + so gdb has to construct such types. It has a fixed number of + fundamental types that it knows how to construct, which is the + union of all types that it knows how to construct for all languages + that it knows about. These are enumerated in gdbtypes.h. + + As an example, assume we find a DIE that references a DWARF + fundamental type of FT_integer. We first look in the ftypes + array to see if we already have such a type, indexed by the + gdb internal value of FT_INTEGER. If so, we simply return a + pointer to that type. If not, then we ask an appropriate + language dependent routine to create a type FT_INTEGER, using + defaults reasonable for the current target machine, and install + that type in ftypes for future reference. + +RETURNS + + Pointer to a fundamental type. + +*/ + +static struct type * +dwarf_fundamental_type (objfile, typeid) + struct objfile *objfile; + int typeid; +{ + if (typeid < 0 || typeid >= FT_NUM_MEMBERS) + { + error ("internal error - invalid fundamental type id %d", typeid); + } + + /* Look for this particular type in the fundamental type vector. If one is + not found, create and install one appropriate for the current language + and the current target machine. */ + + if (ftypes[typeid] == NULL) + { + ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid); + } + + return (ftypes[typeid]); +} + +/* + +LOCAL FUNCTION + + set_cu_language -- set local copy of language for compilation unit + +SYNOPSIS + + void + set_cu_language (struct dieinfo *dip) + +DESCRIPTION + + Decode the language attribute for a compilation unit DIE and + remember what the language was. We use this at various times + when processing DIE's for a given compilation unit. + +RETURNS + + No return value. + + */ + +static void +set_cu_language (dip) + struct dieinfo *dip; +{ + switch (dip -> at_language) + { + case LANG_C89: + case LANG_C: + cu_language = language_c; + break; + case LANG_C_PLUS_PLUS: + cu_language = language_cplus; + break; + case LANG_CHILL: + cu_language = language_chill; + break; + case LANG_MODULA2: + cu_language = language_m2; + break; + case LANG_FORTRAN77: + case LANG_FORTRAN90: + cu_language = language_fortran; + break; + case LANG_ADA83: + case LANG_COBOL74: + case LANG_COBOL85: + case LANG_PASCAL83: + /* We don't know anything special about these yet. */ + cu_language = language_unknown; + break; + default: + /* If no at_language, try to deduce one from the filename */ + cu_language = deduce_language_from_filename (dip -> at_name); + break; + } + cu_language_defn = language_def (cu_language); +} + +/* + +GLOBAL FUNCTION + + dwarf_build_psymtabs -- build partial symtabs from DWARF debug info + +SYNOPSIS + + void dwarf_build_psymtabs (struct objfile *objfile, + struct section_offsets *section_offsets, + int mainline, file_ptr dbfoff, unsigned int dbfsize, + file_ptr lnoffset, unsigned int lnsize) + +DESCRIPTION + + This function is called upon to build partial symtabs from files + containing DIE's (Dwarf Information Entries) and DWARF line numbers. + + It is passed a bfd* containing the DIES + and line number information, the corresponding filename for that + file, a base address for relocating the symbols, a flag indicating + whether or not this debugging information is from a "main symbol + table" rather than a shared library or dynamically linked file, + and file offset/size pairs for the DIE information and line number + information. + +RETURNS + + No return value. + + */ + +void +dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize, + lnoffset, lnsize) + struct objfile *objfile; + struct section_offsets *section_offsets; + int mainline; + file_ptr dbfoff; + unsigned int dbfsize; + file_ptr lnoffset; + unsigned int lnsize; +{ + bfd *abfd = objfile->obfd; + struct cleanup *back_to; + + current_objfile = objfile; + dbsize = dbfsize; + dbbase = xmalloc (dbsize); + dbroff = 0; + if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) || + (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) + { + free (dbbase); + error ("can't read DWARF data from '%s'", bfd_get_filename (abfd)); + } + back_to = make_cleanup (free, dbbase); + + /* If we are reinitializing, or if we have never loaded syms yet, init. + Since we have no idea how many DIES we are looking at, we just guess + some arbitrary value. */ + + if (mainline || objfile -> global_psymbols.size == 0 || + objfile -> static_psymbols.size == 0) + { + init_psymbol_list (objfile, 1024); + } + + /* Save the relocation factor where everybody can see it. */ + + base_section_offsets = section_offsets; + baseaddr = ANOFFSET (section_offsets, 0); + + /* Follow the compilation unit sibling chain, building a partial symbol + table entry for each one. Save enough information about each compilation + unit to locate the full DWARF information later. */ + + scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile); + + do_cleanups (back_to); + current_objfile = NULL; +} + +/* + +LOCAL FUNCTION + + read_lexical_block_scope -- process all dies in a lexical block + +SYNOPSIS + + static void read_lexical_block_scope (struct dieinfo *dip, + char *thisdie, char *enddie) + +DESCRIPTION + + Process all the DIES contained within a lexical block scope. + Start a new scope, process the dies, and then close the scope. + + */ + +static void +read_lexical_block_scope (dip, thisdie, enddie, objfile) + struct dieinfo *dip; + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + register struct context_stack *new; + + push_context (0, dip -> at_low_pc); + process_dies (thisdie + dip -> die_length, enddie, objfile); + new = pop_context (); + if (local_symbols != NULL) + { + finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr, + dip -> at_high_pc, objfile); + } + local_symbols = new -> locals; +} + +/* + +LOCAL FUNCTION + + lookup_utype -- look up a user defined type from die reference + +SYNOPSIS + + static type *lookup_utype (DIE_REF die_ref) + +DESCRIPTION + + Given a DIE reference, lookup the user defined type associated with + that DIE, if it has been registered already. If not registered, then + return NULL. Alloc_utype() can be called to register an empty + type for this reference, which will be filled in later when the + actual referenced DIE is processed. + */ + +static struct type * +lookup_utype (die_ref) + DIE_REF die_ref; +{ + struct type *type = NULL; + int utypeidx; + + utypeidx = (die_ref - dbroff) / 4; + if ((utypeidx < 0) || (utypeidx >= numutypes)) + { + complain (&bad_die_ref, DIE_ID, DIE_NAME); + } + else + { + type = *(utypes + utypeidx); + } + return (type); +} + + +/* + +LOCAL FUNCTION + + alloc_utype -- add a user defined type for die reference + +SYNOPSIS + + static type *alloc_utype (DIE_REF die_ref, struct type *utypep) + +DESCRIPTION + + Given a die reference DIE_REF, and a possible pointer to a user + defined type UTYPEP, register that this reference has a user + defined type and either use the specified type in UTYPEP or + make a new empty type that will be filled in later. + + We should only be called after calling lookup_utype() to verify that + there is not currently a type registered for DIE_REF. + */ + +static struct type * +alloc_utype (die_ref, utypep) + DIE_REF die_ref; + struct type *utypep; +{ + struct type **typep; + int utypeidx; + + utypeidx = (die_ref - dbroff) / 4; + typep = utypes + utypeidx; + if ((utypeidx < 0) || (utypeidx >= numutypes)) + { + utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER); + complain (&bad_die_ref, DIE_ID, DIE_NAME); + } + else if (*typep != NULL) + { + utypep = *typep; + complain (&dup_user_type_allocation, DIE_ID, DIE_NAME); + } + else + { + if (utypep == NULL) + { + utypep = alloc_type (current_objfile); + } + *typep = utypep; + } + return (utypep); +} + +/* + +LOCAL FUNCTION + + free_utypes -- free the utypes array and reset pointer & count + +SYNOPSIS + + static void free_utypes (PTR dummy) + +DESCRIPTION + + Called via do_cleanups to free the utypes array, reset the pointer to NULL, + and set numutypes back to zero. This ensures that the utypes does not get + referenced after being freed. + */ + +static void +free_utypes (dummy) + PTR dummy; +{ + free (utypes); + utypes = NULL; + numutypes = 0; +} + + +/* + +LOCAL FUNCTION + + decode_die_type -- return a type for a specified die + +SYNOPSIS + + static struct type *decode_die_type (struct dieinfo *dip) + +DESCRIPTION + + Given a pointer to a die information structure DIP, decode the + type of the die and return a pointer to the decoded type. All + dies without specific types default to type int. + */ + +static struct type * +decode_die_type (dip) + struct dieinfo *dip; +{ + struct type *type = NULL; + + if (dip -> at_fund_type != 0) + { + type = decode_fund_type (dip -> at_fund_type); + } + else if (dip -> at_mod_fund_type != NULL) + { + type = decode_mod_fund_type (dip -> at_mod_fund_type); + } + else if (dip -> at_user_def_type) + { + if ((type = lookup_utype (dip -> at_user_def_type)) == NULL) + { + type = alloc_utype (dip -> at_user_def_type, NULL); + } + } + else if (dip -> at_mod_u_d_type) + { + type = decode_mod_u_d_type (dip -> at_mod_u_d_type); + } + else + { + type = dwarf_fundamental_type (current_objfile, FT_VOID); + } + return (type); +} + +/* + +LOCAL FUNCTION + + struct_type -- compute and return the type for a struct or union + +SYNOPSIS + + static struct type *struct_type (struct dieinfo *dip, char *thisdie, + char *enddie, struct objfile *objfile) + +DESCRIPTION + + Given pointer to a die information structure for a die which + defines a union or structure (and MUST define one or the other), + and pointers to the raw die data that define the range of dies which + define the members, compute and return the user defined type for the + structure or union. + */ + +static struct type * +struct_type (dip, thisdie, enddie, objfile) + struct dieinfo *dip; + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + struct type *type; + struct nextfield { + struct nextfield *next; + struct field field; + }; + struct nextfield *list = NULL; + struct nextfield *new; + int nfields = 0; + int n; + struct dieinfo mbr; + char *nextdie; + int anonymous_size; + + if ((type = lookup_utype (dip -> die_ref)) == NULL) + { + /* No forward references created an empty type, so install one now */ + type = alloc_utype (dip -> die_ref, NULL); + } + INIT_CPLUS_SPECIFIC(type); + switch (dip -> die_tag) + { + case TAG_class_type: + TYPE_CODE (type) = TYPE_CODE_CLASS; + break; + case TAG_structure_type: + TYPE_CODE (type) = TYPE_CODE_STRUCT; + break; + case TAG_union_type: + TYPE_CODE (type) = TYPE_CODE_UNION; + break; + default: + /* Should never happen */ + TYPE_CODE (type) = TYPE_CODE_UNDEF; + complain (&missing_tag, DIE_ID, DIE_NAME); + break; + } + /* Some compilers try to be helpful by inventing "fake" names for + anonymous enums, structures, and unions, like "~0fake" or ".0fake". + Thanks, but no thanks... */ + if (dip -> at_name != NULL + && *dip -> at_name != '~' + && *dip -> at_name != '.') + { + TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, + "", "", dip -> at_name); + } + /* Use whatever size is known. Zero is a valid size. We might however + wish to check has_at_byte_size to make sure that some byte size was + given explicitly, but DWARF doesn't specify that explicit sizes of + zero have to present, so complaining about missing sizes should + probably not be the default. */ + TYPE_LENGTH (type) = dip -> at_byte_size; + thisdie += dip -> die_length; + while (thisdie < enddie) + { + basicdieinfo (&mbr, thisdie, objfile); + completedieinfo (&mbr, objfile); + if (mbr.die_length <= SIZEOF_DIE_LENGTH) + { + break; + } + else if (mbr.at_sibling != 0) + { + nextdie = dbbase + mbr.at_sibling - dbroff; + } + else + { + nextdie = thisdie + mbr.die_length; + } + switch (mbr.die_tag) + { + case TAG_member: + /* Get space to record the next field's data. */ + new = (struct nextfield *) alloca (sizeof (struct nextfield)); + new -> next = list; + list = new; + /* Save the data. */ + list -> field.name = + obsavestring (mbr.at_name, strlen (mbr.at_name), + &objfile -> type_obstack); + FIELD_TYPE (list->field) = decode_die_type (&mbr); + FIELD_BITPOS (list->field) = 8 * locval (&mbr); + /* Handle bit fields. */ + FIELD_BITSIZE (list->field) = mbr.at_bit_size; + if (BITS_BIG_ENDIAN) + { + /* For big endian bits, the at_bit_offset gives the + additional bit offset from the MSB of the containing + anonymous object to the MSB of the field. We don't + have to do anything special since we don't need to + know the size of the anonymous object. */ + FIELD_BITPOS (list->field) += mbr.at_bit_offset; + } + else + { + /* For little endian bits, we need to have a non-zero + at_bit_size, so that we know we are in fact dealing + with a bitfield. Compute the bit offset to the MSB + of the anonymous object, subtract off the number of + bits from the MSB of the field to the MSB of the + object, and then subtract off the number of bits of + the field itself. The result is the bit offset of + the LSB of the field. */ + if (mbr.at_bit_size > 0) + { + if (mbr.has_at_byte_size) + { + /* The size of the anonymous object containing + the bit field is explicit, so use the + indicated size (in bytes). */ + anonymous_size = mbr.at_byte_size; + } + else + { + /* The size of the anonymous object containing + the bit field matches the size of an object + of the bit field's type. DWARF allows + at_byte_size to be left out in such cases, as + a debug information size optimization. */ + anonymous_size = TYPE_LENGTH (list -> field.type); + } + FIELD_BITPOS (list->field) += + anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size; + } + } + nfields++; + break; + default: + process_dies (thisdie, nextdie, objfile); + break; + } + thisdie = nextdie; + } + /* Now create the vector of fields, and record how big it is. We may + not even have any fields, if this DIE was generated due to a reference + to an anonymous structure or union. In this case, TYPE_FLAG_STUB is + set, which clues gdb in to the fact that it needs to search elsewhere + for the full structure definition. */ + if (nfields == 0) + { + TYPE_FLAGS (type) |= TYPE_FLAG_STUB; + } + else + { + TYPE_NFIELDS (type) = nfields; + TYPE_FIELDS (type) = (struct field *) + TYPE_ALLOC (type, sizeof (struct field) * nfields); + /* Copy the saved-up fields into the field vector. */ + for (n = nfields; list; list = list -> next) + { + TYPE_FIELD (type, --n) = list -> field; + } + } + return (type); +} + +/* + +LOCAL FUNCTION + + read_structure_scope -- process all dies within struct or union + +SYNOPSIS + + static void read_structure_scope (struct dieinfo *dip, + char *thisdie, char *enddie, struct objfile *objfile) + +DESCRIPTION + + Called when we find the DIE that starts a structure or union + scope (definition) to process all dies that define the members + of the structure or union. DIP is a pointer to the die info + struct for the DIE that names the structure or union. + +NOTES + + Note that we need to call struct_type regardless of whether or not + the DIE has an at_name attribute, since it might be an anonymous + structure or union. This gets the type entered into our set of + user defined types. + + However, if the structure is incomplete (an opaque struct/union) + then suppress creating a symbol table entry for it since gdb only + wants to find the one with the complete definition. Note that if + it is complete, we just call new_symbol, which does it's own + checking about whether the struct/union is anonymous or not (and + suppresses creating a symbol table entry itself). + + */ + +static void +read_structure_scope (dip, thisdie, enddie, objfile) + struct dieinfo *dip; + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + struct type *type; + struct symbol *sym; + + type = struct_type (dip, thisdie, enddie, objfile); + if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB)) + { + sym = new_symbol (dip, objfile); + if (sym != NULL) + { + SYMBOL_TYPE (sym) = type; + if (cu_language == language_cplus) + { + synthesize_typedef (dip, objfile, type); + } + } + } +} + +/* + +LOCAL FUNCTION + + decode_array_element_type -- decode type of the array elements + +SYNOPSIS + + static struct type *decode_array_element_type (char *scan, char *end) + +DESCRIPTION + + As the last step in decoding the array subscript information for an + array DIE, we need to decode the type of the array elements. We are + passed a pointer to this last part of the subscript information and + must return the appropriate type. If the type attribute is not + recognized, just warn about the problem and return type int. + */ + +static struct type * +decode_array_element_type (scan) + char *scan; +{ + struct type *typep; + DIE_REF die_ref; + unsigned short attribute; + unsigned short fundtype; + int nbytes; + + attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED, + current_objfile); + scan += SIZEOF_ATTRIBUTE; + if ((nbytes = attribute_size (attribute)) == -1) + { + complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); + typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); + } + else + { + switch (attribute) + { + case AT_fund_type: + fundtype = target_to_host (scan, nbytes, GET_UNSIGNED, + current_objfile); + typep = decode_fund_type (fundtype); + break; + case AT_mod_fund_type: + typep = decode_mod_fund_type (scan); + break; + case AT_user_def_type: + die_ref = target_to_host (scan, nbytes, GET_UNSIGNED, + current_objfile); + if ((typep = lookup_utype (die_ref)) == NULL) + { + typep = alloc_utype (die_ref, NULL); + } + break; + case AT_mod_u_d_type: + typep = decode_mod_u_d_type (scan); + break; + default: + complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute); + typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); + break; + } + } + return (typep); +} + +/* + +LOCAL FUNCTION + + decode_subscript_data_item -- decode array subscript item + +SYNOPSIS + + static struct type * + decode_subscript_data_item (char *scan, char *end) + +DESCRIPTION + + The array subscripts and the data type of the elements of an + array are described by a list of data items, stored as a block + of contiguous bytes. There is a data item describing each array + dimension, and a final data item describing the element type. + The data items are ordered the same as their appearance in the + source (I.E. leftmost dimension first, next to leftmost second, + etc). + + The data items describing each array dimension consist of four + parts: (1) a format specifier, (2) type type of the subscript + index, (3) a description of the low bound of the array dimension, + and (4) a description of the high bound of the array dimension. + + The last data item is the description of the type of each of + the array elements. + + We are passed a pointer to the start of the block of bytes + containing the remaining data items, and a pointer to the first + byte past the data. This function recursively decodes the + remaining data items and returns a type. + + If we somehow fail to decode some data, we complain about it + and return a type "array of int". + +BUGS + FIXME: This code only implements the forms currently used + by the AT&T and GNU C compilers. + + The end pointer is supplied for error checking, maybe we should + use it for that... + */ + +static struct type * +decode_subscript_data_item (scan, end) + char *scan; + char *end; +{ + struct type *typep = NULL; /* Array type we are building */ + struct type *nexttype; /* Type of each element (may be array) */ + struct type *indextype; /* Type of this index */ + struct type *rangetype; + unsigned int format; + unsigned short fundtype; + unsigned long lowbound; + unsigned long highbound; + int nbytes; + + format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED, + current_objfile); + scan += SIZEOF_FORMAT_SPECIFIER; + switch (format) + { + case FMT_ET: + typep = decode_array_element_type (scan); + break; + case FMT_FT_C_C: + fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED, + current_objfile); + indextype = decode_fund_type (fundtype); + scan += SIZEOF_FMT_FT; + nbytes = TARGET_FT_LONG_SIZE (current_objfile); + lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); + scan += nbytes; + highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile); + scan += nbytes; + nexttype = decode_subscript_data_item (scan, end); + if (nexttype == NULL) + { + /* Munged subscript data or other problem, fake it. */ + complain (&subscript_data_items, DIE_ID, DIE_NAME); + nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); + } + rangetype = create_range_type ((struct type *) NULL, indextype, + lowbound, highbound); + typep = create_array_type ((struct type *) NULL, nexttype, rangetype); + break; + case FMT_FT_C_X: + case FMT_FT_X_C: + case FMT_FT_X_X: + case FMT_UT_C_C: + case FMT_UT_C_X: + case FMT_UT_X_C: + case FMT_UT_X_X: + complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format); + nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); + rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); + typep = create_array_type ((struct type *) NULL, nexttype, rangetype); + break; + default: + complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format); + nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER); + rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0); + typep = create_array_type ((struct type *) NULL, nexttype, rangetype); + break; + } + return (typep); +} + +/* + +LOCAL FUNCTION + + dwarf_read_array_type -- read TAG_array_type DIE + +SYNOPSIS + + static void dwarf_read_array_type (struct dieinfo *dip) + +DESCRIPTION + + Extract all information from a TAG_array_type DIE and add to + the user defined type vector. + */ + +static void +dwarf_read_array_type (dip) + struct dieinfo *dip; +{ + struct type *type; + struct type *utype; + char *sub; + char *subend; + unsigned short blocksz; + int nbytes; + + if (dip -> at_ordering != ORD_row_major) + { + /* FIXME: Can gdb even handle column major arrays? */ + complain (¬_row_major, DIE_ID, DIE_NAME); + } + if ((sub = dip -> at_subscr_data) != NULL) + { + nbytes = attribute_size (AT_subscr_data); + blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile); + subend = sub + nbytes + blocksz; + sub += nbytes; + type = decode_subscript_data_item (sub, subend); + if ((utype = lookup_utype (dip -> die_ref)) == NULL) + { + /* Install user defined type that has not been referenced yet. */ + alloc_utype (dip -> die_ref, type); + } + else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF) + { + /* Ick! A forward ref has already generated a blank type in our + slot, and this type probably already has things pointing to it + (which is what caused it to be created in the first place). + If it's just a place holder we can plop our fully defined type + on top of it. We can't recover the space allocated for our + new type since it might be on an obstack, but we could reuse + it if we kept a list of them, but it might not be worth it + (FIXME). */ + *utype = *type; + } + else + { + /* Double ick! Not only is a type already in our slot, but + someone has decorated it. Complain and leave it alone. */ + complain (&dup_user_type_definition, DIE_ID, DIE_NAME); + } + } +} + +/* + +LOCAL FUNCTION + + read_tag_pointer_type -- read TAG_pointer_type DIE + +SYNOPSIS + + static void read_tag_pointer_type (struct dieinfo *dip) + +DESCRIPTION + + Extract all information from a TAG_pointer_type DIE and add to + the user defined type vector. + */ + +static void +read_tag_pointer_type (dip) + struct dieinfo *dip; +{ + struct type *type; + struct type *utype; + + type = decode_die_type (dip); + if ((utype = lookup_utype (dip -> die_ref)) == NULL) + { + utype = lookup_pointer_type (type); + alloc_utype (dip -> die_ref, utype); + } + else + { + TYPE_TARGET_TYPE (utype) = type; + TYPE_POINTER_TYPE (type) = utype; + + /* We assume the machine has only one representation for pointers! */ + /* FIXME: Possably a poor assumption */ + TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT ; + TYPE_CODE (utype) = TYPE_CODE_PTR; + } +} + +/* + +LOCAL FUNCTION + + read_tag_string_type -- read TAG_string_type DIE + +SYNOPSIS + + static void read_tag_string_type (struct dieinfo *dip) + +DESCRIPTION + + Extract all information from a TAG_string_type DIE and add to + the user defined type vector. It isn't really a user defined + type, but it behaves like one, with other DIE's using an + AT_user_def_type attribute to reference it. + */ + +static void +read_tag_string_type (dip) + struct dieinfo *dip; +{ + struct type *utype; + struct type *indextype; + struct type *rangetype; + unsigned long lowbound = 0; + unsigned long highbound; + + if (dip -> has_at_byte_size) + { + /* A fixed bounds string */ + highbound = dip -> at_byte_size - 1; + } + else + { + /* A varying length string. Stub for now. (FIXME) */ + highbound = 1; + } + indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER); + rangetype = create_range_type ((struct type *) NULL, indextype, lowbound, + highbound); + + utype = lookup_utype (dip -> die_ref); + if (utype == NULL) + { + /* No type defined, go ahead and create a blank one to use. */ + utype = alloc_utype (dip -> die_ref, (struct type *) NULL); + } + else + { + /* Already a type in our slot due to a forward reference. Make sure it + is a blank one. If not, complain and leave it alone. */ + if (TYPE_CODE (utype) != TYPE_CODE_UNDEF) + { + complain (&dup_user_type_definition, DIE_ID, DIE_NAME); + return; + } + } + + /* Create the string type using the blank type we either found or created. */ + utype = create_string_type (utype, rangetype); +} + +/* + +LOCAL FUNCTION + + read_subroutine_type -- process TAG_subroutine_type dies + +SYNOPSIS + + static void read_subroutine_type (struct dieinfo *dip, char thisdie, + char *enddie) + +DESCRIPTION + + Handle DIES due to C code like: + + struct foo { + int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE) + int b; + }; + +NOTES + + The parameter DIES are currently ignored. See if gdb has a way to + include this info in it's type system, and decode them if so. Is + this what the type structure's "arg_types" field is for? (FIXME) + */ + +static void +read_subroutine_type (dip, thisdie, enddie) + struct dieinfo *dip; + char *thisdie; + char *enddie; +{ + struct type *type; /* Type that this function returns */ + struct type *ftype; /* Function that returns above type */ + + /* Decode the type that this subroutine returns */ + + type = decode_die_type (dip); + + /* Check to see if we already have a partially constructed user + defined type for this DIE, from a forward reference. */ + + if ((ftype = lookup_utype (dip -> die_ref)) == NULL) + { + /* This is the first reference to one of these types. Make + a new one and place it in the user defined types. */ + ftype = lookup_function_type (type); + alloc_utype (dip -> die_ref, ftype); + } + else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF) + { + /* We have an existing partially constructed type, so bash it + into the correct type. */ + TYPE_TARGET_TYPE (ftype) = type; + TYPE_LENGTH (ftype) = 1; + TYPE_CODE (ftype) = TYPE_CODE_FUNC; + } + else + { + complain (&dup_user_type_definition, DIE_ID, DIE_NAME); + } +} + +/* + +LOCAL FUNCTION + + read_enumeration -- process dies which define an enumeration + +SYNOPSIS + + static void read_enumeration (struct dieinfo *dip, char *thisdie, + char *enddie, struct objfile *objfile) + +DESCRIPTION + + Given a pointer to a die which begins an enumeration, process all + the dies that define the members of the enumeration. + +NOTES + + Note that we need to call enum_type regardless of whether or not we + have a symbol, since we might have an enum without a tag name (thus + no symbol for the tagname). + */ + +static void +read_enumeration (dip, thisdie, enddie, objfile) + struct dieinfo *dip; + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + struct type *type; + struct symbol *sym; + + type = enum_type (dip, objfile); + sym = new_symbol (dip, objfile); + if (sym != NULL) + { + SYMBOL_TYPE (sym) = type; + if (cu_language == language_cplus) + { + synthesize_typedef (dip, objfile, type); + } + } +} + +/* + +LOCAL FUNCTION + + enum_type -- decode and return a type for an enumeration + +SYNOPSIS + + static type *enum_type (struct dieinfo *dip, struct objfile *objfile) + +DESCRIPTION + + Given a pointer to a die information structure for the die which + starts an enumeration, process all the dies that define the members + of the enumeration and return a type pointer for the enumeration. + + At the same time, for each member of the enumeration, create a + symbol for it with namespace VAR_NAMESPACE and class LOC_CONST, + and give it the type of the enumeration itself. + +NOTES + + Note that the DWARF specification explicitly mandates that enum + constants occur in reverse order from the source program order, + for "consistency" and because this ordering is easier for many + compilers to generate. (Draft 6, sec 3.8.5, Enumeration type + Entries). Because gdb wants to see the enum members in program + source order, we have to ensure that the order gets reversed while + we are processing them. + */ + +static struct type * +enum_type (dip, objfile) + struct dieinfo *dip; + struct objfile *objfile; +{ + struct type *type; + struct nextfield { + struct nextfield *next; + struct field field; + }; + struct nextfield *list = NULL; + struct nextfield *new; + int nfields = 0; + int n; + char *scan; + char *listend; + unsigned short blocksz; + struct symbol *sym; + int nbytes; + int unsigned_enum = 1; + + if ((type = lookup_utype (dip -> die_ref)) == NULL) + { + /* No forward references created an empty type, so install one now */ + type = alloc_utype (dip -> die_ref, NULL); + } + TYPE_CODE (type) = TYPE_CODE_ENUM; + /* Some compilers try to be helpful by inventing "fake" names for + anonymous enums, structures, and unions, like "~0fake" or ".0fake". + Thanks, but no thanks... */ + if (dip -> at_name != NULL + && *dip -> at_name != '~' + && *dip -> at_name != '.') + { + TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack, + "", "", dip -> at_name); + } + if (dip -> at_byte_size != 0) + { + TYPE_LENGTH (type) = dip -> at_byte_size; + } + if ((scan = dip -> at_element_list) != NULL) + { + if (dip -> short_element_list) + { + nbytes = attribute_size (AT_short_element_list); + } + else + { + nbytes = attribute_size (AT_element_list); + } + blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); + listend = scan + nbytes + blocksz; + scan += nbytes; + while (scan < listend) + { + new = (struct nextfield *) alloca (sizeof (struct nextfield)); + new -> next = list; + list = new; + FIELD_TYPE (list->field) = NULL; + FIELD_BITSIZE (list->field) = 0; + FIELD_BITPOS (list->field) = + target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED, + objfile); + scan += TARGET_FT_LONG_SIZE (objfile); + list -> field.name = obsavestring (scan, strlen (scan), + &objfile -> type_obstack); + scan += strlen (scan) + 1; + nfields++; + /* Handcraft a new symbol for this enum member. */ + sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack, + sizeof (struct symbol)); + memset (sym, 0, sizeof (struct symbol)); + SYMBOL_NAME (sym) = create_name (list -> field.name, + &objfile->symbol_obstack); + SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); + SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; + SYMBOL_CLASS (sym) = LOC_CONST; + SYMBOL_TYPE (sym) = type; + SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field); + if (SYMBOL_VALUE (sym) < 0) + unsigned_enum = 0; + add_symbol_to_list (sym, list_in_scope); + } + /* Now create the vector of fields, and record how big it is. This is + where we reverse the order, by pulling the members off the list in + reverse order from how they were inserted. If we have no fields + (this is apparently possible in C++) then skip building a field + vector. */ + if (nfields > 0) + { + if (unsigned_enum) + TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED; + TYPE_NFIELDS (type) = nfields; + TYPE_FIELDS (type) = (struct field *) + obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields); + /* Copy the saved-up fields into the field vector. */ + for (n = 0; (n < nfields) && (list != NULL); list = list -> next) + { + TYPE_FIELD (type, n++) = list -> field; + } + } + } + return (type); +} + +/* + +LOCAL FUNCTION + + read_func_scope -- process all dies within a function scope + +DESCRIPTION + + Process all dies within a given function scope. We are passed + a die information structure pointer DIP for the die which + starts the function scope, and pointers into the raw die data + that define the dies within the function scope. + + For now, we ignore lexical block scopes within the function. + The problem is that AT&T cc does not define a DWARF lexical + block scope for the function itself, while gcc defines a + lexical block scope for the function. We need to think about + how to handle this difference, or if it is even a problem. + (FIXME) + */ + +static void +read_func_scope (dip, thisdie, enddie, objfile) + struct dieinfo *dip; + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + register struct context_stack *new; + + /* AT_name is absent if the function is described with an + AT_abstract_origin tag. + Ignore the function description for now to avoid GDB core dumps. + FIXME: Add code to handle AT_abstract_origin tags properly. */ + if (dip -> at_name == NULL) + { + complain (&missing_at_name, DIE_ID); + return; + } + + if (objfile -> ei.entry_point >= dip -> at_low_pc && + objfile -> ei.entry_point < dip -> at_high_pc) + { + objfile -> ei.entry_func_lowpc = dip -> at_low_pc; + objfile -> ei.entry_func_highpc = dip -> at_high_pc; + } + if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */ + { + objfile -> ei.main_func_lowpc = dip -> at_low_pc; + objfile -> ei.main_func_highpc = dip -> at_high_pc; + } + new = push_context (0, dip -> at_low_pc); + new -> name = new_symbol (dip, objfile); + list_in_scope = &local_symbols; + process_dies (thisdie + dip -> die_length, enddie, objfile); + new = pop_context (); + /* Make a block for the local symbols within. */ + finish_block (new -> name, &local_symbols, new -> old_blocks, + new -> start_addr, dip -> at_high_pc, objfile); + list_in_scope = &file_symbols; +} + + +/* + +LOCAL FUNCTION + + handle_producer -- process the AT_producer attribute + +DESCRIPTION + + Perform any operations that depend on finding a particular + AT_producer attribute. + + */ + +static void +handle_producer (producer) + char *producer; +{ + + /* If this compilation unit was compiled with g++ or gcc, then set the + processing_gcc_compilation flag. */ + + if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER))) + { + char version = producer[strlen (GCC_PRODUCER)]; + processing_gcc_compilation = (version == '2' ? 2 : 1); + } + else + { + processing_gcc_compilation = + STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) + || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); + } + + /* Select a demangling style if we can identify the producer and if + the current style is auto. We leave the current style alone if it + is not auto. We also leave the demangling style alone if we find a + gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */ + + if (AUTO_DEMANGLING) + { + if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))) + { + set_demangling_style (GNU_DEMANGLING_STYLE_STRING); + } + else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER))) + { + set_demangling_style (LUCID_DEMANGLING_STYLE_STRING); + } + } +} + + +/* + +LOCAL FUNCTION + + read_file_scope -- process all dies within a file scope + +DESCRIPTION + + Process all dies within a given file scope. We are passed a + pointer to the die information structure for the die which + starts the file scope, and pointers into the raw die data which + mark the range of dies within the file scope. + + When the partial symbol table is built, the file offset for the line + number table for each compilation unit is saved in the partial symbol + table entry for that compilation unit. As the symbols for each + compilation unit are read, the line number table is read into memory + and the variable lnbase is set to point to it. Thus all we have to + do is use lnbase to access the line number table for the current + compilation unit. + */ + +static void +read_file_scope (dip, thisdie, enddie, objfile) + struct dieinfo *dip; + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + struct cleanup *back_to; + struct symtab *symtab; + + if (objfile -> ei.entry_point >= dip -> at_low_pc && + objfile -> ei.entry_point < dip -> at_high_pc) + { + objfile -> ei.entry_file_lowpc = dip -> at_low_pc; + objfile -> ei.entry_file_highpc = dip -> at_high_pc; + } + set_cu_language (dip); + if (dip -> at_producer != NULL) + { + handle_producer (dip -> at_producer); + } + numutypes = (enddie - thisdie) / 4; + utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *)); + back_to = make_cleanup (free_utypes, NULL); + memset (utypes, 0, numutypes * sizeof (struct type *)); + memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *)); + start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc); + record_debugformat ("DWARF 1"); + decode_line_numbers (lnbase); + process_dies (thisdie + dip -> die_length, enddie, objfile); + + symtab = end_symtab (dip -> at_high_pc, objfile, 0); + if (symtab != NULL) + { + symtab -> language = cu_language; + } + do_cleanups (back_to); +} + +/* + +LOCAL FUNCTION + + process_dies -- process a range of DWARF Information Entries + +SYNOPSIS + + static void process_dies (char *thisdie, char *enddie, + struct objfile *objfile) + +DESCRIPTION + + Process all DIE's in a specified range. May be (and almost + certainly will be) called recursively. + */ + +static void +process_dies (thisdie, enddie, objfile) + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + char *nextdie; + struct dieinfo di; + + while (thisdie < enddie) + { + basicdieinfo (&di, thisdie, objfile); + if (di.die_length < SIZEOF_DIE_LENGTH) + { + break; + } + else if (di.die_tag == TAG_padding) + { + nextdie = thisdie + di.die_length; + } + else + { + completedieinfo (&di, objfile); + if (di.at_sibling != 0) + { + nextdie = dbbase + di.at_sibling - dbroff; + } + else + { + nextdie = thisdie + di.die_length; + } +#ifdef SMASH_TEXT_ADDRESS + /* I think that these are always text, not data, addresses. */ + SMASH_TEXT_ADDRESS (di.at_low_pc); + SMASH_TEXT_ADDRESS (di.at_high_pc); +#endif + switch (di.die_tag) + { + case TAG_compile_unit: + /* Skip Tag_compile_unit if we are already inside a compilation + unit, we are unable to handle nested compilation units + properly (FIXME). */ + if (current_subfile == NULL) + read_file_scope (&di, thisdie, nextdie, objfile); + else + nextdie = thisdie + di.die_length; + break; + case TAG_global_subroutine: + case TAG_subroutine: + if (di.has_at_low_pc) + { + read_func_scope (&di, thisdie, nextdie, objfile); + } + break; + case TAG_lexical_block: + read_lexical_block_scope (&di, thisdie, nextdie, objfile); + break; + case TAG_class_type: + case TAG_structure_type: + case TAG_union_type: + read_structure_scope (&di, thisdie, nextdie, objfile); + break; + case TAG_enumeration_type: + read_enumeration (&di, thisdie, nextdie, objfile); + break; + case TAG_subroutine_type: + read_subroutine_type (&di, thisdie, nextdie); + break; + case TAG_array_type: + dwarf_read_array_type (&di); + break; + case TAG_pointer_type: + read_tag_pointer_type (&di); + break; + case TAG_string_type: + read_tag_string_type (&di); + break; + default: + new_symbol (&di, objfile); + break; + } + } + thisdie = nextdie; + } +} + +/* + +LOCAL FUNCTION + + decode_line_numbers -- decode a line number table fragment + +SYNOPSIS + + static void decode_line_numbers (char *tblscan, char *tblend, + long length, long base, long line, long pc) + +DESCRIPTION + + Translate the DWARF line number information to gdb form. + + The ".line" section contains one or more line number tables, one for + each ".line" section from the objects that were linked. + + The AT_stmt_list attribute for each TAG_source_file entry in the + ".debug" section contains the offset into the ".line" section for the + start of the table for that file. + + The table itself has the following structure: + + <table length><base address><source statement entry> + 4 bytes 4 bytes 10 bytes + + The table length is the total size of the table, including the 4 bytes + for the length information. + + The base address is the address of the first instruction generated + for the source file. + + Each source statement entry has the following structure: + + <line number><statement position><address delta> + 4 bytes 2 bytes 4 bytes + + The line number is relative to the start of the file, starting with + line 1. + + The statement position either -1 (0xFFFF) or the number of characters + from the beginning of the line to the beginning of the statement. + + The address delta is the difference between the base address and + the address of the first instruction for the statement. + + Note that we must copy the bytes from the packed table to our local + variables before attempting to use them, to avoid alignment problems + on some machines, particularly RISC processors. + +BUGS + + Does gdb expect the line numbers to be sorted? They are now by + chance/luck, but are not required to be. (FIXME) + + The line with number 0 is unused, gdb apparently can discover the + span of the last line some other way. How? (FIXME) + */ + +static void +decode_line_numbers (linetable) + char *linetable; +{ + char *tblscan; + char *tblend; + unsigned long length; + unsigned long base; + unsigned long line; + unsigned long pc; + + if (linetable != NULL) + { + tblscan = tblend = linetable; + length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED, + current_objfile); + tblscan += SIZEOF_LINETBL_LENGTH; + tblend += length; + base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile), + GET_UNSIGNED, current_objfile); + tblscan += TARGET_FT_POINTER_SIZE (objfile); + base += baseaddr; + while (tblscan < tblend) + { + line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED, + current_objfile); + tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT; + pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED, + current_objfile); + tblscan += SIZEOF_LINETBL_DELTA; + pc += base; + if (line != 0) + { + record_line (current_subfile, line, pc); + } + } + } +} + +/* + +LOCAL FUNCTION + + locval -- compute the value of a location attribute + +SYNOPSIS + + static int locval (struct dieinfo *dip) + +DESCRIPTION + + Given pointer to a string of bytes that define a location, compute + the location and return the value. + A location description containing no atoms indicates that the + object is optimized out. The optimized_out flag is set for those, + the return value is meaningless. + + When computing values involving the current value of the frame pointer, + the value zero is used, which results in a value relative to the frame + pointer, rather than the absolute value. This is what GDB wants + anyway. + + When the result is a register number, the isreg flag is set, otherwise + it is cleared. This is a kludge until we figure out a better + way to handle the problem. Gdb's design does not mesh well with the + DWARF notion of a location computing interpreter, which is a shame + because the flexibility goes unused. + +NOTES + + Note that stack[0] is unused except as a default error return. + Note that stack overflow is not yet handled. + */ + +static int +locval (dip) + struct dieinfo *dip; +{ + unsigned short nbytes; + unsigned short locsize; + auto long stack[64]; + int stacki; + char *loc; + char *end; + int loc_atom_code; + int loc_value_size; + + loc = dip -> at_location; + nbytes = attribute_size (AT_location); + locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile); + loc += nbytes; + end = loc + locsize; + stacki = 0; + stack[stacki] = 0; + dip -> isreg = 0; + dip -> offreg = 0; + dip -> optimized_out = 1; + loc_value_size = TARGET_FT_LONG_SIZE (current_objfile); + while (loc < end) + { + dip -> optimized_out = 0; + loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED, + current_objfile); + loc += SIZEOF_LOC_ATOM_CODE; + switch (loc_atom_code) + { + case 0: + /* error */ + loc = end; + break; + case OP_REG: + /* push register (number) */ + stack[++stacki] + = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size, + GET_UNSIGNED, + current_objfile)); + loc += loc_value_size; + dip -> isreg = 1; + break; + case OP_BASEREG: + /* push value of register (number) */ + /* Actually, we compute the value as if register has 0, so the + value ends up being the offset from that register. */ + dip -> offreg = 1; + dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED, + current_objfile); + loc += loc_value_size; + stack[++stacki] = 0; + break; + case OP_ADDR: + /* push address (relocated address) */ + stack[++stacki] = target_to_host (loc, loc_value_size, + GET_UNSIGNED, current_objfile); + loc += loc_value_size; + break; + case OP_CONST: + /* push constant (number) FIXME: signed or unsigned! */ + stack[++stacki] = target_to_host (loc, loc_value_size, + GET_SIGNED, current_objfile); + loc += loc_value_size; + break; + case OP_DEREF2: + /* pop, deref and push 2 bytes (as a long) */ + complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]); + break; + case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */ + complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]); + break; + case OP_ADD: /* pop top 2 items, add, push result */ + stack[stacki - 1] += stack[stacki]; + stacki--; + break; + } + } + return (stack[stacki]); +} + +/* + +LOCAL FUNCTION + + read_ofile_symtab -- build a full symtab entry from chunk of DIE's + +SYNOPSIS + + static void read_ofile_symtab (struct partial_symtab *pst) + +DESCRIPTION + + When expanding a partial symbol table entry to a full symbol table + entry, this is the function that gets called to read in the symbols + for the compilation unit. A pointer to the newly constructed symtab, + which is now the new first one on the objfile's symtab list, is + stashed in the partial symbol table entry. + */ + +static void +read_ofile_symtab (pst) + struct partial_symtab *pst; +{ + struct cleanup *back_to; + unsigned long lnsize; + file_ptr foffset; + bfd *abfd; + char lnsizedata[SIZEOF_LINETBL_LENGTH]; + + abfd = pst -> objfile -> obfd; + current_objfile = pst -> objfile; + + /* Allocate a buffer for the entire chunk of DIE's for this compilation + unit, seek to the location in the file, and read in all the DIE's. */ + + diecount = 0; + dbsize = DBLENGTH (pst); + dbbase = xmalloc (dbsize); + dbroff = DBROFF(pst); + foffset = DBFOFF(pst) + dbroff; + base_section_offsets = pst->section_offsets; + baseaddr = ANOFFSET (pst->section_offsets, 0); + if (bfd_seek (abfd, foffset, SEEK_SET) || + (bfd_read (dbbase, dbsize, 1, abfd) != dbsize)) + { + free (dbbase); + error ("can't read DWARF data"); + } + back_to = make_cleanup (free, dbbase); + + /* If there is a line number table associated with this compilation unit + then read the size of this fragment in bytes, from the fragment itself. + Allocate a buffer for the fragment and read it in for future + processing. */ + + lnbase = NULL; + if (LNFOFF (pst)) + { + if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || + (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) != + sizeof (lnsizedata))) + { + error ("can't read DWARF line number table size"); + } + lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH, + GET_UNSIGNED, pst -> objfile); + lnbase = xmalloc (lnsize); + if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) || + (bfd_read (lnbase, lnsize, 1, abfd) != lnsize)) + { + free (lnbase); + error ("can't read DWARF line numbers"); + } + make_cleanup (free, lnbase); + } + + process_dies (dbbase, dbbase + dbsize, pst -> objfile); + do_cleanups (back_to); + current_objfile = NULL; + pst -> symtab = pst -> objfile -> symtabs; +} + +/* + +LOCAL FUNCTION + + psymtab_to_symtab_1 -- do grunt work for building a full symtab entry + +SYNOPSIS + + static void psymtab_to_symtab_1 (struct partial_symtab *pst) + +DESCRIPTION + + Called once for each partial symbol table entry that needs to be + expanded into a full symbol table entry. + +*/ + +static void +psymtab_to_symtab_1 (pst) + struct partial_symtab *pst; +{ + int i; + struct cleanup *old_chain; + + if (pst != NULL) + { + if (pst->readin) + { + warning ("psymtab for %s already read in. Shouldn't happen.", + pst -> filename); + } + else + { + /* Read in all partial symtabs on which this one is dependent */ + for (i = 0; i < pst -> number_of_dependencies; i++) + { + if (!pst -> dependencies[i] -> readin) + { + /* Inform about additional files that need to be read in. */ + if (info_verbose) + { + fputs_filtered (" ", gdb_stdout); + wrap_here (""); + fputs_filtered ("and ", gdb_stdout); + wrap_here (""); + printf_filtered ("%s...", + pst -> dependencies[i] -> filename); + wrap_here (""); + gdb_flush (gdb_stdout); /* Flush output */ + } + psymtab_to_symtab_1 (pst -> dependencies[i]); + } + } + if (DBLENGTH (pst)) /* Otherwise it's a dummy */ + { + buildsym_init (); + old_chain = make_cleanup ((make_cleanup_func) + really_free_pendings, 0); + read_ofile_symtab (pst); + if (info_verbose) + { + printf_filtered ("%d DIE's, sorting...", diecount); + wrap_here (""); + gdb_flush (gdb_stdout); + } + sort_symtab_syms (pst -> symtab); + do_cleanups (old_chain); + } + pst -> readin = 1; + } + } +} + +/* + +LOCAL FUNCTION + + dwarf_psymtab_to_symtab -- build a full symtab entry from partial one + +SYNOPSIS + + static void dwarf_psymtab_to_symtab (struct partial_symtab *pst) + +DESCRIPTION + + This is the DWARF support entry point for building a full symbol + table entry from a partial symbol table entry. We are passed a + pointer to the partial symbol table entry that needs to be expanded. + +*/ + +static void +dwarf_psymtab_to_symtab (pst) + struct partial_symtab *pst; +{ + + if (pst != NULL) + { + if (pst -> readin) + { + warning ("psymtab for %s already read in. Shouldn't happen.", + pst -> filename); + } + else + { + if (DBLENGTH (pst) || pst -> number_of_dependencies) + { + /* Print the message now, before starting serious work, to avoid + disconcerting pauses. */ + if (info_verbose) + { + printf_filtered ("Reading in symbols for %s...", + pst -> filename); + gdb_flush (gdb_stdout); + } + + psymtab_to_symtab_1 (pst); + +#if 0 /* FIXME: Check to see what dbxread is doing here and see if + we need to do an equivalent or is this something peculiar to + stabs/a.out format. + Match with global symbols. This only needs to be done once, + after all of the symtabs and dependencies have been read in. + */ + scan_file_globals (pst -> objfile); +#endif + + /* Finish up the verbose info message. */ + if (info_verbose) + { + printf_filtered ("done.\n"); + gdb_flush (gdb_stdout); + } + } + } + } +} + +/* + +LOCAL FUNCTION + + add_enum_psymbol -- add enumeration members to partial symbol table + +DESCRIPTION + + Given pointer to a DIE that is known to be for an enumeration, + extract the symbolic names of the enumeration members and add + partial symbols for them. +*/ + +static void +add_enum_psymbol (dip, objfile) + struct dieinfo *dip; + struct objfile *objfile; +{ + char *scan; + char *listend; + unsigned short blocksz; + int nbytes; + + if ((scan = dip -> at_element_list) != NULL) + { + if (dip -> short_element_list) + { + nbytes = attribute_size (AT_short_element_list); + } + else + { + nbytes = attribute_size (AT_element_list); + } + blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile); + scan += nbytes; + listend = scan + blocksz; + while (scan < listend) + { + scan += TARGET_FT_LONG_SIZE (objfile); + add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST, + &objfile -> static_psymbols, 0, 0, cu_language, + objfile); + scan += strlen (scan) + 1; + } + } +} + +/* + +LOCAL FUNCTION + + add_partial_symbol -- add symbol to partial symbol table + +DESCRIPTION + + Given a DIE, if it is one of the types that we want to + add to a partial symbol table, finish filling in the die info + and then add a partial symbol table entry for it. + +NOTES + + The caller must ensure that the DIE has a valid name attribute. +*/ + +static void +add_partial_symbol (dip, objfile) + struct dieinfo *dip; + struct objfile *objfile; +{ + switch (dip -> die_tag) + { + case TAG_global_subroutine: + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + VAR_NAMESPACE, LOC_BLOCK, + &objfile -> global_psymbols, + 0, dip -> at_low_pc, cu_language, objfile); + break; + case TAG_global_variable: + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + VAR_NAMESPACE, LOC_STATIC, + &objfile -> global_psymbols, + 0, 0, cu_language, objfile); + break; + case TAG_subroutine: + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + VAR_NAMESPACE, LOC_BLOCK, + &objfile -> static_psymbols, + 0, dip -> at_low_pc, cu_language, objfile); + break; + case TAG_local_variable: + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + VAR_NAMESPACE, LOC_STATIC, + &objfile -> static_psymbols, + 0, 0, cu_language, objfile); + break; + case TAG_typedef: + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + VAR_NAMESPACE, LOC_TYPEDEF, + &objfile -> static_psymbols, + 0, 0, cu_language, objfile); + break; + case TAG_class_type: + case TAG_structure_type: + case TAG_union_type: + case TAG_enumeration_type: + /* Do not add opaque aggregate definitions to the psymtab. */ + if (!dip -> has_at_byte_size) + break; + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + STRUCT_NAMESPACE, LOC_TYPEDEF, + &objfile -> static_psymbols, + 0, 0, cu_language, objfile); + if (cu_language == language_cplus) + { + /* For C++, these implicitly act as typedefs as well. */ + add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name), + VAR_NAMESPACE, LOC_TYPEDEF, + &objfile -> static_psymbols, + 0, 0, cu_language, objfile); + } + break; + } +} + +/* + +LOCAL FUNCTION + + scan_partial_symbols -- scan DIE's within a single compilation unit + +DESCRIPTION + + Process the DIE's within a single compilation unit, looking for + interesting DIE's that contribute to the partial symbol table entry + for this compilation unit. + +NOTES + + There are some DIE's that may appear both at file scope and within + the scope of a function. We are only interested in the ones at file + scope, and the only way to tell them apart is to keep track of the + scope. For example, consider the test case: + + static int i; + main () { int j; } + + for which the relevant DWARF segment has the structure: + + 0x51: + 0x23 global subrtn sibling 0x9b + name main + fund_type FT_integer + low_pc 0x800004cc + high_pc 0x800004d4 + + 0x74: + 0x23 local var sibling 0x97 + name j + fund_type FT_integer + location OP_BASEREG 0xe + OP_CONST 0xfffffffc + OP_ADD + 0x97: + 0x4 + + 0x9b: + 0x1d local var sibling 0xb8 + name i + fund_type FT_integer + location OP_ADDR 0x800025dc + + 0xb8: + 0x4 + + We want to include the symbol 'i' in the partial symbol table, but + not the symbol 'j'. In essence, we want to skip all the dies within + the scope of a TAG_global_subroutine DIE. + + Don't attempt to add anonymous structures or unions since they have + no name. Anonymous enumerations however are processed, because we + want to extract their member names (the check for a tag name is + done later). + + Also, for variables and subroutines, check that this is the place + where the actual definition occurs, rather than just a reference + to an external. + */ + +static void +scan_partial_symbols (thisdie, enddie, objfile) + char *thisdie; + char *enddie; + struct objfile *objfile; +{ + char *nextdie; + char *temp; + struct dieinfo di; + + while (thisdie < enddie) + { + basicdieinfo (&di, thisdie, objfile); + if (di.die_length < SIZEOF_DIE_LENGTH) + { + break; + } + else + { + nextdie = thisdie + di.die_length; + /* To avoid getting complete die information for every die, we + only do it (below) for the cases we are interested in. */ + switch (di.die_tag) + { + case TAG_global_subroutine: + case TAG_subroutine: + completedieinfo (&di, objfile); + if (di.at_name && (di.has_at_low_pc || di.at_location)) + { + add_partial_symbol (&di, objfile); + /* If there is a sibling attribute, adjust the nextdie + pointer to skip the entire scope of the subroutine. + Apply some sanity checking to make sure we don't + overrun or underrun the range of remaining DIE's */ + if (di.at_sibling != 0) + { + temp = dbbase + di.at_sibling - dbroff; + if ((temp < thisdie) || (temp >= enddie)) + { + complain (&bad_die_ref, DIE_ID, DIE_NAME, + di.at_sibling); + } + else + { + nextdie = temp; + } + } + } + break; + case TAG_global_variable: + case TAG_local_variable: + completedieinfo (&di, objfile); + if (di.at_name && (di.has_at_low_pc || di.at_location)) + { + add_partial_symbol (&di, objfile); + } + break; + case TAG_typedef: + case TAG_class_type: + case TAG_structure_type: + case TAG_union_type: + completedieinfo (&di, objfile); + if (di.at_name) + { + add_partial_symbol (&di, objfile); + } + break; + case TAG_enumeration_type: + completedieinfo (&di, objfile); + if (di.at_name) + { + add_partial_symbol (&di, objfile); + } + add_enum_psymbol (&di, objfile); + break; + } + } + thisdie = nextdie; + } +} + +/* + +LOCAL FUNCTION + + scan_compilation_units -- build a psymtab entry for each compilation + +DESCRIPTION + + This is the top level dwarf parsing routine for building partial + symbol tables. + + It scans from the beginning of the DWARF table looking for the first + TAG_compile_unit DIE, and then follows the sibling chain to locate + each additional TAG_compile_unit DIE. + + For each TAG_compile_unit DIE it creates a partial symtab structure, + calls a subordinate routine to collect all the compilation unit's + global DIE's, file scope DIEs, typedef DIEs, etc, and then links the + new partial symtab structure into the partial symbol table. It also + records the appropriate information in the partial symbol table entry + to allow the chunk of DIE's and line number table for this compilation + unit to be located and re-read later, to generate a complete symbol + table entry for the compilation unit. + + Thus it effectively partitions up a chunk of DIE's for multiple + compilation units into smaller DIE chunks and line number tables, + and associates them with a partial symbol table entry. + +NOTES + + If any compilation unit has no line number table associated with + it for some reason (a missing at_stmt_list attribute, rather than + just one with a value of zero, which is valid) then we ensure that + the recorded file offset is zero so that the routine which later + reads line number table fragments knows that there is no fragment + to read. + +RETURNS + + Returns no value. + + */ + +static void +scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile) + char *thisdie; + char *enddie; + file_ptr dbfoff; + file_ptr lnoffset; + struct objfile *objfile; +{ + char *nextdie; + struct dieinfo di; + struct partial_symtab *pst; + int culength; + int curoff; + file_ptr curlnoffset; + + while (thisdie < enddie) + { + basicdieinfo (&di, thisdie, objfile); + if (di.die_length < SIZEOF_DIE_LENGTH) + { + break; + } + else if (di.die_tag != TAG_compile_unit) + { + nextdie = thisdie + di.die_length; + } + else + { + completedieinfo (&di, objfile); + set_cu_language (&di); + if (di.at_sibling != 0) + { + nextdie = dbbase + di.at_sibling - dbroff; + } + else + { + nextdie = thisdie + di.die_length; + } + curoff = thisdie - dbbase; + culength = nextdie - thisdie; + curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0; + + /* First allocate a new partial symbol table structure */ + + pst = start_psymtab_common (objfile, base_section_offsets, + di.at_name, di.at_low_pc, + objfile -> global_psymbols.next, + objfile -> static_psymbols.next); + + pst -> texthigh = di.at_high_pc; + pst -> read_symtab_private = (char *) + obstack_alloc (&objfile -> psymbol_obstack, + sizeof (struct dwfinfo)); + DBFOFF (pst) = dbfoff; + DBROFF (pst) = curoff; + DBLENGTH (pst) = culength; + LNFOFF (pst) = curlnoffset; + pst -> read_symtab = dwarf_psymtab_to_symtab; + + /* Now look for partial symbols */ + + scan_partial_symbols (thisdie + di.die_length, nextdie, objfile); + + pst -> n_global_syms = objfile -> global_psymbols.next - + (objfile -> global_psymbols.list + pst -> globals_offset); + pst -> n_static_syms = objfile -> static_psymbols.next - + (objfile -> static_psymbols.list + pst -> statics_offset); + sort_pst_symbols (pst); + /* If there is already a psymtab or symtab for a file of this name, + remove it. (If there is a symtab, more drastic things also + happen.) This happens in VxWorks. */ + free_named_symtabs (pst -> filename); + } + thisdie = nextdie; + } +} + +/* + +LOCAL FUNCTION + + new_symbol -- make a symbol table entry for a new symbol + +SYNOPSIS + + static struct symbol *new_symbol (struct dieinfo *dip, + struct objfile *objfile) + +DESCRIPTION + + Given a pointer to a DWARF information entry, figure out if we need + to make a symbol table entry for it, and if so, create a new entry + and return a pointer to it. + */ + +static struct symbol * +new_symbol (dip, objfile) + struct dieinfo *dip; + struct objfile *objfile; +{ + struct symbol *sym = NULL; + + if (dip -> at_name != NULL) + { + sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack, + sizeof (struct symbol)); + OBJSTAT (objfile, n_syms++); + memset (sym, 0, sizeof (struct symbol)); + SYMBOL_NAME (sym) = create_name (dip -> at_name, + &objfile->symbol_obstack); + /* default assumptions */ + SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; + SYMBOL_CLASS (sym) = LOC_STATIC; + SYMBOL_TYPE (sym) = decode_die_type (dip); + + /* If this symbol is from a C++ compilation, then attempt to cache the + demangled form for future reference. This is a typical time versus + space tradeoff, that was decided in favor of time because it sped up + C++ symbol lookups by a factor of about 20. */ + + SYMBOL_LANGUAGE (sym) = cu_language; + SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack); + switch (dip -> die_tag) + { + case TAG_label: + SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc; + SYMBOL_CLASS (sym) = LOC_LABEL; + break; + case TAG_global_subroutine: + case TAG_subroutine: + SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc; + SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym)); + if (dip -> at_prototyped) + TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED; + SYMBOL_CLASS (sym) = LOC_BLOCK; + if (dip -> die_tag == TAG_global_subroutine) + { + add_symbol_to_list (sym, &global_symbols); + } + else + { + add_symbol_to_list (sym, list_in_scope); + } + break; + case TAG_global_variable: + if (dip -> at_location != NULL) + { + SYMBOL_VALUE_ADDRESS (sym) = locval (dip); + add_symbol_to_list (sym, &global_symbols); + SYMBOL_CLASS (sym) = LOC_STATIC; + SYMBOL_VALUE (sym) += baseaddr; + } + break; + case TAG_local_variable: + if (dip -> at_location != NULL) + { + int loc = locval (dip); + if (dip -> optimized_out) + { + SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; + } + else if (dip -> isreg) + { + SYMBOL_CLASS (sym) = LOC_REGISTER; + } + else if (dip -> offreg) + { + SYMBOL_CLASS (sym) = LOC_BASEREG; + SYMBOL_BASEREG (sym) = dip -> basereg; + } + else + { + SYMBOL_CLASS (sym) = LOC_STATIC; + SYMBOL_VALUE (sym) += baseaddr; + } + if (SYMBOL_CLASS (sym) == LOC_STATIC) + { + /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS, + which may store to a bigger location than SYMBOL_VALUE. */ + SYMBOL_VALUE_ADDRESS (sym) = loc; + } + else + { + SYMBOL_VALUE (sym) = loc; + } + add_symbol_to_list (sym, list_in_scope); + } + break; + case TAG_formal_parameter: + if (dip -> at_location != NULL) + { + SYMBOL_VALUE (sym) = locval (dip); + } + add_symbol_to_list (sym, list_in_scope); + if (dip -> isreg) + { + SYMBOL_CLASS (sym) = LOC_REGPARM; + } + else if (dip -> offreg) + { + SYMBOL_CLASS (sym) = LOC_BASEREG_ARG; + SYMBOL_BASEREG (sym) = dip -> basereg; + } + else + { + SYMBOL_CLASS (sym) = LOC_ARG; + } + break; + case TAG_unspecified_parameters: + /* From varargs functions; gdb doesn't seem to have any interest in + this information, so just ignore it for now. (FIXME?) */ + break; + case TAG_class_type: + case TAG_structure_type: + case TAG_union_type: + case TAG_enumeration_type: + SYMBOL_CLASS (sym) = LOC_TYPEDEF; + SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE; + add_symbol_to_list (sym, list_in_scope); + break; + case TAG_typedef: + SYMBOL_CLASS (sym) = LOC_TYPEDEF; + SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; + add_symbol_to_list (sym, list_in_scope); + break; + default: + /* Not a tag we recognize. Hopefully we aren't processing trash + data, but since we must specifically ignore things we don't + recognize, there is nothing else we should do at this point. */ + break; + } + } + return (sym); +} + +/* + +LOCAL FUNCTION + + synthesize_typedef -- make a symbol table entry for a "fake" typedef + +SYNOPSIS + + static void synthesize_typedef (struct dieinfo *dip, + struct objfile *objfile, + struct type *type); + +DESCRIPTION + + Given a pointer to a DWARF information entry, synthesize a typedef + for the name in the DIE, using the specified type. + + This is used for C++ class, structs, unions, and enumerations to + set up the tag name as a type. + + */ + +static void +synthesize_typedef (dip, objfile, type) + struct dieinfo *dip; + struct objfile *objfile; + struct type *type; +{ + struct symbol *sym = NULL; + + if (dip -> at_name != NULL) + { + sym = (struct symbol *) + obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol)); + OBJSTAT (objfile, n_syms++); + memset (sym, 0, sizeof (struct symbol)); + SYMBOL_NAME (sym) = create_name (dip -> at_name, + &objfile->symbol_obstack); + SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language); + SYMBOL_TYPE (sym) = type; + SYMBOL_CLASS (sym) = LOC_TYPEDEF; + SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE; + add_symbol_to_list (sym, list_in_scope); + } +} + +/* + +LOCAL FUNCTION + + decode_mod_fund_type -- decode a modified fundamental type + +SYNOPSIS + + static struct type *decode_mod_fund_type (char *typedata) + +DESCRIPTION + + Decode a block of data containing a modified fundamental + type specification. TYPEDATA is a pointer to the block, + which starts with a length containing the size of the rest + of the block. At the end of the block is a fundmental type + code value that gives the fundamental type. Everything + in between are type modifiers. + + We simply compute the number of modifiers and call the general + function decode_modified_type to do the actual work. +*/ + +static struct type * +decode_mod_fund_type (typedata) + char *typedata; +{ + struct type *typep = NULL; + unsigned short modcount; + int nbytes; + + /* Get the total size of the block, exclusive of the size itself */ + + nbytes = attribute_size (AT_mod_fund_type); + modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); + typedata += nbytes; + + /* Deduct the size of the fundamental type bytes at the end of the block. */ + + modcount -= attribute_size (AT_fund_type); + + /* Now do the actual decoding */ + + typep = decode_modified_type (typedata, modcount, AT_mod_fund_type); + return (typep); +} + +/* + +LOCAL FUNCTION + + decode_mod_u_d_type -- decode a modified user defined type + +SYNOPSIS + + static struct type *decode_mod_u_d_type (char *typedata) + +DESCRIPTION + + Decode a block of data containing a modified user defined + type specification. TYPEDATA is a pointer to the block, + which consists of a two byte length, containing the size + of the rest of the block. At the end of the block is a + four byte value that gives a reference to a user defined type. + Everything in between are type modifiers. + + We simply compute the number of modifiers and call the general + function decode_modified_type to do the actual work. +*/ + +static struct type * +decode_mod_u_d_type (typedata) + char *typedata; +{ + struct type *typep = NULL; + unsigned short modcount; + int nbytes; + + /* Get the total size of the block, exclusive of the size itself */ + + nbytes = attribute_size (AT_mod_u_d_type); + modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile); + typedata += nbytes; + + /* Deduct the size of the reference type bytes at the end of the block. */ + + modcount -= attribute_size (AT_user_def_type); + + /* Now do the actual decoding */ + + typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type); + return (typep); +} + +/* + +LOCAL FUNCTION + + decode_modified_type -- decode modified user or fundamental type + +SYNOPSIS + + static struct type *decode_modified_type (char *modifiers, + unsigned short modcount, int mtype) + +DESCRIPTION + + Decode a modified type, either a modified fundamental type or + a modified user defined type. MODIFIERS is a pointer to the + block of bytes that define MODCOUNT modifiers. Immediately + following the last modifier is a short containing the fundamental + type or a long containing the reference to the user defined + type. Which one is determined by MTYPE, which is either + AT_mod_fund_type or AT_mod_u_d_type to indicate what modified + type we are generating. + + We call ourself recursively to generate each modified type,` + until MODCOUNT reaches zero, at which point we have consumed + all the modifiers and generate either the fundamental type or + user defined type. When the recursion unwinds, each modifier + is applied in turn to generate the full modified type. + +NOTES + + If we find a modifier that we don't recognize, and it is not one + of those reserved for application specific use, then we issue a + warning and simply ignore the modifier. + +BUGS + + We currently ignore MOD_const and MOD_volatile. (FIXME) + + */ + +static struct type * +decode_modified_type (modifiers, modcount, mtype) + char *modifiers; + unsigned int modcount; + int mtype; +{ + struct type *typep = NULL; + unsigned short fundtype; + DIE_REF die_ref; + char modifier; + int nbytes; + + if (modcount == 0) + { + switch (mtype) + { + case AT_mod_fund_type: + nbytes = attribute_size (AT_fund_type); + fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED, + current_objfile); + typep = decode_fund_type (fundtype); + break; + case AT_mod_u_d_type: + nbytes = attribute_size (AT_user_def_type); + die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED, + current_objfile); + if ((typep = lookup_utype (die_ref)) == NULL) + { + typep = alloc_utype (die_ref, NULL); + } + break; + default: + complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype); + typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); + break; + } + } + else + { + modifier = *modifiers++; + typep = decode_modified_type (modifiers, --modcount, mtype); + switch (modifier) + { + case MOD_pointer_to: + typep = lookup_pointer_type (typep); + break; + case MOD_reference_to: + typep = lookup_reference_type (typep); + break; + case MOD_const: + complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */ + break; + case MOD_volatile: + complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */ + break; + default: + if (!(MOD_lo_user <= (unsigned char) modifier + && (unsigned char) modifier <= MOD_hi_user)) + { + complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier); + } + break; + } + } + return (typep); +} + +/* + +LOCAL FUNCTION + + decode_fund_type -- translate basic DWARF type to gdb base type + +DESCRIPTION + + Given an integer that is one of the fundamental DWARF types, + translate it to one of the basic internal gdb types and return + a pointer to the appropriate gdb type (a "struct type *"). + +NOTES + + For robustness, if we are asked to translate a fundamental + type that we are unprepared to deal with, we return int so + callers can always depend upon a valid type being returned, + and so gdb may at least do something reasonable by default. + If the type is not in the range of those types defined as + application specific types, we also issue a warning. +*/ + +static struct type * +decode_fund_type (fundtype) + unsigned int fundtype; +{ + struct type *typep = NULL; + + switch (fundtype) + { + + case FT_void: + typep = dwarf_fundamental_type (current_objfile, FT_VOID); + break; + + case FT_boolean: /* Was FT_set in AT&T version */ + typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN); + break; + + case FT_pointer: /* (void *) */ + typep = dwarf_fundamental_type (current_objfile, FT_VOID); + typep = lookup_pointer_type (typep); + break; + + case FT_char: + typep = dwarf_fundamental_type (current_objfile, FT_CHAR); + break; + + case FT_signed_char: + typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR); + break; + + case FT_unsigned_char: + typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR); + break; + + case FT_short: + typep = dwarf_fundamental_type (current_objfile, FT_SHORT); + break; + + case FT_signed_short: + typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT); + break; + + case FT_unsigned_short: + typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT); + break; + + case FT_integer: + typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); + break; + + case FT_signed_integer: + typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER); + break; + + case FT_unsigned_integer: + typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER); + break; + + case FT_long: + typep = dwarf_fundamental_type (current_objfile, FT_LONG); + break; + + case FT_signed_long: + typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG); + break; + + case FT_unsigned_long: + typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG); + break; + + case FT_long_long: + typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG); + break; + + case FT_signed_long_long: + typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG); + break; + + case FT_unsigned_long_long: + typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG); + break; + + case FT_float: + typep = dwarf_fundamental_type (current_objfile, FT_FLOAT); + break; + + case FT_dbl_prec_float: + typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT); + break; + + case FT_ext_prec_float: + typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT); + break; + + case FT_complex: + typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX); + break; + + case FT_dbl_prec_complex: + typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX); + break; + + case FT_ext_prec_complex: + typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX); + break; + + } + + if (typep == NULL) + { + typep = dwarf_fundamental_type (current_objfile, FT_INTEGER); + if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user)) + { + complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype); + } + } + + return (typep); +} + +/* + +LOCAL FUNCTION + + create_name -- allocate a fresh copy of a string on an obstack + +DESCRIPTION + + Given a pointer to a string and a pointer to an obstack, allocates + a fresh copy of the string on the specified obstack. + +*/ + +static char * +create_name (name, obstackp) + char *name; + struct obstack *obstackp; +{ + int length; + char *newname; + + length = strlen (name) + 1; + newname = (char *) obstack_alloc (obstackp, length); + strcpy (newname, name); + return (newname); +} + +/* + +LOCAL FUNCTION + + basicdieinfo -- extract the minimal die info from raw die data + +SYNOPSIS + + void basicdieinfo (char *diep, struct dieinfo *dip, + struct objfile *objfile) + +DESCRIPTION + + Given a pointer to raw DIE data, and a pointer to an instance of a + die info structure, this function extracts the basic information + from the DIE data required to continue processing this DIE, along + with some bookkeeping information about the DIE. + + The information we absolutely must have includes the DIE tag, + and the DIE length. If we need the sibling reference, then we + will have to call completedieinfo() to process all the remaining + DIE information. + + Note that since there is no guarantee that the data is properly + aligned in memory for the type of access required (indirection + through anything other than a char pointer), and there is no + guarantee that it is in the same byte order as the gdb host, + we call a function which deals with both alignment and byte + swapping issues. Possibly inefficient, but quite portable. + + We also take care of some other basic things at this point, such + as ensuring that the instance of the die info structure starts + out completely zero'd and that curdie is initialized for use + in error reporting if we have a problem with the current die. + +NOTES + + All DIE's must have at least a valid length, thus the minimum + DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the + DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they + are forced to be TAG_padding DIES. + + Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying + that if a padding DIE is used for alignment and the amount needed is + less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big + enough to align to the next alignment boundry. + + We do some basic sanity checking here, such as verifying that the + length of the die would not cause it to overrun the recorded end of + the buffer holding the DIE info. If we find a DIE that is either + too small or too large, we force it's length to zero which should + cause the caller to take appropriate action. + */ + +static void +basicdieinfo (dip, diep, objfile) + struct dieinfo *dip; + char *diep; + struct objfile *objfile; +{ + curdie = dip; + memset (dip, 0, sizeof (struct dieinfo)); + dip -> die = diep; + dip -> die_ref = dbroff + (diep - dbbase); + dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED, + objfile); + if ((dip -> die_length < SIZEOF_DIE_LENGTH) || + ((diep + dip -> die_length) > (dbbase + dbsize))) + { + complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length); + dip -> die_length = 0; + } + else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG)) + { + dip -> die_tag = TAG_padding; + } + else + { + diep += SIZEOF_DIE_LENGTH; + dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED, + objfile); + } +} + +/* + +LOCAL FUNCTION + + completedieinfo -- finish reading the information for a given DIE + +SYNOPSIS + + void completedieinfo (struct dieinfo *dip, struct objfile *objfile) + +DESCRIPTION + + Given a pointer to an already partially initialized die info structure, + scan the raw DIE data and finish filling in the die info structure + from the various attributes found. + + Note that since there is no guarantee that the data is properly + aligned in memory for the type of access required (indirection + through anything other than a char pointer), and there is no + guarantee that it is in the same byte order as the gdb host, + we call a function which deals with both alignment and byte + swapping issues. Possibly inefficient, but quite portable. + +NOTES + + Each time we are called, we increment the diecount variable, which + keeps an approximate count of the number of dies processed for + each compilation unit. This information is presented to the user + if the info_verbose flag is set. + + */ + +static void +completedieinfo (dip, objfile) + struct dieinfo *dip; + struct objfile *objfile; +{ + char *diep; /* Current pointer into raw DIE data */ + char *end; /* Terminate DIE scan here */ + unsigned short attr; /* Current attribute being scanned */ + unsigned short form; /* Form of the attribute */ + int nbytes; /* Size of next field to read */ + + diecount++; + diep = dip -> die; + end = diep + dip -> die_length; + diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG; + while (diep < end) + { + attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile); + diep += SIZEOF_ATTRIBUTE; + if ((nbytes = attribute_size (attr)) == -1) + { + complain (&unknown_attribute_length, DIE_ID, DIE_NAME); + diep = end; + continue; + } + switch (attr) + { + case AT_fund_type: + dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_ordering: + dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_bit_offset: + dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_sibling: + dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_stmt_list: + dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + dip -> has_at_stmt_list = 1; + break; + case AT_low_pc: + dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + dip -> at_low_pc += baseaddr; + dip -> has_at_low_pc = 1; + break; + case AT_high_pc: + dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + dip -> at_high_pc += baseaddr; + break; + case AT_language: + dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_user_def_type: + dip -> at_user_def_type = target_to_host (diep, nbytes, + GET_UNSIGNED, objfile); + break; + case AT_byte_size: + dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + dip -> has_at_byte_size = 1; + break; + case AT_bit_size: + dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_member: + dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_discr: + dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_location: + dip -> at_location = diep; + break; + case AT_mod_fund_type: + dip -> at_mod_fund_type = diep; + break; + case AT_subscr_data: + dip -> at_subscr_data = diep; + break; + case AT_mod_u_d_type: + dip -> at_mod_u_d_type = diep; + break; + case AT_element_list: + dip -> at_element_list = diep; + dip -> short_element_list = 0; + break; + case AT_short_element_list: + dip -> at_element_list = diep; + dip -> short_element_list = 1; + break; + case AT_discr_value: + dip -> at_discr_value = diep; + break; + case AT_string_length: + dip -> at_string_length = diep; + break; + case AT_name: + dip -> at_name = diep; + break; + case AT_comp_dir: + /* For now, ignore any "hostname:" portion, since gdb doesn't + know how to deal with it. (FIXME). */ + dip -> at_comp_dir = strrchr (diep, ':'); + if (dip -> at_comp_dir != NULL) + { + dip -> at_comp_dir++; + } + else + { + dip -> at_comp_dir = diep; + } + break; + case AT_producer: + dip -> at_producer = diep; + break; + case AT_start_scope: + dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_stride_size: + dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_src_info: + dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED, + objfile); + break; + case AT_prototyped: + dip -> at_prototyped = diep; + break; + default: + /* Found an attribute that we are unprepared to handle. However + it is specifically one of the design goals of DWARF that + consumers should ignore unknown attributes. As long as the + form is one that we recognize (so we know how to skip it), + we can just ignore the unknown attribute. */ + break; + } + form = FORM_FROM_ATTR (attr); + switch (form) + { + case FORM_DATA2: + diep += 2; + break; + case FORM_DATA4: + case FORM_REF: + diep += 4; + break; + case FORM_DATA8: + diep += 8; + break; + case FORM_ADDR: + diep += TARGET_FT_POINTER_SIZE (objfile); + break; + case FORM_BLOCK2: + diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); + break; + case FORM_BLOCK4: + diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile); + break; + case FORM_STRING: + diep += strlen (diep) + 1; + break; + default: + complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); + diep = end; + break; + } + } +} + +/* + +LOCAL FUNCTION + + target_to_host -- swap in target data to host + +SYNOPSIS + + target_to_host (char *from, int nbytes, int signextend, + struct objfile *objfile) + +DESCRIPTION + + Given pointer to data in target format in FROM, a byte count for + the size of the data in NBYTES, a flag indicating whether or not + the data is signed in SIGNEXTEND, and a pointer to the current + objfile in OBJFILE, convert the data to host format and return + the converted value. + +NOTES + + FIXME: If we read data that is known to be signed, and expect to + use it as signed data, then we need to explicitly sign extend the + result until the bfd library is able to do this for us. + + FIXME: Would a 32 bit target ever need an 8 byte result? + + */ + +static CORE_ADDR +target_to_host (from, nbytes, signextend, objfile) + char *from; + int nbytes; + int signextend; /* FIXME: Unused */ + struct objfile *objfile; +{ + CORE_ADDR rtnval; + + switch (nbytes) + { + case 8: + rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from); + break; + case 4: + rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from); + break; + case 2: + rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from); + break; + case 1: + rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from); + break; + default: + complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes); + rtnval = 0; + break; + } + return (rtnval); +} + +/* + +LOCAL FUNCTION + + attribute_size -- compute size of data for a DWARF attribute + +SYNOPSIS + + static int attribute_size (unsigned int attr) + +DESCRIPTION + + Given a DWARF attribute in ATTR, compute the size of the first + piece of data associated with this attribute and return that + size. + + Returns -1 for unrecognized attributes. + + */ + +static int +attribute_size (attr) + unsigned int attr; +{ + int nbytes; /* Size of next data for this attribute */ + unsigned short form; /* Form of the attribute */ + + form = FORM_FROM_ATTR (attr); + switch (form) + { + case FORM_STRING: /* A variable length field is next */ + nbytes = 0; + break; + case FORM_DATA2: /* Next 2 byte field is the data itself */ + case FORM_BLOCK2: /* Next 2 byte field is a block length */ + nbytes = 2; + break; + case FORM_DATA4: /* Next 4 byte field is the data itself */ + case FORM_BLOCK4: /* Next 4 byte field is a block length */ + case FORM_REF: /* Next 4 byte field is a DIE offset */ + nbytes = 4; + break; + case FORM_DATA8: /* Next 8 byte field is the data itself */ + nbytes = 8; + break; + case FORM_ADDR: /* Next field size is target sizeof(void *) */ + nbytes = TARGET_FT_POINTER_SIZE (objfile); + break; + default: + complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form); + nbytes = -1; + break; + } + return (nbytes); +} |