diff options
-rw-r--r-- | bfd/doc/aoutx.texi | 213 | ||||
-rw-r--r-- | bfd/doc/archive.texi | 99 | ||||
-rw-r--r-- | bfd/doc/archures.texi | 610 | ||||
-rw-r--r-- | bfd/doc/bfd.info | 10823 | ||||
-rw-r--r-- | bfd/doc/bfdio.texi | 72 | ||||
-rw-r--r-- | bfd/doc/bfdt.texi | 864 | ||||
-rw-r--r-- | bfd/doc/bfdver.texi | 4 | ||||
-rw-r--r-- | bfd/doc/bfdwin.texi | 2 | ||||
-rw-r--r-- | bfd/doc/cache.texi | 65 | ||||
-rw-r--r-- | bfd/doc/coffcode.texi | 616 | ||||
-rw-r--r-- | bfd/doc/core.texi | 60 | ||||
-rw-r--r-- | bfd/doc/elf.texi | 22 | ||||
-rw-r--r-- | bfd/doc/elfcode.texi | 0 | ||||
-rw-r--r-- | bfd/doc/format.texi | 112 | ||||
-rw-r--r-- | bfd/doc/hash.texi | 247 | ||||
-rw-r--r-- | bfd/doc/init.texi | 16 | ||||
-rw-r--r-- | bfd/doc/libbfd.texi | 179 | ||||
-rw-r--r-- | bfd/doc/linker.texi | 381 | ||||
-rw-r--r-- | bfd/doc/mmo.texi | 365 | ||||
-rw-r--r-- | bfd/doc/opncls.texi | 372 | ||||
-rw-r--r-- | bfd/doc/reloc.texi | 2679 | ||||
-rw-r--r-- | bfd/doc/section.texi | 982 | ||||
-rw-r--r-- | bfd/doc/syms.texi | 472 | ||||
-rw-r--r-- | bfd/doc/targets.texi | 557 | ||||
-rw-r--r-- | etc/configure.info | 2773 | ||||
-rw-r--r-- | etc/standards.info | 5576 |
26 files changed, 28161 insertions, 0 deletions
diff --git a/bfd/doc/aoutx.texi b/bfd/doc/aoutx.texi new file mode 100644 index 00000000000..7cf9787f106 --- /dev/null +++ b/bfd/doc/aoutx.texi @@ -0,0 +1,213 @@ +@section a.out backends + + +@strong{Description}@* +BFD supports a number of different flavours of a.out format, +though the major differences are only the sizes of the +structures on disk, and the shape of the relocation +information. + +The support is split into a basic support file @file{aoutx.h} +and other files which derive functions from the base. One +derivation file is @file{aoutf1.h} (for a.out flavour 1), and +adds to the basic a.out functions support for sun3, sun4, 386 +and 29k a.out files, to create a target jump vector for a +specific target. + +This information is further split out into more specific files +for each machine, including @file{sunos.c} for sun3 and sun4, +@file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a +demonstration of a 64 bit a.out format. + +The base file @file{aoutx.h} defines general mechanisms for +reading and writing records to and from disk and various +other methods which BFD requires. It is included by +@file{aout32.c} and @file{aout64.c} to form the names +@code{aout_32_swap_exec_header_in}, @code{aout_64_swap_exec_header_in}, etc. + +As an example, this is what goes on to make the back end for a +sun4, from @file{aout32.c}: + +@example + #define ARCH_SIZE 32 + #include "aoutx.h" +@end example + +Which exports names: + +@example + ... + aout_32_canonicalize_reloc + aout_32_find_nearest_line + aout_32_get_lineno + aout_32_get_reloc_upper_bound + ... +@end example + +from @file{sunos.c}: + +@example + #define TARGET_NAME "a.out-sunos-big" + #define VECNAME sunos_big_vec + #include "aoutf1.h" +@end example + +requires all the names from @file{aout32.c}, and produces the jump vector + +@example + sunos_big_vec +@end example + +The file @file{host-aout.c} is a special case. It is for a large set +of hosts that use ``more or less standard'' a.out files, and +for which cross-debugging is not interesting. It uses the +standard 32-bit a.out support routines, but determines the +file offsets and addresses of the text, data, and BSS +sections, the machine architecture and machine type, and the +entry point address, in a host-dependent manner. Once these +values have been determined, generic code is used to handle +the object file. + +When porting it to run on a new system, you must supply: + +@example + HOST_PAGE_SIZE + HOST_SEGMENT_SIZE + HOST_MACHINE_ARCH (optional) + HOST_MACHINE_MACHINE (optional) + HOST_TEXT_START_ADDR + HOST_STACK_END_ADDR +@end example + +in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These +values, plus the structures and macros defined in @file{a.out.h} on +your host system, will produce a BFD target that will access +ordinary a.out files on your host. To configure a new machine +to use @file{host-aout.c}, specify: + +@example + TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec + TDEPFILES= host-aout.o trad-core.o +@end example + +in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in} +to use the +@file{@var{XXX}.mt} file (by setting "@code{bfd_target=XXX}") when your +configuration is selected. + +@subsection Relocations + + +@strong{Description}@* +The file @file{aoutx.h} provides for both the @emph{standard} +and @emph{extended} forms of a.out relocation records. + +The standard records contain only an +address, a symbol index, and a type field. The extended records +(used on 29ks and sparcs) also have a full integer for an +addend. + +@subsection Internal entry points + + +@strong{Description}@* +@file{aoutx.h} exports several routines for accessing the +contents of an a.out file, which are gathered and exported in +turn by various format specific files (eg sunos.c). + +@findex aout_@var{size}_swap_exec_header_in +@subsubsection @code{aout_@var{size}_swap_exec_header_in} +@strong{Synopsis} +@example +void aout_@var{size}_swap_exec_header_in, + (bfd *abfd, + struct external_exec *bytes, + struct internal_exec *execp); +@end example +@strong{Description}@* +Swap the information in an executable header @var{raw_bytes} taken +from a raw byte stream memory image into the internal exec header +structure @var{execp}. + +@findex aout_@var{size}_swap_exec_header_out +@subsubsection @code{aout_@var{size}_swap_exec_header_out} +@strong{Synopsis} +@example +void aout_@var{size}_swap_exec_header_out + (bfd *abfd, + struct internal_exec *execp, + struct external_exec *raw_bytes); +@end example +@strong{Description}@* +Swap the information in an internal exec header structure +@var{execp} into the buffer @var{raw_bytes} ready for writing to disk. + +@findex aout_@var{size}_some_aout_object_p +@subsubsection @code{aout_@var{size}_some_aout_object_p} +@strong{Synopsis} +@example +const bfd_target *aout_@var{size}_some_aout_object_p + (bfd *abfd, + struct internal_exec *execp, + const bfd_target *(*callback_to_real_object_p) (bfd *)); +@end example +@strong{Description}@* +Some a.out variant thinks that the file open in @var{abfd} +checking is an a.out file. Do some more checking, and set up +for access if it really is. Call back to the calling +environment's "finish up" function just before returning, to +handle any last-minute setup. + +@findex aout_@var{size}_mkobject +@subsubsection @code{aout_@var{size}_mkobject} +@strong{Synopsis} +@example +bfd_boolean aout_@var{size}_mkobject, (bfd *abfd); +@end example +@strong{Description}@* +Initialize BFD @var{abfd} for use with a.out files. + +@findex aout_@var{size}_machine_type +@subsubsection @code{aout_@var{size}_machine_type} +@strong{Synopsis} +@example +enum machine_type aout_@var{size}_machine_type + (enum bfd_architecture arch, + unsigned long machine, + bfd_boolean *unknown); +@end example +@strong{Description}@* +Keep track of machine architecture and machine type for +a.out's. Return the @code{machine_type} for a particular +architecture and machine, or @code{M_UNKNOWN} if that exact architecture +and machine can't be represented in a.out format. + +If the architecture is understood, machine type 0 (default) +is always understood. + +@findex aout_@var{size}_set_arch_mach +@subsubsection @code{aout_@var{size}_set_arch_mach} +@strong{Synopsis} +@example +bfd_boolean aout_@var{size}_set_arch_mach, + (bfd *, + enum bfd_architecture arch, + unsigned long machine); +@end example +@strong{Description}@* +Set the architecture and the machine of the BFD @var{abfd} to the +values @var{arch} and @var{machine}. Verify that @var{abfd}'s format +can support the architecture required. + +@findex aout_@var{size}_new_section_hook +@subsubsection @code{aout_@var{size}_new_section_hook} +@strong{Synopsis} +@example +bfd_boolean aout_@var{size}_new_section_hook, + (bfd *abfd, + asection *newsect); +@end example +@strong{Description}@* +Called by the BFD in response to a @code{bfd_make_section} +request. + diff --git a/bfd/doc/archive.texi b/bfd/doc/archive.texi new file mode 100644 index 00000000000..3d0a97d4b82 --- /dev/null +++ b/bfd/doc/archive.texi @@ -0,0 +1,99 @@ +@section Archives + + +@strong{Description}@* +An archive (or library) is just another BFD. It has a symbol +table, although there's not much a user program will do with it. + +The big difference between an archive BFD and an ordinary BFD +is that the archive doesn't have sections. Instead it has a +chain of BFDs that are considered its contents. These BFDs can +be manipulated like any other. The BFDs contained in an +archive opened for reading will all be opened for reading. You +may put either input or output BFDs into an archive opened for +output; they will be handled correctly when the archive is closed. + +Use @code{bfd_openr_next_archived_file} to step through +the contents of an archive opened for input. You don't +have to read the entire archive if you don't want +to! Read it until you find what you want. + +Archive contents of output BFDs are chained through the +@code{next} pointer in a BFD. The first one is findable through +the @code{archive_head} slot of the archive. Set it with +@code{bfd_set_archive_head} (q.v.). A given BFD may be in only one +open output archive at a time. + +As expected, the BFD archive code is more general than the +archive code of any given environment. BFD archives may +contain files of different formats (e.g., a.out and coff) and +even different architectures. You may even place archives +recursively into archives! + +This can cause unexpected confusion, since some archive +formats are more expressive than others. For instance, Intel +COFF archives can preserve long filenames; SunOS a.out archives +cannot. If you move a file from the first to the second +format and back again, the filename may be truncated. +Likewise, different a.out environments have different +conventions as to how they truncate filenames, whether they +preserve directory names in filenames, etc. When +interoperating with native tools, be sure your files are +homogeneous. + +Beware: most of these formats do not react well to the +presence of spaces in filenames. We do the best we can, but +can't always handle this case due to restrictions in the format of +archives. Many Unix utilities are braindead in regards to +spaces and such in filenames anyway, so this shouldn't be much +of a restriction. + +Archives are supported in BFD in @code{archive.c}. + +@subsection Archive functions + + +@findex bfd_get_next_mapent +@subsubsection @code{bfd_get_next_mapent} +@strong{Synopsis} +@example +symindex bfd_get_next_mapent + (bfd *abfd, symindex previous, carsym **sym); +@end example +@strong{Description}@* +Step through archive @var{abfd}'s symbol table (if it +has one). Successively update @var{sym} with the next symbol's +information, returning that symbol's (internal) index into the +symbol table. + +Supply @code{BFD_NO_MORE_SYMBOLS} as the @var{previous} entry to get +the first one; returns @code{BFD_NO_MORE_SYMBOLS} when you've already +got the last one. + +A @code{carsym} is a canonical archive symbol. The only +user-visible element is its name, a null-terminated string. + +@findex bfd_set_archive_head +@subsubsection @code{bfd_set_archive_head} +@strong{Synopsis} +@example +bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head); +@end example +@strong{Description}@* +Set the head of the chain of +BFDs contained in the archive @var{output} to @var{new_head}. + +@findex bfd_openr_next_archived_file +@subsubsection @code{bfd_openr_next_archived_file} +@strong{Synopsis} +@example +bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous); +@end example +@strong{Description}@* +Provided a BFD, @var{archive}, containing an archive and NULL, open +an input BFD on the first contained element and returns that. +Subsequent calls should pass +the archive and the previous return value to return a created +BFD to the next contained element. NULL is returned when there +are no more. + diff --git a/bfd/doc/archures.texi b/bfd/doc/archures.texi new file mode 100644 index 00000000000..cdf790d0d20 --- /dev/null +++ b/bfd/doc/archures.texi @@ -0,0 +1,610 @@ +@section Architectures +BFD keeps one atom in a BFD describing the +architecture of the data attached to the BFD: a pointer to a +@code{bfd_arch_info_type}. + +Pointers to structures can be requested independently of a BFD +so that an architecture's information can be interrogated +without access to an open BFD. + +The architecture information is provided by each architecture package. +The set of default architectures is selected by the macro +@code{SELECT_ARCHITECTURES}. This is normally set up in the +@file{config/@var{target}.mt} file of your choice. If the name is not +defined, then all the architectures supported are included. + +When BFD starts up, all the architectures are called with an +initialize method. It is up to the architecture back end to +insert as many items into the list of architectures as it wants to; +generally this would be one for each machine and one for the +default case (an item with a machine field of 0). + +BFD's idea of an architecture is implemented in @file{archures.c}. + +@subsection bfd_architecture + + +@strong{Description}@* +This enum gives the object file's CPU architecture, in a +global sense---i.e., what processor family does it belong to? +Another field indicates which processor within +the family is in use. The machine gives a number which +distinguishes different versions of the architecture, +containing, for example, 2 and 3 for Intel i960 KA and i960 KB, +and 68020 and 68030 for Motorola 68020 and 68030. +@example +enum bfd_architecture +@{ + bfd_arch_unknown, /* File arch not known. */ + bfd_arch_obscure, /* Arch known, not one of these. */ + bfd_arch_m68k, /* Motorola 68xxx */ +#define bfd_mach_m68000 1 +#define bfd_mach_m68008 2 +#define bfd_mach_m68010 3 +#define bfd_mach_m68020 4 +#define bfd_mach_m68030 5 +#define bfd_mach_m68040 6 +#define bfd_mach_m68060 7 +#define bfd_mach_cpu32 8 +#define bfd_mach_fido 9 +#define bfd_mach_mcf_isa_a_nodiv 10 +#define bfd_mach_mcf_isa_a 11 +#define bfd_mach_mcf_isa_a_mac 12 +#define bfd_mach_mcf_isa_a_emac 13 +#define bfd_mach_mcf_isa_aplus 14 +#define bfd_mach_mcf_isa_aplus_mac 15 +#define bfd_mach_mcf_isa_aplus_emac 16 +#define bfd_mach_mcf_isa_b_nousp 17 +#define bfd_mach_mcf_isa_b_nousp_mac 18 +#define bfd_mach_mcf_isa_b_nousp_emac 19 +#define bfd_mach_mcf_isa_b 20 +#define bfd_mach_mcf_isa_b_mac 21 +#define bfd_mach_mcf_isa_b_emac 22 +#define bfd_mach_mcf_isa_b_float 23 +#define bfd_mach_mcf_isa_b_float_mac 24 +#define bfd_mach_mcf_isa_b_float_emac 25 +#define bfd_mach_mcf_isa_c 26 +#define bfd_mach_mcf_isa_c_mac 27 +#define bfd_mach_mcf_isa_c_emac 28 +#define bfd_mach_mcf_isa_c_nodiv 29 +#define bfd_mach_mcf_isa_c_nodiv_mac 30 +#define bfd_mach_mcf_isa_c_nodiv_emac 31 + bfd_arch_vax, /* DEC Vax */ + bfd_arch_i960, /* Intel 960 */ + /* The order of the following is important. + lower number indicates a machine type that + only accepts a subset of the instructions + available to machines with higher numbers. + The exception is the "ca", which is + incompatible with all other machines except + "core". */ + +#define bfd_mach_i960_core 1 +#define bfd_mach_i960_ka_sa 2 +#define bfd_mach_i960_kb_sb 3 +#define bfd_mach_i960_mc 4 +#define bfd_mach_i960_xa 5 +#define bfd_mach_i960_ca 6 +#define bfd_mach_i960_jx 7 +#define bfd_mach_i960_hx 8 + + bfd_arch_or32, /* OpenRISC 32 */ + + bfd_arch_sparc, /* SPARC */ +#define bfd_mach_sparc 1 +/* The difference between v8plus and v9 is that v9 is a true 64 bit env. */ +#define bfd_mach_sparc_sparclet 2 +#define bfd_mach_sparc_sparclite 3 +#define bfd_mach_sparc_v8plus 4 +#define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */ +#define bfd_mach_sparc_sparclite_le 6 +#define bfd_mach_sparc_v9 7 +#define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */ +#define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */ +#define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */ +/* Nonzero if MACH has the v9 instruction set. */ +#define bfd_mach_sparc_v9_p(mach) \ + ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \ + && (mach) != bfd_mach_sparc_sparclite_le) +/* Nonzero if MACH is a 64 bit sparc architecture. */ +#define bfd_mach_sparc_64bit_p(mach) \ + ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb) + bfd_arch_spu, /* PowerPC SPU */ +#define bfd_mach_spu 256 + bfd_arch_mips, /* MIPS Rxxxx */ +#define bfd_mach_mips3000 3000 +#define bfd_mach_mips3900 3900 +#define bfd_mach_mips4000 4000 +#define bfd_mach_mips4010 4010 +#define bfd_mach_mips4100 4100 +#define bfd_mach_mips4111 4111 +#define bfd_mach_mips4120 4120 +#define bfd_mach_mips4300 4300 +#define bfd_mach_mips4400 4400 +#define bfd_mach_mips4600 4600 +#define bfd_mach_mips4650 4650 +#define bfd_mach_mips5000 5000 +#define bfd_mach_mips5400 5400 +#define bfd_mach_mips5500 5500 +#define bfd_mach_mips6000 6000 +#define bfd_mach_mips7000 7000 +#define bfd_mach_mips8000 8000 +#define bfd_mach_mips9000 9000 +#define bfd_mach_mips10000 10000 +#define bfd_mach_mips12000 12000 +#define bfd_mach_mips16 16 +#define bfd_mach_mips5 5 +#define bfd_mach_mips_loongson_2e 3001 +#define bfd_mach_mips_loongson_2f 3002 +#define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */ +#define bfd_mach_mips_octeon 6501 +#define bfd_mach_mipsisa32 32 +#define bfd_mach_mipsisa32r2 33 +#define bfd_mach_mipsisa64 64 +#define bfd_mach_mipsisa64r2 65 + bfd_arch_i386, /* Intel 386 */ +#define bfd_mach_i386_i386 1 +#define bfd_mach_i386_i8086 2 +#define bfd_mach_i386_i386_intel_syntax 3 +#define bfd_mach_x86_64 64 +#define bfd_mach_x86_64_intel_syntax 65 + bfd_arch_we32k, /* AT&T WE32xxx */ + bfd_arch_tahoe, /* CCI/Harris Tahoe */ + bfd_arch_i860, /* Intel 860 */ + bfd_arch_i370, /* IBM 360/370 Mainframes */ + bfd_arch_romp, /* IBM ROMP PC/RT */ + bfd_arch_convex, /* Convex */ + bfd_arch_m88k, /* Motorola 88xxx */ + bfd_arch_m98k, /* Motorola 98xxx */ + bfd_arch_pyramid, /* Pyramid Technology */ + bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */ +#define bfd_mach_h8300 1 +#define bfd_mach_h8300h 2 +#define bfd_mach_h8300s 3 +#define bfd_mach_h8300hn 4 +#define bfd_mach_h8300sn 5 +#define bfd_mach_h8300sx 6 +#define bfd_mach_h8300sxn 7 + bfd_arch_pdp11, /* DEC PDP-11 */ + bfd_arch_powerpc, /* PowerPC */ +#define bfd_mach_ppc 32 +#define bfd_mach_ppc64 64 +#define bfd_mach_ppc_403 403 +#define bfd_mach_ppc_403gc 4030 +#define bfd_mach_ppc_505 505 +#define bfd_mach_ppc_601 601 +#define bfd_mach_ppc_602 602 +#define bfd_mach_ppc_603 603 +#define bfd_mach_ppc_ec603e 6031 +#define bfd_mach_ppc_604 604 +#define bfd_mach_ppc_620 620 +#define bfd_mach_ppc_630 630 +#define bfd_mach_ppc_750 750 +#define bfd_mach_ppc_860 860 +#define bfd_mach_ppc_a35 35 +#define bfd_mach_ppc_rs64ii 642 +#define bfd_mach_ppc_rs64iii 643 +#define bfd_mach_ppc_7400 7400 +#define bfd_mach_ppc_e500 500 +#define bfd_mach_ppc_e500mc 5001 + bfd_arch_rs6000, /* IBM RS/6000 */ +#define bfd_mach_rs6k 6000 +#define bfd_mach_rs6k_rs1 6001 +#define bfd_mach_rs6k_rsc 6003 +#define bfd_mach_rs6k_rs2 6002 + bfd_arch_hppa, /* HP PA RISC */ +#define bfd_mach_hppa10 10 +#define bfd_mach_hppa11 11 +#define bfd_mach_hppa20 20 +#define bfd_mach_hppa20w 25 + bfd_arch_d10v, /* Mitsubishi D10V */ +#define bfd_mach_d10v 1 +#define bfd_mach_d10v_ts2 2 +#define bfd_mach_d10v_ts3 3 + bfd_arch_d30v, /* Mitsubishi D30V */ + bfd_arch_dlx, /* DLX */ + bfd_arch_m68hc11, /* Motorola 68HC11 */ + bfd_arch_m68hc12, /* Motorola 68HC12 */ +#define bfd_mach_m6812_default 0 +#define bfd_mach_m6812 1 +#define bfd_mach_m6812s 2 + bfd_arch_z8k, /* Zilog Z8000 */ +#define bfd_mach_z8001 1 +#define bfd_mach_z8002 2 + bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */ + bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */ +#define bfd_mach_sh 1 +#define bfd_mach_sh2 0x20 +#define bfd_mach_sh_dsp 0x2d +#define bfd_mach_sh2a 0x2a +#define bfd_mach_sh2a_nofpu 0x2b +#define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1 +#define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2 +#define bfd_mach_sh2a_or_sh4 0x2a3 +#define bfd_mach_sh2a_or_sh3e 0x2a4 +#define bfd_mach_sh2e 0x2e +#define bfd_mach_sh3 0x30 +#define bfd_mach_sh3_nommu 0x31 +#define bfd_mach_sh3_dsp 0x3d +#define bfd_mach_sh3e 0x3e +#define bfd_mach_sh4 0x40 +#define bfd_mach_sh4_nofpu 0x41 +#define bfd_mach_sh4_nommu_nofpu 0x42 +#define bfd_mach_sh4a 0x4a +#define bfd_mach_sh4a_nofpu 0x4b +#define bfd_mach_sh4al_dsp 0x4d +#define bfd_mach_sh5 0x50 + bfd_arch_alpha, /* Dec Alpha */ +#define bfd_mach_alpha_ev4 0x10 +#define bfd_mach_alpha_ev5 0x20 +#define bfd_mach_alpha_ev6 0x30 + bfd_arch_arm, /* Advanced Risc Machines ARM. */ +#define bfd_mach_arm_unknown 0 +#define bfd_mach_arm_2 1 +#define bfd_mach_arm_2a 2 +#define bfd_mach_arm_3 3 +#define bfd_mach_arm_3M 4 +#define bfd_mach_arm_4 5 +#define bfd_mach_arm_4T 6 +#define bfd_mach_arm_5 7 +#define bfd_mach_arm_5T 8 +#define bfd_mach_arm_5TE 9 +#define bfd_mach_arm_XScale 10 +#define bfd_mach_arm_ep9312 11 +#define bfd_mach_arm_iWMMXt 12 +#define bfd_mach_arm_iWMMXt2 13 + bfd_arch_ns32k, /* National Semiconductors ns32000 */ + bfd_arch_w65, /* WDC 65816 */ + bfd_arch_tic30, /* Texas Instruments TMS320C30 */ + bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */ +#define bfd_mach_tic3x 30 +#define bfd_mach_tic4x 40 + bfd_arch_tic54x, /* Texas Instruments TMS320C54X */ + bfd_arch_tic80, /* TI TMS320c80 (MVP) */ + bfd_arch_v850, /* NEC V850 */ +#define bfd_mach_v850 1 +#define bfd_mach_v850e 'E' +#define bfd_mach_v850e1 '1' + bfd_arch_arc, /* ARC Cores */ +#define bfd_mach_arc_5 5 +#define bfd_mach_arc_6 6 +#define bfd_mach_arc_7 7 +#define bfd_mach_arc_8 8 + bfd_arch_m32c, /* Renesas M16C/M32C. */ +#define bfd_mach_m16c 0x75 +#define bfd_mach_m32c 0x78 + bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */ +#define bfd_mach_m32r 1 /* For backwards compatibility. */ +#define bfd_mach_m32rx 'x' +#define bfd_mach_m32r2 '2' + bfd_arch_mn10200, /* Matsushita MN10200 */ + bfd_arch_mn10300, /* Matsushita MN10300 */ +#define bfd_mach_mn10300 300 +#define bfd_mach_am33 330 +#define bfd_mach_am33_2 332 + bfd_arch_fr30, +#define bfd_mach_fr30 0x46523330 + bfd_arch_frv, +#define bfd_mach_frv 1 +#define bfd_mach_frvsimple 2 +#define bfd_mach_fr300 300 +#define bfd_mach_fr400 400 +#define bfd_mach_fr450 450 +#define bfd_mach_frvtomcat 499 /* fr500 prototype */ +#define bfd_mach_fr500 500 +#define bfd_mach_fr550 550 + bfd_arch_mcore, + bfd_arch_mep, +#define bfd_mach_mep 1 +#define bfd_mach_mep_h1 0x6831 + bfd_arch_ia64, /* HP/Intel ia64 */ +#define bfd_mach_ia64_elf64 64 +#define bfd_mach_ia64_elf32 32 + bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */ +#define bfd_mach_ip2022 1 +#define bfd_mach_ip2022ext 2 + bfd_arch_iq2000, /* Vitesse IQ2000. */ +#define bfd_mach_iq2000 1 +#define bfd_mach_iq10 2 + bfd_arch_mt, +#define bfd_mach_ms1 1 +#define bfd_mach_mrisc2 2 +#define bfd_mach_ms2 3 + bfd_arch_pj, + bfd_arch_avr, /* Atmel AVR microcontrollers. */ +#define bfd_mach_avr1 1 +#define bfd_mach_avr2 2 +#define bfd_mach_avr25 25 +#define bfd_mach_avr3 3 +#define bfd_mach_avr31 31 +#define bfd_mach_avr35 35 +#define bfd_mach_avr4 4 +#define bfd_mach_avr5 5 +#define bfd_mach_avr51 51 +#define bfd_mach_avr6 6 + bfd_arch_bfin, /* ADI Blackfin */ +#define bfd_mach_bfin 1 + bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */ +#define bfd_mach_cr16 1 + bfd_arch_cr16c, /* National Semiconductor CompactRISC. */ +#define bfd_mach_cr16c 1 + bfd_arch_crx, /* National Semiconductor CRX. */ +#define bfd_mach_crx 1 + bfd_arch_cris, /* Axis CRIS */ +#define bfd_mach_cris_v0_v10 255 +#define bfd_mach_cris_v32 32 +#define bfd_mach_cris_v10_v32 1032 + bfd_arch_s390, /* IBM s390 */ +#define bfd_mach_s390_31 31 +#define bfd_mach_s390_64 64 + bfd_arch_score, /* Sunplus score */ + bfd_arch_openrisc, /* OpenRISC */ + bfd_arch_mmix, /* Donald Knuth's educational processor. */ + bfd_arch_xstormy16, +#define bfd_mach_xstormy16 1 + bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */ +#define bfd_mach_msp11 11 +#define bfd_mach_msp110 110 +#define bfd_mach_msp12 12 +#define bfd_mach_msp13 13 +#define bfd_mach_msp14 14 +#define bfd_mach_msp15 15 +#define bfd_mach_msp16 16 +#define bfd_mach_msp21 21 +#define bfd_mach_msp31 31 +#define bfd_mach_msp32 32 +#define bfd_mach_msp33 33 +#define bfd_mach_msp41 41 +#define bfd_mach_msp42 42 +#define bfd_mach_msp43 43 +#define bfd_mach_msp44 44 + bfd_arch_xc16x, /* Infineon's XC16X Series. */ +#define bfd_mach_xc16x 1 +#define bfd_mach_xc16xl 2 +#define bfd_mach_xc16xs 3 + bfd_arch_xtensa, /* Tensilica's Xtensa cores. */ +#define bfd_mach_xtensa 1 + bfd_arch_maxq, /* Dallas MAXQ 10/20 */ +#define bfd_mach_maxq10 10 +#define bfd_mach_maxq20 20 + bfd_arch_z80, +#define bfd_mach_z80strict 1 /* No undocumented opcodes. */ +#define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */ +#define bfd_mach_z80full 7 /* All undocumented instructions. */ +#define bfd_mach_r800 11 /* R800: successor with multiplication. */ + bfd_arch_last + @}; +@end example + +@subsection bfd_arch_info + + +@strong{Description}@* +This structure contains information on architectures for use +within BFD. +@example + +typedef struct bfd_arch_info +@{ + int bits_per_word; + int bits_per_address; + int bits_per_byte; + enum bfd_architecture arch; + unsigned long mach; + const char *arch_name; + const char *printable_name; + unsigned int section_align_power; + /* TRUE if this is the default machine for the architecture. + The default arch should be the first entry for an arch so that + all the entries for that arch can be accessed via @code{next}. */ + bfd_boolean the_default; + const struct bfd_arch_info * (*compatible) + (const struct bfd_arch_info *a, const struct bfd_arch_info *b); + + bfd_boolean (*scan) (const struct bfd_arch_info *, const char *); + + const struct bfd_arch_info *next; +@} +bfd_arch_info_type; + +@end example + +@findex bfd_printable_name +@subsubsection @code{bfd_printable_name} +@strong{Synopsis} +@example +const char *bfd_printable_name (bfd *abfd); +@end example +@strong{Description}@* +Return a printable string representing the architecture and machine +from the pointer to the architecture info structure. + +@findex bfd_scan_arch +@subsubsection @code{bfd_scan_arch} +@strong{Synopsis} +@example +const bfd_arch_info_type *bfd_scan_arch (const char *string); +@end example +@strong{Description}@* +Figure out if BFD supports any cpu which could be described with +the name @var{string}. Return a pointer to an @code{arch_info} +structure if a machine is found, otherwise NULL. + +@findex bfd_arch_list +@subsubsection @code{bfd_arch_list} +@strong{Synopsis} +@example +const char **bfd_arch_list (void); +@end example +@strong{Description}@* +Return a freshly malloced NULL-terminated vector of the names +of all the valid BFD architectures. Do not modify the names. + +@findex bfd_arch_get_compatible +@subsubsection @code{bfd_arch_get_compatible} +@strong{Synopsis} +@example +const bfd_arch_info_type *bfd_arch_get_compatible + (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns); +@end example +@strong{Description}@* +Determine whether two BFDs' architectures and machine types +are compatible. Calculates the lowest common denominator +between the two architectures and machine types implied by +the BFDs and returns a pointer to an @code{arch_info} structure +describing the compatible machine. + +@findex bfd_default_arch_struct +@subsubsection @code{bfd_default_arch_struct} +@strong{Description}@* +The @code{bfd_default_arch_struct} is an item of +@code{bfd_arch_info_type} which has been initialized to a fairly +generic state. A BFD starts life by pointing to this +structure, until the correct back end has determined the real +architecture of the file. +@example +extern const bfd_arch_info_type bfd_default_arch_struct; +@end example + +@findex bfd_set_arch_info +@subsubsection @code{bfd_set_arch_info} +@strong{Synopsis} +@example +void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg); +@end example +@strong{Description}@* +Set the architecture info of @var{abfd} to @var{arg}. + +@findex bfd_default_set_arch_mach +@subsubsection @code{bfd_default_set_arch_mach} +@strong{Synopsis} +@example +bfd_boolean bfd_default_set_arch_mach + (bfd *abfd, enum bfd_architecture arch, unsigned long mach); +@end example +@strong{Description}@* +Set the architecture and machine type in BFD @var{abfd} +to @var{arch} and @var{mach}. Find the correct +pointer to a structure and insert it into the @code{arch_info} +pointer. + +@findex bfd_get_arch +@subsubsection @code{bfd_get_arch} +@strong{Synopsis} +@example +enum bfd_architecture bfd_get_arch (bfd *abfd); +@end example +@strong{Description}@* +Return the enumerated type which describes the BFD @var{abfd}'s +architecture. + +@findex bfd_get_mach +@subsubsection @code{bfd_get_mach} +@strong{Synopsis} +@example +unsigned long bfd_get_mach (bfd *abfd); +@end example +@strong{Description}@* +Return the long type which describes the BFD @var{abfd}'s +machine. + +@findex bfd_arch_bits_per_byte +@subsubsection @code{bfd_arch_bits_per_byte} +@strong{Synopsis} +@example +unsigned int bfd_arch_bits_per_byte (bfd *abfd); +@end example +@strong{Description}@* +Return the number of bits in one of the BFD @var{abfd}'s +architecture's bytes. + +@findex bfd_arch_bits_per_address +@subsubsection @code{bfd_arch_bits_per_address} +@strong{Synopsis} +@example +unsigned int bfd_arch_bits_per_address (bfd *abfd); +@end example +@strong{Description}@* +Return the number of bits in one of the BFD @var{abfd}'s +architecture's addresses. + +@findex bfd_default_compatible +@subsubsection @code{bfd_default_compatible} +@strong{Synopsis} +@example +const bfd_arch_info_type *bfd_default_compatible + (const bfd_arch_info_type *a, const bfd_arch_info_type *b); +@end example +@strong{Description}@* +The default function for testing for compatibility. + +@findex bfd_default_scan +@subsubsection @code{bfd_default_scan} +@strong{Synopsis} +@example +bfd_boolean bfd_default_scan + (const struct bfd_arch_info *info, const char *string); +@end example +@strong{Description}@* +The default function for working out whether this is an +architecture hit and a machine hit. + +@findex bfd_get_arch_info +@subsubsection @code{bfd_get_arch_info} +@strong{Synopsis} +@example +const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd); +@end example +@strong{Description}@* +Return the architecture info struct in @var{abfd}. + +@findex bfd_lookup_arch +@subsubsection @code{bfd_lookup_arch} +@strong{Synopsis} +@example +const bfd_arch_info_type *bfd_lookup_arch + (enum bfd_architecture arch, unsigned long machine); +@end example +@strong{Description}@* +Look for the architecture info structure which matches the +arguments @var{arch} and @var{machine}. A machine of 0 matches the +machine/architecture structure which marks itself as the +default. + +@findex bfd_printable_arch_mach +@subsubsection @code{bfd_printable_arch_mach} +@strong{Synopsis} +@example +const char *bfd_printable_arch_mach + (enum bfd_architecture arch, unsigned long machine); +@end example +@strong{Description}@* +Return a printable string representing the architecture and +machine type. + +This routine is depreciated. + +@findex bfd_octets_per_byte +@subsubsection @code{bfd_octets_per_byte} +@strong{Synopsis} +@example +unsigned int bfd_octets_per_byte (bfd *abfd); +@end example +@strong{Description}@* +Return the number of octets (8-bit quantities) per target byte +(minimum addressable unit). In most cases, this will be one, but some +DSP targets have 16, 32, or even 48 bits per byte. + +@findex bfd_arch_mach_octets_per_byte +@subsubsection @code{bfd_arch_mach_octets_per_byte} +@strong{Synopsis} +@example +unsigned int bfd_arch_mach_octets_per_byte + (enum bfd_architecture arch, unsigned long machine); +@end example +@strong{Description}@* +See bfd_octets_per_byte. + +This routine is provided for those cases where a bfd * is not +available + diff --git a/bfd/doc/bfd.info b/bfd/doc/bfd.info new file mode 100644 index 00000000000..7a8ad8d608b --- /dev/null +++ b/bfd/doc/bfd.info @@ -0,0 +1,10823 @@ +This is bfd.info, produced by makeinfo version 4.8 from bfd.texinfo. + +START-INFO-DIR-ENTRY +* Bfd: (bfd). The Binary File Descriptor library. +END-INFO-DIR-ENTRY + + This file documents the BFD library. + + Copyright (C) 1991, 2000, 2001, 2003, 2006, 2007 Free Software +Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this document +under the terms of the GNU Free Documentation License, Version 1.1 or +any later version published by the Free Software Foundation; with the +Invariant Sections being "GNU General Public License" and "Funding Free +Software", the Front-Cover texts being (a) (see below), and with the +Back-Cover Texts being (b) (see below). A copy of the license is +included in the section entitled "GNU Free Documentation License". + + (a) The FSF's Front-Cover Text is: + + A GNU Manual + + (b) The FSF's Back-Cover Text is: + + You have freedom to copy and modify this GNU Manual, like GNU +software. Copies published by the Free Software Foundation raise +funds for GNU development. + + +File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir) + + This file documents the binary file descriptor library libbfd. + +* Menu: + +* Overview:: Overview of BFD +* BFD front end:: BFD front end +* BFD back ends:: BFD back ends +* GNU Free Documentation License:: GNU Free Documentation License +* BFD Index:: BFD Index + + +File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top + +1 Introduction +************** + +BFD is a package which allows applications to use the same routines to +operate on object files whatever the object file format. A new object +file format can be supported simply by creating a new BFD back end and +adding it to the library. + + BFD is split into two parts: the front end, and the back ends (one +for each object file format). + * The front end of BFD provides the interface to the user. It manages + memory and various canonical data structures. The front end also + decides which back end to use and when to call back end routines. + + * The back ends provide BFD its view of the real world. Each back + end provides a set of calls which the BFD front end can use to + maintain its canonical form. The back ends also may keep around + information for their own use, for greater efficiency. + +* Menu: + +* History:: History +* How It Works:: How It Works +* What BFD Version 2 Can Do:: What BFD Version 2 Can Do + + +File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview + +1.1 History +=========== + +One spur behind BFD was the desire, on the part of the GNU 960 team at +Intel Oregon, for interoperability of applications on their COFF and +b.out file formats. Cygnus was providing GNU support for the team, and +was contracted to provide the required functionality. + + The name came from a conversation David Wallace was having with +Richard Stallman about the library: RMS said that it would be quite +hard--David said "BFD". Stallman was right, but the name stuck. + + At the same time, Ready Systems wanted much the same thing, but for +different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k +coff. + + BFD was first implemented by members of Cygnus Support; Steve +Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K. +Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace +(`gumby@cygnus.com'). + + +File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview + +1.2 How To Use BFD +================== + +To use the library, include `bfd.h' and link with `libbfd.a'. + + BFD provides a common interface to the parts of an object file for a +calling application. + + When an application successfully opens a target file (object, +archive, or whatever), a pointer to an internal structure is returned. +This pointer points to a structure called `bfd', described in `bfd.h'. +Our convention is to call this pointer a BFD, and instances of it +within code `abfd'. All operations on the target object file are +applied as methods to the BFD. The mapping is defined within `bfd.h' +in a set of macros, all beginning with `bfd_' to reduce namespace +pollution. + + For example, this sequence does what you would probably expect: +return the number of sections in an object file attached to a BFD +`abfd'. + + #include "bfd.h" + + unsigned int number_of_sections (abfd) + bfd *abfd; + { + return bfd_count_sections (abfd); + } + + The abstraction used within BFD is that an object file has: + + * a header, + + * a number of sections containing raw data (*note Sections::), + + * a set of relocations (*note Relocations::), and + + * some symbol information (*note Symbols::). + Also, BFDs opened for archives have the additional attribute of an +index and contain subordinate BFDs. This approach is fine for a.out and +coff, but loses efficiency when applied to formats such as S-records and +IEEE-695. + + +File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview + +1.3 What BFD Version 2 Can Do +============================= + +When an object file is opened, BFD subroutines automatically determine +the format of the input object file. They then build a descriptor in +memory with pointers to routines that will be used to access elements of +the object file's data structures. + + As different information from the object files is required, BFD +reads from different sections of the file and processes them. For +example, a very common operation for the linker is processing symbol +tables. Each BFD back end provides a routine for converting between +the object file's representation of symbols and an internal canonical +format. When the linker asks for the symbol table of an object file, it +calls through a memory pointer to the routine from the relevant BFD +back end which reads and converts the table into a canonical form. The +linker then operates upon the canonical form. When the link is finished +and the linker writes the output file's symbol table, another BFD back +end routine is called to take the newly created symbol table and +convert it into the chosen output format. + +* Menu: + +* BFD information loss:: Information Loss +* Canonical format:: The BFD canonical object-file format + + +File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do + +1.3.1 Information Loss +---------------------- + +_Information can be lost during output._ The output formats supported +by BFD do not provide identical facilities, and information which can +be described in one form has nowhere to go in another format. One +example of this is alignment information in `b.out'. There is nowhere +in an `a.out' format file to store alignment information on the +contained data, so when a file is linked from `b.out' and an `a.out' +image is produced, alignment information will not propagate to the +output file. (The linker will still use the alignment information +internally, so the link is performed correctly). + + Another example is COFF section names. COFF files may contain an +unlimited number of sections, each one with a textual section name. If +the target of the link is a format which does not have many sections +(e.g., `a.out') or has sections without names (e.g., the Oasys format), +the link cannot be done simply. You can circumvent this problem by +describing the desired input-to-output section mapping with the linker +command language. + + _Information can be lost during canonicalization._ The BFD internal +canonical form of the external formats is not exhaustive; there are +structures in input formats for which there is no direct representation +internally. This means that the BFD back ends cannot maintain all +possible data richness through the transformation between external to +internal and back to external formats. + + This limitation is only a problem when an application reads one +format and writes another. Each BFD back end is responsible for +maintaining as much data as possible, and the internal BFD canonical +form has structures which are opaque to the BFD core, and exported only +to the back ends. When a file is read in one format, the canonical form +is generated for BFD and the application. At the same time, the back +end saves away any information which may otherwise be lost. If the data +is then written back in the same format, the back end routine will be +able to use the canonical form provided by the BFD core as well as the +information it prepared earlier. Since there is a great deal of +commonality between back ends, there is no information lost when +linking or copying big endian COFF to little endian COFF, or `a.out' to +`b.out'. When a mixture of formats is linked, the information is only +lost from the files whose format differs from the destination. + + +File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do + +1.3.2 The BFD canonical object-file format +------------------------------------------ + +The greatest potential for loss of information occurs when there is the +least overlap between the information provided by the source format, +that stored by the canonical format, and that needed by the destination +format. A brief description of the canonical form may help you +understand which kinds of data you can count on preserving across +conversions. + +_files_ + Information stored on a per-file basis includes target machine + architecture, particular implementation format type, a demand + pageable bit, and a write protected bit. Information like Unix + magic numbers is not stored here--only the magic numbers' meaning, + so a `ZMAGIC' file would have both the demand pageable bit and the + write protected text bit set. The byte order of the target is + stored on a per-file basis, so that big- and little-endian object + files may be used with one another. + +_sections_ + Each section in the input file contains the name of the section, + the section's original address in the object file, size and + alignment information, various flags, and pointers into other BFD + data structures. + +_symbols_ + Each symbol contains a pointer to the information for the object + file which originally defined it, its name, its value, and various + flag bits. When a BFD back end reads in a symbol table, it + relocates all symbols to make them relative to the base of the + section where they were defined. Doing this ensures that each + symbol points to its containing section. Each symbol also has a + varying amount of hidden private data for the BFD back end. Since + the symbol points to the original file, the private data format + for that symbol is accessible. `ld' can operate on a collection + of symbols of wildly different formats without problems. + + Normal global and simple local symbols are maintained on output, + so an output file (no matter its format) will retain symbols + pointing to functions and to global, static, and common variables. + Some symbol information is not worth retaining; in `a.out', type + information is stored in the symbol table as long symbol names. + This information would be useless to most COFF debuggers; the + linker has command line switches to allow users to throw it away. + + There is one word of type information within the symbol, so if the + format supports symbol type information within symbols (for + example, COFF, IEEE, Oasys) and the type is simple enough to fit + within one word (nearly everything but aggregates), the + information will be preserved. + +_relocation level_ + Each canonical BFD relocation record contains a pointer to the + symbol to relocate to, the offset of the data to relocate, the + section the data is in, and a pointer to a relocation type + descriptor. Relocation is performed by passing messages through + the relocation type descriptor and the symbol pointer. Therefore, + relocations can be performed on output data using a relocation + method that is only available in one of the input formats. For + instance, Oasys provides a byte relocation format. A relocation + record requesting this relocation type would point indirectly to a + routine to perform this, so the relocation may be performed on a + byte being written to a 68k COFF file, even though 68k COFF has no + such relocation type. + +_line numbers_ + Object formats can contain, for debugging purposes, some form of + mapping between symbols, source line numbers, and addresses in the + output file. These addresses have to be relocated along with the + symbol information. Each symbol with an associated list of line + number records points to the first record of the list. The head + of a line number list consists of a pointer to the symbol, which + allows finding out the address of the function whose line number + is being described. The rest of the list is made up of pairs: + offsets into the section and line numbers. Any format which can + simply derive this information can pass it successfully between + formats (COFF, IEEE and Oasys). + + +File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top + +2 BFD Front End +*************** + +2.1 `typedef bfd' +================= + +A BFD has type `bfd'; objects of this type are the cornerstone of any +application using BFD. Using BFD consists of making references though +the BFD and to data in the BFD. + + Here is the structure that defines the type `bfd'. It contains the +major data about the file and pointers to the rest of the data. + + + struct bfd + { + /* A unique identifier of the BFD */ + unsigned int id; + + /* The filename the application opened the BFD with. */ + const char *filename; + + /* A pointer to the target jump table. */ + const struct bfd_target *xvec; + + /* The IOSTREAM, and corresponding IO vector that provide access + to the file backing the BFD. */ + void *iostream; + const struct bfd_iovec *iovec; + + /* The caching routines use these to maintain a + least-recently-used list of BFDs. */ + struct bfd *lru_prev, *lru_next; + + /* When a file is closed by the caching routines, BFD retains + state information on the file here... */ + ufile_ptr where; + + /* File modified time, if mtime_set is TRUE. */ + long mtime; + + /* Reserved for an unimplemented file locking extension. */ + int ifd; + + /* The format which belongs to the BFD. (object, core, etc.) */ + bfd_format format; + + /* The direction with which the BFD was opened. */ + enum bfd_direction + { + no_direction = 0, + read_direction = 1, + write_direction = 2, + both_direction = 3 + } + direction; + + /* Format_specific flags. */ + flagword flags; + + /* Values that may appear in the flags field of a BFD. These also + appear in the object_flags field of the bfd_target structure, where + they indicate the set of flags used by that backend (not all flags + are meaningful for all object file formats) (FIXME: at the moment, + the object_flags values have mostly just been copied from backend + to another, and are not necessarily correct). */ + + #define BFD_NO_FLAGS 0x00 + + /* BFD contains relocation entries. */ + #define HAS_RELOC 0x01 + + /* BFD is directly executable. */ + #define EXEC_P 0x02 + + /* BFD has line number information (basically used for F_LNNO in a + COFF header). */ + #define HAS_LINENO 0x04 + + /* BFD has debugging information. */ + #define HAS_DEBUG 0x08 + + /* BFD has symbols. */ + #define HAS_SYMS 0x10 + + /* BFD has local symbols (basically used for F_LSYMS in a COFF + header). */ + #define HAS_LOCALS 0x20 + + /* BFD is a dynamic object. */ + #define DYNAMIC 0x40 + + /* Text section is write protected (if D_PAGED is not set, this is + like an a.out NMAGIC file) (the linker sets this by default, but + clears it for -r or -N). */ + #define WP_TEXT 0x80 + + /* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the + linker sets this by default, but clears it for -r or -n or -N). */ + #define D_PAGED 0x100 + + /* BFD is relaxable (this means that bfd_relax_section may be able to + do something) (sometimes bfd_relax_section can do something even if + this is not set). */ + #define BFD_IS_RELAXABLE 0x200 + + /* This may be set before writing out a BFD to request using a + traditional format. For example, this is used to request that when + writing out an a.out object the symbols not be hashed to eliminate + duplicates. */ + #define BFD_TRADITIONAL_FORMAT 0x400 + + /* This flag indicates that the BFD contents are actually cached + in memory. If this is set, iostream points to a bfd_in_memory + struct. */ + #define BFD_IN_MEMORY 0x800 + + /* The sections in this BFD specify a memory page. */ + #define HAS_LOAD_PAGE 0x1000 + + /* This BFD has been created by the linker and doesn't correspond + to any input file. */ + #define BFD_LINKER_CREATED 0x2000 + + /* Currently my_archive is tested before adding origin to + anything. I believe that this can become always an add of + origin, with origin set to 0 for non archive files. */ + ufile_ptr origin; + + /* The origin in the archive of the proxy entry. This will + normally be the same as origin, except for thin archives, + when it will contain the current offset of the proxy in the + thin archive rather than the offset of the bfd in its actual + container. */ + ufile_ptr proxy_origin; + + /* A hash table for section names. */ + struct bfd_hash_table section_htab; + + /* Pointer to linked list of sections. */ + struct bfd_section *sections; + + /* The last section on the section list. */ + struct bfd_section *section_last; + + /* The number of sections. */ + unsigned int section_count; + + /* Stuff only useful for object files: + The start address. */ + bfd_vma start_address; + + /* Used for input and output. */ + unsigned int symcount; + + /* Symbol table for output BFD (with symcount entries). + Also used by the linker to cache input BFD symbols. */ + struct bfd_symbol **outsymbols; + + /* Used for slurped dynamic symbol tables. */ + unsigned int dynsymcount; + + /* Pointer to structure which contains architecture information. */ + const struct bfd_arch_info *arch_info; + + /* Stuff only useful for archives. */ + void *arelt_data; + struct bfd *my_archive; /* The containing archive BFD. */ + struct bfd *archive_next; /* The next BFD in the archive. */ + struct bfd *archive_head; /* The first BFD in the archive. */ + struct bfd *nested_archives; /* List of nested archive in a flattened + thin archive. */ + + /* A chain of BFD structures involved in a link. */ + struct bfd *link_next; + + /* A field used by _bfd_generic_link_add_archive_symbols. This will + be used only for archive elements. */ + int archive_pass; + + /* Used by the back end to hold private data. */ + union + { + struct aout_data_struct *aout_data; + struct artdata *aout_ar_data; + struct _oasys_data *oasys_obj_data; + struct _oasys_ar_data *oasys_ar_data; + struct coff_tdata *coff_obj_data; + struct pe_tdata *pe_obj_data; + struct xcoff_tdata *xcoff_obj_data; + struct ecoff_tdata *ecoff_obj_data; + struct ieee_data_struct *ieee_data; + struct ieee_ar_data_struct *ieee_ar_data; + struct srec_data_struct *srec_data; + struct ihex_data_struct *ihex_data; + struct tekhex_data_struct *tekhex_data; + struct elf_obj_tdata *elf_obj_data; + struct nlm_obj_tdata *nlm_obj_data; + struct bout_data_struct *bout_data; + struct mmo_data_struct *mmo_data; + struct sun_core_struct *sun_core_data; + struct sco5_core_struct *sco5_core_data; + struct trad_core_struct *trad_core_data; + struct som_data_struct *som_data; + struct hpux_core_struct *hpux_core_data; + struct hppabsd_core_struct *hppabsd_core_data; + struct sgi_core_struct *sgi_core_data; + struct lynx_core_struct *lynx_core_data; + struct osf_core_struct *osf_core_data; + struct cisco_core_struct *cisco_core_data; + struct versados_data_struct *versados_data; + struct netbsd_core_struct *netbsd_core_data; + struct mach_o_data_struct *mach_o_data; + struct mach_o_fat_data_struct *mach_o_fat_data; + struct bfd_pef_data_struct *pef_data; + struct bfd_pef_xlib_data_struct *pef_xlib_data; + struct bfd_sym_data_struct *sym_data; + void *any; + } + tdata; + + /* Used by the application to hold private data. */ + void *usrdata; + + /* Where all the allocated stuff under this BFD goes. This is a + struct objalloc *, but we use void * to avoid requiring the inclusion + of objalloc.h. */ + void *memory; + + /* Is the file descriptor being cached? That is, can it be closed as + needed, and re-opened when accessed later? */ + unsigned int cacheable : 1; + + /* Marks whether there was a default target specified when the + BFD was opened. This is used to select which matching algorithm + to use to choose the back end. */ + unsigned int target_defaulted : 1; + + /* ... and here: (``once'' means at least once). */ + unsigned int opened_once : 1; + + /* Set if we have a locally maintained mtime value, rather than + getting it from the file each time. */ + unsigned int mtime_set : 1; + + /* Flag set if symbols from this BFD should not be exported. */ + unsigned int no_export : 1; + + /* Remember when output has begun, to stop strange things + from happening. */ + unsigned int output_has_begun : 1; + + /* Have archive map. */ + unsigned int has_armap : 1; + + /* Set if this is a thin archive. */ + unsigned int is_thin_archive : 1; + }; + +2.2 Error reporting +=================== + +Most BFD functions return nonzero on success (check their individual +documentation for precise semantics). On an error, they call +`bfd_set_error' to set an error condition that callers can check by +calling `bfd_get_error'. If that returns `bfd_error_system_call', then +check `errno'. + + The easiest way to report a BFD error to the user is to use +`bfd_perror'. + +2.2.1 Type `bfd_error_type' +--------------------------- + +The values returned by `bfd_get_error' are defined by the enumerated +type `bfd_error_type'. + + + typedef enum bfd_error + { + bfd_error_no_error = 0, + bfd_error_system_call, + bfd_error_invalid_target, + bfd_error_wrong_format, + bfd_error_wrong_object_format, + bfd_error_invalid_operation, + bfd_error_no_memory, + bfd_error_no_symbols, + bfd_error_no_armap, + bfd_error_no_more_archived_files, + bfd_error_malformed_archive, + bfd_error_file_not_recognized, + bfd_error_file_ambiguously_recognized, + bfd_error_no_contents, + bfd_error_nonrepresentable_section, + bfd_error_no_debug_section, + bfd_error_bad_value, + bfd_error_file_truncated, + bfd_error_file_too_big, + bfd_error_on_input, + bfd_error_invalid_error_code + } + bfd_error_type; + +2.2.1.1 `bfd_get_error' +....................... + +*Synopsis* + bfd_error_type bfd_get_error (void); + *Description* +Return the current BFD error condition. + +2.2.1.2 `bfd_set_error' +....................... + +*Synopsis* + void bfd_set_error (bfd_error_type error_tag, ...); + *Description* +Set the BFD error condition to be ERROR_TAG. If ERROR_TAG is +bfd_error_on_input, then this function takes two more parameters, the +input bfd where the error occurred, and the bfd_error_type error. + +2.2.1.3 `bfd_errmsg' +.................... + +*Synopsis* + const char *bfd_errmsg (bfd_error_type error_tag); + *Description* +Return a string describing the error ERROR_TAG, or the system error if +ERROR_TAG is `bfd_error_system_call'. + +2.2.1.4 `bfd_perror' +.................... + +*Synopsis* + void bfd_perror (const char *message); + *Description* +Print to the standard error stream a string describing the last BFD +error that occurred, or the last system error if the last BFD error was +a system call failure. If MESSAGE is non-NULL and non-empty, the error +string printed is preceded by MESSAGE, a colon, and a space. It is +followed by a newline. + +2.2.2 BFD error handler +----------------------- + +Some BFD functions want to print messages describing the problem. They +call a BFD error handler function. This function may be overridden by +the program. + + The BFD error handler acts like printf. + + + typedef void (*bfd_error_handler_type) (const char *, ...); + +2.2.2.1 `bfd_set_error_handler' +............................... + +*Synopsis* + bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type); + *Description* +Set the BFD error handler function. Returns the previous function. + +2.2.2.2 `bfd_set_error_program_name' +.................................... + +*Synopsis* + void bfd_set_error_program_name (const char *); + *Description* +Set the program name to use when printing a BFD error. This is printed +before the error message followed by a colon and space. The string +must not be changed after it is passed to this function. + +2.2.2.3 `bfd_get_error_handler' +............................... + +*Synopsis* + bfd_error_handler_type bfd_get_error_handler (void); + *Description* +Return the BFD error handler function. + +2.3 Miscellaneous +================= + +2.3.1 Miscellaneous functions +----------------------------- + +2.3.1.1 `bfd_get_reloc_upper_bound' +................................... + +*Synopsis* + long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect); + *Description* +Return the number of bytes required to store the relocation information +associated with section SECT attached to bfd ABFD. If an error occurs, +return -1. + +2.3.1.2 `bfd_canonicalize_reloc' +................................ + +*Synopsis* + long bfd_canonicalize_reloc + (bfd *abfd, asection *sec, arelent **loc, asymbol **syms); + *Description* +Call the back end associated with the open BFD ABFD and translate the +external form of the relocation information attached to SEC into the +internal canonical form. Place the table into memory at LOC, which has +been preallocated, usually by a call to `bfd_get_reloc_upper_bound'. +Returns the number of relocs, or -1 on error. + + The SYMS table is also needed for horrible internal magic reasons. + +2.3.1.3 `bfd_set_reloc' +....................... + +*Synopsis* + void bfd_set_reloc + (bfd *abfd, asection *sec, arelent **rel, unsigned int count); + *Description* +Set the relocation pointer and count within section SEC to the values +REL and COUNT. The argument ABFD is ignored. + +2.3.1.4 `bfd_set_file_flags' +............................ + +*Synopsis* + bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags); + *Description* +Set the flag word in the BFD ABFD to the value FLAGS. + + Possible errors are: + * `bfd_error_wrong_format' - The target bfd was not of object format. + + * `bfd_error_invalid_operation' - The target bfd was open for + reading. + + * `bfd_error_invalid_operation' - The flag word contained a bit + which was not applicable to the type of file. E.g., an attempt + was made to set the `D_PAGED' bit on a BFD format which does not + support demand paging. + +2.3.1.5 `bfd_get_arch_size' +........................... + +*Synopsis* + int bfd_get_arch_size (bfd *abfd); + *Description* +Returns the architecture address size, in bits, as determined by the +object file's format. For ELF, this information is included in the +header. + + *Returns* +Returns the arch size in bits if known, `-1' otherwise. + +2.3.1.6 `bfd_get_sign_extend_vma' +................................. + +*Synopsis* + int bfd_get_sign_extend_vma (bfd *abfd); + *Description* +Indicates if the target architecture "naturally" sign extends an +address. Some architectures implicitly sign extend address values when +they are converted to types larger than the size of an address. For +instance, bfd_get_start_address() will return an address sign extended +to fill a bfd_vma when this is the case. + + *Returns* +Returns `1' if the target architecture is known to sign extend +addresses, `0' if the target architecture is known to not sign extend +addresses, and `-1' otherwise. + +2.3.1.7 `bfd_set_start_address' +............................... + +*Synopsis* + bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma); + *Description* +Make VMA the entry point of output BFD ABFD. + + *Returns* +Returns `TRUE' on success, `FALSE' otherwise. + +2.3.1.8 `bfd_get_gp_size' +......................... + +*Synopsis* + unsigned int bfd_get_gp_size (bfd *abfd); + *Description* +Return the maximum size of objects to be optimized using the GP +register under MIPS ECOFF. This is typically set by the `-G' argument +to the compiler, assembler or linker. + +2.3.1.9 `bfd_set_gp_size' +......................... + +*Synopsis* + void bfd_set_gp_size (bfd *abfd, unsigned int i); + *Description* +Set the maximum size of objects to be optimized using the GP register +under ECOFF or MIPS ELF. This is typically set by the `-G' argument to +the compiler, assembler or linker. + +2.3.1.10 `bfd_scan_vma' +....................... + +*Synopsis* + bfd_vma bfd_scan_vma (const char *string, const char **end, int base); + *Description* +Convert, like `strtoul', a numerical expression STRING into a `bfd_vma' +integer, and return that integer. (Though without as many bells and +whistles as `strtoul'.) The expression is assumed to be unsigned +(i.e., positive). If given a BASE, it is used as the base for +conversion. A base of 0 causes the function to interpret the string in +hex if a leading "0x" or "0X" is found, otherwise in octal if a leading +zero is found, otherwise in decimal. + + If the value would overflow, the maximum `bfd_vma' value is returned. + +2.3.1.11 `bfd_copy_private_header_data' +....................................... + +*Synopsis* + bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd); + *Description* +Copy private BFD header information from the BFD IBFD to the the BFD +OBFD. This copies information that may require sections to exist, but +does not require symbol tables. Return `true' on success, `false' on +error. Possible error returns are: + + * `bfd_error_no_memory' - Not enough memory exists to create private + data for OBFD. + + #define bfd_copy_private_header_data(ibfd, obfd) \ + BFD_SEND (obfd, _bfd_copy_private_header_data, \ + (ibfd, obfd)) + +2.3.1.12 `bfd_copy_private_bfd_data' +.................................... + +*Synopsis* + bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd); + *Description* +Copy private BFD information from the BFD IBFD to the the BFD OBFD. +Return `TRUE' on success, `FALSE' on error. Possible error returns are: + + * `bfd_error_no_memory' - Not enough memory exists to create private + data for OBFD. + + #define bfd_copy_private_bfd_data(ibfd, obfd) \ + BFD_SEND (obfd, _bfd_copy_private_bfd_data, \ + (ibfd, obfd)) + +2.3.1.13 `bfd_merge_private_bfd_data' +..................................... + +*Synopsis* + bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd); + *Description* +Merge private BFD information from the BFD IBFD to the the output file +BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error. +Possible error returns are: + + * `bfd_error_no_memory' - Not enough memory exists to create private + data for OBFD. + + #define bfd_merge_private_bfd_data(ibfd, obfd) \ + BFD_SEND (obfd, _bfd_merge_private_bfd_data, \ + (ibfd, obfd)) + +2.3.1.14 `bfd_set_private_flags' +................................ + +*Synopsis* + bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags); + *Description* +Set private BFD flag information in the BFD ABFD. Return `TRUE' on +success, `FALSE' on error. Possible error returns are: + + * `bfd_error_no_memory' - Not enough memory exists to create private + data for OBFD. + + #define bfd_set_private_flags(abfd, flags) \ + BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags)) + +2.3.1.15 `Other functions' +.......................... + +*Description* +The following functions exist but have not yet been documented. + #define bfd_sizeof_headers(abfd, info) \ + BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info)) + + #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \ + BFD_SEND (abfd, _bfd_find_nearest_line, \ + (abfd, sec, syms, off, file, func, line)) + + #define bfd_find_line(abfd, syms, sym, file, line) \ + BFD_SEND (abfd, _bfd_find_line, \ + (abfd, syms, sym, file, line)) + + #define bfd_find_inliner_info(abfd, file, func, line) \ + BFD_SEND (abfd, _bfd_find_inliner_info, \ + (abfd, file, func, line)) + + #define bfd_debug_info_start(abfd) \ + BFD_SEND (abfd, _bfd_debug_info_start, (abfd)) + + #define bfd_debug_info_end(abfd) \ + BFD_SEND (abfd, _bfd_debug_info_end, (abfd)) + + #define bfd_debug_info_accumulate(abfd, section) \ + BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section)) + + #define bfd_stat_arch_elt(abfd, stat) \ + BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat)) + + #define bfd_update_armap_timestamp(abfd) \ + BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd)) + + #define bfd_set_arch_mach(abfd, arch, mach)\ + BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach)) + + #define bfd_relax_section(abfd, section, link_info, again) \ + BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again)) + + #define bfd_gc_sections(abfd, link_info) \ + BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info)) + + #define bfd_merge_sections(abfd, link_info) \ + BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info)) + + #define bfd_is_group_section(abfd, sec) \ + BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec)) + + #define bfd_discard_group(abfd, sec) \ + BFD_SEND (abfd, _bfd_discard_group, (abfd, sec)) + + #define bfd_link_hash_table_create(abfd) \ + BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd)) + + #define bfd_link_hash_table_free(abfd, hash) \ + BFD_SEND (abfd, _bfd_link_hash_table_free, (hash)) + + #define bfd_link_add_symbols(abfd, info) \ + BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info)) + + #define bfd_link_just_syms(abfd, sec, info) \ + BFD_SEND (abfd, _bfd_link_just_syms, (sec, info)) + + #define bfd_final_link(abfd, info) \ + BFD_SEND (abfd, _bfd_final_link, (abfd, info)) + + #define bfd_free_cached_info(abfd) \ + BFD_SEND (abfd, _bfd_free_cached_info, (abfd)) + + #define bfd_get_dynamic_symtab_upper_bound(abfd) \ + BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd)) + + #define bfd_print_private_bfd_data(abfd, file)\ + BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file)) + + #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \ + BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols)) + + #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \ + BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \ + dyncount, dynsyms, ret)) + + #define bfd_get_dynamic_reloc_upper_bound(abfd) \ + BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd)) + + #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \ + BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms)) + + extern bfd_byte *bfd_get_relocated_section_contents + (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, + bfd_boolean, asymbol **); + +2.3.1.16 `bfd_alt_mach_code' +............................ + +*Synopsis* + bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative); + *Description* +When more than one machine code number is available for the same +machine type, this function can be used to switch between the preferred +one (alternative == 0) and any others. Currently, only ELF supports +this feature, with up to two alternate machine codes. + + struct bfd_preserve + { + void *marker; + void *tdata; + flagword flags; + const struct bfd_arch_info *arch_info; + struct bfd_section *sections; + struct bfd_section *section_last; + unsigned int section_count; + struct bfd_hash_table section_htab; + }; + +2.3.1.17 `bfd_preserve_save' +............................ + +*Synopsis* + bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *); + *Description* +When testing an object for compatibility with a particular target +back-end, the back-end object_p function needs to set up certain fields +in the bfd on successfully recognizing the object. This typically +happens in a piecemeal fashion, with failures possible at many points. +On failure, the bfd is supposed to be restored to its initial state, +which is virtually impossible. However, restoring a subset of the bfd +state works in practice. This function stores the subset and +reinitializes the bfd. + +2.3.1.18 `bfd_preserve_restore' +............................... + +*Synopsis* + void bfd_preserve_restore (bfd *, struct bfd_preserve *); + *Description* +This function restores bfd state saved by bfd_preserve_save. If MARKER +is non-NULL in struct bfd_preserve then that block and all subsequently +bfd_alloc'd memory is freed. + +2.3.1.19 `bfd_preserve_finish' +.............................. + +*Synopsis* + void bfd_preserve_finish (bfd *, struct bfd_preserve *); + *Description* +This function should be called when the bfd state saved by +bfd_preserve_save is no longer needed. ie. when the back-end object_p +function returns with success. + +2.3.1.20 `bfd_emul_get_maxpagesize' +................................... + +*Synopsis* + bfd_vma bfd_emul_get_maxpagesize (const char *); + *Description* +Returns the maximum page size, in bytes, as determined by emulation. + + *Returns* +Returns the maximum page size in bytes for ELF, abort otherwise. + +2.3.1.21 `bfd_emul_set_maxpagesize' +................................... + +*Synopsis* + void bfd_emul_set_maxpagesize (const char *, bfd_vma); + *Description* +For ELF, set the maximum page size for the emulation. It is a no-op +for other formats. + +2.3.1.22 `bfd_emul_get_commonpagesize' +...................................... + +*Synopsis* + bfd_vma bfd_emul_get_commonpagesize (const char *); + *Description* +Returns the common page size, in bytes, as determined by emulation. + + *Returns* +Returns the common page size in bytes for ELF, abort otherwise. + +2.3.1.23 `bfd_emul_set_commonpagesize' +...................................... + +*Synopsis* + void bfd_emul_set_commonpagesize (const char *, bfd_vma); + *Description* +For ELF, set the common page size for the emulation. It is a no-op for +other formats. + +2.3.1.24 `bfd_demangle' +....................... + +*Synopsis* + char *bfd_demangle (bfd *, const char *, int); + *Description* +Wrapper around cplus_demangle. Strips leading underscores and other +such chars that would otherwise confuse the demangler. If passed a g++ +v3 ABI mangled name, returns a buffer allocated with malloc holding the +demangled name. Returns NULL otherwise and on memory alloc failure. + +2.3.1.25 `struct bfd_iovec' +........................... + +*Description* +The `struct bfd_iovec' contains the internal file I/O class. Each +`BFD' has an instance of this class and all file I/O is routed through +it (it is assumed that the instance implements all methods listed +below). + struct bfd_iovec + { + /* To avoid problems with macros, a "b" rather than "f" + prefix is prepended to each method name. */ + /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching + bytes starting at PTR. Return the number of bytes actually + transfered (a read past end-of-file returns less than NBYTES), + or -1 (setting `bfd_error') if an error occurs. */ + file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes); + file_ptr (*bwrite) (struct bfd *abfd, const void *ptr, + file_ptr nbytes); + /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error' + if an error occurs. */ + file_ptr (*btell) (struct bfd *abfd); + /* For the following, on successful completion a value of 0 is returned. + Otherwise, a value of -1 is returned (and `bfd_error' is set). */ + int (*bseek) (struct bfd *abfd, file_ptr offset, int whence); + int (*bclose) (struct bfd *abfd); + int (*bflush) (struct bfd *abfd); + int (*bstat) (struct bfd *abfd, struct stat *sb); + }; + +2.3.1.26 `bfd_get_mtime' +........................ + +*Synopsis* + long bfd_get_mtime (bfd *abfd); + *Description* +Return the file modification time (as read from the file system, or +from the archive header for archive members). + +2.3.1.27 `bfd_get_size' +....................... + +*Synopsis* + file_ptr bfd_get_size (bfd *abfd); + *Description* +Return the file size (as read from file system) for the file associated +with BFD ABFD. + + The initial motivation for, and use of, this routine is not so we +can get the exact size of the object the BFD applies to, since that +might not be generally possible (archive members for example). It +would be ideal if someone could eventually modify it so that such +results were guaranteed. + + Instead, we want to ask questions like "is this NNN byte sized +object I'm about to try read from file offset YYY reasonable?" As as +example of where we might do this, some object formats use string +tables for which the first `sizeof (long)' bytes of the table contain +the size of the table itself, including the size bytes. If an +application tries to read what it thinks is one of these string tables, +without some way to validate the size, and for some reason the size is +wrong (byte swapping error, wrong location for the string table, etc.), +the only clue is likely to be a read error when it tries to read the +table, or a "virtual memory exhausted" error when it tries to allocate +15 bazillon bytes of space for the 15 bazillon byte table it is about +to read. This function at least allows us to answer the question, "is +the size reasonable?". + +* Menu: + +* Memory Usage:: +* Initialization:: +* Sections:: +* Symbols:: +* Archives:: +* Formats:: +* Relocations:: +* Core Files:: +* Targets:: +* Architectures:: +* Opening and Closing:: +* Internal:: +* File Caching:: +* Linker Functions:: +* Hash Tables:: + + +File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end + +2.4 Memory Usage +================ + +BFD keeps all of its internal structures in obstacks. There is one +obstack per open BFD file, into which the current state is stored. When +a BFD is closed, the obstack is deleted, and so everything which has +been allocated by BFD for the closing file is thrown away. + + BFD does not free anything created by an application, but pointers +into `bfd' structures become invalid on a `bfd_close'; for example, +after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is +still around, since it has been allocated by the application, but the +data that it pointed to are lost. + + The general rule is to not close a BFD until all operations dependent +upon data from the BFD have been completed, or all the data from within +the file has been copied. To help with the management of memory, there +is a function (`bfd_alloc_size') which returns the number of bytes in +obstacks associated with the supplied BFD. This could be used to select +the greediest open BFD, close it to reclaim the memory, perform some +operation and reopen the BFD again, to get a fresh copy of the data +structures. + + +File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end + +2.5 Initialization +================== + +2.5.1 Initialization functions +------------------------------ + +These are the functions that handle initializing a BFD. + +2.5.1.1 `bfd_init' +.................. + +*Synopsis* + void bfd_init (void); + *Description* +This routine must be called before any other BFD function to initialize +magical internal data structures. + + +File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end + +2.6 Sections +============ + +The raw data contained within a BFD is maintained through the section +abstraction. A single BFD may have any number of sections. It keeps +hold of them by pointing to the first; each one points to the next in +the list. + + Sections are supported in BFD in `section.c'. + +* Menu: + +* Section Input:: +* Section Output:: +* typedef asection:: +* section prototypes:: + + +File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections + +2.6.1 Section input +------------------- + +When a BFD is opened for reading, the section structures are created +and attached to the BFD. + + Each section has a name which describes the section in the outside +world--for example, `a.out' would contain at least three sections, +called `.text', `.data' and `.bss'. + + Names need not be unique; for example a COFF file may have several +sections named `.data'. + + Sometimes a BFD will contain more than the "natural" number of +sections. A back end may attach other sections containing constructor +data, or an application may add a section (using `bfd_make_section') to +the sections attached to an already open BFD. For example, the linker +creates an extra section `COMMON' for each input file's BFD to hold +information about common storage. + + The raw data is not necessarily read in when the section descriptor +is created. Some targets may leave the data in place until a +`bfd_get_section_contents' call is made. Other back ends may read in +all the data at once. For example, an S-record file has to be read +once to determine the size of the data. An IEEE-695 file doesn't +contain raw data in sections, but data and relocation expressions +intermixed, so the data area has to be parsed to get out the data and +relocations. + + +File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections + +2.6.2 Section output +-------------------- + +To write a new object style BFD, the various sections to be written +have to be created. They are attached to the BFD in the same way as +input sections; data is written to the sections using +`bfd_set_section_contents'. + + Any program that creates or combines sections (e.g., the assembler +and linker) must use the `asection' fields `output_section' and +`output_offset' to indicate the file sections to which each section +must be written. (If the section is being created from scratch, +`output_section' should probably point to the section itself and +`output_offset' should probably be zero.) + + The data to be written comes from input sections attached (via +`output_section' pointers) to the output sections. The output section +structure can be considered a filter for the input section: the output +section determines the vma of the output data and the name, but the +input section determines the offset into the output section of the data +to be written. + + E.g., to create a section "O", starting at 0x100, 0x123 long, +containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and +"B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would +look like: + + section name "A" + output_offset 0x00 + size 0x20 + output_section -----------> section name "O" + | vma 0x100 + section name "B" | size 0x123 + output_offset 0x20 | + size 0x103 | + output_section --------| + +2.6.3 Link orders +----------------- + +The data within a section is stored in a "link_order". These are much +like the fixups in `gas'. The link_order abstraction allows a section +to grow and shrink within itself. + + A link_order knows how big it is, and which is the next link_order +and where the raw data for it is; it also points to a list of +relocations which apply to it. + + The link_order is used by the linker to perform relaxing on final +code. The compiler creates code which is as big as necessary to make +it work without relaxing, and the user can select whether to relax. +Sometimes relaxing takes a lot of time. The linker runs around the +relocations to see if any are attached to data which can be shrunk, if +so it does it on a link_order by link_order basis. + + +File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections + +2.6.4 typedef asection +---------------------- + +Here is the section structure: + + + typedef struct bfd_section + { + /* The name of the section; the name isn't a copy, the pointer is + the same as that passed to bfd_make_section. */ + const char *name; + + /* A unique sequence number. */ + int id; + + /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */ + int index; + + /* The next section in the list belonging to the BFD, or NULL. */ + struct bfd_section *next; + + /* The previous section in the list belonging to the BFD, or NULL. */ + struct bfd_section *prev; + + /* The field flags contains attributes of the section. Some + flags are read in from the object file, and some are + synthesized from other information. */ + flagword flags; + + #define SEC_NO_FLAGS 0x000 + + /* Tells the OS to allocate space for this section when loading. + This is clear for a section containing debug information only. */ + #define SEC_ALLOC 0x001 + + /* Tells the OS to load the section from the file when loading. + This is clear for a .bss section. */ + #define SEC_LOAD 0x002 + + /* The section contains data still to be relocated, so there is + some relocation information too. */ + #define SEC_RELOC 0x004 + + /* A signal to the OS that the section contains read only data. */ + #define SEC_READONLY 0x008 + + /* The section contains code only. */ + #define SEC_CODE 0x010 + + /* The section contains data only. */ + #define SEC_DATA 0x020 + + /* The section will reside in ROM. */ + #define SEC_ROM 0x040 + + /* The section contains constructor information. This section + type is used by the linker to create lists of constructors and + destructors used by `g++'. When a back end sees a symbol + which should be used in a constructor list, it creates a new + section for the type of name (e.g., `__CTOR_LIST__'), attaches + the symbol to it, and builds a relocation. To build the lists + of constructors, all the linker has to do is catenate all the + sections called `__CTOR_LIST__' and relocate the data + contained within - exactly the operations it would peform on + standard data. */ + #define SEC_CONSTRUCTOR 0x080 + + /* The section has contents - a data section could be + `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be + `SEC_HAS_CONTENTS' */ + #define SEC_HAS_CONTENTS 0x100 + + /* An instruction to the linker to not output the section + even if it has information which would normally be written. */ + #define SEC_NEVER_LOAD 0x200 + + /* The section contains thread local data. */ + #define SEC_THREAD_LOCAL 0x400 + + /* The section has GOT references. This flag is only for the + linker, and is currently only used by the elf32-hppa back end. + It will be set if global offset table references were detected + in this section, which indicate to the linker that the section + contains PIC code, and must be handled specially when doing a + static link. */ + #define SEC_HAS_GOT_REF 0x800 + + /* The section contains common symbols (symbols may be defined + multiple times, the value of a symbol is the amount of + space it requires, and the largest symbol value is the one + used). Most targets have exactly one of these (which we + translate to bfd_com_section_ptr), but ECOFF has two. */ + #define SEC_IS_COMMON 0x1000 + + /* The section contains only debugging information. For + example, this is set for ELF .debug and .stab sections. + strip tests this flag to see if a section can be + discarded. */ + #define SEC_DEBUGGING 0x2000 + + /* The contents of this section are held in memory pointed to + by the contents field. This is checked by bfd_get_section_contents, + and the data is retrieved from memory if appropriate. */ + #define SEC_IN_MEMORY 0x4000 + + /* The contents of this section are to be excluded by the + linker for executable and shared objects unless those + objects are to be further relocated. */ + #define SEC_EXCLUDE 0x8000 + + /* The contents of this section are to be sorted based on the sum of + the symbol and addend values specified by the associated relocation + entries. Entries without associated relocation entries will be + appended to the end of the section in an unspecified order. */ + #define SEC_SORT_ENTRIES 0x10000 + + /* When linking, duplicate sections of the same name should be + discarded, rather than being combined into a single section as + is usually done. This is similar to how common symbols are + handled. See SEC_LINK_DUPLICATES below. */ + #define SEC_LINK_ONCE 0x20000 + + /* If SEC_LINK_ONCE is set, this bitfield describes how the linker + should handle duplicate sections. */ + #define SEC_LINK_DUPLICATES 0xc0000 + + /* This value for SEC_LINK_DUPLICATES means that duplicate + sections with the same name should simply be discarded. */ + #define SEC_LINK_DUPLICATES_DISCARD 0x0 + + /* This value for SEC_LINK_DUPLICATES means that the linker + should warn if there are any duplicate sections, although + it should still only link one copy. */ + #define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 + + /* This value for SEC_LINK_DUPLICATES means that the linker + should warn if any duplicate sections are a different size. */ + #define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 + + /* This value for SEC_LINK_DUPLICATES means that the linker + should warn if any duplicate sections contain different + contents. */ + #define SEC_LINK_DUPLICATES_SAME_CONTENTS \ + (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) + + /* This section was created by the linker as part of dynamic + relocation or other arcane processing. It is skipped when + going through the first-pass output, trusting that someone + else up the line will take care of it later. */ + #define SEC_LINKER_CREATED 0x100000 + + /* This section should not be subject to garbage collection. + Also set to inform the linker that this section should not be + listed in the link map as discarded. */ + #define SEC_KEEP 0x200000 + + /* This section contains "short" data, and should be placed + "near" the GP. */ + #define SEC_SMALL_DATA 0x400000 + + /* Attempt to merge identical entities in the section. + Entity size is given in the entsize field. */ + #define SEC_MERGE 0x800000 + + /* If given with SEC_MERGE, entities to merge are zero terminated + strings where entsize specifies character size instead of fixed + size entries. */ + #define SEC_STRINGS 0x1000000 + + /* This section contains data about section groups. */ + #define SEC_GROUP 0x2000000 + + /* The section is a COFF shared library section. This flag is + only for the linker. If this type of section appears in + the input file, the linker must copy it to the output file + without changing the vma or size. FIXME: Although this + was originally intended to be general, it really is COFF + specific (and the flag was renamed to indicate this). It + might be cleaner to have some more general mechanism to + allow the back end to control what the linker does with + sections. */ + #define SEC_COFF_SHARED_LIBRARY 0x4000000 + + /* This section contains data which may be shared with other + executables or shared objects. This is for COFF only. */ + #define SEC_COFF_SHARED 0x8000000 + + /* When a section with this flag is being linked, then if the size of + the input section is less than a page, it should not cross a page + boundary. If the size of the input section is one page or more, + it should be aligned on a page boundary. This is for TI + TMS320C54X only. */ + #define SEC_TIC54X_BLOCK 0x10000000 + + /* Conditionally link this section; do not link if there are no + references found to any symbol in the section. This is for TI + TMS320C54X only. */ + #define SEC_TIC54X_CLINK 0x20000000 + + /* End of section flags. */ + + /* Some internal packed boolean fields. */ + + /* See the vma field. */ + unsigned int user_set_vma : 1; + + /* A mark flag used by some of the linker backends. */ + unsigned int linker_mark : 1; + + /* Another mark flag used by some of the linker backends. Set for + output sections that have an input section. */ + unsigned int linker_has_input : 1; + + /* Mark flag used by some linker backends for garbage collection. */ + unsigned int gc_mark : 1; + + /* The following flags are used by the ELF linker. */ + + /* Mark sections which have been allocated to segments. */ + unsigned int segment_mark : 1; + + /* Type of sec_info information. */ + unsigned int sec_info_type:3; + #define ELF_INFO_TYPE_NONE 0 + #define ELF_INFO_TYPE_STABS 1 + #define ELF_INFO_TYPE_MERGE 2 + #define ELF_INFO_TYPE_EH_FRAME 3 + #define ELF_INFO_TYPE_JUST_SYMS 4 + + /* Nonzero if this section uses RELA relocations, rather than REL. */ + unsigned int use_rela_p:1; + + /* Bits used by various backends. The generic code doesn't touch + these fields. */ + + /* Nonzero if this section has TLS related relocations. */ + unsigned int has_tls_reloc:1; + + /* Nonzero if this section has a gp reloc. */ + unsigned int has_gp_reloc:1; + + /* Nonzero if this section needs the relax finalize pass. */ + unsigned int need_finalize_relax:1; + + /* Whether relocations have been processed. */ + unsigned int reloc_done : 1; + + /* End of internal packed boolean fields. */ + + /* The virtual memory address of the section - where it will be + at run time. The symbols are relocated against this. The + user_set_vma flag is maintained by bfd; if it's not set, the + backend can assign addresses (for example, in `a.out', where + the default address for `.data' is dependent on the specific + target and various flags). */ + bfd_vma vma; + + /* The load address of the section - where it would be in a + rom image; really only used for writing section header + information. */ + bfd_vma lma; + + /* The size of the section in octets, as it will be output. + Contains a value even if the section has no contents (e.g., the + size of `.bss'). */ + bfd_size_type size; + + /* For input sections, the original size on disk of the section, in + octets. This field should be set for any section whose size is + changed by linker relaxation. It is required for sections where + the linker relaxation scheme doesn't cache altered section and + reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing + targets), and thus the original size needs to be kept to read the + section multiple times. For output sections, rawsize holds the + section size calculated on a previous linker relaxation pass. */ + bfd_size_type rawsize; + + /* If this section is going to be output, then this value is the + offset in *bytes* into the output section of the first byte in the + input section (byte ==> smallest addressable unit on the + target). In most cases, if this was going to start at the + 100th octet (8-bit quantity) in the output section, this value + would be 100. However, if the target byte size is 16 bits + (bfd_octets_per_byte is "2"), this value would be 50. */ + bfd_vma output_offset; + + /* The output section through which to map on output. */ + struct bfd_section *output_section; + + /* The alignment requirement of the section, as an exponent of 2 - + e.g., 3 aligns to 2^3 (or 8). */ + unsigned int alignment_power; + + /* If an input section, a pointer to a vector of relocation + records for the data in this section. */ + struct reloc_cache_entry *relocation; + + /* If an output section, a pointer to a vector of pointers to + relocation records for the data in this section. */ + struct reloc_cache_entry **orelocation; + + /* The number of relocation records in one of the above. */ + unsigned reloc_count; + + /* Information below is back end specific - and not always used + or updated. */ + + /* File position of section data. */ + file_ptr filepos; + + /* File position of relocation info. */ + file_ptr rel_filepos; + + /* File position of line data. */ + file_ptr line_filepos; + + /* Pointer to data for applications. */ + void *userdata; + + /* If the SEC_IN_MEMORY flag is set, this points to the actual + contents. */ + unsigned char *contents; + + /* Attached line number information. */ + alent *lineno; + + /* Number of line number records. */ + unsigned int lineno_count; + + /* Entity size for merging purposes. */ + unsigned int entsize; + + /* Points to the kept section if this section is a link-once section, + and is discarded. */ + struct bfd_section *kept_section; + + /* When a section is being output, this value changes as more + linenumbers are written out. */ + file_ptr moving_line_filepos; + + /* What the section number is in the target world. */ + int target_index; + + void *used_by_bfd; + + /* If this is a constructor section then here is a list of the + relocations created to relocate items within it. */ + struct relent_chain *constructor_chain; + + /* The BFD which owns the section. */ + bfd *owner; + + /* A symbol which points at this section only. */ + struct bfd_symbol *symbol; + struct bfd_symbol **symbol_ptr_ptr; + + /* Early in the link process, map_head and map_tail are used to build + a list of input sections attached to an output section. Later, + output sections use these fields for a list of bfd_link_order + structs. */ + union { + struct bfd_link_order *link_order; + struct bfd_section *s; + } map_head, map_tail; + } asection; + + /* These sections are global, and are managed by BFD. The application + and target back end are not permitted to change the values in + these sections. New code should use the section_ptr macros rather + than referring directly to the const sections. The const sections + may eventually vanish. */ + #define BFD_ABS_SECTION_NAME "*ABS*" + #define BFD_UND_SECTION_NAME "*UND*" + #define BFD_COM_SECTION_NAME "*COM*" + #define BFD_IND_SECTION_NAME "*IND*" + + /* The absolute section. */ + extern asection bfd_abs_section; + #define bfd_abs_section_ptr ((asection *) &bfd_abs_section) + #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) + /* Pointer to the undefined section. */ + extern asection bfd_und_section; + #define bfd_und_section_ptr ((asection *) &bfd_und_section) + #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) + /* Pointer to the common section. */ + extern asection bfd_com_section; + #define bfd_com_section_ptr ((asection *) &bfd_com_section) + /* Pointer to the indirect section. */ + extern asection bfd_ind_section; + #define bfd_ind_section_ptr ((asection *) &bfd_ind_section) + #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) + + #define bfd_is_const_section(SEC) \ + ( ((SEC) == bfd_abs_section_ptr) \ + || ((SEC) == bfd_und_section_ptr) \ + || ((SEC) == bfd_com_section_ptr) \ + || ((SEC) == bfd_ind_section_ptr)) + + /* Macros to handle insertion and deletion of a bfd's sections. These + only handle the list pointers, ie. do not adjust section_count, + target_index etc. */ + #define bfd_section_list_remove(ABFD, S) \ + do \ + { \ + asection *_s = S; \ + asection *_next = _s->next; \ + asection *_prev = _s->prev; \ + if (_prev) \ + _prev->next = _next; \ + else \ + (ABFD)->sections = _next; \ + if (_next) \ + _next->prev = _prev; \ + else \ + (ABFD)->section_last = _prev; \ + } \ + while (0) + #define bfd_section_list_append(ABFD, S) \ + do \ + { \ + asection *_s = S; \ + bfd *_abfd = ABFD; \ + _s->next = NULL; \ + if (_abfd->section_last) \ + { \ + _s->prev = _abfd->section_last; \ + _abfd->section_last->next = _s; \ + } \ + else \ + { \ + _s->prev = NULL; \ + _abfd->sections = _s; \ + } \ + _abfd->section_last = _s; \ + } \ + while (0) + #define bfd_section_list_prepend(ABFD, S) \ + do \ + { \ + asection *_s = S; \ + bfd *_abfd = ABFD; \ + _s->prev = NULL; \ + if (_abfd->sections) \ + { \ + _s->next = _abfd->sections; \ + _abfd->sections->prev = _s; \ + } \ + else \ + { \ + _s->next = NULL; \ + _abfd->section_last = _s; \ + } \ + _abfd->sections = _s; \ + } \ + while (0) + #define bfd_section_list_insert_after(ABFD, A, S) \ + do \ + { \ + asection *_a = A; \ + asection *_s = S; \ + asection *_next = _a->next; \ + _s->next = _next; \ + _s->prev = _a; \ + _a->next = _s; \ + if (_next) \ + _next->prev = _s; \ + else \ + (ABFD)->section_last = _s; \ + } \ + while (0) + #define bfd_section_list_insert_before(ABFD, B, S) \ + do \ + { \ + asection *_b = B; \ + asection *_s = S; \ + asection *_prev = _b->prev; \ + _s->prev = _prev; \ + _s->next = _b; \ + _b->prev = _s; \ + if (_prev) \ + _prev->next = _s; \ + else \ + (ABFD)->sections = _s; \ + } \ + while (0) + #define bfd_section_removed_from_list(ABFD, S) \ + ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) + + #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ + /* name, id, index, next, prev, flags, user_set_vma, */ \ + { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ + \ + /* linker_mark, linker_has_input, gc_mark, */ \ + 0, 0, 1, \ + \ + /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \ + 0, 0, 0, 0, \ + \ + /* has_gp_reloc, need_finalize_relax, reloc_done, */ \ + 0, 0, 0, \ + \ + /* vma, lma, size, rawsize */ \ + 0, 0, 0, 0, \ + \ + /* output_offset, output_section, alignment_power, */ \ + 0, (struct bfd_section *) &SEC, 0, \ + \ + /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \ + NULL, NULL, 0, 0, 0, \ + \ + /* line_filepos, userdata, contents, lineno, lineno_count, */ \ + 0, NULL, NULL, NULL, 0, \ + \ + /* entsize, kept_section, moving_line_filepos, */ \ + 0, NULL, 0, \ + \ + /* target_index, used_by_bfd, constructor_chain, owner, */ \ + 0, NULL, NULL, NULL, \ + \ + /* symbol, symbol_ptr_ptr, */ \ + (struct bfd_symbol *) SYM, &SEC.symbol, \ + \ + /* map_head, map_tail */ \ + { NULL }, { NULL } \ + } + + +File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections + +2.6.5 Section prototypes +------------------------ + +These are the functions exported by the section handling part of BFD. + +2.6.5.1 `bfd_section_list_clear' +................................ + +*Synopsis* + void bfd_section_list_clear (bfd *); + *Description* +Clears the section list, and also resets the section count and hash +table entries. + +2.6.5.2 `bfd_get_section_by_name' +................................. + +*Synopsis* + asection *bfd_get_section_by_name (bfd *abfd, const char *name); + *Description* +Run through ABFD and return the one of the `asection's whose name +matches NAME, otherwise `NULL'. *Note Sections::, for more information. + + This should only be used in special cases; the normal way to process +all sections of a given name is to use `bfd_map_over_sections' and +`strcmp' on the name (or better yet, base it on the section flags or +something else) for each section. + +2.6.5.3 `bfd_get_section_by_name_if' +.................................... + +*Synopsis* + asection *bfd_get_section_by_name_if + (bfd *abfd, + const char *name, + bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), + void *obj); + *Description* +Call the provided function FUNC for each section attached to the BFD +ABFD whose name matches NAME, passing OBJ as an argument. The function +will be called as if by + + func (abfd, the_section, obj); + + It returns the first section for which FUNC returns true, otherwise +`NULL'. + +2.6.5.4 `bfd_get_unique_section_name' +..................................... + +*Synopsis* + char *bfd_get_unique_section_name + (bfd *abfd, const char *templat, int *count); + *Description* +Invent a section name that is unique in ABFD by tacking a dot and a +digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it +specifies the first number tried as a suffix to generate a unique name. +The value pointed to by COUNT will be incremented in this case. + +2.6.5.5 `bfd_make_section_old_way' +.................................. + +*Synopsis* + asection *bfd_make_section_old_way (bfd *abfd, const char *name); + *Description* +Create a new empty section called NAME and attach it to the end of the +chain of sections for the BFD ABFD. An attempt to create a section with +a name which is already in use returns its pointer without changing the +section chain. + + It has the funny name since this is the way it used to be before it +was rewritten.... + + Possible errors are: + * `bfd_error_invalid_operation' - If output has already started for + this BFD. + + * `bfd_error_no_memory' - If memory allocation fails. + +2.6.5.6 `bfd_make_section_anyway_with_flags' +............................................ + +*Synopsis* + asection *bfd_make_section_anyway_with_flags + (bfd *abfd, const char *name, flagword flags); + *Description* +Create a new empty section called NAME and attach it to the end of the +chain of sections for ABFD. Create a new section even if there is +already a section with that name. Also set the attributes of the new +section to the value FLAGS. + + Return `NULL' and set `bfd_error' on error; possible errors are: + * `bfd_error_invalid_operation' - If output has already started for + ABFD. + + * `bfd_error_no_memory' - If memory allocation fails. + +2.6.5.7 `bfd_make_section_anyway' +................................. + +*Synopsis* + asection *bfd_make_section_anyway (bfd *abfd, const char *name); + *Description* +Create a new empty section called NAME and attach it to the end of the +chain of sections for ABFD. Create a new section even if there is +already a section with that name. + + Return `NULL' and set `bfd_error' on error; possible errors are: + * `bfd_error_invalid_operation' - If output has already started for + ABFD. + + * `bfd_error_no_memory' - If memory allocation fails. + +2.6.5.8 `bfd_make_section_with_flags' +..................................... + +*Synopsis* + asection *bfd_make_section_with_flags + (bfd *, const char *name, flagword flags); + *Description* +Like `bfd_make_section_anyway', but return `NULL' (without calling +bfd_set_error ()) without changing the section chain if there is +already a section named NAME. Also set the attributes of the new +section to the value FLAGS. If there is an error, return `NULL' and set +`bfd_error'. + +2.6.5.9 `bfd_make_section' +.......................... + +*Synopsis* + asection *bfd_make_section (bfd *, const char *name); + *Description* +Like `bfd_make_section_anyway', but return `NULL' (without calling +bfd_set_error ()) without changing the section chain if there is +already a section named NAME. If there is an error, return `NULL' and +set `bfd_error'. + +2.6.5.10 `bfd_set_section_flags' +................................ + +*Synopsis* + bfd_boolean bfd_set_section_flags + (bfd *abfd, asection *sec, flagword flags); + *Description* +Set the attributes of the section SEC in the BFD ABFD to the value +FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error +returns are: + + * `bfd_error_invalid_operation' - The section cannot have one or + more of the attributes requested. For example, a .bss section in + `a.out' may not have the `SEC_HAS_CONTENTS' field set. + +2.6.5.11 `bfd_map_over_sections' +................................ + +*Synopsis* + void bfd_map_over_sections + (bfd *abfd, + void (*func) (bfd *abfd, asection *sect, void *obj), + void *obj); + *Description* +Call the provided function FUNC for each section attached to the BFD +ABFD, passing OBJ as an argument. The function will be called as if by + + func (abfd, the_section, obj); + + This is the preferred method for iterating over sections; an +alternative would be to use a loop: + + section *p; + for (p = abfd->sections; p != NULL; p = p->next) + func (abfd, p, ...) + +2.6.5.12 `bfd_sections_find_if' +............................... + +*Synopsis* + asection *bfd_sections_find_if + (bfd *abfd, + bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), + void *obj); + *Description* +Call the provided function OPERATION for each section attached to the +BFD ABFD, passing OBJ as an argument. The function will be called as if +by + + operation (abfd, the_section, obj); + + It returns the first section for which OPERATION returns true. + +2.6.5.13 `bfd_set_section_size' +............................... + +*Synopsis* + bfd_boolean bfd_set_section_size + (bfd *abfd, asection *sec, bfd_size_type val); + *Description* +Set SEC to the size VAL. If the operation is ok, then `TRUE' is +returned, else `FALSE'. + + Possible error returns: + * `bfd_error_invalid_operation' - Writing has started to the BFD, so + setting the size is invalid. + +2.6.5.14 `bfd_set_section_contents' +................................... + +*Synopsis* + bfd_boolean bfd_set_section_contents + (bfd *abfd, asection *section, const void *data, + file_ptr offset, bfd_size_type count); + *Description* +Sets the contents of the section SECTION in BFD ABFD to the data +starting in memory at DATA. The data is written to the output section +starting at offset OFFSET for COUNT octets. + + Normally `TRUE' is returned, else `FALSE'. Possible error returns +are: + * `bfd_error_no_contents' - The output section does not have the + `SEC_HAS_CONTENTS' attribute, so nothing can be written to it. + + * and some more too + This routine is front end to the back end function +`_bfd_set_section_contents'. + +2.6.5.15 `bfd_get_section_contents' +................................... + +*Synopsis* + bfd_boolean bfd_get_section_contents + (bfd *abfd, asection *section, void *location, file_ptr offset, + bfd_size_type count); + *Description* +Read data from SECTION in BFD ABFD into memory starting at LOCATION. +The data is read at an offset of OFFSET from the start of the input +section, and is read for COUNT bytes. + + If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set +are requested or if the section does not have the `SEC_HAS_CONTENTS' +flag set, then the LOCATION is filled with zeroes. If no errors occur, +`TRUE' is returned, else `FALSE'. + +2.6.5.16 `bfd_malloc_and_get_section' +..................................... + +*Synopsis* + bfd_boolean bfd_malloc_and_get_section + (bfd *abfd, asection *section, bfd_byte **buf); + *Description* +Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by +this function. + +2.6.5.17 `bfd_copy_private_section_data' +........................................ + +*Synopsis* + bfd_boolean bfd_copy_private_section_data + (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); + *Description* +Copy private section information from ISEC in the BFD IBFD to the +section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on +error. Possible error returns are: + + * `bfd_error_no_memory' - Not enough memory exists to create private + data for OSEC. + + #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ + BFD_SEND (obfd, _bfd_copy_private_section_data, \ + (ibfd, isection, obfd, osection)) + +2.6.5.18 `bfd_generic_is_group_section' +....................................... + +*Synopsis* + bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); + *Description* +Returns TRUE if SEC is a member of a group. + +2.6.5.19 `bfd_generic_discard_group' +.................................... + +*Synopsis* + bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); + *Description* +Remove all members of GROUP from the output. + + +File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end + +2.7 Symbols +=========== + +BFD tries to maintain as much symbol information as it can when it +moves information from file to file. BFD passes information to +applications though the `asymbol' structure. When the application +requests the symbol table, BFD reads the table in the native form and +translates parts of it into the internal format. To maintain more than +the information passed to applications, some targets keep some +information "behind the scenes" in a structure only the particular back +end knows about. For example, the coff back end keeps the original +symbol table structure as well as the canonical structure when a BFD is +read in. On output, the coff back end can reconstruct the output symbol +table so that no information is lost, even information unique to coff +which BFD doesn't know or understand. If a coff symbol table were read, +but were written through an a.out back end, all the coff specific +information would be lost. The symbol table of a BFD is not necessarily +read in until a canonicalize request is made. Then the BFD back end +fills in a table provided by the application with pointers to the +canonical information. To output symbols, the application provides BFD +with a table of pointers to pointers to `asymbol's. This allows +applications like the linker to output a symbol as it was read, since +the "behind the scenes" information will be still available. + +* Menu: + +* Reading Symbols:: +* Writing Symbols:: +* Mini Symbols:: +* typedef asymbol:: +* symbol handling functions:: + + +File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols + +2.7.1 Reading symbols +--------------------- + +There are two stages to reading a symbol table from a BFD: allocating +storage, and the actual reading process. This is an excerpt from an +application which reads the symbol table: + + long storage_needed; + asymbol **symbol_table; + long number_of_symbols; + long i; + + storage_needed = bfd_get_symtab_upper_bound (abfd); + + if (storage_needed < 0) + FAIL + + if (storage_needed == 0) + return; + + symbol_table = xmalloc (storage_needed); + ... + number_of_symbols = + bfd_canonicalize_symtab (abfd, symbol_table); + + if (number_of_symbols < 0) + FAIL + + for (i = 0; i < number_of_symbols; i++) + process_symbol (symbol_table[i]); + + All storage for the symbols themselves is in an objalloc connected +to the BFD; it is freed when the BFD is closed. + + +File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols + +2.7.2 Writing symbols +--------------------- + +Writing of a symbol table is automatic when a BFD open for writing is +closed. The application attaches a vector of pointers to pointers to +symbols to the BFD being written, and fills in the symbol count. The +close and cleanup code reads through the table provided and performs +all the necessary operations. The BFD output code must always be +provided with an "owned" symbol: one which has come from another BFD, +or one which has been created using `bfd_make_empty_symbol'. Here is an +example showing the creation of a symbol table with only one element: + + #include "bfd.h" + int main (void) + { + bfd *abfd; + asymbol *ptrs[2]; + asymbol *new; + + abfd = bfd_openw ("foo","a.out-sunos-big"); + bfd_set_format (abfd, bfd_object); + new = bfd_make_empty_symbol (abfd); + new->name = "dummy_symbol"; + new->section = bfd_make_section_old_way (abfd, ".text"); + new->flags = BSF_GLOBAL; + new->value = 0x12345; + + ptrs[0] = new; + ptrs[1] = 0; + + bfd_set_symtab (abfd, ptrs, 1); + bfd_close (abfd); + return 0; + } + + ./makesym + nm foo + 00012345 A dummy_symbol + + Many formats cannot represent arbitrary symbol information; for +instance, the `a.out' object format does not allow an arbitrary number +of sections. A symbol pointing to a section which is not one of +`.text', `.data' or `.bss' cannot be described. + + +File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols + +2.7.3 Mini Symbols +------------------ + +Mini symbols provide read-only access to the symbol table. They use +less memory space, but require more time to access. They can be useful +for tools like nm or objdump, which may have to handle symbol tables of +extremely large executables. + + The `bfd_read_minisymbols' function will read the symbols into +memory in an internal form. It will return a `void *' pointer to a +block of memory, a symbol count, and the size of each symbol. The +pointer is allocated using `malloc', and should be freed by the caller +when it is no longer needed. + + The function `bfd_minisymbol_to_symbol' will take a pointer to a +minisymbol, and a pointer to a structure returned by +`bfd_make_empty_symbol', and return a `asymbol' structure. The return +value may or may not be the same as the value from +`bfd_make_empty_symbol' which was passed in. + + +File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols + +2.7.4 typedef asymbol +--------------------- + +An `asymbol' has the form: + + + typedef struct bfd_symbol + { + /* A pointer to the BFD which owns the symbol. This information + is necessary so that a back end can work out what additional + information (invisible to the application writer) is carried + with the symbol. + + This field is *almost* redundant, since you can use section->owner + instead, except that some symbols point to the global sections + bfd_{abs,com,und}_section. This could be fixed by making + these globals be per-bfd (or per-target-flavor). FIXME. */ + struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */ + + /* The text of the symbol. The name is left alone, and not copied; the + application may not alter it. */ + const char *name; + + /* The value of the symbol. This really should be a union of a + numeric value with a pointer, since some flags indicate that + a pointer to another symbol is stored here. */ + symvalue value; + + /* Attributes of a symbol. */ + #define BSF_NO_FLAGS 0x00 + + /* The symbol has local scope; `static' in `C'. The value + is the offset into the section of the data. */ + #define BSF_LOCAL 0x01 + + /* The symbol has global scope; initialized data in `C'. The + value is the offset into the section of the data. */ + #define BSF_GLOBAL 0x02 + + /* The symbol has global scope and is exported. The value is + the offset into the section of the data. */ + #define BSF_EXPORT BSF_GLOBAL /* No real difference. */ + + /* A normal C symbol would be one of: + `BSF_LOCAL', `BSF_FORT_COMM', `BSF_UNDEFINED' or + `BSF_GLOBAL'. */ + + /* The symbol is a debugging record. The value has an arbitrary + meaning, unless BSF_DEBUGGING_RELOC is also set. */ + #define BSF_DEBUGGING 0x08 + + /* The symbol denotes a function entry point. Used in ELF, + perhaps others someday. */ + #define BSF_FUNCTION 0x10 + + /* Used by the linker. */ + #define BSF_KEEP 0x20 + #define BSF_KEEP_G 0x40 + + /* A weak global symbol, overridable without warnings by + a regular global symbol of the same name. */ + #define BSF_WEAK 0x80 + + /* This symbol was created to point to a section, e.g. ELF's + STT_SECTION symbols. */ + #define BSF_SECTION_SYM 0x100 + + /* The symbol used to be a common symbol, but now it is + allocated. */ + #define BSF_OLD_COMMON 0x200 + + /* The default value for common data. */ + #define BFD_FORT_COMM_DEFAULT_VALUE 0 + + /* In some files the type of a symbol sometimes alters its + location in an output file - ie in coff a `ISFCN' symbol + which is also `C_EXT' symbol appears where it was + declared and not at the end of a section. This bit is set + by the target BFD part to convey this information. */ + #define BSF_NOT_AT_END 0x400 + + /* Signal that the symbol is the label of constructor section. */ + #define BSF_CONSTRUCTOR 0x800 + + /* Signal that the symbol is a warning symbol. The name is a + warning. The name of the next symbol is the one to warn about; + if a reference is made to a symbol with the same name as the next + symbol, a warning is issued by the linker. */ + #define BSF_WARNING 0x1000 + + /* Signal that the symbol is indirect. This symbol is an indirect + pointer to the symbol with the same name as the next symbol. */ + #define BSF_INDIRECT 0x2000 + + /* BSF_FILE marks symbols that contain a file name. This is used + for ELF STT_FILE symbols. */ + #define BSF_FILE 0x4000 + + /* Symbol is from dynamic linking information. */ + #define BSF_DYNAMIC 0x8000 + + /* The symbol denotes a data object. Used in ELF, and perhaps + others someday. */ + #define BSF_OBJECT 0x10000 + + /* This symbol is a debugging symbol. The value is the offset + into the section of the data. BSF_DEBUGGING should be set + as well. */ + #define BSF_DEBUGGING_RELOC 0x20000 + + /* This symbol is thread local. Used in ELF. */ + #define BSF_THREAD_LOCAL 0x40000 + + /* This symbol represents a complex relocation expression, + with the expression tree serialized in the symbol name. */ + #define BSF_RELC 0x80000 + + /* This symbol represents a signed complex relocation expression, + with the expression tree serialized in the symbol name. */ + #define BSF_SRELC 0x100000 + + /* This symbol was created by bfd_get_synthetic_symtab. */ + #define BSF_SYNTHETIC 0x200000 + + flagword flags; + + /* A pointer to the section to which this symbol is + relative. This will always be non NULL, there are special + sections for undefined and absolute symbols. */ + struct bfd_section *section; + + /* Back end special data. */ + union + { + void *p; + bfd_vma i; + } + udata; + } + asymbol; + + +File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols + +2.7.5 Symbol handling functions +------------------------------- + +2.7.5.1 `bfd_get_symtab_upper_bound' +.................................... + +*Description* +Return the number of bytes required to store a vector of pointers to +`asymbols' for all the symbols in the BFD ABFD, including a terminal +NULL pointer. If there are no symbols in the BFD, then return 0. If an +error occurs, return -1. + #define bfd_get_symtab_upper_bound(abfd) \ + BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) + +2.7.5.2 `bfd_is_local_label' +............................ + +*Synopsis* + bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym); + *Description* +Return TRUE if the given symbol SYM in the BFD ABFD is a compiler +generated local label, else return FALSE. + +2.7.5.3 `bfd_is_local_label_name' +................................. + +*Synopsis* + bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name); + *Description* +Return TRUE if a symbol with the name NAME in the BFD ABFD is a +compiler generated local label, else return FALSE. This just checks +whether the name has the form of a local label. + #define bfd_is_local_label_name(abfd, name) \ + BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) + +2.7.5.4 `bfd_is_target_special_symbol' +...................................... + +*Synopsis* + bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); + *Description* +Return TRUE iff a symbol SYM in the BFD ABFD is something special to +the particular target represented by the BFD. Such symbols should +normally not be mentioned to the user. + #define bfd_is_target_special_symbol(abfd, sym) \ + BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) + +2.7.5.5 `bfd_canonicalize_symtab' +................................. + +*Description* +Read the symbols from the BFD ABFD, and fills in the vector LOCATION +with pointers to the symbols and a trailing NULL. Return the actual +number of symbol pointers, not including the NULL. + #define bfd_canonicalize_symtab(abfd, location) \ + BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) + +2.7.5.6 `bfd_set_symtab' +........................ + +*Synopsis* + bfd_boolean bfd_set_symtab + (bfd *abfd, asymbol **location, unsigned int count); + *Description* +Arrange that when the output BFD ABFD is closed, the table LOCATION of +COUNT pointers to symbols will be written. + +2.7.5.7 `bfd_print_symbol_vandf' +................................ + +*Synopsis* + void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); + *Description* +Print the value and flags of the SYMBOL supplied to the stream FILE. + +2.7.5.8 `bfd_make_empty_symbol' +............................... + +*Description* +Create a new `asymbol' structure for the BFD ABFD and return a pointer +to it. + + This routine is necessary because each back end has private +information surrounding the `asymbol'. Building your own `asymbol' and +pointing to it will not create the private information, and will cause +problems later on. + #define bfd_make_empty_symbol(abfd) \ + BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) + +2.7.5.9 `_bfd_generic_make_empty_symbol' +........................................ + +*Synopsis* + asymbol *_bfd_generic_make_empty_symbol (bfd *); + *Description* +Create a new `asymbol' structure for the BFD ABFD and return a pointer +to it. Used by core file routines, binary back-end and anywhere else +where no private info is needed. + +2.7.5.10 `bfd_make_debug_symbol' +................................ + +*Description* +Create a new `asymbol' structure for the BFD ABFD, to be used as a +debugging symbol. Further details of its use have yet to be worked out. + #define bfd_make_debug_symbol(abfd,ptr,size) \ + BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) + +2.7.5.11 `bfd_decode_symclass' +.............................. + +*Description* +Return a character corresponding to the symbol class of SYMBOL, or '?' +for an unknown class. + + *Synopsis* + int bfd_decode_symclass (asymbol *symbol); + +2.7.5.12 `bfd_is_undefined_symclass' +.................................... + +*Description* +Returns non-zero if the class symbol returned by bfd_decode_symclass +represents an undefined symbol. Returns zero otherwise. + + *Synopsis* + bfd_boolean bfd_is_undefined_symclass (int symclass); + +2.7.5.13 `bfd_symbol_info' +.......................... + +*Description* +Fill in the basic info about symbol that nm needs. Additional info may +be added by the back-ends after calling this function. + + *Synopsis* + void bfd_symbol_info (asymbol *symbol, symbol_info *ret); + +2.7.5.14 `bfd_copy_private_symbol_data' +....................................... + +*Synopsis* + bfd_boolean bfd_copy_private_symbol_data + (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); + *Description* +Copy private symbol information from ISYM in the BFD IBFD to the symbol +OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error. +Possible error returns are: + + * `bfd_error_no_memory' - Not enough memory exists to create private + data for OSEC. + + #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ + BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ + (ibfd, isymbol, obfd, osymbol)) + + +File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end + +2.8 Archives +============ + +*Description* +An archive (or library) is just another BFD. It has a symbol table, +although there's not much a user program will do with it. + + The big difference between an archive BFD and an ordinary BFD is +that the archive doesn't have sections. Instead it has a chain of BFDs +that are considered its contents. These BFDs can be manipulated like +any other. The BFDs contained in an archive opened for reading will +all be opened for reading. You may put either input or output BFDs +into an archive opened for output; they will be handled correctly when +the archive is closed. + + Use `bfd_openr_next_archived_file' to step through the contents of +an archive opened for input. You don't have to read the entire archive +if you don't want to! Read it until you find what you want. + + Archive contents of output BFDs are chained through the `next' +pointer in a BFD. The first one is findable through the `archive_head' +slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A +given BFD may be in only one open output archive at a time. + + As expected, the BFD archive code is more general than the archive +code of any given environment. BFD archives may contain files of +different formats (e.g., a.out and coff) and even different +architectures. You may even place archives recursively into archives! + + This can cause unexpected confusion, since some archive formats are +more expressive than others. For instance, Intel COFF archives can +preserve long filenames; SunOS a.out archives cannot. If you move a +file from the first to the second format and back again, the filename +may be truncated. Likewise, different a.out environments have different +conventions as to how they truncate filenames, whether they preserve +directory names in filenames, etc. When interoperating with native +tools, be sure your files are homogeneous. + + Beware: most of these formats do not react well to the presence of +spaces in filenames. We do the best we can, but can't always handle +this case due to restrictions in the format of archives. Many Unix +utilities are braindead in regards to spaces and such in filenames +anyway, so this shouldn't be much of a restriction. + + Archives are supported in BFD in `archive.c'. + +2.8.1 Archive functions +----------------------- + +2.8.1.1 `bfd_get_next_mapent' +............................. + +*Synopsis* + symindex bfd_get_next_mapent + (bfd *abfd, symindex previous, carsym **sym); + *Description* +Step through archive ABFD's symbol table (if it has one). Successively +update SYM with the next symbol's information, returning that symbol's +(internal) index into the symbol table. + + Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first +one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one. + + A `carsym' is a canonical archive symbol. The only user-visible +element is its name, a null-terminated string. + +2.8.1.2 `bfd_set_archive_head' +.............................. + +*Synopsis* + bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head); + *Description* +Set the head of the chain of BFDs contained in the archive OUTPUT to +NEW_HEAD. + +2.8.1.3 `bfd_openr_next_archived_file' +...................................... + +*Synopsis* + bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous); + *Description* +Provided a BFD, ARCHIVE, containing an archive and NULL, open an input +BFD on the first contained element and returns that. Subsequent calls +should pass the archive and the previous return value to return a +created BFD to the next contained element. NULL is returned when there +are no more. + + +File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end + +2.9 File formats +================ + +A format is a BFD concept of high level file contents type. The formats +supported by BFD are: + + * `bfd_object' + The BFD may contain data, symbols, relocations and debug info. + + * `bfd_archive' + The BFD contains other BFDs and an optional index. + + * `bfd_core' + The BFD contains the result of an executable core dump. + +2.9.1 File format functions +--------------------------- + +2.9.1.1 `bfd_check_format' +.......................... + +*Synopsis* + bfd_boolean bfd_check_format (bfd *abfd, bfd_format format); + *Description* +Verify if the file attached to the BFD ABFD is compatible with the +format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core'). + + If the BFD has been set to a specific target before the call, only +the named target and format combination is checked. If the target has +not been set, or has been set to `default', then all the known target +backends is interrogated to determine a match. If the default target +matches, it is used. If not, exactly one target must recognize the +file, or an error results. + + The function returns `TRUE' on success, otherwise `FALSE' with one +of the following error codes: + + * `bfd_error_invalid_operation' - if `format' is not one of + `bfd_object', `bfd_archive' or `bfd_core'. + + * `bfd_error_system_call' - if an error occured during a read - even + some file mismatches can cause bfd_error_system_calls. + + * `file_not_recognised' - none of the backends recognised the file + format. + + * `bfd_error_file_ambiguously_recognized' - more than one backend + recognised the file format. + +2.9.1.2 `bfd_check_format_matches' +.................................. + +*Synopsis* + bfd_boolean bfd_check_format_matches + (bfd *abfd, bfd_format format, char ***matching); + *Description* +Like `bfd_check_format', except when it returns FALSE with `bfd_errno' +set to `bfd_error_file_ambiguously_recognized'. In that case, if +MATCHING is not NULL, it will be filled in with a NULL-terminated list +of the names of the formats that matched, allocated with `malloc'. +Then the user may choose a format and try again. + + When done with the list that MATCHING points to, the caller should +free it. + +2.9.1.3 `bfd_set_format' +........................ + +*Synopsis* + bfd_boolean bfd_set_format (bfd *abfd, bfd_format format); + *Description* +This function sets the file format of the BFD ABFD to the format +FORMAT. If the target set in the BFD does not support the format +requested, the format is invalid, or the BFD is not open for writing, +then an error occurs. + +2.9.1.4 `bfd_format_string' +........................... + +*Synopsis* + const char *bfd_format_string (bfd_format format); + *Description* +Return a pointer to a const string `invalid', `object', `archive', +`core', or `unknown', depending upon the value of FORMAT. + + +File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end + +2.10 Relocations +================ + +BFD maintains relocations in much the same way it maintains symbols: +they are left alone until required, then read in en-masse and +translated into an internal form. A common routine +`bfd_perform_relocation' acts upon the canonical form to do the fixup. + + Relocations are maintained on a per section basis, while symbols are +maintained on a per BFD basis. + + All that a back end has to do to fit the BFD interface is to create +a `struct reloc_cache_entry' for each relocation in a particular +section, and fill in the right bits of the structures. + +* Menu: + +* typedef arelent:: +* howto manager:: + + +File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations + +2.10.1 typedef arelent +---------------------- + +This is the structure of a relocation entry: + + + typedef enum bfd_reloc_status + { + /* No errors detected. */ + bfd_reloc_ok, + + /* The relocation was performed, but there was an overflow. */ + bfd_reloc_overflow, + + /* The address to relocate was not within the section supplied. */ + bfd_reloc_outofrange, + + /* Used by special functions. */ + bfd_reloc_continue, + + /* Unsupported relocation size requested. */ + bfd_reloc_notsupported, + + /* Unused. */ + bfd_reloc_other, + + /* The symbol to relocate against was undefined. */ + bfd_reloc_undefined, + + /* The relocation was performed, but may not be ok - presently + generated only when linking i960 coff files with i960 b.out + symbols. If this type is returned, the error_message argument + to bfd_perform_relocation will be set. */ + bfd_reloc_dangerous + } + bfd_reloc_status_type; + + + typedef struct reloc_cache_entry + { + /* A pointer into the canonical table of pointers. */ + struct bfd_symbol **sym_ptr_ptr; + + /* offset in section. */ + bfd_size_type address; + + /* addend for relocation value. */ + bfd_vma addend; + + /* Pointer to how to perform the required relocation. */ + reloc_howto_type *howto; + + } + arelent; + *Description* +Here is a description of each of the fields within an `arelent': + + * `sym_ptr_ptr' + The symbol table pointer points to a pointer to the symbol +associated with the relocation request. It is the pointer into the +table returned by the back end's `canonicalize_symtab' action. *Note +Symbols::. The symbol is referenced through a pointer to a pointer so +that tools like the linker can fix up all the symbols of the same name +by modifying only one pointer. The relocation routine looks in the +symbol and uses the base of the section the symbol is attached to and +the value of the symbol as the initial relocation offset. If the symbol +pointer is zero, then the section provided is looked up. + + * `address' + The `address' field gives the offset in bytes from the base of the +section data which owns the relocation record to the first byte of +relocatable information. The actual data relocated will be relative to +this point; for example, a relocation type which modifies the bottom +two bytes of a four byte word would not touch the first byte pointed to +in a big endian world. + + * `addend' + The `addend' is a value provided by the back end to be added (!) to +the relocation offset. Its interpretation is dependent upon the howto. +For example, on the 68k the code: + + char foo[]; + main() + { + return foo[0x12345678]; + } + + Could be compiled into: + + linkw fp,#-4 + moveb @#12345678,d0 + extbl d0 + unlk fp + rts + + This could create a reloc pointing to `foo', but leave the offset in +the data, something like: + + RELOCATION RECORDS FOR [.text]: + offset type value + 00000006 32 _foo + + 00000000 4e56 fffc ; linkw fp,#-4 + 00000004 1039 1234 5678 ; moveb @#12345678,d0 + 0000000a 49c0 ; extbl d0 + 0000000c 4e5e ; unlk fp + 0000000e 4e75 ; rts + + Using coff and an 88k, some instructions don't have enough space in +them to represent the full address range, and pointers have to be +loaded in two parts. So you'd get something like: + + or.u r13,r0,hi16(_foo+0x12345678) + ld.b r2,r13,lo16(_foo+0x12345678) + jmp r1 + + This should create two relocs, both pointing to `_foo', and with +0x12340000 in their addend field. The data would consist of: + + RELOCATION RECORDS FOR [.text]: + offset type value + 00000002 HVRT16 _foo+0x12340000 + 00000006 LVRT16 _foo+0x12340000 + + 00000000 5da05678 ; or.u r13,r0,0x5678 + 00000004 1c4d5678 ; ld.b r2,r13,0x5678 + 00000008 f400c001 ; jmp r1 + + The relocation routine digs out the value from the data, adds it to +the addend to get the original offset, and then adds the value of +`_foo'. Note that all 32 bits have to be kept around somewhere, to cope +with carry from bit 15 to bit 16. + + One further example is the sparc and the a.out format. The sparc has +a similar problem to the 88k, in that some instructions don't have room +for an entire offset, but on the sparc the parts are created in odd +sized lumps. The designers of the a.out format chose to not use the +data within the section for storing part of the offset; all the offset +is kept within the reloc. Anything in the data should be ignored. + + save %sp,-112,%sp + sethi %hi(_foo+0x12345678),%g2 + ldsb [%g2+%lo(_foo+0x12345678)],%i0 + ret + restore + + Both relocs contain a pointer to `foo', and the offsets contain junk. + + RELOCATION RECORDS FOR [.text]: + offset type value + 00000004 HI22 _foo+0x12345678 + 00000008 LO10 _foo+0x12345678 + + 00000000 9de3bf90 ; save %sp,-112,%sp + 00000004 05000000 ; sethi %hi(_foo+0),%g2 + 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 + 0000000c 81c7e008 ; ret + 00000010 81e80000 ; restore + + * `howto' + The `howto' field can be imagined as a relocation instruction. It is +a pointer to a structure which contains information on what to do with +all of the other information in the reloc record and data section. A +back end would normally have a relocation instruction set and turn +relocations into pointers to the correct structure on input - but it +would be possible to create each howto field on demand. + +2.10.1.1 `enum complain_overflow' +................................. + +Indicates what sort of overflow checking should be done when performing +a relocation. + + + enum complain_overflow + { + /* Do not complain on overflow. */ + complain_overflow_dont, + + /* Complain if the value overflows when considered as a signed + number one bit larger than the field. ie. A bitfield of N bits + is allowed to represent -2**n to 2**n-1. */ + complain_overflow_bitfield, + + /* Complain if the value overflows when considered as a signed + number. */ + complain_overflow_signed, + + /* Complain if the value overflows when considered as an + unsigned number. */ + complain_overflow_unsigned + }; + +2.10.1.2 `reloc_howto_type' +........................... + +The `reloc_howto_type' is a structure which contains all the +information that libbfd needs to know to tie up a back end's data. + + struct bfd_symbol; /* Forward declaration. */ + + struct reloc_howto_struct + { + /* The type field has mainly a documentary use - the back end can + do what it wants with it, though normally the back end's + external idea of what a reloc number is stored + in this field. For example, a PC relative word relocation + in a coff environment has the type 023 - because that's + what the outside world calls a R_PCRWORD reloc. */ + unsigned int type; + + /* The value the final relocation is shifted right by. This drops + unwanted data from the relocation. */ + unsigned int rightshift; + + /* The size of the item to be relocated. This is *not* a + power-of-two measure. To get the number of bytes operated + on by a type of relocation, use bfd_get_reloc_size. */ + int size; + + /* The number of bits in the item to be relocated. This is used + when doing overflow checking. */ + unsigned int bitsize; + + /* Notes that the relocation is relative to the location in the + data section of the addend. The relocation function will + subtract from the relocation value the address of the location + being relocated. */ + bfd_boolean pc_relative; + + /* The bit position of the reloc value in the destination. + The relocated value is left shifted by this amount. */ + unsigned int bitpos; + + /* What type of overflow error should be checked for when + relocating. */ + enum complain_overflow complain_on_overflow; + + /* If this field is non null, then the supplied function is + called rather than the normal function. This allows really + strange relocation methods to be accommodated (e.g., i960 callj + instructions). */ + bfd_reloc_status_type (*special_function) + (bfd *, arelent *, struct bfd_symbol *, void *, asection *, + bfd *, char **); + + /* The textual name of the relocation type. */ + char *name; + + /* Some formats record a relocation addend in the section contents + rather than with the relocation. For ELF formats this is the + distinction between USE_REL and USE_RELA (though the code checks + for USE_REL == 1/0). The value of this field is TRUE if the + addend is recorded with the section contents; when performing a + partial link (ld -r) the section contents (the data) will be + modified. The value of this field is FALSE if addends are + recorded with the relocation (in arelent.addend); when performing + a partial link the relocation will be modified. + All relocations for all ELF USE_RELA targets should set this field + to FALSE (values of TRUE should be looked on with suspicion). + However, the converse is not true: not all relocations of all ELF + USE_REL targets set this field to TRUE. Why this is so is peculiar + to each particular target. For relocs that aren't used in partial + links (e.g. GOT stuff) it doesn't matter what this is set to. */ + bfd_boolean partial_inplace; + + /* src_mask selects the part of the instruction (or data) to be used + in the relocation sum. If the target relocations don't have an + addend in the reloc, eg. ELF USE_REL, src_mask will normally equal + dst_mask to extract the addend from the section contents. If + relocations do have an addend in the reloc, eg. ELF USE_RELA, this + field should be zero. Non-zero values for ELF USE_RELA targets are + bogus as in those cases the value in the dst_mask part of the + section contents should be treated as garbage. */ + bfd_vma src_mask; + + /* dst_mask selects which parts of the instruction (or data) are + replaced with a relocated value. */ + bfd_vma dst_mask; + + /* When some formats create PC relative instructions, they leave + the value of the pc of the place being relocated in the offset + slot of the instruction, so that a PC relative relocation can + be made just by adding in an ordinary offset (e.g., sun3 a.out). + Some formats leave the displacement part of an instruction + empty (e.g., m88k bcs); this flag signals the fact. */ + bfd_boolean pcrel_offset; + }; + +2.10.1.3 `The HOWTO Macro' +.......................... + +*Description* +The HOWTO define is horrible and will go away. + #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ + { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC } + + *Description* +And will be replaced with the totally magic way. But for the moment, we +are compatible, so do it this way. + #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \ + HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \ + NAME, FALSE, 0, 0, IN) + + *Description* +This is used to fill in an empty howto entry in an array. + #define EMPTY_HOWTO(C) \ + HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \ + NULL, FALSE, 0, 0, FALSE) + + *Description* +Helper routine to turn a symbol into a relocation value. + #define HOWTO_PREPARE(relocation, symbol) \ + { \ + if (symbol != NULL) \ + { \ + if (bfd_is_com_section (symbol->section)) \ + { \ + relocation = 0; \ + } \ + else \ + { \ + relocation = symbol->value; \ + } \ + } \ + } + +2.10.1.4 `bfd_get_reloc_size' +............................. + +*Synopsis* + unsigned int bfd_get_reloc_size (reloc_howto_type *); + *Description* +For a reloc_howto_type that operates on a fixed number of bytes, this +returns the number of bytes operated on. + +2.10.1.5 `arelent_chain' +........................ + +*Description* +How relocs are tied together in an `asection': + typedef struct relent_chain + { + arelent relent; + struct relent_chain *next; + } + arelent_chain; + +2.10.1.6 `bfd_check_overflow' +............................. + +*Synopsis* + bfd_reloc_status_type bfd_check_overflow + (enum complain_overflow how, + unsigned int bitsize, + unsigned int rightshift, + unsigned int addrsize, + bfd_vma relocation); + *Description* +Perform overflow checking on RELOCATION which has BITSIZE significant +bits and will be shifted right by RIGHTSHIFT bits, on a machine with +addresses containing ADDRSIZE significant bits. The result is either of +`bfd_reloc_ok' or `bfd_reloc_overflow'. + +2.10.1.7 `bfd_perform_relocation' +................................. + +*Synopsis* + bfd_reloc_status_type bfd_perform_relocation + (bfd *abfd, + arelent *reloc_entry, + void *data, + asection *input_section, + bfd *output_bfd, + char **error_message); + *Description* +If OUTPUT_BFD is supplied to this function, the generated image will be +relocatable; the relocations are copied to the output file after they +have been changed to reflect the new state of the world. There are two +ways of reflecting the results of partial linkage in an output file: by +modifying the output data in place, and by modifying the relocation +record. Some native formats (e.g., basic a.out and basic coff) have no +way of specifying an addend in the relocation type, so the addend has +to go in the output data. This is no big deal since in these formats +the output data slot will always be big enough for the addend. Complex +reloc types with addends were invented to solve just this problem. The +ERROR_MESSAGE argument is set to an error message if this return +`bfd_reloc_dangerous'. + +2.10.1.8 `bfd_install_relocation' +................................. + +*Synopsis* + bfd_reloc_status_type bfd_install_relocation + (bfd *abfd, + arelent *reloc_entry, + void *data, bfd_vma data_start, + asection *input_section, + char **error_message); + *Description* +This looks remarkably like `bfd_perform_relocation', except it does not +expect that the section contents have been filled in. I.e., it's +suitable for use when creating, rather than applying a relocation. + + For now, this function should be considered reserved for the +assembler. + + +File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations + +2.10.2 The howto manager +------------------------ + +When an application wants to create a relocation, but doesn't know what +the target machine might call it, it can find out by using this bit of +code. + +2.10.2.1 `bfd_reloc_code_type' +.............................. + +*Description* +The insides of a reloc code. The idea is that, eventually, there will +be one enumerator for every type of relocation we ever do. Pass one of +these values to `bfd_reloc_type_lookup', and it'll return a howto +pointer. + + This does mean that the application must determine the correct +enumerator value; you can't get a howto pointer from a random set of +attributes. + + Here are the possible values for `enum bfd_reloc_code_real': + + -- : BFD_RELOC_64 + -- : BFD_RELOC_32 + -- : BFD_RELOC_26 + -- : BFD_RELOC_24 + -- : BFD_RELOC_16 + -- : BFD_RELOC_14 + -- : BFD_RELOC_8 + Basic absolute relocations of N bits. + + -- : BFD_RELOC_64_PCREL + -- : BFD_RELOC_32_PCREL + -- : BFD_RELOC_24_PCREL + -- : BFD_RELOC_16_PCREL + -- : BFD_RELOC_12_PCREL + -- : BFD_RELOC_8_PCREL + PC-relative relocations. Sometimes these are relative to the + address of the relocation itself; sometimes they are relative to + the start of the section containing the relocation. It depends on + the specific target. + + The 24-bit relocation is used in some Intel 960 configurations. + + -- : BFD_RELOC_32_SECREL + Section relative relocations. Some targets need this for DWARF2. + + -- : BFD_RELOC_32_GOT_PCREL + -- : BFD_RELOC_16_GOT_PCREL + -- : BFD_RELOC_8_GOT_PCREL + -- : BFD_RELOC_32_GOTOFF + -- : BFD_RELOC_16_GOTOFF + -- : BFD_RELOC_LO16_GOTOFF + -- : BFD_RELOC_HI16_GOTOFF + -- : BFD_RELOC_HI16_S_GOTOFF + -- : BFD_RELOC_8_GOTOFF + -- : BFD_RELOC_64_PLT_PCREL + -- : BFD_RELOC_32_PLT_PCREL + -- : BFD_RELOC_24_PLT_PCREL + -- : BFD_RELOC_16_PLT_PCREL + -- : BFD_RELOC_8_PLT_PCREL + -- : BFD_RELOC_64_PLTOFF + -- : BFD_RELOC_32_PLTOFF + -- : BFD_RELOC_16_PLTOFF + -- : BFD_RELOC_LO16_PLTOFF + -- : BFD_RELOC_HI16_PLTOFF + -- : BFD_RELOC_HI16_S_PLTOFF + -- : BFD_RELOC_8_PLTOFF + For ELF. + + -- : BFD_RELOC_68K_GLOB_DAT + -- : BFD_RELOC_68K_JMP_SLOT + -- : BFD_RELOC_68K_RELATIVE + Relocations used by 68K ELF. + + -- : BFD_RELOC_32_BASEREL + -- : BFD_RELOC_16_BASEREL + -- : BFD_RELOC_LO16_BASEREL + -- : BFD_RELOC_HI16_BASEREL + -- : BFD_RELOC_HI16_S_BASEREL + -- : BFD_RELOC_8_BASEREL + -- : BFD_RELOC_RVA + Linkage-table relative. + + -- : BFD_RELOC_8_FFnn + Absolute 8-bit relocation, but used to form an address like 0xFFnn. + + -- : BFD_RELOC_32_PCREL_S2 + -- : BFD_RELOC_16_PCREL_S2 + -- : BFD_RELOC_23_PCREL_S2 + These PC-relative relocations are stored as word displacements - + i.e., byte displacements shifted right two bits. The 30-bit word + displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the + SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The + signed 16-bit displacement is used on the MIPS, and the 23-bit + displacement is used on the Alpha. + + -- : BFD_RELOC_HI22 + -- : BFD_RELOC_LO10 + High 22 bits and low 10 bits of 32-bit value, placed into lower + bits of the target word. These are used on the SPARC. + + -- : BFD_RELOC_GPREL16 + -- : BFD_RELOC_GPREL32 + For systems that allocate a Global Pointer register, these are + displacements off that register. These relocation types are + handled specially, because the value the register will have is + decided relatively late. + + -- : BFD_RELOC_I960_CALLJ + Reloc types used for i960/b.out. + + -- : BFD_RELOC_NONE + -- : BFD_RELOC_SPARC_WDISP22 + -- : BFD_RELOC_SPARC22 + -- : BFD_RELOC_SPARC13 + -- : BFD_RELOC_SPARC_GOT10 + -- : BFD_RELOC_SPARC_GOT13 + -- : BFD_RELOC_SPARC_GOT22 + -- : BFD_RELOC_SPARC_PC10 + -- : BFD_RELOC_SPARC_PC22 + -- : BFD_RELOC_SPARC_WPLT30 + -- : BFD_RELOC_SPARC_COPY + -- : BFD_RELOC_SPARC_GLOB_DAT + -- : BFD_RELOC_SPARC_JMP_SLOT + -- : BFD_RELOC_SPARC_RELATIVE + -- : BFD_RELOC_SPARC_UA16 + -- : BFD_RELOC_SPARC_UA32 + -- : BFD_RELOC_SPARC_UA64 + -- : BFD_RELOC_SPARC_GOTDATA_HIX22 + -- : BFD_RELOC_SPARC_GOTDATA_LOX10 + -- : BFD_RELOC_SPARC_GOTDATA_OP_HIX22 + -- : BFD_RELOC_SPARC_GOTDATA_OP_LOX10 + -- : BFD_RELOC_SPARC_GOTDATA_OP + SPARC ELF relocations. There is probably some overlap with other + relocation types already defined. + + -- : BFD_RELOC_SPARC_BASE13 + -- : BFD_RELOC_SPARC_BASE22 + I think these are specific to SPARC a.out (e.g., Sun 4). + + -- : BFD_RELOC_SPARC_64 + -- : BFD_RELOC_SPARC_10 + -- : BFD_RELOC_SPARC_11 + -- : BFD_RELOC_SPARC_OLO10 + -- : BFD_RELOC_SPARC_HH22 + -- : BFD_RELOC_SPARC_HM10 + -- : BFD_RELOC_SPARC_LM22 + -- : BFD_RELOC_SPARC_PC_HH22 + -- : BFD_RELOC_SPARC_PC_HM10 + -- : BFD_RELOC_SPARC_PC_LM22 + -- : BFD_RELOC_SPARC_WDISP16 + -- : BFD_RELOC_SPARC_WDISP19 + -- : BFD_RELOC_SPARC_7 + -- : BFD_RELOC_SPARC_6 + -- : BFD_RELOC_SPARC_5 + -- : BFD_RELOC_SPARC_DISP64 + -- : BFD_RELOC_SPARC_PLT32 + -- : BFD_RELOC_SPARC_PLT64 + -- : BFD_RELOC_SPARC_HIX22 + -- : BFD_RELOC_SPARC_LOX10 + -- : BFD_RELOC_SPARC_H44 + -- : BFD_RELOC_SPARC_M44 + -- : BFD_RELOC_SPARC_L44 + -- : BFD_RELOC_SPARC_REGISTER + SPARC64 relocations + + -- : BFD_RELOC_SPARC_REV32 + SPARC little endian relocation + + -- : BFD_RELOC_SPARC_TLS_GD_HI22 + -- : BFD_RELOC_SPARC_TLS_GD_LO10 + -- : BFD_RELOC_SPARC_TLS_GD_ADD + -- : BFD_RELOC_SPARC_TLS_GD_CALL + -- : BFD_RELOC_SPARC_TLS_LDM_HI22 + -- : BFD_RELOC_SPARC_TLS_LDM_LO10 + -- : BFD_RELOC_SPARC_TLS_LDM_ADD + -- : BFD_RELOC_SPARC_TLS_LDM_CALL + -- : BFD_RELOC_SPARC_TLS_LDO_HIX22 + -- : BFD_RELOC_SPARC_TLS_LDO_LOX10 + -- : BFD_RELOC_SPARC_TLS_LDO_ADD + -- : BFD_RELOC_SPARC_TLS_IE_HI22 + -- : BFD_RELOC_SPARC_TLS_IE_LO10 + -- : BFD_RELOC_SPARC_TLS_IE_LD + -- : BFD_RELOC_SPARC_TLS_IE_LDX + -- : BFD_RELOC_SPARC_TLS_IE_ADD + -- : BFD_RELOC_SPARC_TLS_LE_HIX22 + -- : BFD_RELOC_SPARC_TLS_LE_LOX10 + -- : BFD_RELOC_SPARC_TLS_DTPMOD32 + -- : BFD_RELOC_SPARC_TLS_DTPMOD64 + -- : BFD_RELOC_SPARC_TLS_DTPOFF32 + -- : BFD_RELOC_SPARC_TLS_DTPOFF64 + -- : BFD_RELOC_SPARC_TLS_TPOFF32 + -- : BFD_RELOC_SPARC_TLS_TPOFF64 + SPARC TLS relocations + + -- : BFD_RELOC_SPU_IMM7 + -- : BFD_RELOC_SPU_IMM8 + -- : BFD_RELOC_SPU_IMM10 + -- : BFD_RELOC_SPU_IMM10W + -- : BFD_RELOC_SPU_IMM16 + -- : BFD_RELOC_SPU_IMM16W + -- : BFD_RELOC_SPU_IMM18 + -- : BFD_RELOC_SPU_PCREL9a + -- : BFD_RELOC_SPU_PCREL9b + -- : BFD_RELOC_SPU_PCREL16 + -- : BFD_RELOC_SPU_LO16 + -- : BFD_RELOC_SPU_HI16 + -- : BFD_RELOC_SPU_PPU32 + -- : BFD_RELOC_SPU_PPU64 + SPU Relocations. + + -- : BFD_RELOC_ALPHA_GPDISP_HI16 + Alpha ECOFF and ELF relocations. Some of these treat the symbol or + "addend" in some special way. For GPDISP_HI16 ("gpdisp") + relocations, the symbol is ignored when writing; when reading, it + will be the absolute section symbol. The addend is the + displacement in bytes of the "lda" instruction from the "ldah" + instruction (which is at the address of this reloc). + + -- : BFD_RELOC_ALPHA_GPDISP_LO16 + For GPDISP_LO16 ("ignore") relocations, the symbol is handled as + with GPDISP_HI16 relocs. The addend is ignored when writing the + relocations out, and is filled in with the file's GP value on + reading, for convenience. + + -- : BFD_RELOC_ALPHA_GPDISP + The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 + relocation except that there is no accompanying GPDISP_LO16 + relocation. + + -- : BFD_RELOC_ALPHA_LITERAL + -- : BFD_RELOC_ALPHA_ELF_LITERAL + -- : BFD_RELOC_ALPHA_LITUSE + The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; + the assembler turns it into a LDQ instruction to load the address + of the symbol, and then fills in a register in the real + instruction. + + The LITERAL reloc, at the LDQ instruction, refers to the .lita + section symbol. The addend is ignored when writing, but is filled + in with the file's GP value on reading, for convenience, as with + the GPDISP_LO16 reloc. + + The ELF_LITERAL reloc is somewhere between 16_GOTOFF and + GPDISP_LO16. It should refer to the symbol to be referenced, as + with 16_GOTOFF, but it generates output not based on the position + within the .got section, but relative to the GP value chosen for + the file during the final link stage. + + The LITUSE reloc, on the instruction using the loaded address, + gives information to the linker that it might be able to use to + optimize away some literal section references. The symbol is + ignored (read as the absolute section symbol), and the "addend" + indicates the type of instruction using the register: 1 - "memory" + fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target + of branch) + + -- : BFD_RELOC_ALPHA_HINT + The HINT relocation indicates a value that should be filled into + the "hint" field of a jmp/jsr/ret instruction, for possible branch- + prediction logic which may be provided on some processors. + + -- : BFD_RELOC_ALPHA_LINKAGE + The LINKAGE relocation outputs a linkage pair in the object file, + which is filled by the linker. + + -- : BFD_RELOC_ALPHA_CODEADDR + The CODEADDR relocation outputs a STO_CA in the object file, which + is filled by the linker. + + -- : BFD_RELOC_ALPHA_GPREL_HI16 + -- : BFD_RELOC_ALPHA_GPREL_LO16 + The GPREL_HI/LO relocations together form a 32-bit offset from the + GP register. + + -- : BFD_RELOC_ALPHA_BRSGP + Like BFD_RELOC_23_PCREL_S2, except that the source and target must + share a common GP, and the target address is adjusted for + STO_ALPHA_STD_GPLOAD. + + -- : BFD_RELOC_ALPHA_TLSGD + -- : BFD_RELOC_ALPHA_TLSLDM + -- : BFD_RELOC_ALPHA_DTPMOD64 + -- : BFD_RELOC_ALPHA_GOTDTPREL16 + -- : BFD_RELOC_ALPHA_DTPREL64 + -- : BFD_RELOC_ALPHA_DTPREL_HI16 + -- : BFD_RELOC_ALPHA_DTPREL_LO16 + -- : BFD_RELOC_ALPHA_DTPREL16 + -- : BFD_RELOC_ALPHA_GOTTPREL16 + -- : BFD_RELOC_ALPHA_TPREL64 + -- : BFD_RELOC_ALPHA_TPREL_HI16 + -- : BFD_RELOC_ALPHA_TPREL_LO16 + -- : BFD_RELOC_ALPHA_TPREL16 + Alpha thread-local storage relocations. + + -- : BFD_RELOC_MIPS_JMP + Bits 27..2 of the relocation address shifted right 2 bits; simple + reloc otherwise. + + -- : BFD_RELOC_MIPS16_JMP + The MIPS16 jump instruction. + + -- : BFD_RELOC_MIPS16_GPREL + MIPS16 GP relative reloc. + + -- : BFD_RELOC_HI16 + High 16 bits of 32-bit value; simple reloc. + + -- : BFD_RELOC_HI16_S + High 16 bits of 32-bit value but the low 16 bits will be sign + extended and added to form the final result. If the low 16 bits + form a negative number, we need to add one to the high value to + compensate for the borrow when the low bits are added. + + -- : BFD_RELOC_LO16 + Low 16 bits. + + -- : BFD_RELOC_HI16_PCREL + High 16 bits of 32-bit pc-relative value + + -- : BFD_RELOC_HI16_S_PCREL + High 16 bits of 32-bit pc-relative value, adjusted + + -- : BFD_RELOC_LO16_PCREL + Low 16 bits of pc-relative value + + -- : BFD_RELOC_MIPS16_GOT16 + -- : BFD_RELOC_MIPS16_CALL16 + Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of + 16-bit immediate fields + + -- : BFD_RELOC_MIPS16_HI16 + MIPS16 high 16 bits of 32-bit value. + + -- : BFD_RELOC_MIPS16_HI16_S + MIPS16 high 16 bits of 32-bit value but the low 16 bits will be + sign extended and added to form the final result. If the low 16 + bits form a negative number, we need to add one to the high value + to compensate for the borrow when the low bits are added. + + -- : BFD_RELOC_MIPS16_LO16 + MIPS16 low 16 bits. + + -- : BFD_RELOC_MIPS_LITERAL + Relocation against a MIPS literal section. + + -- : BFD_RELOC_MIPS_GOT16 + -- : BFD_RELOC_MIPS_CALL16 + -- : BFD_RELOC_MIPS_GOT_HI16 + -- : BFD_RELOC_MIPS_GOT_LO16 + -- : BFD_RELOC_MIPS_CALL_HI16 + -- : BFD_RELOC_MIPS_CALL_LO16 + -- : BFD_RELOC_MIPS_SUB + -- : BFD_RELOC_MIPS_GOT_PAGE + -- : BFD_RELOC_MIPS_GOT_OFST + -- : BFD_RELOC_MIPS_GOT_DISP + -- : BFD_RELOC_MIPS_SHIFT5 + -- : BFD_RELOC_MIPS_SHIFT6 + -- : BFD_RELOC_MIPS_INSERT_A + -- : BFD_RELOC_MIPS_INSERT_B + -- : BFD_RELOC_MIPS_DELETE + -- : BFD_RELOC_MIPS_HIGHEST + -- : BFD_RELOC_MIPS_HIGHER + -- : BFD_RELOC_MIPS_SCN_DISP + -- : BFD_RELOC_MIPS_REL16 + -- : BFD_RELOC_MIPS_RELGOT + -- : BFD_RELOC_MIPS_JALR + -- : BFD_RELOC_MIPS_TLS_DTPMOD32 + -- : BFD_RELOC_MIPS_TLS_DTPREL32 + -- : BFD_RELOC_MIPS_TLS_DTPMOD64 + -- : BFD_RELOC_MIPS_TLS_DTPREL64 + -- : BFD_RELOC_MIPS_TLS_GD + -- : BFD_RELOC_MIPS_TLS_LDM + -- : BFD_RELOC_MIPS_TLS_DTPREL_HI16 + -- : BFD_RELOC_MIPS_TLS_DTPREL_LO16 + -- : BFD_RELOC_MIPS_TLS_GOTTPREL + -- : BFD_RELOC_MIPS_TLS_TPREL32 + -- : BFD_RELOC_MIPS_TLS_TPREL64 + -- : BFD_RELOC_MIPS_TLS_TPREL_HI16 + -- : BFD_RELOC_MIPS_TLS_TPREL_LO16 + MIPS ELF relocations. + + -- : BFD_RELOC_MIPS_COPY + -- : BFD_RELOC_MIPS_JUMP_SLOT + MIPS ELF relocations (VxWorks and PLT extensions). + + -- : BFD_RELOC_FRV_LABEL16 + -- : BFD_RELOC_FRV_LABEL24 + -- : BFD_RELOC_FRV_LO16 + -- : BFD_RELOC_FRV_HI16 + -- : BFD_RELOC_FRV_GPREL12 + -- : BFD_RELOC_FRV_GPRELU12 + -- : BFD_RELOC_FRV_GPREL32 + -- : BFD_RELOC_FRV_GPRELHI + -- : BFD_RELOC_FRV_GPRELLO + -- : BFD_RELOC_FRV_GOT12 + -- : BFD_RELOC_FRV_GOTHI + -- : BFD_RELOC_FRV_GOTLO + -- : BFD_RELOC_FRV_FUNCDESC + -- : BFD_RELOC_FRV_FUNCDESC_GOT12 + -- : BFD_RELOC_FRV_FUNCDESC_GOTHI + -- : BFD_RELOC_FRV_FUNCDESC_GOTLO + -- : BFD_RELOC_FRV_FUNCDESC_VALUE + -- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12 + -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI + -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO + -- : BFD_RELOC_FRV_GOTOFF12 + -- : BFD_RELOC_FRV_GOTOFFHI + -- : BFD_RELOC_FRV_GOTOFFLO + -- : BFD_RELOC_FRV_GETTLSOFF + -- : BFD_RELOC_FRV_TLSDESC_VALUE + -- : BFD_RELOC_FRV_GOTTLSDESC12 + -- : BFD_RELOC_FRV_GOTTLSDESCHI + -- : BFD_RELOC_FRV_GOTTLSDESCLO + -- : BFD_RELOC_FRV_TLSMOFF12 + -- : BFD_RELOC_FRV_TLSMOFFHI + -- : BFD_RELOC_FRV_TLSMOFFLO + -- : BFD_RELOC_FRV_GOTTLSOFF12 + -- : BFD_RELOC_FRV_GOTTLSOFFHI + -- : BFD_RELOC_FRV_GOTTLSOFFLO + -- : BFD_RELOC_FRV_TLSOFF + -- : BFD_RELOC_FRV_TLSDESC_RELAX + -- : BFD_RELOC_FRV_GETTLSOFF_RELAX + -- : BFD_RELOC_FRV_TLSOFF_RELAX + -- : BFD_RELOC_FRV_TLSMOFF + Fujitsu Frv Relocations. + + -- : BFD_RELOC_MN10300_GOTOFF24 + This is a 24bit GOT-relative reloc for the mn10300. + + -- : BFD_RELOC_MN10300_GOT32 + This is a 32bit GOT-relative reloc for the mn10300, offset by two + bytes in the instruction. + + -- : BFD_RELOC_MN10300_GOT24 + This is a 24bit GOT-relative reloc for the mn10300, offset by two + bytes in the instruction. + + -- : BFD_RELOC_MN10300_GOT16 + This is a 16bit GOT-relative reloc for the mn10300, offset by two + bytes in the instruction. + + -- : BFD_RELOC_MN10300_COPY + Copy symbol at runtime. + + -- : BFD_RELOC_MN10300_GLOB_DAT + Create GOT entry. + + -- : BFD_RELOC_MN10300_JMP_SLOT + Create PLT entry. + + -- : BFD_RELOC_MN10300_RELATIVE + Adjust by program base. + + -- : BFD_RELOC_MN10300_SYM_DIFF + Together with another reloc targeted at the same location, allows + for a value that is the difference of two symbols in the same + section. + + -- : BFD_RELOC_MN10300_ALIGN + The addend of this reloc is an alignment power that must be + honoured at the offset's location, regardless of linker relaxation. + + -- : BFD_RELOC_386_GOT32 + -- : BFD_RELOC_386_PLT32 + -- : BFD_RELOC_386_COPY + -- : BFD_RELOC_386_GLOB_DAT + -- : BFD_RELOC_386_JUMP_SLOT + -- : BFD_RELOC_386_RELATIVE + -- : BFD_RELOC_386_GOTOFF + -- : BFD_RELOC_386_GOTPC + -- : BFD_RELOC_386_TLS_TPOFF + -- : BFD_RELOC_386_TLS_IE + -- : BFD_RELOC_386_TLS_GOTIE + -- : BFD_RELOC_386_TLS_LE + -- : BFD_RELOC_386_TLS_GD + -- : BFD_RELOC_386_TLS_LDM + -- : BFD_RELOC_386_TLS_LDO_32 + -- : BFD_RELOC_386_TLS_IE_32 + -- : BFD_RELOC_386_TLS_LE_32 + -- : BFD_RELOC_386_TLS_DTPMOD32 + -- : BFD_RELOC_386_TLS_DTPOFF32 + -- : BFD_RELOC_386_TLS_TPOFF32 + -- : BFD_RELOC_386_TLS_GOTDESC + -- : BFD_RELOC_386_TLS_DESC_CALL + -- : BFD_RELOC_386_TLS_DESC + i386/elf relocations + + -- : BFD_RELOC_X86_64_GOT32 + -- : BFD_RELOC_X86_64_PLT32 + -- : BFD_RELOC_X86_64_COPY + -- : BFD_RELOC_X86_64_GLOB_DAT + -- : BFD_RELOC_X86_64_JUMP_SLOT + -- : BFD_RELOC_X86_64_RELATIVE + -- : BFD_RELOC_X86_64_GOTPCREL + -- : BFD_RELOC_X86_64_32S + -- : BFD_RELOC_X86_64_DTPMOD64 + -- : BFD_RELOC_X86_64_DTPOFF64 + -- : BFD_RELOC_X86_64_TPOFF64 + -- : BFD_RELOC_X86_64_TLSGD + -- : BFD_RELOC_X86_64_TLSLD + -- : BFD_RELOC_X86_64_DTPOFF32 + -- : BFD_RELOC_X86_64_GOTTPOFF + -- : BFD_RELOC_X86_64_TPOFF32 + -- : BFD_RELOC_X86_64_GOTOFF64 + -- : BFD_RELOC_X86_64_GOTPC32 + -- : BFD_RELOC_X86_64_GOT64 + -- : BFD_RELOC_X86_64_GOTPCREL64 + -- : BFD_RELOC_X86_64_GOTPC64 + -- : BFD_RELOC_X86_64_GOTPLT64 + -- : BFD_RELOC_X86_64_PLTOFF64 + -- : BFD_RELOC_X86_64_GOTPC32_TLSDESC + -- : BFD_RELOC_X86_64_TLSDESC_CALL + -- : BFD_RELOC_X86_64_TLSDESC + x86-64/elf relocations + + -- : BFD_RELOC_NS32K_IMM_8 + -- : BFD_RELOC_NS32K_IMM_16 + -- : BFD_RELOC_NS32K_IMM_32 + -- : BFD_RELOC_NS32K_IMM_8_PCREL + -- : BFD_RELOC_NS32K_IMM_16_PCREL + -- : BFD_RELOC_NS32K_IMM_32_PCREL + -- : BFD_RELOC_NS32K_DISP_8 + -- : BFD_RELOC_NS32K_DISP_16 + -- : BFD_RELOC_NS32K_DISP_32 + -- : BFD_RELOC_NS32K_DISP_8_PCREL + -- : BFD_RELOC_NS32K_DISP_16_PCREL + -- : BFD_RELOC_NS32K_DISP_32_PCREL + ns32k relocations + + -- : BFD_RELOC_PDP11_DISP_8_PCREL + -- : BFD_RELOC_PDP11_DISP_6_PCREL + PDP11 relocations + + -- : BFD_RELOC_PJ_CODE_HI16 + -- : BFD_RELOC_PJ_CODE_LO16 + -- : BFD_RELOC_PJ_CODE_DIR16 + -- : BFD_RELOC_PJ_CODE_DIR32 + -- : BFD_RELOC_PJ_CODE_REL16 + -- : BFD_RELOC_PJ_CODE_REL32 + Picojava relocs. Not all of these appear in object files. + + -- : BFD_RELOC_PPC_B26 + -- : BFD_RELOC_PPC_BA26 + -- : BFD_RELOC_PPC_TOC16 + -- : BFD_RELOC_PPC_B16 + -- : BFD_RELOC_PPC_B16_BRTAKEN + -- : BFD_RELOC_PPC_B16_BRNTAKEN + -- : BFD_RELOC_PPC_BA16 + -- : BFD_RELOC_PPC_BA16_BRTAKEN + -- : BFD_RELOC_PPC_BA16_BRNTAKEN + -- : BFD_RELOC_PPC_COPY + -- : BFD_RELOC_PPC_GLOB_DAT + -- : BFD_RELOC_PPC_JMP_SLOT + -- : BFD_RELOC_PPC_RELATIVE + -- : BFD_RELOC_PPC_LOCAL24PC + -- : BFD_RELOC_PPC_EMB_NADDR32 + -- : BFD_RELOC_PPC_EMB_NADDR16 + -- : BFD_RELOC_PPC_EMB_NADDR16_LO + -- : BFD_RELOC_PPC_EMB_NADDR16_HI + -- : BFD_RELOC_PPC_EMB_NADDR16_HA + -- : BFD_RELOC_PPC_EMB_SDAI16 + -- : BFD_RELOC_PPC_EMB_SDA2I16 + -- : BFD_RELOC_PPC_EMB_SDA2REL + -- : BFD_RELOC_PPC_EMB_SDA21 + -- : BFD_RELOC_PPC_EMB_MRKREF + -- : BFD_RELOC_PPC_EMB_RELSEC16 + -- : BFD_RELOC_PPC_EMB_RELST_LO + -- : BFD_RELOC_PPC_EMB_RELST_HI + -- : BFD_RELOC_PPC_EMB_RELST_HA + -- : BFD_RELOC_PPC_EMB_BIT_FLD + -- : BFD_RELOC_PPC_EMB_RELSDA + -- : BFD_RELOC_PPC64_HIGHER + -- : BFD_RELOC_PPC64_HIGHER_S + -- : BFD_RELOC_PPC64_HIGHEST + -- : BFD_RELOC_PPC64_HIGHEST_S + -- : BFD_RELOC_PPC64_TOC16_LO + -- : BFD_RELOC_PPC64_TOC16_HI + -- : BFD_RELOC_PPC64_TOC16_HA + -- : BFD_RELOC_PPC64_TOC + -- : BFD_RELOC_PPC64_PLTGOT16 + -- : BFD_RELOC_PPC64_PLTGOT16_LO + -- : BFD_RELOC_PPC64_PLTGOT16_HI + -- : BFD_RELOC_PPC64_PLTGOT16_HA + -- : BFD_RELOC_PPC64_ADDR16_DS + -- : BFD_RELOC_PPC64_ADDR16_LO_DS + -- : BFD_RELOC_PPC64_GOT16_DS + -- : BFD_RELOC_PPC64_GOT16_LO_DS + -- : BFD_RELOC_PPC64_PLT16_LO_DS + -- : BFD_RELOC_PPC64_SECTOFF_DS + -- : BFD_RELOC_PPC64_SECTOFF_LO_DS + -- : BFD_RELOC_PPC64_TOC16_DS + -- : BFD_RELOC_PPC64_TOC16_LO_DS + -- : BFD_RELOC_PPC64_PLTGOT16_DS + -- : BFD_RELOC_PPC64_PLTGOT16_LO_DS + Power(rs6000) and PowerPC relocations. + + -- : BFD_RELOC_PPC_TLS + -- : BFD_RELOC_PPC_DTPMOD + -- : BFD_RELOC_PPC_TPREL16 + -- : BFD_RELOC_PPC_TPREL16_LO + -- : BFD_RELOC_PPC_TPREL16_HI + -- : BFD_RELOC_PPC_TPREL16_HA + -- : BFD_RELOC_PPC_TPREL + -- : BFD_RELOC_PPC_DTPREL16 + -- : BFD_RELOC_PPC_DTPREL16_LO + -- : BFD_RELOC_PPC_DTPREL16_HI + -- : BFD_RELOC_PPC_DTPREL16_HA + -- : BFD_RELOC_PPC_DTPREL + -- : BFD_RELOC_PPC_GOT_TLSGD16 + -- : BFD_RELOC_PPC_GOT_TLSGD16_LO + -- : BFD_RELOC_PPC_GOT_TLSGD16_HI + -- : BFD_RELOC_PPC_GOT_TLSGD16_HA + -- : BFD_RELOC_PPC_GOT_TLSLD16 + -- : BFD_RELOC_PPC_GOT_TLSLD16_LO + -- : BFD_RELOC_PPC_GOT_TLSLD16_HI + -- : BFD_RELOC_PPC_GOT_TLSLD16_HA + -- : BFD_RELOC_PPC_GOT_TPREL16 + -- : BFD_RELOC_PPC_GOT_TPREL16_LO + -- : BFD_RELOC_PPC_GOT_TPREL16_HI + -- : BFD_RELOC_PPC_GOT_TPREL16_HA + -- : BFD_RELOC_PPC_GOT_DTPREL16 + -- : BFD_RELOC_PPC_GOT_DTPREL16_LO + -- : BFD_RELOC_PPC_GOT_DTPREL16_HI + -- : BFD_RELOC_PPC_GOT_DTPREL16_HA + -- : BFD_RELOC_PPC64_TPREL16_DS + -- : BFD_RELOC_PPC64_TPREL16_LO_DS + -- : BFD_RELOC_PPC64_TPREL16_HIGHER + -- : BFD_RELOC_PPC64_TPREL16_HIGHERA + -- : BFD_RELOC_PPC64_TPREL16_HIGHEST + -- : BFD_RELOC_PPC64_TPREL16_HIGHESTA + -- : BFD_RELOC_PPC64_DTPREL16_DS + -- : BFD_RELOC_PPC64_DTPREL16_LO_DS + -- : BFD_RELOC_PPC64_DTPREL16_HIGHER + -- : BFD_RELOC_PPC64_DTPREL16_HIGHERA + -- : BFD_RELOC_PPC64_DTPREL16_HIGHEST + -- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA + PowerPC and PowerPC64 thread-local storage relocations. + + -- : BFD_RELOC_I370_D12 + IBM 370/390 relocations + + -- : BFD_RELOC_CTOR + The type of reloc used to build a constructor table - at the moment + probably a 32 bit wide absolute relocation, but the target can + choose. It generally does map to one of the other relocation + types. + + -- : BFD_RELOC_ARM_PCREL_BRANCH + ARM 26 bit pc-relative branch. The lowest two bits must be zero + and are not stored in the instruction. + + -- : BFD_RELOC_ARM_PCREL_BLX + ARM 26 bit pc-relative branch. The lowest bit must be zero and is + not stored in the instruction. The 2nd lowest bit comes from a 1 + bit field in the instruction. + + -- : BFD_RELOC_THUMB_PCREL_BLX + Thumb 22 bit pc-relative branch. The lowest bit must be zero and + is not stored in the instruction. The 2nd lowest bit comes from a + 1 bit field in the instruction. + + -- : BFD_RELOC_ARM_PCREL_CALL + ARM 26-bit pc-relative branch for an unconditional BL or BLX + instruction. + + -- : BFD_RELOC_ARM_PCREL_JUMP + ARM 26-bit pc-relative branch for B or conditional BL instruction. + + -- : BFD_RELOC_THUMB_PCREL_BRANCH7 + -- : BFD_RELOC_THUMB_PCREL_BRANCH9 + -- : BFD_RELOC_THUMB_PCREL_BRANCH12 + -- : BFD_RELOC_THUMB_PCREL_BRANCH20 + -- : BFD_RELOC_THUMB_PCREL_BRANCH23 + -- : BFD_RELOC_THUMB_PCREL_BRANCH25 + Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The + lowest bit must be zero and is not stored in the instruction. + Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an + "nn" one smaller in all cases. Note further that BRANCH23 + corresponds to R_ARM_THM_CALL. + + -- : BFD_RELOC_ARM_OFFSET_IMM + 12-bit immediate offset, used in ARM-format ldr and str + instructions. + + -- : BFD_RELOC_ARM_THUMB_OFFSET + 5-bit immediate offset, used in Thumb-format ldr and str + instructions. + + -- : BFD_RELOC_ARM_TARGET1 + Pc-relative or absolute relocation depending on target. Used for + entries in .init_array sections. + + -- : BFD_RELOC_ARM_ROSEGREL32 + Read-only segment base relative address. + + -- : BFD_RELOC_ARM_SBREL32 + Data segment base relative address. + + -- : BFD_RELOC_ARM_TARGET2 + This reloc is used for references to RTTI data from exception + handling tables. The actual definition depends on the target. It + may be a pc-relative or some form of GOT-indirect relocation. + + -- : BFD_RELOC_ARM_PREL31 + 31-bit PC relative address. + + -- : BFD_RELOC_ARM_MOVW + -- : BFD_RELOC_ARM_MOVT + -- : BFD_RELOC_ARM_MOVW_PCREL + -- : BFD_RELOC_ARM_MOVT_PCREL + -- : BFD_RELOC_ARM_THUMB_MOVW + -- : BFD_RELOC_ARM_THUMB_MOVT + -- : BFD_RELOC_ARM_THUMB_MOVW_PCREL + -- : BFD_RELOC_ARM_THUMB_MOVT_PCREL + Low and High halfword relocations for MOVW and MOVT instructions. + + -- : BFD_RELOC_ARM_JUMP_SLOT + -- : BFD_RELOC_ARM_GLOB_DAT + -- : BFD_RELOC_ARM_GOT32 + -- : BFD_RELOC_ARM_PLT32 + -- : BFD_RELOC_ARM_RELATIVE + -- : BFD_RELOC_ARM_GOTOFF + -- : BFD_RELOC_ARM_GOTPC + Relocations for setting up GOTs and PLTs for shared libraries. + + -- : BFD_RELOC_ARM_TLS_GD32 + -- : BFD_RELOC_ARM_TLS_LDO32 + -- : BFD_RELOC_ARM_TLS_LDM32 + -- : BFD_RELOC_ARM_TLS_DTPOFF32 + -- : BFD_RELOC_ARM_TLS_DTPMOD32 + -- : BFD_RELOC_ARM_TLS_TPOFF32 + -- : BFD_RELOC_ARM_TLS_IE32 + -- : BFD_RELOC_ARM_TLS_LE32 + ARM thread-local storage relocations. + + -- : BFD_RELOC_ARM_ALU_PC_G0_NC + -- : BFD_RELOC_ARM_ALU_PC_G0 + -- : BFD_RELOC_ARM_ALU_PC_G1_NC + -- : BFD_RELOC_ARM_ALU_PC_G1 + -- : BFD_RELOC_ARM_ALU_PC_G2 + -- : BFD_RELOC_ARM_LDR_PC_G0 + -- : BFD_RELOC_ARM_LDR_PC_G1 + -- : BFD_RELOC_ARM_LDR_PC_G2 + -- : BFD_RELOC_ARM_LDRS_PC_G0 + -- : BFD_RELOC_ARM_LDRS_PC_G1 + -- : BFD_RELOC_ARM_LDRS_PC_G2 + -- : BFD_RELOC_ARM_LDC_PC_G0 + -- : BFD_RELOC_ARM_LDC_PC_G1 + -- : BFD_RELOC_ARM_LDC_PC_G2 + -- : BFD_RELOC_ARM_ALU_SB_G0_NC + -- : BFD_RELOC_ARM_ALU_SB_G0 + -- : BFD_RELOC_ARM_ALU_SB_G1_NC + -- : BFD_RELOC_ARM_ALU_SB_G1 + -- : BFD_RELOC_ARM_ALU_SB_G2 + -- : BFD_RELOC_ARM_LDR_SB_G0 + -- : BFD_RELOC_ARM_LDR_SB_G1 + -- : BFD_RELOC_ARM_LDR_SB_G2 + -- : BFD_RELOC_ARM_LDRS_SB_G0 + -- : BFD_RELOC_ARM_LDRS_SB_G1 + -- : BFD_RELOC_ARM_LDRS_SB_G2 + -- : BFD_RELOC_ARM_LDC_SB_G0 + -- : BFD_RELOC_ARM_LDC_SB_G1 + -- : BFD_RELOC_ARM_LDC_SB_G2 + ARM group relocations. + + -- : BFD_RELOC_ARM_V4BX + Annotation of BX instructions. + + -- : BFD_RELOC_ARM_IMMEDIATE + -- : BFD_RELOC_ARM_ADRL_IMMEDIATE + -- : BFD_RELOC_ARM_T32_IMMEDIATE + -- : BFD_RELOC_ARM_T32_ADD_IMM + -- : BFD_RELOC_ARM_T32_IMM12 + -- : BFD_RELOC_ARM_T32_ADD_PC12 + -- : BFD_RELOC_ARM_SHIFT_IMM + -- : BFD_RELOC_ARM_SMC + -- : BFD_RELOC_ARM_SWI + -- : BFD_RELOC_ARM_MULTI + -- : BFD_RELOC_ARM_CP_OFF_IMM + -- : BFD_RELOC_ARM_CP_OFF_IMM_S2 + -- : BFD_RELOC_ARM_T32_CP_OFF_IMM + -- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2 + -- : BFD_RELOC_ARM_ADR_IMM + -- : BFD_RELOC_ARM_LDR_IMM + -- : BFD_RELOC_ARM_LITERAL + -- : BFD_RELOC_ARM_IN_POOL + -- : BFD_RELOC_ARM_OFFSET_IMM8 + -- : BFD_RELOC_ARM_T32_OFFSET_U8 + -- : BFD_RELOC_ARM_T32_OFFSET_IMM + -- : BFD_RELOC_ARM_HWLITERAL + -- : BFD_RELOC_ARM_THUMB_ADD + -- : BFD_RELOC_ARM_THUMB_IMM + -- : BFD_RELOC_ARM_THUMB_SHIFT + These relocs are only used within the ARM assembler. They are not + (at present) written to any object files. + + -- : BFD_RELOC_SH_PCDISP8BY2 + -- : BFD_RELOC_SH_PCDISP12BY2 + -- : BFD_RELOC_SH_IMM3 + -- : BFD_RELOC_SH_IMM3U + -- : BFD_RELOC_SH_DISP12 + -- : BFD_RELOC_SH_DISP12BY2 + -- : BFD_RELOC_SH_DISP12BY4 + -- : BFD_RELOC_SH_DISP12BY8 + -- : BFD_RELOC_SH_DISP20 + -- : BFD_RELOC_SH_DISP20BY8 + -- : BFD_RELOC_SH_IMM4 + -- : BFD_RELOC_SH_IMM4BY2 + -- : BFD_RELOC_SH_IMM4BY4 + -- : BFD_RELOC_SH_IMM8 + -- : BFD_RELOC_SH_IMM8BY2 + -- : BFD_RELOC_SH_IMM8BY4 + -- : BFD_RELOC_SH_PCRELIMM8BY2 + -- : BFD_RELOC_SH_PCRELIMM8BY4 + -- : BFD_RELOC_SH_SWITCH16 + -- : BFD_RELOC_SH_SWITCH32 + -- : BFD_RELOC_SH_USES + -- : BFD_RELOC_SH_COUNT + -- : BFD_RELOC_SH_ALIGN + -- : BFD_RELOC_SH_CODE + -- : BFD_RELOC_SH_DATA + -- : BFD_RELOC_SH_LABEL + -- : BFD_RELOC_SH_LOOP_START + -- : BFD_RELOC_SH_LOOP_END + -- : BFD_RELOC_SH_COPY + -- : BFD_RELOC_SH_GLOB_DAT + -- : BFD_RELOC_SH_JMP_SLOT + -- : BFD_RELOC_SH_RELATIVE + -- : BFD_RELOC_SH_GOTPC + -- : BFD_RELOC_SH_GOT_LOW16 + -- : BFD_RELOC_SH_GOT_MEDLOW16 + -- : BFD_RELOC_SH_GOT_MEDHI16 + -- : BFD_RELOC_SH_GOT_HI16 + -- : BFD_RELOC_SH_GOTPLT_LOW16 + -- : BFD_RELOC_SH_GOTPLT_MEDLOW16 + -- : BFD_RELOC_SH_GOTPLT_MEDHI16 + -- : BFD_RELOC_SH_GOTPLT_HI16 + -- : BFD_RELOC_SH_PLT_LOW16 + -- : BFD_RELOC_SH_PLT_MEDLOW16 + -- : BFD_RELOC_SH_PLT_MEDHI16 + -- : BFD_RELOC_SH_PLT_HI16 + -- : BFD_RELOC_SH_GOTOFF_LOW16 + -- : BFD_RELOC_SH_GOTOFF_MEDLOW16 + -- : BFD_RELOC_SH_GOTOFF_MEDHI16 + -- : BFD_RELOC_SH_GOTOFF_HI16 + -- : BFD_RELOC_SH_GOTPC_LOW16 + -- : BFD_RELOC_SH_GOTPC_MEDLOW16 + -- : BFD_RELOC_SH_GOTPC_MEDHI16 + -- : BFD_RELOC_SH_GOTPC_HI16 + -- : BFD_RELOC_SH_COPY64 + -- : BFD_RELOC_SH_GLOB_DAT64 + -- : BFD_RELOC_SH_JMP_SLOT64 + -- : BFD_RELOC_SH_RELATIVE64 + -- : BFD_RELOC_SH_GOT10BY4 + -- : BFD_RELOC_SH_GOT10BY8 + -- : BFD_RELOC_SH_GOTPLT10BY4 + -- : BFD_RELOC_SH_GOTPLT10BY8 + -- : BFD_RELOC_SH_GOTPLT32 + -- : BFD_RELOC_SH_SHMEDIA_CODE + -- : BFD_RELOC_SH_IMMU5 + -- : BFD_RELOC_SH_IMMS6 + -- : BFD_RELOC_SH_IMMS6BY32 + -- : BFD_RELOC_SH_IMMU6 + -- : BFD_RELOC_SH_IMMS10 + -- : BFD_RELOC_SH_IMMS10BY2 + -- : BFD_RELOC_SH_IMMS10BY4 + -- : BFD_RELOC_SH_IMMS10BY8 + -- : BFD_RELOC_SH_IMMS16 + -- : BFD_RELOC_SH_IMMU16 + -- : BFD_RELOC_SH_IMM_LOW16 + -- : BFD_RELOC_SH_IMM_LOW16_PCREL + -- : BFD_RELOC_SH_IMM_MEDLOW16 + -- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL + -- : BFD_RELOC_SH_IMM_MEDHI16 + -- : BFD_RELOC_SH_IMM_MEDHI16_PCREL + -- : BFD_RELOC_SH_IMM_HI16 + -- : BFD_RELOC_SH_IMM_HI16_PCREL + -- : BFD_RELOC_SH_PT_16 + -- : BFD_RELOC_SH_TLS_GD_32 + -- : BFD_RELOC_SH_TLS_LD_32 + -- : BFD_RELOC_SH_TLS_LDO_32 + -- : BFD_RELOC_SH_TLS_IE_32 + -- : BFD_RELOC_SH_TLS_LE_32 + -- : BFD_RELOC_SH_TLS_DTPMOD32 + -- : BFD_RELOC_SH_TLS_DTPOFF32 + -- : BFD_RELOC_SH_TLS_TPOFF32 + Renesas / SuperH SH relocs. Not all of these appear in object + files. + + -- : BFD_RELOC_ARC_B22_PCREL + ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two + bits must be zero and are not stored in the instruction. The high + 20 bits are installed in bits 26 through 7 of the instruction. + + -- : BFD_RELOC_ARC_B26 + ARC 26 bit absolute branch. The lowest two bits must be zero and + are not stored in the instruction. The high 24 bits are installed + in bits 23 through 0. + + -- : BFD_RELOC_BFIN_16_IMM + ADI Blackfin 16 bit immediate absolute reloc. + + -- : BFD_RELOC_BFIN_16_HIGH + ADI Blackfin 16 bit immediate absolute reloc higher 16 bits. + + -- : BFD_RELOC_BFIN_4_PCREL + ADI Blackfin 'a' part of LSETUP. + + -- : BFD_RELOC_BFIN_5_PCREL + ADI Blackfin. + + -- : BFD_RELOC_BFIN_16_LOW + ADI Blackfin 16 bit immediate absolute reloc lower 16 bits. + + -- : BFD_RELOC_BFIN_10_PCREL + ADI Blackfin. + + -- : BFD_RELOC_BFIN_11_PCREL + ADI Blackfin 'b' part of LSETUP. + + -- : BFD_RELOC_BFIN_12_PCREL_JUMP + ADI Blackfin. + + -- : BFD_RELOC_BFIN_12_PCREL_JUMP_S + ADI Blackfin Short jump, pcrel. + + -- : BFD_RELOC_BFIN_24_PCREL_CALL_X + ADI Blackfin Call.x not implemented. + + -- : BFD_RELOC_BFIN_24_PCREL_JUMP_L + ADI Blackfin Long Jump pcrel. + + -- : BFD_RELOC_BFIN_GOT17M4 + -- : BFD_RELOC_BFIN_GOTHI + -- : BFD_RELOC_BFIN_GOTLO + -- : BFD_RELOC_BFIN_FUNCDESC + -- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4 + -- : BFD_RELOC_BFIN_FUNCDESC_GOTHI + -- : BFD_RELOC_BFIN_FUNCDESC_GOTLO + -- : BFD_RELOC_BFIN_FUNCDESC_VALUE + -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4 + -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI + -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO + -- : BFD_RELOC_BFIN_GOTOFF17M4 + -- : BFD_RELOC_BFIN_GOTOFFHI + -- : BFD_RELOC_BFIN_GOTOFFLO + ADI Blackfin FD-PIC relocations. + + -- : BFD_RELOC_BFIN_GOT + ADI Blackfin GOT relocation. + + -- : BFD_RELOC_BFIN_PLTPC + ADI Blackfin PLTPC relocation. + + -- : BFD_ARELOC_BFIN_PUSH + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_CONST + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_ADD + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_SUB + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_MULT + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_DIV + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_MOD + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_LSHIFT + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_RSHIFT + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_AND + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_OR + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_XOR + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_LAND + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_LOR + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_LEN + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_NEG + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_COMP + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_PAGE + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_HWPAGE + ADI Blackfin arithmetic relocation. + + -- : BFD_ARELOC_BFIN_ADDR + ADI Blackfin arithmetic relocation. + + -- : BFD_RELOC_D10V_10_PCREL_R + Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 + bits assumed to be 0. + + -- : BFD_RELOC_D10V_10_PCREL_L + Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 + bits assumed to be 0. This is the same as the previous reloc + except it is in the left container, i.e., shifted left 15 bits. + + -- : BFD_RELOC_D10V_18 + This is an 18-bit reloc with the right 2 bits assumed to be 0. + + -- : BFD_RELOC_D10V_18_PCREL + This is an 18-bit reloc with the right 2 bits assumed to be 0. + + -- : BFD_RELOC_D30V_6 + Mitsubishi D30V relocs. This is a 6-bit absolute reloc. + + -- : BFD_RELOC_D30V_9_PCREL + This is a 6-bit pc-relative reloc with the right 3 bits assumed to + be 0. + + -- : BFD_RELOC_D30V_9_PCREL_R + This is a 6-bit pc-relative reloc with the right 3 bits assumed to + be 0. Same as the previous reloc but on the right side of the + container. + + -- : BFD_RELOC_D30V_15 + This is a 12-bit absolute reloc with the right 3 bitsassumed to be + 0. + + -- : BFD_RELOC_D30V_15_PCREL + This is a 12-bit pc-relative reloc with the right 3 bits assumed + to be 0. + + -- : BFD_RELOC_D30V_15_PCREL_R + This is a 12-bit pc-relative reloc with the right 3 bits assumed + to be 0. Same as the previous reloc but on the right side of the + container. + + -- : BFD_RELOC_D30V_21 + This is an 18-bit absolute reloc with the right 3 bits assumed to + be 0. + + -- : BFD_RELOC_D30V_21_PCREL + This is an 18-bit pc-relative reloc with the right 3 bits assumed + to be 0. + + -- : BFD_RELOC_D30V_21_PCREL_R + This is an 18-bit pc-relative reloc with the right 3 bits assumed + to be 0. Same as the previous reloc but on the right side of the + container. + + -- : BFD_RELOC_D30V_32 + This is a 32-bit absolute reloc. + + -- : BFD_RELOC_D30V_32_PCREL + This is a 32-bit pc-relative reloc. + + -- : BFD_RELOC_DLX_HI16_S + DLX relocs + + -- : BFD_RELOC_DLX_LO16 + DLX relocs + + -- : BFD_RELOC_DLX_JMP26 + DLX relocs + + -- : BFD_RELOC_M32C_HI8 + -- : BFD_RELOC_M32C_RL_JUMP + -- : BFD_RELOC_M32C_RL_1ADDR + -- : BFD_RELOC_M32C_RL_2ADDR + Renesas M16C/M32C Relocations. + + -- : BFD_RELOC_M32R_24 + Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit + absolute address. + + -- : BFD_RELOC_M32R_10_PCREL + This is a 10-bit pc-relative reloc with the right 2 bits assumed + to be 0. + + -- : BFD_RELOC_M32R_18_PCREL + This is an 18-bit reloc with the right 2 bits assumed to be 0. + + -- : BFD_RELOC_M32R_26_PCREL + This is a 26-bit reloc with the right 2 bits assumed to be 0. + + -- : BFD_RELOC_M32R_HI16_ULO + This is a 16-bit reloc containing the high 16 bits of an address + used when the lower 16 bits are treated as unsigned. + + -- : BFD_RELOC_M32R_HI16_SLO + This is a 16-bit reloc containing the high 16 bits of an address + used when the lower 16 bits are treated as signed. + + -- : BFD_RELOC_M32R_LO16 + This is a 16-bit reloc containing the lower 16 bits of an address. + + -- : BFD_RELOC_M32R_SDA16 + This is a 16-bit reloc containing the small data area offset for + use in add3, load, and store instructions. + + -- : BFD_RELOC_M32R_GOT24 + -- : BFD_RELOC_M32R_26_PLTREL + -- : BFD_RELOC_M32R_COPY + -- : BFD_RELOC_M32R_GLOB_DAT + -- : BFD_RELOC_M32R_JMP_SLOT + -- : BFD_RELOC_M32R_RELATIVE + -- : BFD_RELOC_M32R_GOTOFF + -- : BFD_RELOC_M32R_GOTOFF_HI_ULO + -- : BFD_RELOC_M32R_GOTOFF_HI_SLO + -- : BFD_RELOC_M32R_GOTOFF_LO + -- : BFD_RELOC_M32R_GOTPC24 + -- : BFD_RELOC_M32R_GOT16_HI_ULO + -- : BFD_RELOC_M32R_GOT16_HI_SLO + -- : BFD_RELOC_M32R_GOT16_LO + -- : BFD_RELOC_M32R_GOTPC_HI_ULO + -- : BFD_RELOC_M32R_GOTPC_HI_SLO + -- : BFD_RELOC_M32R_GOTPC_LO + For PIC. + + -- : BFD_RELOC_V850_9_PCREL + This is a 9-bit reloc + + -- : BFD_RELOC_V850_22_PCREL + This is a 22-bit reloc + + -- : BFD_RELOC_V850_SDA_16_16_OFFSET + This is a 16 bit offset from the short data area pointer. + + -- : BFD_RELOC_V850_SDA_15_16_OFFSET + This is a 16 bit offset (of which only 15 bits are used) from the + short data area pointer. + + -- : BFD_RELOC_V850_ZDA_16_16_OFFSET + This is a 16 bit offset from the zero data area pointer. + + -- : BFD_RELOC_V850_ZDA_15_16_OFFSET + This is a 16 bit offset (of which only 15 bits are used) from the + zero data area pointer. + + -- : BFD_RELOC_V850_TDA_6_8_OFFSET + This is an 8 bit offset (of which only 6 bits are used) from the + tiny data area pointer. + + -- : BFD_RELOC_V850_TDA_7_8_OFFSET + This is an 8bit offset (of which only 7 bits are used) from the + tiny data area pointer. + + -- : BFD_RELOC_V850_TDA_7_7_OFFSET + This is a 7 bit offset from the tiny data area pointer. + + -- : BFD_RELOC_V850_TDA_16_16_OFFSET + This is a 16 bit offset from the tiny data area pointer. + + -- : BFD_RELOC_V850_TDA_4_5_OFFSET + This is a 5 bit offset (of which only 4 bits are used) from the + tiny data area pointer. + + -- : BFD_RELOC_V850_TDA_4_4_OFFSET + This is a 4 bit offset from the tiny data area pointer. + + -- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET + This is a 16 bit offset from the short data area pointer, with the + bits placed non-contiguously in the instruction. + + -- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET + This is a 16 bit offset from the zero data area pointer, with the + bits placed non-contiguously in the instruction. + + -- : BFD_RELOC_V850_CALLT_6_7_OFFSET + This is a 6 bit offset from the call table base pointer. + + -- : BFD_RELOC_V850_CALLT_16_16_OFFSET + This is a 16 bit offset from the call table base pointer. + + -- : BFD_RELOC_V850_LONGCALL + Used for relaxing indirect function calls. + + -- : BFD_RELOC_V850_LONGJUMP + Used for relaxing indirect jumps. + + -- : BFD_RELOC_V850_ALIGN + Used to maintain alignment whilst relaxing. + + -- : BFD_RELOC_V850_LO16_SPLIT_OFFSET + This is a variation of BFD_RELOC_LO16 that can be used in v850e + ld.bu instructions. + + -- : BFD_RELOC_MN10300_32_PCREL + This is a 32bit pcrel reloc for the mn10300, offset by two bytes + in the instruction. + + -- : BFD_RELOC_MN10300_16_PCREL + This is a 16bit pcrel reloc for the mn10300, offset by two bytes + in the instruction. + + -- : BFD_RELOC_TIC30_LDP + This is a 8bit DP reloc for the tms320c30, where the most + significant 8 bits of a 24 bit word are placed into the least + significant 8 bits of the opcode. + + -- : BFD_RELOC_TIC54X_PARTLS7 + This is a 7bit reloc for the tms320c54x, where the least + significant 7 bits of a 16 bit word are placed into the least + significant 7 bits of the opcode. + + -- : BFD_RELOC_TIC54X_PARTMS9 + This is a 9bit DP reloc for the tms320c54x, where the most + significant 9 bits of a 16 bit word are placed into the least + significant 9 bits of the opcode. + + -- : BFD_RELOC_TIC54X_23 + This is an extended address 23-bit reloc for the tms320c54x. + + -- : BFD_RELOC_TIC54X_16_OF_23 + This is a 16-bit reloc for the tms320c54x, where the least + significant 16 bits of a 23-bit extended address are placed into + the opcode. + + -- : BFD_RELOC_TIC54X_MS7_OF_23 + This is a reloc for the tms320c54x, where the most significant 7 + bits of a 23-bit extended address are placed into the opcode. + + -- : BFD_RELOC_FR30_48 + This is a 48 bit reloc for the FR30 that stores 32 bits. + + -- : BFD_RELOC_FR30_20 + This is a 32 bit reloc for the FR30 that stores 20 bits split up + into two sections. + + -- : BFD_RELOC_FR30_6_IN_4 + This is a 16 bit reloc for the FR30 that stores a 6 bit word + offset in 4 bits. + + -- : BFD_RELOC_FR30_8_IN_8 + This is a 16 bit reloc for the FR30 that stores an 8 bit byte + offset into 8 bits. + + -- : BFD_RELOC_FR30_9_IN_8 + This is a 16 bit reloc for the FR30 that stores a 9 bit short + offset into 8 bits. + + -- : BFD_RELOC_FR30_10_IN_8 + This is a 16 bit reloc for the FR30 that stores a 10 bit word + offset into 8 bits. + + -- : BFD_RELOC_FR30_9_PCREL + This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative + short offset into 8 bits. + + -- : BFD_RELOC_FR30_12_PCREL + This is a 16 bit reloc for the FR30 that stores a 12 bit pc + relative short offset into 11 bits. + + -- : BFD_RELOC_MCORE_PCREL_IMM8BY4 + -- : BFD_RELOC_MCORE_PCREL_IMM11BY2 + -- : BFD_RELOC_MCORE_PCREL_IMM4BY2 + -- : BFD_RELOC_MCORE_PCREL_32 + -- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 + -- : BFD_RELOC_MCORE_RVA + Motorola Mcore relocations. + + -- : BFD_RELOC_MEP_8 + -- : BFD_RELOC_MEP_16 + -- : BFD_RELOC_MEP_32 + -- : BFD_RELOC_MEP_PCREL8A2 + -- : BFD_RELOC_MEP_PCREL12A2 + -- : BFD_RELOC_MEP_PCREL17A2 + -- : BFD_RELOC_MEP_PCREL24A2 + -- : BFD_RELOC_MEP_PCABS24A2 + -- : BFD_RELOC_MEP_LOW16 + -- : BFD_RELOC_MEP_HI16U + -- : BFD_RELOC_MEP_HI16S + -- : BFD_RELOC_MEP_GPREL + -- : BFD_RELOC_MEP_TPREL + -- : BFD_RELOC_MEP_TPREL7 + -- : BFD_RELOC_MEP_TPREL7A2 + -- : BFD_RELOC_MEP_TPREL7A4 + -- : BFD_RELOC_MEP_UIMM24 + -- : BFD_RELOC_MEP_ADDR24A4 + -- : BFD_RELOC_MEP_GNU_VTINHERIT + -- : BFD_RELOC_MEP_GNU_VTENTRY + Toshiba Media Processor Relocations. + + -- : BFD_RELOC_MMIX_GETA + -- : BFD_RELOC_MMIX_GETA_1 + -- : BFD_RELOC_MMIX_GETA_2 + -- : BFD_RELOC_MMIX_GETA_3 + These are relocations for the GETA instruction. + + -- : BFD_RELOC_MMIX_CBRANCH + -- : BFD_RELOC_MMIX_CBRANCH_J + -- : BFD_RELOC_MMIX_CBRANCH_1 + -- : BFD_RELOC_MMIX_CBRANCH_2 + -- : BFD_RELOC_MMIX_CBRANCH_3 + These are relocations for a conditional branch instruction. + + -- : BFD_RELOC_MMIX_PUSHJ + -- : BFD_RELOC_MMIX_PUSHJ_1 + -- : BFD_RELOC_MMIX_PUSHJ_2 + -- : BFD_RELOC_MMIX_PUSHJ_3 + -- : BFD_RELOC_MMIX_PUSHJ_STUBBABLE + These are relocations for the PUSHJ instruction. + + -- : BFD_RELOC_MMIX_JMP + -- : BFD_RELOC_MMIX_JMP_1 + -- : BFD_RELOC_MMIX_JMP_2 + -- : BFD_RELOC_MMIX_JMP_3 + These are relocations for the JMP instruction. + + -- : BFD_RELOC_MMIX_ADDR19 + This is a relocation for a relative address as in a GETA + instruction or a branch. + + -- : BFD_RELOC_MMIX_ADDR27 + This is a relocation for a relative address as in a JMP + instruction. + + -- : BFD_RELOC_MMIX_REG_OR_BYTE + This is a relocation for an instruction field that may be a general + register or a value 0..255. + + -- : BFD_RELOC_MMIX_REG + This is a relocation for an instruction field that may be a general + register. + + -- : BFD_RELOC_MMIX_BASE_PLUS_OFFSET + This is a relocation for two instruction fields holding a register + and an offset, the equivalent of the relocation. + + -- : BFD_RELOC_MMIX_LOCAL + This relocation is an assertion that the expression is not + allocated as a global register. It does not modify contents. + + -- : BFD_RELOC_AVR_7_PCREL + This is a 16 bit reloc for the AVR that stores 8 bit pc relative + short offset into 7 bits. + + -- : BFD_RELOC_AVR_13_PCREL + This is a 16 bit reloc for the AVR that stores 13 bit pc relative + short offset into 12 bits. + + -- : BFD_RELOC_AVR_16_PM + This is a 16 bit reloc for the AVR that stores 17 bit value + (usually program memory address) into 16 bits. + + -- : BFD_RELOC_AVR_LO8_LDI + This is a 16 bit reloc for the AVR that stores 8 bit value (usually + data memory address) into 8 bit immediate value of LDI insn. + + -- : BFD_RELOC_AVR_HI8_LDI + This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 + bit of data memory address) into 8 bit immediate value of LDI insn. + + -- : BFD_RELOC_AVR_HH8_LDI + This is a 16 bit reloc for the AVR that stores 8 bit value (most + high 8 bit of program memory address) into 8 bit immediate value + of LDI insn. + + -- : BFD_RELOC_AVR_MS8_LDI + This is a 16 bit reloc for the AVR that stores 8 bit value (most + high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn. + + -- : BFD_RELOC_AVR_LO8_LDI_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (usually data memory address) into 8 bit immediate value of SUBI + insn. + + -- : BFD_RELOC_AVR_HI8_LDI_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (high 8 bit of data memory address) into 8 bit immediate value of + SUBI insn. + + -- : BFD_RELOC_AVR_HH8_LDI_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (most high 8 bit of program memory address) into 8 bit immediate + value of LDI or SUBI insn. + + -- : BFD_RELOC_AVR_MS8_LDI_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (msb of 32 bit value) into 8 bit immediate value of LDI insn. + + -- : BFD_RELOC_AVR_LO8_LDI_PM + This is a 16 bit reloc for the AVR that stores 8 bit value (usually + command address) into 8 bit immediate value of LDI insn. + + -- : BFD_RELOC_AVR_LO8_LDI_GS + This is a 16 bit reloc for the AVR that stores 8 bit value + (command address) into 8 bit immediate value of LDI insn. If the + address is beyond the 128k boundary, the linker inserts a jump + stub for this reloc in the lower 128k. + + -- : BFD_RELOC_AVR_HI8_LDI_PM + This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 + bit of command address) into 8 bit immediate value of LDI insn. + + -- : BFD_RELOC_AVR_HI8_LDI_GS + This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 + bit of command address) into 8 bit immediate value of LDI insn. + If the address is beyond the 128k boundary, the linker inserts a + jump stub for this reloc below 128k. + + -- : BFD_RELOC_AVR_HH8_LDI_PM + This is a 16 bit reloc for the AVR that stores 8 bit value (most + high 8 bit of command address) into 8 bit immediate value of LDI + insn. + + -- : BFD_RELOC_AVR_LO8_LDI_PM_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (usually command address) into 8 bit immediate value of SUBI insn. + + -- : BFD_RELOC_AVR_HI8_LDI_PM_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (high 8 bit of 16 bit command address) into 8 bit immediate value + of SUBI insn. + + -- : BFD_RELOC_AVR_HH8_LDI_PM_NEG + This is a 16 bit reloc for the AVR that stores negated 8 bit value + (high 6 bit of 22 bit command address) into 8 bit immediate value + of SUBI insn. + + -- : BFD_RELOC_AVR_CALL + This is a 32 bit reloc for the AVR that stores 23 bit value into + 22 bits. + + -- : BFD_RELOC_AVR_LDI + This is a 16 bit reloc for the AVR that stores all needed bits for + absolute addressing with ldi with overflow check to linktime + + -- : BFD_RELOC_AVR_6 + This is a 6 bit reloc for the AVR that stores offset for ldd/std + instructions + + -- : BFD_RELOC_AVR_6_ADIW + This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw + instructions + + -- : BFD_RELOC_390_12 + Direct 12 bit. + + -- : BFD_RELOC_390_GOT12 + 12 bit GOT offset. + + -- : BFD_RELOC_390_PLT32 + 32 bit PC relative PLT address. + + -- : BFD_RELOC_390_COPY + Copy symbol at runtime. + + -- : BFD_RELOC_390_GLOB_DAT + Create GOT entry. + + -- : BFD_RELOC_390_JMP_SLOT + Create PLT entry. + + -- : BFD_RELOC_390_RELATIVE + Adjust by program base. + + -- : BFD_RELOC_390_GOTPC + 32 bit PC relative offset to GOT. + + -- : BFD_RELOC_390_GOT16 + 16 bit GOT offset. + + -- : BFD_RELOC_390_PC16DBL + PC relative 16 bit shifted by 1. + + -- : BFD_RELOC_390_PLT16DBL + 16 bit PC rel. PLT shifted by 1. + + -- : BFD_RELOC_390_PC32DBL + PC relative 32 bit shifted by 1. + + -- : BFD_RELOC_390_PLT32DBL + 32 bit PC rel. PLT shifted by 1. + + -- : BFD_RELOC_390_GOTPCDBL + 32 bit PC rel. GOT shifted by 1. + + -- : BFD_RELOC_390_GOT64 + 64 bit GOT offset. + + -- : BFD_RELOC_390_PLT64 + 64 bit PC relative PLT address. + + -- : BFD_RELOC_390_GOTENT + 32 bit rel. offset to GOT entry. + + -- : BFD_RELOC_390_GOTOFF64 + 64 bit offset to GOT. + + -- : BFD_RELOC_390_GOTPLT12 + 12-bit offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_390_GOTPLT16 + 16-bit offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_390_GOTPLT32 + 32-bit offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_390_GOTPLT64 + 64-bit offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_390_GOTPLTENT + 32-bit rel. offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_390_PLTOFF16 + 16-bit rel. offset from the GOT to a PLT entry. + + -- : BFD_RELOC_390_PLTOFF32 + 32-bit rel. offset from the GOT to a PLT entry. + + -- : BFD_RELOC_390_PLTOFF64 + 64-bit rel. offset from the GOT to a PLT entry. + + -- : BFD_RELOC_390_TLS_LOAD + -- : BFD_RELOC_390_TLS_GDCALL + -- : BFD_RELOC_390_TLS_LDCALL + -- : BFD_RELOC_390_TLS_GD32 + -- : BFD_RELOC_390_TLS_GD64 + -- : BFD_RELOC_390_TLS_GOTIE12 + -- : BFD_RELOC_390_TLS_GOTIE32 + -- : BFD_RELOC_390_TLS_GOTIE64 + -- : BFD_RELOC_390_TLS_LDM32 + -- : BFD_RELOC_390_TLS_LDM64 + -- : BFD_RELOC_390_TLS_IE32 + -- : BFD_RELOC_390_TLS_IE64 + -- : BFD_RELOC_390_TLS_IEENT + -- : BFD_RELOC_390_TLS_LE32 + -- : BFD_RELOC_390_TLS_LE64 + -- : BFD_RELOC_390_TLS_LDO32 + -- : BFD_RELOC_390_TLS_LDO64 + -- : BFD_RELOC_390_TLS_DTPMOD + -- : BFD_RELOC_390_TLS_DTPOFF + -- : BFD_RELOC_390_TLS_TPOFF + s390 tls relocations. + + -- : BFD_RELOC_390_20 + -- : BFD_RELOC_390_GOT20 + -- : BFD_RELOC_390_GOTPLT20 + -- : BFD_RELOC_390_TLS_GOTIE20 + Long displacement extension. + + -- : BFD_RELOC_SCORE_DUMMY1 + Score relocations + + -- : BFD_RELOC_SCORE_GPREL15 + Low 16 bit for load/store + + -- : BFD_RELOC_SCORE_DUMMY2 + -- : BFD_RELOC_SCORE_JMP + This is a 24-bit reloc with the right 1 bit assumed to be 0 + + -- : BFD_RELOC_SCORE_BRANCH + This is a 19-bit reloc with the right 1 bit assumed to be 0 + + -- : BFD_RELOC_SCORE16_JMP + This is a 11-bit reloc with the right 1 bit assumed to be 0 + + -- : BFD_RELOC_SCORE16_BRANCH + This is a 8-bit reloc with the right 1 bit assumed to be 0 + + -- : BFD_RELOC_SCORE_GOT15 + -- : BFD_RELOC_SCORE_GOT_LO16 + -- : BFD_RELOC_SCORE_CALL15 + -- : BFD_RELOC_SCORE_DUMMY_HI16 + Undocumented Score relocs + + -- : BFD_RELOC_IP2K_FR9 + Scenix IP2K - 9-bit register number / data address + + -- : BFD_RELOC_IP2K_BANK + Scenix IP2K - 4-bit register/data bank number + + -- : BFD_RELOC_IP2K_ADDR16CJP + Scenix IP2K - low 13 bits of instruction word address + + -- : BFD_RELOC_IP2K_PAGE3 + Scenix IP2K - high 3 bits of instruction word address + + -- : BFD_RELOC_IP2K_LO8DATA + -- : BFD_RELOC_IP2K_HI8DATA + -- : BFD_RELOC_IP2K_EX8DATA + Scenix IP2K - ext/low/high 8 bits of data address + + -- : BFD_RELOC_IP2K_LO8INSN + -- : BFD_RELOC_IP2K_HI8INSN + Scenix IP2K - low/high 8 bits of instruction word address + + -- : BFD_RELOC_IP2K_PC_SKIP + Scenix IP2K - even/odd PC modifier to modify snb pcl.0 + + -- : BFD_RELOC_IP2K_TEXT + Scenix IP2K - 16 bit word address in text section. + + -- : BFD_RELOC_IP2K_FR_OFFSET + Scenix IP2K - 7-bit sp or dp offset + + -- : BFD_RELOC_VPE4KMATH_DATA + -- : BFD_RELOC_VPE4KMATH_INSN + Scenix VPE4K coprocessor - data/insn-space addressing + + -- : BFD_RELOC_VTABLE_INHERIT + -- : BFD_RELOC_VTABLE_ENTRY + These two relocations are used by the linker to determine which of + the entries in a C++ virtual function table are actually used. + When the -gc-sections option is given, the linker will zero out + the entries that are not used, so that the code for those + functions need not be included in the output. + + VTABLE_INHERIT is a zero-space relocation used to describe to the + linker the inheritance tree of a C++ virtual function table. The + relocation's symbol should be the parent class' vtable, and the + relocation should be located at the child vtable. + + VTABLE_ENTRY is a zero-space relocation that describes the use of a + virtual function table entry. The reloc's symbol should refer to + the table of the class mentioned in the code. Off of that base, + an offset describes the entry that is being used. For Rela hosts, + this offset is stored in the reloc's addend. For Rel hosts, we + are forced to put this offset in the reloc's section offset. + + -- : BFD_RELOC_IA64_IMM14 + -- : BFD_RELOC_IA64_IMM22 + -- : BFD_RELOC_IA64_IMM64 + -- : BFD_RELOC_IA64_DIR32MSB + -- : BFD_RELOC_IA64_DIR32LSB + -- : BFD_RELOC_IA64_DIR64MSB + -- : BFD_RELOC_IA64_DIR64LSB + -- : BFD_RELOC_IA64_GPREL22 + -- : BFD_RELOC_IA64_GPREL64I + -- : BFD_RELOC_IA64_GPREL32MSB + -- : BFD_RELOC_IA64_GPREL32LSB + -- : BFD_RELOC_IA64_GPREL64MSB + -- : BFD_RELOC_IA64_GPREL64LSB + -- : BFD_RELOC_IA64_LTOFF22 + -- : BFD_RELOC_IA64_LTOFF64I + -- : BFD_RELOC_IA64_PLTOFF22 + -- : BFD_RELOC_IA64_PLTOFF64I + -- : BFD_RELOC_IA64_PLTOFF64MSB + -- : BFD_RELOC_IA64_PLTOFF64LSB + -- : BFD_RELOC_IA64_FPTR64I + -- : BFD_RELOC_IA64_FPTR32MSB + -- : BFD_RELOC_IA64_FPTR32LSB + -- : BFD_RELOC_IA64_FPTR64MSB + -- : BFD_RELOC_IA64_FPTR64LSB + -- : BFD_RELOC_IA64_PCREL21B + -- : BFD_RELOC_IA64_PCREL21BI + -- : BFD_RELOC_IA64_PCREL21M + -- : BFD_RELOC_IA64_PCREL21F + -- : BFD_RELOC_IA64_PCREL22 + -- : BFD_RELOC_IA64_PCREL60B + -- : BFD_RELOC_IA64_PCREL64I + -- : BFD_RELOC_IA64_PCREL32MSB + -- : BFD_RELOC_IA64_PCREL32LSB + -- : BFD_RELOC_IA64_PCREL64MSB + -- : BFD_RELOC_IA64_PCREL64LSB + -- : BFD_RELOC_IA64_LTOFF_FPTR22 + -- : BFD_RELOC_IA64_LTOFF_FPTR64I + -- : BFD_RELOC_IA64_LTOFF_FPTR32MSB + -- : BFD_RELOC_IA64_LTOFF_FPTR32LSB + -- : BFD_RELOC_IA64_LTOFF_FPTR64MSB + -- : BFD_RELOC_IA64_LTOFF_FPTR64LSB + -- : BFD_RELOC_IA64_SEGREL32MSB + -- : BFD_RELOC_IA64_SEGREL32LSB + -- : BFD_RELOC_IA64_SEGREL64MSB + -- : BFD_RELOC_IA64_SEGREL64LSB + -- : BFD_RELOC_IA64_SECREL32MSB + -- : BFD_RELOC_IA64_SECREL32LSB + -- : BFD_RELOC_IA64_SECREL64MSB + -- : BFD_RELOC_IA64_SECREL64LSB + -- : BFD_RELOC_IA64_REL32MSB + -- : BFD_RELOC_IA64_REL32LSB + -- : BFD_RELOC_IA64_REL64MSB + -- : BFD_RELOC_IA64_REL64LSB + -- : BFD_RELOC_IA64_LTV32MSB + -- : BFD_RELOC_IA64_LTV32LSB + -- : BFD_RELOC_IA64_LTV64MSB + -- : BFD_RELOC_IA64_LTV64LSB + -- : BFD_RELOC_IA64_IPLTMSB + -- : BFD_RELOC_IA64_IPLTLSB + -- : BFD_RELOC_IA64_COPY + -- : BFD_RELOC_IA64_LTOFF22X + -- : BFD_RELOC_IA64_LDXMOV + -- : BFD_RELOC_IA64_TPREL14 + -- : BFD_RELOC_IA64_TPREL22 + -- : BFD_RELOC_IA64_TPREL64I + -- : BFD_RELOC_IA64_TPREL64MSB + -- : BFD_RELOC_IA64_TPREL64LSB + -- : BFD_RELOC_IA64_LTOFF_TPREL22 + -- : BFD_RELOC_IA64_DTPMOD64MSB + -- : BFD_RELOC_IA64_DTPMOD64LSB + -- : BFD_RELOC_IA64_LTOFF_DTPMOD22 + -- : BFD_RELOC_IA64_DTPREL14 + -- : BFD_RELOC_IA64_DTPREL22 + -- : BFD_RELOC_IA64_DTPREL64I + -- : BFD_RELOC_IA64_DTPREL32MSB + -- : BFD_RELOC_IA64_DTPREL32LSB + -- : BFD_RELOC_IA64_DTPREL64MSB + -- : BFD_RELOC_IA64_DTPREL64LSB + -- : BFD_RELOC_IA64_LTOFF_DTPREL22 + Intel IA64 Relocations. + + -- : BFD_RELOC_M68HC11_HI8 + Motorola 68HC11 reloc. This is the 8 bit high part of an absolute + address. + + -- : BFD_RELOC_M68HC11_LO8 + Motorola 68HC11 reloc. This is the 8 bit low part of an absolute + address. + + -- : BFD_RELOC_M68HC11_3B + Motorola 68HC11 reloc. This is the 3 bit of a value. + + -- : BFD_RELOC_M68HC11_RL_JUMP + Motorola 68HC11 reloc. This reloc marks the beginning of a + jump/call instruction. It is used for linker relaxation to + correctly identify beginning of instruction and change some + branches to use PC-relative addressing mode. + + -- : BFD_RELOC_M68HC11_RL_GROUP + Motorola 68HC11 reloc. This reloc marks a group of several + instructions that gcc generates and for which the linker + relaxation pass can modify and/or remove some of them. + + -- : BFD_RELOC_M68HC11_LO16 + Motorola 68HC11 reloc. This is the 16-bit lower part of an + address. It is used for 'call' instruction to specify the symbol + address without any special transformation (due to memory bank + window). + + -- : BFD_RELOC_M68HC11_PAGE + Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the + page number of an address. It is used by 'call' instruction to + specify the page number of the symbol. + + -- : BFD_RELOC_M68HC11_24 + Motorola 68HC11 reloc. This is a 24-bit reloc that represents the + address with a 16-bit value and a 8-bit page number. The symbol + address is transformed to follow the 16K memory bank of 68HC12 + (seen as mapped in the window). + + -- : BFD_RELOC_M68HC12_5B + Motorola 68HC12 reloc. This is the 5 bits of a value. + + -- : BFD_RELOC_16C_NUM08 + -- : BFD_RELOC_16C_NUM08_C + -- : BFD_RELOC_16C_NUM16 + -- : BFD_RELOC_16C_NUM16_C + -- : BFD_RELOC_16C_NUM32 + -- : BFD_RELOC_16C_NUM32_C + -- : BFD_RELOC_16C_DISP04 + -- : BFD_RELOC_16C_DISP04_C + -- : BFD_RELOC_16C_DISP08 + -- : BFD_RELOC_16C_DISP08_C + -- : BFD_RELOC_16C_DISP16 + -- : BFD_RELOC_16C_DISP16_C + -- : BFD_RELOC_16C_DISP24 + -- : BFD_RELOC_16C_DISP24_C + -- : BFD_RELOC_16C_DISP24a + -- : BFD_RELOC_16C_DISP24a_C + -- : BFD_RELOC_16C_REG04 + -- : BFD_RELOC_16C_REG04_C + -- : BFD_RELOC_16C_REG04a + -- : BFD_RELOC_16C_REG04a_C + -- : BFD_RELOC_16C_REG14 + -- : BFD_RELOC_16C_REG14_C + -- : BFD_RELOC_16C_REG16 + -- : BFD_RELOC_16C_REG16_C + -- : BFD_RELOC_16C_REG20 + -- : BFD_RELOC_16C_REG20_C + -- : BFD_RELOC_16C_ABS20 + -- : BFD_RELOC_16C_ABS20_C + -- : BFD_RELOC_16C_ABS24 + -- : BFD_RELOC_16C_ABS24_C + -- : BFD_RELOC_16C_IMM04 + -- : BFD_RELOC_16C_IMM04_C + -- : BFD_RELOC_16C_IMM16 + -- : BFD_RELOC_16C_IMM16_C + -- : BFD_RELOC_16C_IMM20 + -- : BFD_RELOC_16C_IMM20_C + -- : BFD_RELOC_16C_IMM24 + -- : BFD_RELOC_16C_IMM24_C + -- : BFD_RELOC_16C_IMM32 + -- : BFD_RELOC_16C_IMM32_C + NS CR16C Relocations. + + -- : BFD_RELOC_CR16_NUM8 + -- : BFD_RELOC_CR16_NUM16 + -- : BFD_RELOC_CR16_NUM32 + -- : BFD_RELOC_CR16_NUM32a + -- : BFD_RELOC_CR16_REGREL0 + -- : BFD_RELOC_CR16_REGREL4 + -- : BFD_RELOC_CR16_REGREL4a + -- : BFD_RELOC_CR16_REGREL14 + -- : BFD_RELOC_CR16_REGREL14a + -- : BFD_RELOC_CR16_REGREL16 + -- : BFD_RELOC_CR16_REGREL20 + -- : BFD_RELOC_CR16_REGREL20a + -- : BFD_RELOC_CR16_ABS20 + -- : BFD_RELOC_CR16_ABS24 + -- : BFD_RELOC_CR16_IMM4 + -- : BFD_RELOC_CR16_IMM8 + -- : BFD_RELOC_CR16_IMM16 + -- : BFD_RELOC_CR16_IMM20 + -- : BFD_RELOC_CR16_IMM24 + -- : BFD_RELOC_CR16_IMM32 + -- : BFD_RELOC_CR16_IMM32a + -- : BFD_RELOC_CR16_DISP4 + -- : BFD_RELOC_CR16_DISP8 + -- : BFD_RELOC_CR16_DISP16 + -- : BFD_RELOC_CR16_DISP20 + -- : BFD_RELOC_CR16_DISP24 + -- : BFD_RELOC_CR16_DISP24a + -- : BFD_RELOC_CR16_SWITCH8 + -- : BFD_RELOC_CR16_SWITCH16 + -- : BFD_RELOC_CR16_SWITCH32 + NS CR16 Relocations. + + -- : BFD_RELOC_CRX_REL4 + -- : BFD_RELOC_CRX_REL8 + -- : BFD_RELOC_CRX_REL8_CMP + -- : BFD_RELOC_CRX_REL16 + -- : BFD_RELOC_CRX_REL24 + -- : BFD_RELOC_CRX_REL32 + -- : BFD_RELOC_CRX_REGREL12 + -- : BFD_RELOC_CRX_REGREL22 + -- : BFD_RELOC_CRX_REGREL28 + -- : BFD_RELOC_CRX_REGREL32 + -- : BFD_RELOC_CRX_ABS16 + -- : BFD_RELOC_CRX_ABS32 + -- : BFD_RELOC_CRX_NUM8 + -- : BFD_RELOC_CRX_NUM16 + -- : BFD_RELOC_CRX_NUM32 + -- : BFD_RELOC_CRX_IMM16 + -- : BFD_RELOC_CRX_IMM32 + -- : BFD_RELOC_CRX_SWITCH8 + -- : BFD_RELOC_CRX_SWITCH16 + -- : BFD_RELOC_CRX_SWITCH32 + NS CRX Relocations. + + -- : BFD_RELOC_CRIS_BDISP8 + -- : BFD_RELOC_CRIS_UNSIGNED_5 + -- : BFD_RELOC_CRIS_SIGNED_6 + -- : BFD_RELOC_CRIS_UNSIGNED_6 + -- : BFD_RELOC_CRIS_SIGNED_8 + -- : BFD_RELOC_CRIS_UNSIGNED_8 + -- : BFD_RELOC_CRIS_SIGNED_16 + -- : BFD_RELOC_CRIS_UNSIGNED_16 + -- : BFD_RELOC_CRIS_LAPCQ_OFFSET + -- : BFD_RELOC_CRIS_UNSIGNED_4 + These relocs are only used within the CRIS assembler. They are not + (at present) written to any object files. + + -- : BFD_RELOC_CRIS_COPY + -- : BFD_RELOC_CRIS_GLOB_DAT + -- : BFD_RELOC_CRIS_JUMP_SLOT + -- : BFD_RELOC_CRIS_RELATIVE + Relocs used in ELF shared libraries for CRIS. + + -- : BFD_RELOC_CRIS_32_GOT + 32-bit offset to symbol-entry within GOT. + + -- : BFD_RELOC_CRIS_16_GOT + 16-bit offset to symbol-entry within GOT. + + -- : BFD_RELOC_CRIS_32_GOTPLT + 32-bit offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_CRIS_16_GOTPLT + 16-bit offset to symbol-entry within GOT, with PLT handling. + + -- : BFD_RELOC_CRIS_32_GOTREL + 32-bit offset to symbol, relative to GOT. + + -- : BFD_RELOC_CRIS_32_PLT_GOTREL + 32-bit offset to symbol with PLT entry, relative to GOT. + + -- : BFD_RELOC_CRIS_32_PLT_PCREL + 32-bit offset to symbol with PLT entry, relative to this + relocation. + + -- : BFD_RELOC_860_COPY + -- : BFD_RELOC_860_GLOB_DAT + -- : BFD_RELOC_860_JUMP_SLOT + -- : BFD_RELOC_860_RELATIVE + -- : BFD_RELOC_860_PC26 + -- : BFD_RELOC_860_PLT26 + -- : BFD_RELOC_860_PC16 + -- : BFD_RELOC_860_LOW0 + -- : BFD_RELOC_860_SPLIT0 + -- : BFD_RELOC_860_LOW1 + -- : BFD_RELOC_860_SPLIT1 + -- : BFD_RELOC_860_LOW2 + -- : BFD_RELOC_860_SPLIT2 + -- : BFD_RELOC_860_LOW3 + -- : BFD_RELOC_860_LOGOT0 + -- : BFD_RELOC_860_SPGOT0 + -- : BFD_RELOC_860_LOGOT1 + -- : BFD_RELOC_860_SPGOT1 + -- : BFD_RELOC_860_LOGOTOFF0 + -- : BFD_RELOC_860_SPGOTOFF0 + -- : BFD_RELOC_860_LOGOTOFF1 + -- : BFD_RELOC_860_SPGOTOFF1 + -- : BFD_RELOC_860_LOGOTOFF2 + -- : BFD_RELOC_860_LOGOTOFF3 + -- : BFD_RELOC_860_LOPC + -- : BFD_RELOC_860_HIGHADJ + -- : BFD_RELOC_860_HAGOT + -- : BFD_RELOC_860_HAGOTOFF + -- : BFD_RELOC_860_HAPC + -- : BFD_RELOC_860_HIGH + -- : BFD_RELOC_860_HIGOT + -- : BFD_RELOC_860_HIGOTOFF + Intel i860 Relocations. + + -- : BFD_RELOC_OPENRISC_ABS_26 + -- : BFD_RELOC_OPENRISC_REL_26 + OpenRISC Relocations. + + -- : BFD_RELOC_H8_DIR16A8 + -- : BFD_RELOC_H8_DIR16R8 + -- : BFD_RELOC_H8_DIR24A8 + -- : BFD_RELOC_H8_DIR24R8 + -- : BFD_RELOC_H8_DIR32A16 + H8 elf Relocations. + + -- : BFD_RELOC_XSTORMY16_REL_12 + -- : BFD_RELOC_XSTORMY16_12 + -- : BFD_RELOC_XSTORMY16_24 + -- : BFD_RELOC_XSTORMY16_FPTR16 + Sony Xstormy16 Relocations. + + -- : BFD_RELOC_RELC + Self-describing complex relocations. + + -- : BFD_RELOC_XC16X_PAG + -- : BFD_RELOC_XC16X_POF + -- : BFD_RELOC_XC16X_SEG + -- : BFD_RELOC_XC16X_SOF + Infineon Relocations. + + -- : BFD_RELOC_VAX_GLOB_DAT + -- : BFD_RELOC_VAX_JMP_SLOT + -- : BFD_RELOC_VAX_RELATIVE + Relocations used by VAX ELF. + + -- : BFD_RELOC_MT_PC16 + Morpho MT - 16 bit immediate relocation. + + -- : BFD_RELOC_MT_HI16 + Morpho MT - Hi 16 bits of an address. + + -- : BFD_RELOC_MT_LO16 + Morpho MT - Low 16 bits of an address. + + -- : BFD_RELOC_MT_GNU_VTINHERIT + Morpho MT - Used to tell the linker which vtable entries are used. + + -- : BFD_RELOC_MT_GNU_VTENTRY + Morpho MT - Used to tell the linker which vtable entries are used. + + -- : BFD_RELOC_MT_PCINSN8 + Morpho MT - 8 bit immediate relocation. + + -- : BFD_RELOC_MSP430_10_PCREL + -- : BFD_RELOC_MSP430_16_PCREL + -- : BFD_RELOC_MSP430_16 + -- : BFD_RELOC_MSP430_16_PCREL_BYTE + -- : BFD_RELOC_MSP430_16_BYTE + -- : BFD_RELOC_MSP430_2X_PCREL + -- : BFD_RELOC_MSP430_RL_PCREL + msp430 specific relocation codes + + -- : BFD_RELOC_IQ2000_OFFSET_16 + -- : BFD_RELOC_IQ2000_OFFSET_21 + -- : BFD_RELOC_IQ2000_UHI16 + IQ2000 Relocations. + + -- : BFD_RELOC_XTENSA_RTLD + Special Xtensa relocation used only by PLT entries in ELF shared + objects to indicate that the runtime linker should set the value + to one of its own internal functions or data structures. + + -- : BFD_RELOC_XTENSA_GLOB_DAT + -- : BFD_RELOC_XTENSA_JMP_SLOT + -- : BFD_RELOC_XTENSA_RELATIVE + Xtensa relocations for ELF shared objects. + + -- : BFD_RELOC_XTENSA_PLT + Xtensa relocation used in ELF object files for symbols that may + require PLT entries. Otherwise, this is just a generic 32-bit + relocation. + + -- : BFD_RELOC_XTENSA_DIFF8 + -- : BFD_RELOC_XTENSA_DIFF16 + -- : BFD_RELOC_XTENSA_DIFF32 + Xtensa relocations to mark the difference of two local symbols. + These are only needed to support linker relaxation and can be + ignored when not relaxing. The field is set to the value of the + difference assuming no relaxation. The relocation encodes the + position of the first symbol so the linker can determine whether + to adjust the field value. + + -- : BFD_RELOC_XTENSA_SLOT0_OP + -- : BFD_RELOC_XTENSA_SLOT1_OP + -- : BFD_RELOC_XTENSA_SLOT2_OP + -- : BFD_RELOC_XTENSA_SLOT3_OP + -- : BFD_RELOC_XTENSA_SLOT4_OP + -- : BFD_RELOC_XTENSA_SLOT5_OP + -- : BFD_RELOC_XTENSA_SLOT6_OP + -- : BFD_RELOC_XTENSA_SLOT7_OP + -- : BFD_RELOC_XTENSA_SLOT8_OP + -- : BFD_RELOC_XTENSA_SLOT9_OP + -- : BFD_RELOC_XTENSA_SLOT10_OP + -- : BFD_RELOC_XTENSA_SLOT11_OP + -- : BFD_RELOC_XTENSA_SLOT12_OP + -- : BFD_RELOC_XTENSA_SLOT13_OP + -- : BFD_RELOC_XTENSA_SLOT14_OP + Generic Xtensa relocations for instruction operands. Only the slot + number is encoded in the relocation. The relocation applies to the + last PC-relative immediate operand, or if there are no PC-relative + immediates, to the last immediate operand. + + -- : BFD_RELOC_XTENSA_SLOT0_ALT + -- : BFD_RELOC_XTENSA_SLOT1_ALT + -- : BFD_RELOC_XTENSA_SLOT2_ALT + -- : BFD_RELOC_XTENSA_SLOT3_ALT + -- : BFD_RELOC_XTENSA_SLOT4_ALT + -- : BFD_RELOC_XTENSA_SLOT5_ALT + -- : BFD_RELOC_XTENSA_SLOT6_ALT + -- : BFD_RELOC_XTENSA_SLOT7_ALT + -- : BFD_RELOC_XTENSA_SLOT8_ALT + -- : BFD_RELOC_XTENSA_SLOT9_ALT + -- : BFD_RELOC_XTENSA_SLOT10_ALT + -- : BFD_RELOC_XTENSA_SLOT11_ALT + -- : BFD_RELOC_XTENSA_SLOT12_ALT + -- : BFD_RELOC_XTENSA_SLOT13_ALT + -- : BFD_RELOC_XTENSA_SLOT14_ALT + Alternate Xtensa relocations. Only the slot is encoded in the + relocation. The meaning of these relocations is opcode-specific. + + -- : BFD_RELOC_XTENSA_OP0 + -- : BFD_RELOC_XTENSA_OP1 + -- : BFD_RELOC_XTENSA_OP2 + Xtensa relocations for backward compatibility. These have all been + replaced by BFD_RELOC_XTENSA_SLOT0_OP. + + -- : BFD_RELOC_XTENSA_ASM_EXPAND + Xtensa relocation to mark that the assembler expanded the + instructions from an original target. The expansion size is + encoded in the reloc size. + + -- : BFD_RELOC_XTENSA_ASM_SIMPLIFY + Xtensa relocation to mark that the linker should simplify + assembler-expanded instructions. This is commonly used internally + by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND. + + -- : BFD_RELOC_XTENSA_TLSDESC_FN + -- : BFD_RELOC_XTENSA_TLSDESC_ARG + -- : BFD_RELOC_XTENSA_TLS_DTPOFF + -- : BFD_RELOC_XTENSA_TLS_TPOFF + -- : BFD_RELOC_XTENSA_TLS_FUNC + -- : BFD_RELOC_XTENSA_TLS_ARG + -- : BFD_RELOC_XTENSA_TLS_CALL + Xtensa TLS relocations. + + -- : BFD_RELOC_Z80_DISP8 + 8 bit signed offset in (ix+d) or (iy+d). + + -- : BFD_RELOC_Z8K_DISP7 + DJNZ offset. + + -- : BFD_RELOC_Z8K_CALLR + CALR offset. + + -- : BFD_RELOC_Z8K_IMM4L + 4 bit value. + + + typedef enum bfd_reloc_code_real bfd_reloc_code_real_type; + +2.10.2.2 `bfd_reloc_type_lookup' +................................ + +*Synopsis* + reloc_howto_type *bfd_reloc_type_lookup + (bfd *abfd, bfd_reloc_code_real_type code); + reloc_howto_type *bfd_reloc_name_lookup + (bfd *abfd, const char *reloc_name); + *Description* +Return a pointer to a howto structure which, when invoked, will perform +the relocation CODE on data from the architecture noted. + +2.10.2.3 `bfd_default_reloc_type_lookup' +........................................ + +*Synopsis* + reloc_howto_type *bfd_default_reloc_type_lookup + (bfd *abfd, bfd_reloc_code_real_type code); + *Description* +Provides a default relocation lookup routine for any architecture. + +2.10.2.4 `bfd_get_reloc_code_name' +.................................. + +*Synopsis* + const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code); + *Description* +Provides a printable name for the supplied relocation code. Useful +mainly for printing error messages. + +2.10.2.5 `bfd_generic_relax_section' +.................................... + +*Synopsis* + bfd_boolean bfd_generic_relax_section + (bfd *abfd, + asection *section, + struct bfd_link_info *, + bfd_boolean *); + *Description* +Provides default handling for relaxing for back ends which don't do +relaxing. + +2.10.2.6 `bfd_generic_gc_sections' +.................................. + +*Synopsis* + bfd_boolean bfd_generic_gc_sections + (bfd *, struct bfd_link_info *); + *Description* +Provides default handling for relaxing for back ends which don't do +section gc - i.e., does nothing. + +2.10.2.7 `bfd_generic_merge_sections' +..................................... + +*Synopsis* + bfd_boolean bfd_generic_merge_sections + (bfd *, struct bfd_link_info *); + *Description* +Provides default handling for SEC_MERGE section merging for back ends +which don't have SEC_MERGE support - i.e., does nothing. + +2.10.2.8 `bfd_generic_get_relocated_section_contents' +..................................................... + +*Synopsis* + bfd_byte *bfd_generic_get_relocated_section_contents + (bfd *abfd, + struct bfd_link_info *link_info, + struct bfd_link_order *link_order, + bfd_byte *data, + bfd_boolean relocatable, + asymbol **symbols); + *Description* +Provides default handling of relocation effort for back ends which +can't be bothered to do it efficiently. + + +File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end + +2.11 Core files +=============== + +2.11.1 Core file functions +-------------------------- + +*Description* +These are functions pertaining to core files. + +2.11.1.1 `bfd_core_file_failing_command' +........................................ + +*Synopsis* + const char *bfd_core_file_failing_command (bfd *abfd); + *Description* +Return a read-only string explaining which program was running when it +failed and produced the core file ABFD. + +2.11.1.2 `bfd_core_file_failing_signal' +....................................... + +*Synopsis* + int bfd_core_file_failing_signal (bfd *abfd); + *Description* +Returns the signal number which caused the core dump which generated +the file the BFD ABFD is attached to. + +2.11.1.3 `core_file_matches_executable_p' +......................................... + +*Synopsis* + bfd_boolean core_file_matches_executable_p + (bfd *core_bfd, bfd *exec_bfd); + *Description* +Return `TRUE' if the core file attached to CORE_BFD was generated by a +run of the executable file attached to EXEC_BFD, `FALSE' otherwise. + +2.11.1.4 `generic_core_file_matches_executable_p' +................................................. + +*Synopsis* + bfd_boolean generic_core_file_matches_executable_p + (bfd *core_bfd, bfd *exec_bfd); + *Description* +Return TRUE if the core file attached to CORE_BFD was generated by a +run of the executable file attached to EXEC_BFD. The match is based on +executable basenames only. + + Note: When not able to determine the core file failing command or +the executable name, we still return TRUE even though we're not sure +that core file and executable match. This is to avoid generating a +false warning in situations where we really don't know whether they +match or not. + + +File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end + +2.12 Targets +============ + +*Description* +Each port of BFD to a different machine requires the creation of a +target back end. All the back end provides to the root part of BFD is a +structure containing pointers to functions which perform certain low +level operations on files. BFD translates the applications's requests +through a pointer into calls to the back end routines. + + When a file is opened with `bfd_openr', its format and target are +unknown. BFD uses various mechanisms to determine how to interpret the +file. The operations performed are: + + * Create a BFD by calling the internal routine `_bfd_new_bfd', then + call `bfd_find_target' with the target string supplied to + `bfd_openr' and the new BFD pointer. + + * If a null target string was provided to `bfd_find_target', look up + the environment variable `GNUTARGET' and use that as the target + string. + + * If the target string is still `NULL', or the target string is + `default', then use the first item in the target vector as the + target type, and set `target_defaulted' in the BFD to cause + `bfd_check_format' to loop through all the targets. *Note + bfd_target::. *Note Formats::. + + * Otherwise, inspect the elements in the target vector one by one, + until a match on target name is found. When found, use it. + + * Otherwise return the error `bfd_error_invalid_target' to + `bfd_openr'. + + * `bfd_openr' attempts to open the file using `bfd_open_file', and + returns the BFD. + Once the BFD has been opened and the target selected, the file +format may be determined. This is done by calling `bfd_check_format' on +the BFD with a suggested format. If `target_defaulted' has been set, +each possible target type is tried to see if it recognizes the +specified format. `bfd_check_format' returns `TRUE' when the caller +guesses right. + +* Menu: + +* bfd_target:: + + +File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets + +2.12.1 bfd_target +----------------- + +*Description* +This structure contains everything that BFD knows about a target. It +includes things like its byte order, name, and which routines to call +to do various operations. + + Every BFD points to a target structure with its `xvec' member. + + The macros below are used to dispatch to functions through the +`bfd_target' vector. They are used in a number of macros further down +in `bfd.h', and are also used when calling various routines by hand +inside the BFD implementation. The ARGLIST argument must be +parenthesized; it contains all the arguments to the called function. + + They make the documentation (more) unpleasant to read, so if someone +wants to fix this and not break the above, please do. + #define BFD_SEND(bfd, message, arglist) \ + ((*((bfd)->xvec->message)) arglist) + + #ifdef DEBUG_BFD_SEND + #undef BFD_SEND + #define BFD_SEND(bfd, message, arglist) \ + (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ + ((*((bfd)->xvec->message)) arglist) : \ + (bfd_assert (__FILE__,__LINE__), NULL)) + #endif + For operations which index on the BFD format: + #define BFD_SEND_FMT(bfd, message, arglist) \ + (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) + + #ifdef DEBUG_BFD_SEND + #undef BFD_SEND_FMT + #define BFD_SEND_FMT(bfd, message, arglist) \ + (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ + (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \ + (bfd_assert (__FILE__,__LINE__), NULL)) + #endif + This is the structure which defines the type of BFD this is. The +`xvec' member of the struct `bfd' itself points here. Each module that +implements access to a different target under BFD, defines one of these. + + FIXME, these names should be rationalised with the names of the +entry points which call them. Too bad we can't have one macro to define +them both! + enum bfd_flavour + { + bfd_target_unknown_flavour, + bfd_target_aout_flavour, + bfd_target_coff_flavour, + bfd_target_ecoff_flavour, + bfd_target_xcoff_flavour, + bfd_target_elf_flavour, + bfd_target_ieee_flavour, + bfd_target_nlm_flavour, + bfd_target_oasys_flavour, + bfd_target_tekhex_flavour, + bfd_target_srec_flavour, + bfd_target_ihex_flavour, + bfd_target_som_flavour, + bfd_target_os9k_flavour, + bfd_target_versados_flavour, + bfd_target_msdos_flavour, + bfd_target_ovax_flavour, + bfd_target_evax_flavour, + bfd_target_mmo_flavour, + bfd_target_mach_o_flavour, + bfd_target_pef_flavour, + bfd_target_pef_xlib_flavour, + bfd_target_sym_flavour + }; + + enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN }; + + /* Forward declaration. */ + typedef struct bfd_link_info _bfd_link_info; + + typedef struct bfd_target + { + /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */ + char *name; + + /* The "flavour" of a back end is a general indication about + the contents of a file. */ + enum bfd_flavour flavour; + + /* The order of bytes within the data area of a file. */ + enum bfd_endian byteorder; + + /* The order of bytes within the header parts of a file. */ + enum bfd_endian header_byteorder; + + /* A mask of all the flags which an executable may have set - + from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */ + flagword object_flags; + + /* A mask of all the flags which a section may have set - from + the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */ + flagword section_flags; + + /* The character normally found at the front of a symbol. + (if any), perhaps `_'. */ + char symbol_leading_char; + + /* The pad character for file names within an archive header. */ + char ar_pad_char; + + /* The maximum number of characters in an archive header. */ + unsigned short ar_max_namelen; + + /* Entries for byte swapping for data. These are different from the + other entry points, since they don't take a BFD as the first argument. + Certain other handlers could do the same. */ + bfd_uint64_t (*bfd_getx64) (const void *); + bfd_int64_t (*bfd_getx_signed_64) (const void *); + void (*bfd_putx64) (bfd_uint64_t, void *); + bfd_vma (*bfd_getx32) (const void *); + bfd_signed_vma (*bfd_getx_signed_32) (const void *); + void (*bfd_putx32) (bfd_vma, void *); + bfd_vma (*bfd_getx16) (const void *); + bfd_signed_vma (*bfd_getx_signed_16) (const void *); + void (*bfd_putx16) (bfd_vma, void *); + + /* Byte swapping for the headers. */ + bfd_uint64_t (*bfd_h_getx64) (const void *); + bfd_int64_t (*bfd_h_getx_signed_64) (const void *); + void (*bfd_h_putx64) (bfd_uint64_t, void *); + bfd_vma (*bfd_h_getx32) (const void *); + bfd_signed_vma (*bfd_h_getx_signed_32) (const void *); + void (*bfd_h_putx32) (bfd_vma, void *); + bfd_vma (*bfd_h_getx16) (const void *); + bfd_signed_vma (*bfd_h_getx_signed_16) (const void *); + void (*bfd_h_putx16) (bfd_vma, void *); + + /* Format dependent routines: these are vectors of entry points + within the target vector structure, one for each format to check. */ + + /* Check the format of a file being read. Return a `bfd_target *' or zero. */ + const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *); + + /* Set the format of a file being written. */ + bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *); + + /* Write cached information into a file being written, at `bfd_close'. */ + bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *); + The general target vector. These vectors are initialized using the +BFD_JUMP_TABLE macros. + + /* Generic entry points. */ + #define BFD_JUMP_TABLE_GENERIC(NAME) \ + NAME##_close_and_cleanup, \ + NAME##_bfd_free_cached_info, \ + NAME##_new_section_hook, \ + NAME##_get_section_contents, \ + NAME##_get_section_contents_in_window + + /* Called when the BFD is being closed to do any necessary cleanup. */ + bfd_boolean (*_close_and_cleanup) (bfd *); + /* Ask the BFD to free all cached information. */ + bfd_boolean (*_bfd_free_cached_info) (bfd *); + /* Called when a new section is created. */ + bfd_boolean (*_new_section_hook) (bfd *, sec_ptr); + /* Read the contents of a section. */ + bfd_boolean (*_bfd_get_section_contents) + (bfd *, sec_ptr, void *, file_ptr, bfd_size_type); + bfd_boolean (*_bfd_get_section_contents_in_window) + (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type); + + /* Entry points to copy private data. */ + #define BFD_JUMP_TABLE_COPY(NAME) \ + NAME##_bfd_copy_private_bfd_data, \ + NAME##_bfd_merge_private_bfd_data, \ + _bfd_generic_init_private_section_data, \ + NAME##_bfd_copy_private_section_data, \ + NAME##_bfd_copy_private_symbol_data, \ + NAME##_bfd_copy_private_header_data, \ + NAME##_bfd_set_private_flags, \ + NAME##_bfd_print_private_bfd_data + + /* Called to copy BFD general private data from one object file + to another. */ + bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *); + /* Called to merge BFD general private data from one object file + to a common output file when linking. */ + bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *); + /* Called to initialize BFD private section data from one object file + to another. */ + #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \ + BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info)) + bfd_boolean (*_bfd_init_private_section_data) + (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *); + /* Called to copy BFD private section data from one object file + to another. */ + bfd_boolean (*_bfd_copy_private_section_data) + (bfd *, sec_ptr, bfd *, sec_ptr); + /* Called to copy BFD private symbol data from one symbol + to another. */ + bfd_boolean (*_bfd_copy_private_symbol_data) + (bfd *, asymbol *, bfd *, asymbol *); + /* Called to copy BFD private header data from one object file + to another. */ + bfd_boolean (*_bfd_copy_private_header_data) + (bfd *, bfd *); + /* Called to set private backend flags. */ + bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword); + + /* Called to print private BFD data. */ + bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *); + + /* Core file entry points. */ + #define BFD_JUMP_TABLE_CORE(NAME) \ + NAME##_core_file_failing_command, \ + NAME##_core_file_failing_signal, \ + NAME##_core_file_matches_executable_p + + char * (*_core_file_failing_command) (bfd *); + int (*_core_file_failing_signal) (bfd *); + bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *); + + /* Archive entry points. */ + #define BFD_JUMP_TABLE_ARCHIVE(NAME) \ + NAME##_slurp_armap, \ + NAME##_slurp_extended_name_table, \ + NAME##_construct_extended_name_table, \ + NAME##_truncate_arname, \ + NAME##_write_armap, \ + NAME##_read_ar_hdr, \ + NAME##_openr_next_archived_file, \ + NAME##_get_elt_at_index, \ + NAME##_generic_stat_arch_elt, \ + NAME##_update_armap_timestamp + + bfd_boolean (*_bfd_slurp_armap) (bfd *); + bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *); + bfd_boolean (*_bfd_construct_extended_name_table) + (bfd *, char **, bfd_size_type *, const char **); + void (*_bfd_truncate_arname) (bfd *, const char *, char *); + bfd_boolean (*write_armap) + (bfd *, unsigned int, struct orl *, unsigned int, int); + void * (*_bfd_read_ar_hdr_fn) (bfd *); + bfd * (*openr_next_archived_file) (bfd *, bfd *); + #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i)) + bfd * (*_bfd_get_elt_at_index) (bfd *, symindex); + int (*_bfd_stat_arch_elt) (bfd *, struct stat *); + bfd_boolean (*_bfd_update_armap_timestamp) (bfd *); + + /* Entry points used for symbols. */ + #define BFD_JUMP_TABLE_SYMBOLS(NAME) \ + NAME##_get_symtab_upper_bound, \ + NAME##_canonicalize_symtab, \ + NAME##_make_empty_symbol, \ + NAME##_print_symbol, \ + NAME##_get_symbol_info, \ + NAME##_bfd_is_local_label_name, \ + NAME##_bfd_is_target_special_symbol, \ + NAME##_get_lineno, \ + NAME##_find_nearest_line, \ + _bfd_generic_find_line, \ + NAME##_find_inliner_info, \ + NAME##_bfd_make_debug_symbol, \ + NAME##_read_minisymbols, \ + NAME##_minisymbol_to_symbol + + long (*_bfd_get_symtab_upper_bound) (bfd *); + long (*_bfd_canonicalize_symtab) + (bfd *, struct bfd_symbol **); + struct bfd_symbol * + (*_bfd_make_empty_symbol) (bfd *); + void (*_bfd_print_symbol) + (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type); + #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e)) + void (*_bfd_get_symbol_info) + (bfd *, struct bfd_symbol *, symbol_info *); + #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e)) + bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *); + bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *); + alent * (*_get_lineno) (bfd *, struct bfd_symbol *); + bfd_boolean (*_bfd_find_nearest_line) + (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma, + const char **, const char **, unsigned int *); + bfd_boolean (*_bfd_find_line) + (bfd *, struct bfd_symbol **, struct bfd_symbol *, + const char **, unsigned int *); + bfd_boolean (*_bfd_find_inliner_info) + (bfd *, const char **, const char **, unsigned int *); + /* Back-door to allow format-aware applications to create debug symbols + while using BFD for everything else. Currently used by the assembler + when creating COFF files. */ + asymbol * (*_bfd_make_debug_symbol) + (bfd *, void *, unsigned long size); + #define bfd_read_minisymbols(b, d, m, s) \ + BFD_SEND (b, _read_minisymbols, (b, d, m, s)) + long (*_read_minisymbols) + (bfd *, bfd_boolean, void **, unsigned int *); + #define bfd_minisymbol_to_symbol(b, d, m, f) \ + BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f)) + asymbol * (*_minisymbol_to_symbol) + (bfd *, bfd_boolean, const void *, asymbol *); + + /* Routines for relocs. */ + #define BFD_JUMP_TABLE_RELOCS(NAME) \ + NAME##_get_reloc_upper_bound, \ + NAME##_canonicalize_reloc, \ + NAME##_bfd_reloc_type_lookup, \ + NAME##_bfd_reloc_name_lookup + + long (*_get_reloc_upper_bound) (bfd *, sec_ptr); + long (*_bfd_canonicalize_reloc) + (bfd *, sec_ptr, arelent **, struct bfd_symbol **); + /* See documentation on reloc types. */ + reloc_howto_type * + (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type); + reloc_howto_type * + (*reloc_name_lookup) (bfd *, const char *); + + + /* Routines used when writing an object file. */ + #define BFD_JUMP_TABLE_WRITE(NAME) \ + NAME##_set_arch_mach, \ + NAME##_set_section_contents + + bfd_boolean (*_bfd_set_arch_mach) + (bfd *, enum bfd_architecture, unsigned long); + bfd_boolean (*_bfd_set_section_contents) + (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type); + + /* Routines used by the linker. */ + #define BFD_JUMP_TABLE_LINK(NAME) \ + NAME##_sizeof_headers, \ + NAME##_bfd_get_relocated_section_contents, \ + NAME##_bfd_relax_section, \ + NAME##_bfd_link_hash_table_create, \ + NAME##_bfd_link_hash_table_free, \ + NAME##_bfd_link_add_symbols, \ + NAME##_bfd_link_just_syms, \ + NAME##_bfd_final_link, \ + NAME##_bfd_link_split_section, \ + NAME##_bfd_gc_sections, \ + NAME##_bfd_merge_sections, \ + NAME##_bfd_is_group_section, \ + NAME##_bfd_discard_group, \ + NAME##_section_already_linked \ + + int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *); + bfd_byte * (*_bfd_get_relocated_section_contents) + (bfd *, struct bfd_link_info *, struct bfd_link_order *, + bfd_byte *, bfd_boolean, struct bfd_symbol **); + + bfd_boolean (*_bfd_relax_section) + (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *); + + /* Create a hash table for the linker. Different backends store + different information in this table. */ + struct bfd_link_hash_table * + (*_bfd_link_hash_table_create) (bfd *); + + /* Release the memory associated with the linker hash table. */ + void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *); + + /* Add symbols from this object file into the hash table. */ + bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *); + + /* Indicate that we are only retrieving symbol values from this section. */ + void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *); + + /* Do a link based on the link_order structures attached to each + section of the BFD. */ + bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *); + + /* Should this section be split up into smaller pieces during linking. */ + bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *); + + /* Remove sections that are not referenced from the output. */ + bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *); + + /* Attempt to merge SEC_MERGE sections. */ + bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *); + + /* Is this section a member of a group? */ + bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *); + + /* Discard members of a group. */ + bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *); + + /* Check if SEC has been already linked during a reloceatable or + final link. */ + void (*_section_already_linked) (bfd *, struct bfd_section *, + struct bfd_link_info *); + + /* Routines to handle dynamic symbols and relocs. */ + #define BFD_JUMP_TABLE_DYNAMIC(NAME) \ + NAME##_get_dynamic_symtab_upper_bound, \ + NAME##_canonicalize_dynamic_symtab, \ + NAME##_get_synthetic_symtab, \ + NAME##_get_dynamic_reloc_upper_bound, \ + NAME##_canonicalize_dynamic_reloc + + /* Get the amount of memory required to hold the dynamic symbols. */ + long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *); + /* Read in the dynamic symbols. */ + long (*_bfd_canonicalize_dynamic_symtab) + (bfd *, struct bfd_symbol **); + /* Create synthetized symbols. */ + long (*_bfd_get_synthetic_symtab) + (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **, + struct bfd_symbol **); + /* Get the amount of memory required to hold the dynamic relocs. */ + long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *); + /* Read in the dynamic relocs. */ + long (*_bfd_canonicalize_dynamic_reloc) + (bfd *, arelent **, struct bfd_symbol **); + A pointer to an alternative bfd_target in case the current one is not +satisfactory. This can happen when the target cpu supports both big +and little endian code, and target chosen by the linker has the wrong +endianness. The function open_output() in ld/ldlang.c uses this field +to find an alternative output format that is suitable. + /* Opposite endian version of this target. */ + const struct bfd_target * alternative_target; + + /* Data for use by back-end routines, which isn't + generic enough to belong in this structure. */ + const void *backend_data; + + } bfd_target; + +2.12.1.1 `bfd_set_default_target' +................................. + +*Synopsis* + bfd_boolean bfd_set_default_target (const char *name); + *Description* +Set the default target vector to use when recognizing a BFD. This +takes the name of the target, which may be a BFD target name or a +configuration triplet. + +2.12.1.2 `bfd_find_target' +.......................... + +*Synopsis* + const bfd_target *bfd_find_target (const char *target_name, bfd *abfd); + *Description* +Return a pointer to the transfer vector for the object target named +TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the +environment variable `GNUTARGET'; if that is null or not defined, then +choose the first entry in the target list. Passing in the string +"default" or setting the environment variable to "default" will cause +the first entry in the target list to be returned, and +"target_defaulted" will be set in the BFD if ABFD isn't `NULL'. This +causes `bfd_check_format' to loop over all the targets to find the one +that matches the file being read. + +2.12.1.3 `bfd_target_list' +.......................... + +*Synopsis* + const char ** bfd_target_list (void); + *Description* +Return a freshly malloced NULL-terminated vector of the names of all +the valid BFD targets. Do not modify the names. + +2.12.1.4 `bfd_seach_for_target' +............................... + +*Synopsis* + const bfd_target *bfd_search_for_target + (int (*search_func) (const bfd_target *, void *), + void *); + *Description* +Return a pointer to the first transfer vector in the list of transfer +vectors maintained by BFD that produces a non-zero result when passed +to the function SEARCH_FUNC. The parameter DATA is passed, unexamined, +to the search function. + + +File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end + +2.13 Architectures +================== + +BFD keeps one atom in a BFD describing the architecture of the data +attached to the BFD: a pointer to a `bfd_arch_info_type'. + + Pointers to structures can be requested independently of a BFD so +that an architecture's information can be interrogated without access +to an open BFD. + + The architecture information is provided by each architecture +package. The set of default architectures is selected by the macro +`SELECT_ARCHITECTURES'. This is normally set up in the +`config/TARGET.mt' file of your choice. If the name is not defined, +then all the architectures supported are included. + + When BFD starts up, all the architectures are called with an +initialize method. It is up to the architecture back end to insert as +many items into the list of architectures as it wants to; generally +this would be one for each machine and one for the default case (an +item with a machine field of 0). + + BFD's idea of an architecture is implemented in `archures.c'. + +2.13.1 bfd_architecture +----------------------- + +*Description* +This enum gives the object file's CPU architecture, in a global +sense--i.e., what processor family does it belong to? Another field +indicates which processor within the family is in use. The machine +gives a number which distinguishes different versions of the +architecture, containing, for example, 2 and 3 for Intel i960 KA and +i960 KB, and 68020 and 68030 for Motorola 68020 and 68030. + enum bfd_architecture + { + bfd_arch_unknown, /* File arch not known. */ + bfd_arch_obscure, /* Arch known, not one of these. */ + bfd_arch_m68k, /* Motorola 68xxx */ + #define bfd_mach_m68000 1 + #define bfd_mach_m68008 2 + #define bfd_mach_m68010 3 + #define bfd_mach_m68020 4 + #define bfd_mach_m68030 5 + #define bfd_mach_m68040 6 + #define bfd_mach_m68060 7 + #define bfd_mach_cpu32 8 + #define bfd_mach_fido 9 + #define bfd_mach_mcf_isa_a_nodiv 10 + #define bfd_mach_mcf_isa_a 11 + #define bfd_mach_mcf_isa_a_mac 12 + #define bfd_mach_mcf_isa_a_emac 13 + #define bfd_mach_mcf_isa_aplus 14 + #define bfd_mach_mcf_isa_aplus_mac 15 + #define bfd_mach_mcf_isa_aplus_emac 16 + #define bfd_mach_mcf_isa_b_nousp 17 + #define bfd_mach_mcf_isa_b_nousp_mac 18 + #define bfd_mach_mcf_isa_b_nousp_emac 19 + #define bfd_mach_mcf_isa_b 20 + #define bfd_mach_mcf_isa_b_mac 21 + #define bfd_mach_mcf_isa_b_emac 22 + #define bfd_mach_mcf_isa_b_float 23 + #define bfd_mach_mcf_isa_b_float_mac 24 + #define bfd_mach_mcf_isa_b_float_emac 25 + #define bfd_mach_mcf_isa_c 26 + #define bfd_mach_mcf_isa_c_mac 27 + #define bfd_mach_mcf_isa_c_emac 28 + #define bfd_mach_mcf_isa_c_nodiv 29 + #define bfd_mach_mcf_isa_c_nodiv_mac 30 + #define bfd_mach_mcf_isa_c_nodiv_emac 31 + bfd_arch_vax, /* DEC Vax */ + bfd_arch_i960, /* Intel 960 */ + /* The order of the following is important. + lower number indicates a machine type that + only accepts a subset of the instructions + available to machines with higher numbers. + The exception is the "ca", which is + incompatible with all other machines except + "core". */ + + #define bfd_mach_i960_core 1 + #define bfd_mach_i960_ka_sa 2 + #define bfd_mach_i960_kb_sb 3 + #define bfd_mach_i960_mc 4 + #define bfd_mach_i960_xa 5 + #define bfd_mach_i960_ca 6 + #define bfd_mach_i960_jx 7 + #define bfd_mach_i960_hx 8 + + bfd_arch_or32, /* OpenRISC 32 */ + + bfd_arch_sparc, /* SPARC */ + #define bfd_mach_sparc 1 + /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */ + #define bfd_mach_sparc_sparclet 2 + #define bfd_mach_sparc_sparclite 3 + #define bfd_mach_sparc_v8plus 4 + #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */ + #define bfd_mach_sparc_sparclite_le 6 + #define bfd_mach_sparc_v9 7 + #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */ + #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */ + #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */ + /* Nonzero if MACH has the v9 instruction set. */ + #define bfd_mach_sparc_v9_p(mach) \ + ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \ + && (mach) != bfd_mach_sparc_sparclite_le) + /* Nonzero if MACH is a 64 bit sparc architecture. */ + #define bfd_mach_sparc_64bit_p(mach) \ + ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb) + bfd_arch_spu, /* PowerPC SPU */ + #define bfd_mach_spu 256 + bfd_arch_mips, /* MIPS Rxxxx */ + #define bfd_mach_mips3000 3000 + #define bfd_mach_mips3900 3900 + #define bfd_mach_mips4000 4000 + #define bfd_mach_mips4010 4010 + #define bfd_mach_mips4100 4100 + #define bfd_mach_mips4111 4111 + #define bfd_mach_mips4120 4120 + #define bfd_mach_mips4300 4300 + #define bfd_mach_mips4400 4400 + #define bfd_mach_mips4600 4600 + #define bfd_mach_mips4650 4650 + #define bfd_mach_mips5000 5000 + #define bfd_mach_mips5400 5400 + #define bfd_mach_mips5500 5500 + #define bfd_mach_mips6000 6000 + #define bfd_mach_mips7000 7000 + #define bfd_mach_mips8000 8000 + #define bfd_mach_mips9000 9000 + #define bfd_mach_mips10000 10000 + #define bfd_mach_mips12000 12000 + #define bfd_mach_mips16 16 + #define bfd_mach_mips5 5 + #define bfd_mach_mips_loongson_2e 3001 + #define bfd_mach_mips_loongson_2f 3002 + #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */ + #define bfd_mach_mips_octeon 6501 + #define bfd_mach_mipsisa32 32 + #define bfd_mach_mipsisa32r2 33 + #define bfd_mach_mipsisa64 64 + #define bfd_mach_mipsisa64r2 65 + bfd_arch_i386, /* Intel 386 */ + #define bfd_mach_i386_i386 1 + #define bfd_mach_i386_i8086 2 + #define bfd_mach_i386_i386_intel_syntax 3 + #define bfd_mach_x86_64 64 + #define bfd_mach_x86_64_intel_syntax 65 + bfd_arch_we32k, /* AT&T WE32xxx */ + bfd_arch_tahoe, /* CCI/Harris Tahoe */ + bfd_arch_i860, /* Intel 860 */ + bfd_arch_i370, /* IBM 360/370 Mainframes */ + bfd_arch_romp, /* IBM ROMP PC/RT */ + bfd_arch_convex, /* Convex */ + bfd_arch_m88k, /* Motorola 88xxx */ + bfd_arch_m98k, /* Motorola 98xxx */ + bfd_arch_pyramid, /* Pyramid Technology */ + bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */ + #define bfd_mach_h8300 1 + #define bfd_mach_h8300h 2 + #define bfd_mach_h8300s 3 + #define bfd_mach_h8300hn 4 + #define bfd_mach_h8300sn 5 + #define bfd_mach_h8300sx 6 + #define bfd_mach_h8300sxn 7 + bfd_arch_pdp11, /* DEC PDP-11 */ + bfd_arch_powerpc, /* PowerPC */ + #define bfd_mach_ppc 32 + #define bfd_mach_ppc64 64 + #define bfd_mach_ppc_403 403 + #define bfd_mach_ppc_403gc 4030 + #define bfd_mach_ppc_505 505 + #define bfd_mach_ppc_601 601 + #define bfd_mach_ppc_602 602 + #define bfd_mach_ppc_603 603 + #define bfd_mach_ppc_ec603e 6031 + #define bfd_mach_ppc_604 604 + #define bfd_mach_ppc_620 620 + #define bfd_mach_ppc_630 630 + #define bfd_mach_ppc_750 750 + #define bfd_mach_ppc_860 860 + #define bfd_mach_ppc_a35 35 + #define bfd_mach_ppc_rs64ii 642 + #define bfd_mach_ppc_rs64iii 643 + #define bfd_mach_ppc_7400 7400 + #define bfd_mach_ppc_e500 500 + #define bfd_mach_ppc_e500mc 5001 + bfd_arch_rs6000, /* IBM RS/6000 */ + #define bfd_mach_rs6k 6000 + #define bfd_mach_rs6k_rs1 6001 + #define bfd_mach_rs6k_rsc 6003 + #define bfd_mach_rs6k_rs2 6002 + bfd_arch_hppa, /* HP PA RISC */ + #define bfd_mach_hppa10 10 + #define bfd_mach_hppa11 11 + #define bfd_mach_hppa20 20 + #define bfd_mach_hppa20w 25 + bfd_arch_d10v, /* Mitsubishi D10V */ + #define bfd_mach_d10v 1 + #define bfd_mach_d10v_ts2 2 + #define bfd_mach_d10v_ts3 3 + bfd_arch_d30v, /* Mitsubishi D30V */ + bfd_arch_dlx, /* DLX */ + bfd_arch_m68hc11, /* Motorola 68HC11 */ + bfd_arch_m68hc12, /* Motorola 68HC12 */ + #define bfd_mach_m6812_default 0 + #define bfd_mach_m6812 1 + #define bfd_mach_m6812s 2 + bfd_arch_z8k, /* Zilog Z8000 */ + #define bfd_mach_z8001 1 + #define bfd_mach_z8002 2 + bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */ + bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */ + #define bfd_mach_sh 1 + #define bfd_mach_sh2 0x20 + #define bfd_mach_sh_dsp 0x2d + #define bfd_mach_sh2a 0x2a + #define bfd_mach_sh2a_nofpu 0x2b + #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1 + #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2 + #define bfd_mach_sh2a_or_sh4 0x2a3 + #define bfd_mach_sh2a_or_sh3e 0x2a4 + #define bfd_mach_sh2e 0x2e + #define bfd_mach_sh3 0x30 + #define bfd_mach_sh3_nommu 0x31 + #define bfd_mach_sh3_dsp 0x3d + #define bfd_mach_sh3e 0x3e + #define bfd_mach_sh4 0x40 + #define bfd_mach_sh4_nofpu 0x41 + #define bfd_mach_sh4_nommu_nofpu 0x42 + #define bfd_mach_sh4a 0x4a + #define bfd_mach_sh4a_nofpu 0x4b + #define bfd_mach_sh4al_dsp 0x4d + #define bfd_mach_sh5 0x50 + bfd_arch_alpha, /* Dec Alpha */ + #define bfd_mach_alpha_ev4 0x10 + #define bfd_mach_alpha_ev5 0x20 + #define bfd_mach_alpha_ev6 0x30 + bfd_arch_arm, /* Advanced Risc Machines ARM. */ + #define bfd_mach_arm_unknown 0 + #define bfd_mach_arm_2 1 + #define bfd_mach_arm_2a 2 + #define bfd_mach_arm_3 3 + #define bfd_mach_arm_3M 4 + #define bfd_mach_arm_4 5 + #define bfd_mach_arm_4T 6 + #define bfd_mach_arm_5 7 + #define bfd_mach_arm_5T 8 + #define bfd_mach_arm_5TE 9 + #define bfd_mach_arm_XScale 10 + #define bfd_mach_arm_ep9312 11 + #define bfd_mach_arm_iWMMXt 12 + #define bfd_mach_arm_iWMMXt2 13 + bfd_arch_ns32k, /* National Semiconductors ns32000 */ + bfd_arch_w65, /* WDC 65816 */ + bfd_arch_tic30, /* Texas Instruments TMS320C30 */ + bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */ + #define bfd_mach_tic3x 30 + #define bfd_mach_tic4x 40 + bfd_arch_tic54x, /* Texas Instruments TMS320C54X */ + bfd_arch_tic80, /* TI TMS320c80 (MVP) */ + bfd_arch_v850, /* NEC V850 */ + #define bfd_mach_v850 1 + #define bfd_mach_v850e 'E' + #define bfd_mach_v850e1 '1' + bfd_arch_arc, /* ARC Cores */ + #define bfd_mach_arc_5 5 + #define bfd_mach_arc_6 6 + #define bfd_mach_arc_7 7 + #define bfd_mach_arc_8 8 + bfd_arch_m32c, /* Renesas M16C/M32C. */ + #define bfd_mach_m16c 0x75 + #define bfd_mach_m32c 0x78 + bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */ + #define bfd_mach_m32r 1 /* For backwards compatibility. */ + #define bfd_mach_m32rx 'x' + #define bfd_mach_m32r2 '2' + bfd_arch_mn10200, /* Matsushita MN10200 */ + bfd_arch_mn10300, /* Matsushita MN10300 */ + #define bfd_mach_mn10300 300 + #define bfd_mach_am33 330 + #define bfd_mach_am33_2 332 + bfd_arch_fr30, + #define bfd_mach_fr30 0x46523330 + bfd_arch_frv, + #define bfd_mach_frv 1 + #define bfd_mach_frvsimple 2 + #define bfd_mach_fr300 300 + #define bfd_mach_fr400 400 + #define bfd_mach_fr450 450 + #define bfd_mach_frvtomcat 499 /* fr500 prototype */ + #define bfd_mach_fr500 500 + #define bfd_mach_fr550 550 + bfd_arch_mcore, + bfd_arch_mep, + #define bfd_mach_mep 1 + #define bfd_mach_mep_h1 0x6831 + bfd_arch_ia64, /* HP/Intel ia64 */ + #define bfd_mach_ia64_elf64 64 + #define bfd_mach_ia64_elf32 32 + bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */ + #define bfd_mach_ip2022 1 + #define bfd_mach_ip2022ext 2 + bfd_arch_iq2000, /* Vitesse IQ2000. */ + #define bfd_mach_iq2000 1 + #define bfd_mach_iq10 2 + bfd_arch_mt, + #define bfd_mach_ms1 1 + #define bfd_mach_mrisc2 2 + #define bfd_mach_ms2 3 + bfd_arch_pj, + bfd_arch_avr, /* Atmel AVR microcontrollers. */ + #define bfd_mach_avr1 1 + #define bfd_mach_avr2 2 + #define bfd_mach_avr25 25 + #define bfd_mach_avr3 3 + #define bfd_mach_avr31 31 + #define bfd_mach_avr35 35 + #define bfd_mach_avr4 4 + #define bfd_mach_avr5 5 + #define bfd_mach_avr51 51 + #define bfd_mach_avr6 6 + bfd_arch_bfin, /* ADI Blackfin */ + #define bfd_mach_bfin 1 + bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */ + #define bfd_mach_cr16 1 + bfd_arch_cr16c, /* National Semiconductor CompactRISC. */ + #define bfd_mach_cr16c 1 + bfd_arch_crx, /* National Semiconductor CRX. */ + #define bfd_mach_crx 1 + bfd_arch_cris, /* Axis CRIS */ + #define bfd_mach_cris_v0_v10 255 + #define bfd_mach_cris_v32 32 + #define bfd_mach_cris_v10_v32 1032 + bfd_arch_s390, /* IBM s390 */ + #define bfd_mach_s390_31 31 + #define bfd_mach_s390_64 64 + bfd_arch_score, /* Sunplus score */ + bfd_arch_openrisc, /* OpenRISC */ + bfd_arch_mmix, /* Donald Knuth's educational processor. */ + bfd_arch_xstormy16, + #define bfd_mach_xstormy16 1 + bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */ + #define bfd_mach_msp11 11 + #define bfd_mach_msp110 110 + #define bfd_mach_msp12 12 + #define bfd_mach_msp13 13 + #define bfd_mach_msp14 14 + #define bfd_mach_msp15 15 + #define bfd_mach_msp16 16 + #define bfd_mach_msp21 21 + #define bfd_mach_msp31 31 + #define bfd_mach_msp32 32 + #define bfd_mach_msp33 33 + #define bfd_mach_msp41 41 + #define bfd_mach_msp42 42 + #define bfd_mach_msp43 43 + #define bfd_mach_msp44 44 + bfd_arch_xc16x, /* Infineon's XC16X Series. */ + #define bfd_mach_xc16x 1 + #define bfd_mach_xc16xl 2 + #define bfd_mach_xc16xs 3 + bfd_arch_xtensa, /* Tensilica's Xtensa cores. */ + #define bfd_mach_xtensa 1 + bfd_arch_maxq, /* Dallas MAXQ 10/20 */ + #define bfd_mach_maxq10 10 + #define bfd_mach_maxq20 20 + bfd_arch_z80, + #define bfd_mach_z80strict 1 /* No undocumented opcodes. */ + #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */ + #define bfd_mach_z80full 7 /* All undocumented instructions. */ + #define bfd_mach_r800 11 /* R800: successor with multiplication. */ + bfd_arch_last + }; + +2.13.2 bfd_arch_info +-------------------- + +*Description* +This structure contains information on architectures for use within BFD. + + typedef struct bfd_arch_info + { + int bits_per_word; + int bits_per_address; + int bits_per_byte; + enum bfd_architecture arch; + unsigned long mach; + const char *arch_name; + const char *printable_name; + unsigned int section_align_power; + /* TRUE if this is the default machine for the architecture. + The default arch should be the first entry for an arch so that + all the entries for that arch can be accessed via `next'. */ + bfd_boolean the_default; + const struct bfd_arch_info * (*compatible) + (const struct bfd_arch_info *a, const struct bfd_arch_info *b); + + bfd_boolean (*scan) (const struct bfd_arch_info *, const char *); + + const struct bfd_arch_info *next; + } + bfd_arch_info_type; + +2.13.2.1 `bfd_printable_name' +............................. + +*Synopsis* + const char *bfd_printable_name (bfd *abfd); + *Description* +Return a printable string representing the architecture and machine +from the pointer to the architecture info structure. + +2.13.2.2 `bfd_scan_arch' +........................ + +*Synopsis* + const bfd_arch_info_type *bfd_scan_arch (const char *string); + *Description* +Figure out if BFD supports any cpu which could be described with the +name STRING. Return a pointer to an `arch_info' structure if a machine +is found, otherwise NULL. + +2.13.2.3 `bfd_arch_list' +........................ + +*Synopsis* + const char **bfd_arch_list (void); + *Description* +Return a freshly malloced NULL-terminated vector of the names of all +the valid BFD architectures. Do not modify the names. + +2.13.2.4 `bfd_arch_get_compatible' +.................................. + +*Synopsis* + const bfd_arch_info_type *bfd_arch_get_compatible + (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns); + *Description* +Determine whether two BFDs' architectures and machine types are +compatible. Calculates the lowest common denominator between the two +architectures and machine types implied by the BFDs and returns a +pointer to an `arch_info' structure describing the compatible machine. + +2.13.2.5 `bfd_default_arch_struct' +.................................. + +*Description* +The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which +has been initialized to a fairly generic state. A BFD starts life by +pointing to this structure, until the correct back end has determined +the real architecture of the file. + extern const bfd_arch_info_type bfd_default_arch_struct; + +2.13.2.6 `bfd_set_arch_info' +............................ + +*Synopsis* + void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg); + *Description* +Set the architecture info of ABFD to ARG. + +2.13.2.7 `bfd_default_set_arch_mach' +.................................... + +*Synopsis* + bfd_boolean bfd_default_set_arch_mach + (bfd *abfd, enum bfd_architecture arch, unsigned long mach); + *Description* +Set the architecture and machine type in BFD ABFD to ARCH and MACH. +Find the correct pointer to a structure and insert it into the +`arch_info' pointer. + +2.13.2.8 `bfd_get_arch' +....................... + +*Synopsis* + enum bfd_architecture bfd_get_arch (bfd *abfd); + *Description* +Return the enumerated type which describes the BFD ABFD's architecture. + +2.13.2.9 `bfd_get_mach' +....................... + +*Synopsis* + unsigned long bfd_get_mach (bfd *abfd); + *Description* +Return the long type which describes the BFD ABFD's machine. + +2.13.2.10 `bfd_arch_bits_per_byte' +.................................. + +*Synopsis* + unsigned int bfd_arch_bits_per_byte (bfd *abfd); + *Description* +Return the number of bits in one of the BFD ABFD's architecture's bytes. + +2.13.2.11 `bfd_arch_bits_per_address' +..................................... + +*Synopsis* + unsigned int bfd_arch_bits_per_address (bfd *abfd); + *Description* +Return the number of bits in one of the BFD ABFD's architecture's +addresses. + +2.13.2.12 `bfd_default_compatible' +.................................. + +*Synopsis* + const bfd_arch_info_type *bfd_default_compatible + (const bfd_arch_info_type *a, const bfd_arch_info_type *b); + *Description* +The default function for testing for compatibility. + +2.13.2.13 `bfd_default_scan' +............................ + +*Synopsis* + bfd_boolean bfd_default_scan + (const struct bfd_arch_info *info, const char *string); + *Description* +The default function for working out whether this is an architecture +hit and a machine hit. + +2.13.2.14 `bfd_get_arch_info' +............................. + +*Synopsis* + const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd); + *Description* +Return the architecture info struct in ABFD. + +2.13.2.15 `bfd_lookup_arch' +........................... + +*Synopsis* + const bfd_arch_info_type *bfd_lookup_arch + (enum bfd_architecture arch, unsigned long machine); + *Description* +Look for the architecture info structure which matches the arguments +ARCH and MACHINE. A machine of 0 matches the machine/architecture +structure which marks itself as the default. + +2.13.2.16 `bfd_printable_arch_mach' +................................... + +*Synopsis* + const char *bfd_printable_arch_mach + (enum bfd_architecture arch, unsigned long machine); + *Description* +Return a printable string representing the architecture and machine +type. + + This routine is depreciated. + +2.13.2.17 `bfd_octets_per_byte' +............................... + +*Synopsis* + unsigned int bfd_octets_per_byte (bfd *abfd); + *Description* +Return the number of octets (8-bit quantities) per target byte (minimum +addressable unit). In most cases, this will be one, but some DSP +targets have 16, 32, or even 48 bits per byte. + +2.13.2.18 `bfd_arch_mach_octets_per_byte' +......................................... + +*Synopsis* + unsigned int bfd_arch_mach_octets_per_byte + (enum bfd_architecture arch, unsigned long machine); + *Description* +See bfd_octets_per_byte. + + This routine is provided for those cases where a bfd * is not +available + + +File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end + +2.14 Opening and closing BFDs +============================= + +2.14.1 Functions for opening and closing +---------------------------------------- + +2.14.1.1 `bfd_fopen' +.................... + +*Synopsis* + bfd *bfd_fopen (const char *filename, const char *target, + const char *mode, int fd); + *Description* +Open the file FILENAME with the target TARGET. Return a pointer to the +created BFD. If FD is not -1, then `fdopen' is used to open the file; +otherwise, `fopen' is used. MODE is passed directly to `fopen' or +`fdopen'. + + Calls `bfd_find_target', so TARGET is interpreted as by that +function. + + The new BFD is marked as cacheable iff FD is -1. + + If `NULL' is returned then an error has occured. Possible errors +are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call' +error. + +2.14.1.2 `bfd_openr' +.................... + +*Synopsis* + bfd *bfd_openr (const char *filename, const char *target); + *Description* +Open the file FILENAME (using `fopen') with the target TARGET. Return +a pointer to the created BFD. + + Calls `bfd_find_target', so TARGET is interpreted as by that +function. + + If `NULL' is returned then an error has occured. Possible errors +are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call' +error. + +2.14.1.3 `bfd_fdopenr' +...................... + +*Synopsis* + bfd *bfd_fdopenr (const char *filename, const char *target, int fd); + *Description* +`bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It +opens a BFD on a file already described by the FD supplied. + + When the file is later `bfd_close'd, the file descriptor will be +closed. If the caller desires that this file descriptor be cached by +BFD (opened as needed, closed as needed to free descriptors for other +opens), with the supplied FD used as an initial file descriptor (but +subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the +returned BFD. The default is to assume no caching; the file descriptor +will remain open until `bfd_close', and will not be affected by BFD +operations on other files. + + Possible errors are `bfd_error_no_memory', +`bfd_error_invalid_target' and `bfd_error_system_call'. + +2.14.1.4 `bfd_openstreamr' +.......................... + +*Synopsis* + bfd *bfd_openstreamr (const char *, const char *, void *); + *Description* +Open a BFD for read access on an existing stdio stream. When the BFD +is passed to `bfd_close', the stream will be closed. + +2.14.1.5 `bfd_openr_iovec' +.......................... + +*Synopsis* + bfd *bfd_openr_iovec (const char *filename, const char *target, + void *(*open) (struct bfd *nbfd, + void *open_closure), + void *open_closure, + file_ptr (*pread) (struct bfd *nbfd, + void *stream, + void *buf, + file_ptr nbytes, + file_ptr offset), + int (*close) (struct bfd *nbfd, + void *stream), + int (*stat) (struct bfd *abfd, + void *stream, + struct stat *sb)); + *Description* +Create and return a BFD backed by a read-only STREAM. The STREAM is +created using OPEN, accessed using PREAD and destroyed using CLOSE. + + Calls `bfd_find_target', so TARGET is interpreted as by that +function. + + Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to +obtain the read-only stream backing the BFD. OPEN either succeeds +returning the non-`NULL' STREAM, or fails returning `NULL' (setting +`bfd_error'). + + Calls PREAD to request NBYTES of data from STREAM starting at OFFSET +(e.g., via a call to `bfd_read'). PREAD either succeeds returning the +number of bytes read (which can be less than NBYTES when end-of-file), +or fails returning -1 (setting `bfd_error'). + + Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE +either succeeds returning 0, or fails returning -1 (setting +`bfd_error'). + + Calls STAT to fill in a stat structure for bfd_stat, bfd_get_size, +and bfd_get_mtime calls. STAT returns 0 on success, or returns -1 on +failure (setting `bfd_error'). + + If `bfd_openr_iovec' returns `NULL' then an error has occurred. +Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target' +and `bfd_error_system_call'. + +2.14.1.6 `bfd_openw' +.................... + +*Synopsis* + bfd *bfd_openw (const char *filename, const char *target); + *Description* +Create a BFD, associated with file FILENAME, using the file format +TARGET, and return a pointer to it. + + Possible errors are `bfd_error_system_call', `bfd_error_no_memory', +`bfd_error_invalid_target'. + +2.14.1.7 `bfd_close' +.................... + +*Synopsis* + bfd_boolean bfd_close (bfd *abfd); + *Description* +Close a BFD. If the BFD was open for writing, then pending operations +are completed and the file written out and closed. If the created file +is executable, then `chmod' is called to mark it as such. + + All memory attached to the BFD is released. + + The file descriptor associated with the BFD is closed (even if it +was passed in to BFD by `bfd_fdopenr'). + + *Returns* +`TRUE' is returned if all is ok, otherwise `FALSE'. + +2.14.1.8 `bfd_close_all_done' +............................. + +*Synopsis* + bfd_boolean bfd_close_all_done (bfd *); + *Description* +Close a BFD. Differs from `bfd_close' since it does not complete any +pending operations. This routine would be used if the application had +just used BFD for swapping and didn't want to use any of the writing +code. + + If the created file is executable, then `chmod' is called to mark it +as such. + + All memory attached to the BFD is released. + + *Returns* +`TRUE' is returned if all is ok, otherwise `FALSE'. + +2.14.1.9 `bfd_create' +..................... + +*Synopsis* + bfd *bfd_create (const char *filename, bfd *templ); + *Description* +Create a new BFD in the manner of `bfd_openw', but without opening a +file. The new BFD takes the target from the target used by TEMPLATE. +The format is always set to `bfd_object'. + +2.14.1.10 `bfd_make_writable' +............................. + +*Synopsis* + bfd_boolean bfd_make_writable (bfd *abfd); + *Description* +Takes a BFD as created by `bfd_create' and converts it into one like as +returned by `bfd_openw'. It does this by converting the BFD to +BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on +this bfd later. + + *Returns* +`TRUE' is returned if all is ok, otherwise `FALSE'. + +2.14.1.11 `bfd_make_readable' +............................. + +*Synopsis* + bfd_boolean bfd_make_readable (bfd *abfd); + *Description* +Takes a BFD as created by `bfd_create' and `bfd_make_writable' and +converts it into one like as returned by `bfd_openr'. It does this by +writing the contents out to the memory buffer, then reversing the +direction. + + *Returns* +`TRUE' is returned if all is ok, otherwise `FALSE'. + +2.14.1.12 `bfd_alloc' +..................... + +*Synopsis* + void *bfd_alloc (bfd *abfd, bfd_size_type wanted); + *Description* +Allocate a block of WANTED bytes of memory attached to `abfd' and +return a pointer to it. + +2.14.1.13 `bfd_alloc2' +...................... + +*Synopsis* + void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); + *Description* +Allocate a block of NMEMB elements of SIZE bytes each of memory +attached to `abfd' and return a pointer to it. + +2.14.1.14 `bfd_zalloc' +...................... + +*Synopsis* + void *bfd_zalloc (bfd *abfd, bfd_size_type wanted); + *Description* +Allocate a block of WANTED bytes of zeroed memory attached to `abfd' +and return a pointer to it. + +2.14.1.15 `bfd_zalloc2' +....................... + +*Synopsis* + void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); + *Description* +Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory +attached to `abfd' and return a pointer to it. + +2.14.1.16 `bfd_calc_gnu_debuglink_crc32' +........................................ + +*Synopsis* + unsigned long bfd_calc_gnu_debuglink_crc32 + (unsigned long crc, const unsigned char *buf, bfd_size_type len); + *Description* +Computes a CRC value as used in the .gnu_debuglink section. Advances +the previously computed CRC value by computing and adding in the crc32 +for LEN bytes of BUF. + + *Returns* +Return the updated CRC32 value. + +2.14.1.17 `get_debug_link_info' +............................... + +*Synopsis* + char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out); + *Description* +fetch the filename and CRC32 value for any separate debuginfo +associated with ABFD. Return NULL if no such info found, otherwise +return filename and update CRC32_OUT. + +2.14.1.18 `separate_debug_file_exists' +...................................... + +*Synopsis* + bfd_boolean separate_debug_file_exists + (char *name, unsigned long crc32); + *Description* +Checks to see if NAME is a file and if its contents match CRC32. + +2.14.1.19 `find_separate_debug_file' +.................................... + +*Synopsis* + char *find_separate_debug_file (bfd *abfd); + *Description* +Searches ABFD for a reference to separate debugging information, scans +various locations in the filesystem, including the file tree rooted at +DEBUG_FILE_DIRECTORY, and returns a filename of such debugging +information if the file is found and has matching CRC32. Returns NULL +if no reference to debugging file exists, or file cannot be found. + +2.14.1.20 `bfd_follow_gnu_debuglink' +.................................... + +*Synopsis* + char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir); + *Description* +Takes a BFD and searches it for a .gnu_debuglink section. If this +section is found, it examines the section for the name and checksum of +a '.debug' file containing auxiliary debugging information. It then +searches the filesystem for this .debug file in some standard +locations, including the directory tree rooted at DIR, and if found +returns the full filename. + + If DIR is NULL, it will search a default path configured into libbfd +at build time. [XXX this feature is not currently implemented]. + + *Returns* +`NULL' on any errors or failure to locate the .debug file, otherwise a +pointer to a heap-allocated string containing the filename. The caller +is responsible for freeing this string. + +2.14.1.21 `bfd_create_gnu_debuglink_section' +............................................ + +*Synopsis* + struct bfd_section *bfd_create_gnu_debuglink_section + (bfd *abfd, const char *filename); + *Description* +Takes a BFD and adds a .gnu_debuglink section to it. The section is +sized to be big enough to contain a link to the specified FILENAME. + + *Returns* +A pointer to the new section is returned if all is ok. Otherwise +`NULL' is returned and bfd_error is set. + +2.14.1.22 `bfd_fill_in_gnu_debuglink_section' +............................................. + +*Synopsis* + bfd_boolean bfd_fill_in_gnu_debuglink_section + (bfd *abfd, struct bfd_section *sect, const char *filename); + *Description* +Takes a BFD and containing a .gnu_debuglink section SECT and fills in +the contents of the section to contain a link to the specified +FILENAME. The filename should be relative to the current directory. + + *Returns* +`TRUE' is returned if all is ok. Otherwise `FALSE' is returned and +bfd_error is set. + + +File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end + +2.15 Implementation details +=========================== + +2.15.1 Internal functions +------------------------- + +*Description* +These routines are used within BFD. They are not intended for export, +but are documented here for completeness. + +2.15.1.1 `bfd_write_bigendian_4byte_int' +........................................ + +*Synopsis* + bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int); + *Description* +Write a 4 byte integer I to the output BFD ABFD, in big endian order +regardless of what else is going on. This is useful in archives. + +2.15.1.2 `bfd_put_size' +....................... + +2.15.1.3 `bfd_get_size' +....................... + +*Description* +These macros as used for reading and writing raw data in sections; each +access (except for bytes) is vectored through the target format of the +BFD and mangled accordingly. The mangling performs any necessary endian +translations and removes alignment restrictions. Note that types +accepted and returned by these macros are identical so they can be +swapped around in macros--for example, `libaout.h' defines `GET_WORD' +to either `bfd_get_32' or `bfd_get_64'. + + In the put routines, VAL must be a `bfd_vma'. If we are on a system +without prototypes, the caller is responsible for making sure that is +true, with a cast if necessary. We don't cast them in the macro +definitions because that would prevent `lint' or `gcc -Wall' from +detecting sins such as passing a pointer. To detect calling these with +less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit +`bfd_vma''s. + + /* Byte swapping macros for user section data. */ + + #define bfd_put_8(abfd, val, ptr) \ + ((void) (*((unsigned char *) (ptr)) = (val) & 0xff)) + #define bfd_put_signed_8 \ + bfd_put_8 + #define bfd_get_8(abfd, ptr) \ + (*(unsigned char *) (ptr) & 0xff) + #define bfd_get_signed_8(abfd, ptr) \ + (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80) + + #define bfd_put_16(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_putx16, ((val),(ptr))) + #define bfd_put_signed_16 \ + bfd_put_16 + #define bfd_get_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx16, (ptr)) + #define bfd_get_signed_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx_signed_16, (ptr)) + + #define bfd_put_32(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_putx32, ((val),(ptr))) + #define bfd_put_signed_32 \ + bfd_put_32 + #define bfd_get_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx32, (ptr)) + #define bfd_get_signed_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx_signed_32, (ptr)) + + #define bfd_put_64(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_putx64, ((val), (ptr))) + #define bfd_put_signed_64 \ + bfd_put_64 + #define bfd_get_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx64, (ptr)) + #define bfd_get_signed_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx_signed_64, (ptr)) + + #define bfd_get(bits, abfd, ptr) \ + ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \ + : (bits) == 16 ? bfd_get_16 (abfd, ptr) \ + : (bits) == 32 ? bfd_get_32 (abfd, ptr) \ + : (bits) == 64 ? bfd_get_64 (abfd, ptr) \ + : (abort (), (bfd_vma) - 1)) + + #define bfd_put(bits, abfd, val, ptr) \ + ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \ + : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \ + : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \ + : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \ + : (abort (), (void) 0)) + +2.15.1.4 `bfd_h_put_size' +......................... + +*Description* +These macros have the same function as their `bfd_get_x' brethren, +except that they are used for removing information for the header +records of object files. Believe it or not, some object files keep +their header records in big endian order and their data in little +endian order. + + /* Byte swapping macros for file header data. */ + + #define bfd_h_put_8(abfd, val, ptr) \ + bfd_put_8 (abfd, val, ptr) + #define bfd_h_put_signed_8(abfd, val, ptr) \ + bfd_put_8 (abfd, val, ptr) + #define bfd_h_get_8(abfd, ptr) \ + bfd_get_8 (abfd, ptr) + #define bfd_h_get_signed_8(abfd, ptr) \ + bfd_get_signed_8 (abfd, ptr) + + #define bfd_h_put_16(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_h_putx16, (val, ptr)) + #define bfd_h_put_signed_16 \ + bfd_h_put_16 + #define bfd_h_get_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx16, (ptr)) + #define bfd_h_get_signed_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr)) + + #define bfd_h_put_32(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_h_putx32, (val, ptr)) + #define bfd_h_put_signed_32 \ + bfd_h_put_32 + #define bfd_h_get_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx32, (ptr)) + #define bfd_h_get_signed_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr)) + + #define bfd_h_put_64(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_h_putx64, (val, ptr)) + #define bfd_h_put_signed_64 \ + bfd_h_put_64 + #define bfd_h_get_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx64, (ptr)) + #define bfd_h_get_signed_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr)) + + /* Aliases for the above, which should eventually go away. */ + + #define H_PUT_64 bfd_h_put_64 + #define H_PUT_32 bfd_h_put_32 + #define H_PUT_16 bfd_h_put_16 + #define H_PUT_8 bfd_h_put_8 + #define H_PUT_S64 bfd_h_put_signed_64 + #define H_PUT_S32 bfd_h_put_signed_32 + #define H_PUT_S16 bfd_h_put_signed_16 + #define H_PUT_S8 bfd_h_put_signed_8 + #define H_GET_64 bfd_h_get_64 + #define H_GET_32 bfd_h_get_32 + #define H_GET_16 bfd_h_get_16 + #define H_GET_8 bfd_h_get_8 + #define H_GET_S64 bfd_h_get_signed_64 + #define H_GET_S32 bfd_h_get_signed_32 + #define H_GET_S16 bfd_h_get_signed_16 + #define H_GET_S8 bfd_h_get_signed_8 + +2.15.1.5 `bfd_log2' +................... + +*Synopsis* + unsigned int bfd_log2 (bfd_vma x); + *Description* +Return the log base 2 of the value supplied, rounded up. E.g., an X of +1025 returns 11. A X of 0 returns 0. + + +File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end + +2.16 File caching +================= + +The file caching mechanism is embedded within BFD and allows the +application to open as many BFDs as it wants without regard to the +underlying operating system's file descriptor limit (often as low as 20 +open files). The module in `cache.c' maintains a least recently used +list of `BFD_CACHE_MAX_OPEN' files, and exports the name +`bfd_cache_lookup', which runs around and makes sure that the required +BFD is open. If not, then it chooses a file to close, closes it and +opens the one wanted, returning its file handle. + +2.16.1 Caching functions +------------------------ + +2.16.1.1 `bfd_cache_init' +......................... + +*Synopsis* + bfd_boolean bfd_cache_init (bfd *abfd); + *Description* +Add a newly opened BFD to the cache. + +2.16.1.2 `bfd_cache_close' +.......................... + +*Synopsis* + bfd_boolean bfd_cache_close (bfd *abfd); + *Description* +Remove the BFD ABFD from the cache. If the attached file is open, then +close it too. + + *Returns* +`FALSE' is returned if closing the file fails, `TRUE' is returned if +all is well. + +2.16.1.3 `bfd_cache_close_all' +.............................. + +*Synopsis* + bfd_boolean bfd_cache_close_all (void); + *Description* +Remove all BFDs from the cache. If the attached file is open, then +close it too. + + *Returns* +`FALSE' is returned if closing one of the file fails, `TRUE' is +returned if all is well. + +2.16.1.4 `bfd_open_file' +........................ + +*Synopsis* + FILE* bfd_open_file (bfd *abfd); + *Description* +Call the OS to open a file for ABFD. Return the `FILE *' (possibly +`NULL') that results from this operation. Set up the BFD so that +future accesses know the file is open. If the `FILE *' returned is +`NULL', then it won't have been put in the cache, so it won't have to +be removed from it. + + +File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end + +2.17 Linker Functions +===================== + +The linker uses three special entry points in the BFD target vector. +It is not necessary to write special routines for these entry points +when creating a new BFD back end, since generic versions are provided. +However, writing them can speed up linking and make it use +significantly less runtime memory. + + The first routine creates a hash table used by the other routines. +The second routine adds the symbols from an object file to the hash +table. The third routine takes all the object files and links them +together to create the output file. These routines are designed so +that the linker proper does not need to know anything about the symbols +in the object files that it is linking. The linker merely arranges the +sections as directed by the linker script and lets BFD handle the +details of symbols and relocs. + + The second routine and third routines are passed a pointer to a +`struct bfd_link_info' structure (defined in `bfdlink.h') which holds +information relevant to the link, including the linker hash table +(which was created by the first routine) and a set of callback +functions to the linker proper. + + The generic linker routines are in `linker.c', and use the header +file `genlink.h'. As of this writing, the only back ends which have +implemented versions of these routines are a.out (in `aoutx.h') and +ECOFF (in `ecoff.c'). The a.out routines are used as examples +throughout this section. + +* Menu: + +* Creating a Linker Hash Table:: +* Adding Symbols to the Hash Table:: +* Performing the Final Link:: + + +File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions + +2.17.1 Creating a linker hash table +----------------------------------- + +The linker routines must create a hash table, which must be derived +from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash +Tables::, for information on how to create a derived hash table. This +entry point is called using the target vector of the linker output file. + + The `_bfd_link_hash_table_create' entry point must allocate and +initialize an instance of the desired hash table. If the back end does +not require any additional information to be stored with the entries in +the hash table, the entry point may simply create a `struct +bfd_link_hash_table'. Most likely, however, some additional +information will be needed. + + For example, with each entry in the hash table the a.out linker +keeps the index the symbol has in the final output file (this index +number is used so that when doing a relocatable link the symbol index +used in the output file can be quickly filled in when copying over a +reloc). The a.out linker code defines the required structures and +functions for a hash table derived from `struct bfd_link_hash_table'. +The a.out linker hash table is created by the function +`NAME(aout,link_hash_table_create)'; it simply allocates space for the +hash table, initializes it, and returns a pointer to it. + + When writing the linker routines for a new back end, you will +generally not know exactly which fields will be required until you have +finished. You should simply create a new hash table which defines no +additional fields, and then simply add fields as they become necessary. + + +File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions + +2.17.2 Adding symbols to the hash table +--------------------------------------- + +The linker proper will call the `_bfd_link_add_symbols' entry point for +each object file or archive which is to be linked (typically these are +the files named on the command line, but some may also come from the +linker script). The entry point is responsible for examining the file. +For an object file, BFD must add any relevant symbol information to +the hash table. For an archive, BFD must determine which elements of +the archive should be used and adding them to the link. + + The a.out version of this entry point is +`NAME(aout,link_add_symbols)'. + +* Menu: + +* Differing file formats:: +* Adding symbols from an object file:: +* Adding symbols from an archive:: + + +File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table + +2.17.2.1 Differing file formats +............................... + +Normally all the files involved in a link will be of the same format, +but it is also possible to link together different format object files, +and the back end must support that. The `_bfd_link_add_symbols' entry +point is called via the target vector of the file to be added. This +has an important consequence: the function may not assume that the hash +table is the type created by the corresponding +`_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols' +function can assume about the hash table is that it is derived from +`struct bfd_link_hash_table'. + + Sometimes the `_bfd_link_add_symbols' function must store some +information in the hash table entry to be used by the `_bfd_final_link' +function. In such a case the output bfd xvec must be checked to make +sure that the hash table was created by an object file of the same +format. + + The `_bfd_final_link' routine must be prepared to handle a hash +entry without any extra information added by the +`_bfd_link_add_symbols' function. A hash entry without extra +information will also occur when the linker script directs the linker +to create a symbol. Note that, regardless of how a hash table entry is +added, all the fields will be initialized to some sort of null value by +the hash table entry initialization function. + + See `ecoff_link_add_externals' for an example of how to check the +output bfd before saving information (in this case, the ECOFF external +symbol debugging information) in a hash table entry. + + +File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table + +2.17.2.2 Adding symbols from an object file +........................................... + +When the `_bfd_link_add_symbols' routine is passed an object file, it +must add all externally visible symbols in that object file to the hash +table. The actual work of adding the symbol to the hash table is +normally handled by the function `_bfd_generic_link_add_one_symbol'. +The `_bfd_link_add_symbols' routine is responsible for reading all the +symbols from the object file and passing the correct information to +`_bfd_generic_link_add_one_symbol'. + + The `_bfd_link_add_symbols' routine should not use +`bfd_canonicalize_symtab' to read the symbols. The point of providing +this routine is to avoid the overhead of converting the symbols into +generic `asymbol' structures. + + `_bfd_generic_link_add_one_symbol' handles the details of combining +common symbols, warning about multiple definitions, and so forth. It +takes arguments which describe the symbol to add, notably symbol flags, +a section, and an offset. The symbol flags include such things as +`BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object +file, or something like `bfd_und_section_ptr' for an undefined symbol +or `bfd_com_section_ptr' for a common symbol. + + If the `_bfd_final_link' routine is also going to need to read the +symbol information, the `_bfd_link_add_symbols' routine should save it +somewhere attached to the object file BFD. However, the information +should only be saved if the `keep_memory' field of the `info' argument +is TRUE, so that the `-no-keep-memory' linker switch is effective. + + The a.out function which adds symbols from an object file is +`aout_link_add_object_symbols', and most of the interesting work is in +`aout_link_add_symbols'. The latter saves pointers to the hash tables +entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol +number, so that the `_bfd_final_link' routine does not have to call the +hash table lookup routine to locate the entry. + + +File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table + +2.17.2.3 Adding symbols from an archive +....................................... + +When the `_bfd_link_add_symbols' routine is passed an archive, it must +look through the symbols defined by the archive and decide which +elements of the archive should be included in the link. For each such +element it must call the `add_archive_element' linker callback, and it +must add the symbols from the object file to the linker hash table. + + In most cases the work of looking through the symbols in the archive +should be done by the `_bfd_generic_link_add_archive_symbols' function. +This function builds a hash table from the archive symbol table and +looks through the list of undefined symbols to see which elements +should be included. `_bfd_generic_link_add_archive_symbols' is passed +a function to call to make the final decision about adding an archive +element to the link and to do the actual work of adding the symbols to +the linker hash table. + + The function passed to `_bfd_generic_link_add_archive_symbols' must +read the symbols of the archive element and decide whether the archive +element should be included in the link. If the element is to be +included, the `add_archive_element' linker callback routine must be +called with the element as an argument, and the elements symbols must +be added to the linker hash table just as though the element had itself +been passed to the `_bfd_link_add_symbols' function. + + When the a.out `_bfd_link_add_symbols' function receives an archive, +it calls `_bfd_generic_link_add_archive_symbols' passing +`aout_link_check_archive_element' as the function argument. +`aout_link_check_archive_element' calls `aout_link_check_ar_symbols'. +If the latter decides to add the element (an element is only added if +it provides a real, non-common, definition for a previously undefined +or common symbol) it calls the `add_archive_element' callback and then +`aout_link_check_archive_element' calls `aout_link_add_symbols' to +actually add the symbols to the linker hash table. + + The ECOFF back end is unusual in that it does not normally call +`_bfd_generic_link_add_archive_symbols', because ECOFF archives already +contain a hash table of symbols. The ECOFF back end searches the +archive itself to avoid the overhead of creating a new hash table. + + +File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions + +2.17.3 Performing the final link +-------------------------------- + +When all the input files have been processed, the linker calls the +`_bfd_final_link' entry point of the output BFD. This routine is +responsible for producing the final output file, which has several +aspects. It must relocate the contents of the input sections and copy +the data into the output sections. It must build an output symbol +table including any local symbols from the input files and the global +symbols from the hash table. When producing relocatable output, it must +modify the input relocs and write them into the output file. There may +also be object format dependent work to be done. + + The linker will also call the `write_object_contents' entry point +when the BFD is closed. The two entry points must work together in +order to produce the correct output file. + + The details of how this works are inevitably dependent upon the +specific object file format. The a.out `_bfd_final_link' routine is +`NAME(aout,final_link)'. + +* Menu: + +* Information provided by the linker:: +* Relocating the section contents:: +* Writing the symbol table:: + + +File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link + +2.17.3.1 Information provided by the linker +........................................... + +Before the linker calls the `_bfd_final_link' entry point, it sets up +some data structures for the function to use. + + The `input_bfds' field of the `bfd_link_info' structure will point +to a list of all the input files included in the link. These files are +linked through the `link_next' field of the `bfd' structure. + + Each section in the output file will have a list of `link_order' +structures attached to the `map_head.link_order' field (the +`link_order' structure is defined in `bfdlink.h'). These structures +describe how to create the contents of the output section in terms of +the contents of various input sections, fill constants, and, +eventually, other types of information. They also describe relocs that +must be created by the BFD backend, but do not correspond to any input +file; this is used to support -Ur, which builds constructors while +generating a relocatable object file. + + +File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link + +2.17.3.2 Relocating the section contents +........................................ + +The `_bfd_final_link' function should look through the `link_order' +structures attached to each section of the output file. Each +`link_order' structure should either be handled specially, or it should +be passed to the function `_bfd_default_link_order' which will do the +right thing (`_bfd_default_link_order' is defined in `linker.c'). + + For efficiency, a `link_order' of type `bfd_indirect_link_order' +whose associated section belongs to a BFD of the same format as the +output BFD must be handled specially. This type of `link_order' +describes part of an output section in terms of a section belonging to +one of the input files. The `_bfd_final_link' function should read the +contents of the section and any associated relocs, apply the relocs to +the section contents, and write out the modified section contents. If +performing a relocatable link, the relocs themselves must also be +modified and written out. + + The functions `_bfd_relocate_contents' and +`_bfd_final_link_relocate' provide some general support for performing +the actual relocations, notably overflow checking. Their arguments +include information about the symbol the relocation is against and a +`reloc_howto_type' argument which describes the relocation to perform. +These functions are defined in `reloc.c'. + + The a.out function which handles reading, relocating, and writing +section contents is `aout_link_input_section'. The actual relocation +is done in `aout_link_input_section_std' and +`aout_link_input_section_ext'. + + +File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link + +2.17.3.3 Writing the symbol table +................................. + +The `_bfd_final_link' function must gather all the symbols in the input +files and write them out. It must also write out all the symbols in +the global hash table. This must be controlled by the `strip' and +`discard' fields of the `bfd_link_info' structure. + + The local symbols of the input files will not have been entered into +the linker hash table. The `_bfd_final_link' routine must consider +each input file and include the symbols in the output file. It may be +convenient to do this when looking through the `link_order' structures, +or it may be done by stepping through the `input_bfds' list. + + The `_bfd_final_link' routine must also traverse the global hash +table to gather all the externally visible symbols. It is possible +that most of the externally visible symbols may be written out when +considering the symbols of each input file, but it is still necessary +to traverse the hash table since the linker script may have defined +some symbols that are not in any of the input files. + + The `strip' field of the `bfd_link_info' structure controls which +symbols are written out. The possible values are listed in +`bfdlink.h'. If the value is `strip_some', then the `keep_hash' field +of the `bfd_link_info' structure is a hash table of symbols to keep; +each symbol should be looked up in this hash table, and only symbols +which are present should be included in the output file. + + If the `strip' field of the `bfd_link_info' structure permits local +symbols to be written out, the `discard' field is used to further +controls which local symbols are included in the output file. If the +value is `discard_l', then all local symbols which begin with a certain +prefix are discarded; this is controlled by the +`bfd_is_local_label_name' entry point. + + The a.out backend handles symbols by calling +`aout_link_write_symbols' on each input BFD and then traversing the +global hash table with the function `aout_link_write_other_symbol'. It +builds a string table while writing out the symbols, which is written +to the output file at the end of `NAME(aout,final_link)'. + +2.17.3.4 `bfd_link_split_section' +................................. + +*Synopsis* + bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); + *Description* +Return nonzero if SEC should be split during a reloceatable or final +link. + #define bfd_link_split_section(abfd, sec) \ + BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) + +2.17.3.5 `bfd_section_already_linked' +..................................... + +*Synopsis* + void bfd_section_already_linked (bfd *abfd, asection *sec, + struct bfd_link_info *info); + *Description* +Check if SEC has been already linked during a reloceatable or final +link. + #define bfd_section_already_linked(abfd, sec, info) \ + BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) + + +File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end + +2.18 Hash Tables +================ + +BFD provides a simple set of hash table functions. Routines are +provided to initialize a hash table, to free a hash table, to look up a +string in a hash table and optionally create an entry for it, and to +traverse a hash table. There is currently no routine to delete an +string from a hash table. + + The basic hash table does not permit any data to be stored with a +string. However, a hash table is designed to present a base class from +which other types of hash tables may be derived. These derived types +may store additional information with the string. Hash tables were +implemented in this way, rather than simply providing a data pointer in +a hash table entry, because they were designed for use by the linker +back ends. The linker may create thousands of hash table entries, and +the overhead of allocating private data and storing and following +pointers becomes noticeable. + + The basic hash table code is in `hash.c'. + +* Menu: + +* Creating and Freeing a Hash Table:: +* Looking Up or Entering a String:: +* Traversing a Hash Table:: +* Deriving a New Hash Table Type:: + + +File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables + +2.18.1 Creating and freeing a hash table +---------------------------------------- + +To create a hash table, create an instance of a `struct bfd_hash_table' +(defined in `bfd.h') and call `bfd_hash_table_init' (if you know +approximately how many entries you will need, the function +`bfd_hash_table_init_n', which takes a SIZE argument, may be used). +`bfd_hash_table_init' returns `FALSE' if some sort of error occurs. + + The function `bfd_hash_table_init' take as an argument a function to +use to create new entries. For a basic hash table, use the function +`bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why +you would want to use a different value for this argument. + + `bfd_hash_table_init' will create an objalloc which will be used to +allocate new entries. You may allocate memory on this objalloc using +`bfd_hash_allocate'. + + Use `bfd_hash_table_free' to free up all the memory that has been +allocated for a hash table. This will not free up the `struct +bfd_hash_table' itself, which you must provide. + + Use `bfd_hash_set_default_size' to set the default size of hash +table to use. + + +File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables + +2.18.2 Looking up or entering a string +-------------------------------------- + +The function `bfd_hash_lookup' is used both to look up a string in the +hash table and to create a new entry. + + If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a +string. If the string is found, it will returns a pointer to a `struct +bfd_hash_entry'. If the string is not found in the table +`bfd_hash_lookup' will return `NULL'. You should not modify any of the +fields in the returns `struct bfd_hash_entry'. + + If the CREATE argument is `TRUE', the string will be entered into +the hash table if it is not already there. Either way a pointer to a +`struct bfd_hash_entry' will be returned, either to the existing +structure or to a newly created one. In this case, a `NULL' return +means that an error occurred. + + If the CREATE argument is `TRUE', and a new entry is created, the +COPY argument is used to decide whether to copy the string onto the +hash table objalloc or not. If COPY is passed as `FALSE', you must be +careful not to deallocate or modify the string as long as the hash table +exists. + + +File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables + +2.18.3 Traversing a hash table +------------------------------ + +The function `bfd_hash_traverse' may be used to traverse a hash table, +calling a function on each element. The traversal is done in a random +order. + + `bfd_hash_traverse' takes as arguments a function and a generic +`void *' pointer. The function is called with a hash table entry (a +`struct bfd_hash_entry *') and the generic pointer passed to +`bfd_hash_traverse'. The function must return a `boolean' value, which +indicates whether to continue traversing the hash table. If the +function returns `FALSE', `bfd_hash_traverse' will stop the traversal +and return immediately. + + +File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables + +2.18.4 Deriving a new hash table type +------------------------------------- + +Many uses of hash tables want to store additional information which +each entry in the hash table. Some also find it convenient to store +additional information with the hash table itself. This may be done +using a derived hash table. + + Since C is not an object oriented language, creating a derived hash +table requires sticking together some boilerplate routines with a few +differences specific to the type of hash table you want to create. + + An example of a derived hash table is the linker hash table. The +structures for this are defined in `bfdlink.h'. The functions are in +`linker.c'. + + You may also derive a hash table from an already derived hash table. +For example, the a.out linker backend code uses a hash table derived +from the linker hash table. + +* Menu: + +* Define the Derived Structures:: +* Write the Derived Creation Routine:: +* Write Other Derived Routines:: + + +File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type + +2.18.4.1 Define the derived structures +...................................... + +You must define a structure for an entry in the hash table, and a +structure for the hash table itself. + + The first field in the structure for an entry in the hash table must +be of the type used for an entry in the hash table you are deriving +from. If you are deriving from a basic hash table this is `struct +bfd_hash_entry', which is defined in `bfd.h'. The first field in the +structure for the hash table itself must be of the type of the hash +table you are deriving from itself. If you are deriving from a basic +hash table, this is `struct bfd_hash_table'. + + For example, the linker hash table defines `struct +bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of +type `struct bfd_hash_entry'. Similarly, the first field in `struct +bfd_link_hash_table', `table', is of type `struct bfd_hash_table'. + + +File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type + +2.18.4.2 Write the derived creation routine +........................................... + +You must write a routine which will create and initialize an entry in +the hash table. This routine is passed as the function argument to +`bfd_hash_table_init'. + + In order to permit other hash tables to be derived from the hash +table you are creating, this routine must be written in a standard way. + + The first argument to the creation routine is a pointer to a hash +table entry. This may be `NULL', in which case the routine should +allocate the right amount of space. Otherwise the space has already +been allocated by a hash table type derived from this one. + + After allocating space, the creation routine must call the creation +routine of the hash table type it is derived from, passing in a pointer +to the space it just allocated. This will initialize any fields used +by the base hash table. + + Finally the creation routine must initialize any local fields for +the new hash table type. + + Here is a boilerplate example of a creation routine. FUNCTION_NAME +is the name of the routine. ENTRY_TYPE is the type of an entry in the +hash table you are creating. BASE_NEWFUNC is the name of the creation +routine of the hash table type your hash table is derived from. + + struct bfd_hash_entry * + FUNCTION_NAME (struct bfd_hash_entry *entry, + struct bfd_hash_table *table, + const char *string) + { + struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry; + + /* Allocate the structure if it has not already been allocated by a + derived class. */ + if (ret == NULL) + { + ret = bfd_hash_allocate (table, sizeof (* ret)); + if (ret == NULL) + return NULL; + } + + /* Call the allocation method of the base class. */ + ret = ((ENTRY_TYPE *) + BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string)); + + /* Initialize the local fields here. */ + + return (struct bfd_hash_entry *) ret; + } + *Description* +The creation routine for the linker hash table, which is in `linker.c', +looks just like this example. FUNCTION_NAME is +`_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'. +BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic +hash table. + + `_bfd_link_hash_newfunc' also initializes the local fields in a +linker hash table entry: `type', `written' and `next'. + + +File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type + +2.18.4.3 Write other derived routines +..................................... + +You will want to write other routines for your new hash table, as well. + + You will want an initialization routine which calls the +initialization routine of the hash table you are deriving from and +initializes any other local fields. For the linker hash table, this is +`_bfd_link_hash_table_init' in `linker.c'. + + You will want a lookup routine which calls the lookup routine of the +hash table you are deriving from and casts the result. The linker hash +table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an +additional argument which it uses to decide how to return the looked up +value). + + You may want a traversal routine. This should just call the +traversal routine of the hash table you are deriving from with +appropriate casts. The linker hash table uses `bfd_link_hash_traverse' +in `linker.c'. + + These routines may simply be defined as macros. For example, the +a.out backend linker hash table, which is derived from the linker hash +table, uses macros for the lookup and traversal routines. These are +`aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h. + + +File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top + +3 BFD back ends +*************** + +* Menu: + +* What to Put Where:: +* aout :: a.out backends +* coff :: coff backends +* elf :: elf backends +* mmo :: mmo backend + + +File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends + +3.1 What to Put Where +===================== + +All of BFD lives in one directory. + + +File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends + +3.2 a.out backends +================== + +*Description* +BFD supports a number of different flavours of a.out format, though the +major differences are only the sizes of the structures on disk, and the +shape of the relocation information. + + The support is split into a basic support file `aoutx.h' and other +files which derive functions from the base. One derivation file is +`aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions +support for sun3, sun4, 386 and 29k a.out files, to create a target +jump vector for a specific target. + + This information is further split out into more specific files for +each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for +the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out +format. + + The base file `aoutx.h' defines general mechanisms for reading and +writing records to and from disk and various other methods which BFD +requires. It is included by `aout32.c' and `aout64.c' to form the names +`aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc. + + As an example, this is what goes on to make the back end for a sun4, +from `aout32.c': + + #define ARCH_SIZE 32 + #include "aoutx.h" + + Which exports names: + + ... + aout_32_canonicalize_reloc + aout_32_find_nearest_line + aout_32_get_lineno + aout_32_get_reloc_upper_bound + ... + + from `sunos.c': + + #define TARGET_NAME "a.out-sunos-big" + #define VECNAME sunos_big_vec + #include "aoutf1.h" + + requires all the names from `aout32.c', and produces the jump vector + + sunos_big_vec + + The file `host-aout.c' is a special case. It is for a large set of +hosts that use "more or less standard" a.out files, and for which +cross-debugging is not interesting. It uses the standard 32-bit a.out +support routines, but determines the file offsets and addresses of the +text, data, and BSS sections, the machine architecture and machine +type, and the entry point address, in a host-dependent manner. Once +these values have been determined, generic code is used to handle the +object file. + + When porting it to run on a new system, you must supply: + + HOST_PAGE_SIZE + HOST_SEGMENT_SIZE + HOST_MACHINE_ARCH (optional) + HOST_MACHINE_MACHINE (optional) + HOST_TEXT_START_ADDR + HOST_STACK_END_ADDR + + in the file `../include/sys/h-XXX.h' (for your host). These values, +plus the structures and macros defined in `a.out.h' on your host +system, will produce a BFD target that will access ordinary a.out files +on your host. To configure a new machine to use `host-aout.c', specify: + + TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec + TDEPFILES= host-aout.o trad-core.o + + in the `config/XXX.mt' file, and modify `configure.in' to use the +`XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration +is selected. + +3.2.1 Relocations +----------------- + +*Description* +The file `aoutx.h' provides for both the _standard_ and _extended_ +forms of a.out relocation records. + + The standard records contain only an address, a symbol index, and a +type field. The extended records (used on 29ks and sparcs) also have a +full integer for an addend. + +3.2.2 Internal entry points +--------------------------- + +*Description* +`aoutx.h' exports several routines for accessing the contents of an +a.out file, which are gathered and exported in turn by various format +specific files (eg sunos.c). + +3.2.2.1 `aout_SIZE_swap_exec_header_in' +....................................... + +*Synopsis* + void aout_SIZE_swap_exec_header_in, + (bfd *abfd, + struct external_exec *bytes, + struct internal_exec *execp); + *Description* +Swap the information in an executable header RAW_BYTES taken from a raw +byte stream memory image into the internal exec header structure EXECP. + +3.2.2.2 `aout_SIZE_swap_exec_header_out' +........................................ + +*Synopsis* + void aout_SIZE_swap_exec_header_out + (bfd *abfd, + struct internal_exec *execp, + struct external_exec *raw_bytes); + *Description* +Swap the information in an internal exec header structure EXECP into +the buffer RAW_BYTES ready for writing to disk. + +3.2.2.3 `aout_SIZE_some_aout_object_p' +...................................... + +*Synopsis* + const bfd_target *aout_SIZE_some_aout_object_p + (bfd *abfd, + struct internal_exec *execp, + const bfd_target *(*callback_to_real_object_p) (bfd *)); + *Description* +Some a.out variant thinks that the file open in ABFD checking is an +a.out file. Do some more checking, and set up for access if it really +is. Call back to the calling environment's "finish up" function just +before returning, to handle any last-minute setup. + +3.2.2.4 `aout_SIZE_mkobject' +............................ + +*Synopsis* + bfd_boolean aout_SIZE_mkobject, (bfd *abfd); + *Description* +Initialize BFD ABFD for use with a.out files. + +3.2.2.5 `aout_SIZE_machine_type' +................................ + +*Synopsis* + enum machine_type aout_SIZE_machine_type + (enum bfd_architecture arch, + unsigned long machine, + bfd_boolean *unknown); + *Description* +Keep track of machine architecture and machine type for a.out's. Return +the `machine_type' for a particular architecture and machine, or +`M_UNKNOWN' if that exact architecture and machine can't be represented +in a.out format. + + If the architecture is understood, machine type 0 (default) is +always understood. + +3.2.2.6 `aout_SIZE_set_arch_mach' +................................. + +*Synopsis* + bfd_boolean aout_SIZE_set_arch_mach, + (bfd *, + enum bfd_architecture arch, + unsigned long machine); + *Description* +Set the architecture and the machine of the BFD ABFD to the values ARCH +and MACHINE. Verify that ABFD's format can support the architecture +required. + +3.2.2.7 `aout_SIZE_new_section_hook' +.................................... + +*Synopsis* + bfd_boolean aout_SIZE_new_section_hook, + (bfd *abfd, + asection *newsect); + *Description* +Called by the BFD in response to a `bfd_make_section' request. + + +File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends + +3.3 coff backends +================= + +BFD supports a number of different flavours of coff format. The major +differences between formats are the sizes and alignments of fields in +structures on disk, and the occasional extra field. + + Coff in all its varieties is implemented with a few common files and +a number of implementation specific files. For example, The 88k bcs +coff format is implemented in the file `coff-m88k.c'. This file +`#include's `coff/m88k.h' which defines the external structure of the +coff format for the 88k, and `coff/internal.h' which defines the +internal structure. `coff-m88k.c' also defines the relocations used by +the 88k format *Note Relocations::. + + The Intel i960 processor version of coff is implemented in +`coff-i960.c'. This file has the same structure as `coff-m88k.c', +except that it includes `coff/i960.h' rather than `coff-m88k.h'. + +3.3.1 Porting to a new version of coff +-------------------------------------- + +The recommended method is to select from the existing implementations +the version of coff which is most like the one you want to use. For +example, we'll say that i386 coff is the one you select, and that your +coff flavour is called foo. Copy `i386coff.c' to `foocoff.c', copy +`../include/coff/i386.h' to `../include/coff/foo.h', and add the lines +to `targets.c' and `Makefile.in' so that your new back end is used. +Alter the shapes of the structures in `../include/coff/foo.h' so that +they match what you need. You will probably also have to add `#ifdef's +to the code in `coff/internal.h' and `coffcode.h' if your version of +coff is too wild. + + You can verify that your new BFD backend works quite simply by +building `objdump' from the `binutils' directory, and making sure that +its version of what's going on and your host system's idea (assuming it +has the pretty standard coff dump utility, usually called `att-dump' or +just `dump') are the same. Then clean up your code, and send what +you've done to Cygnus. Then your stuff will be in the next release, and +you won't have to keep integrating it. + +3.3.2 How the coff backend works +-------------------------------- + +3.3.2.1 File layout +................... + +The Coff backend is split into generic routines that are applicable to +any Coff target and routines that are specific to a particular target. +The target-specific routines are further split into ones which are +basically the same for all Coff targets except that they use the +external symbol format or use different values for certain constants. + + The generic routines are in `coffgen.c'. These routines work for +any Coff target. They use some hooks into the target specific code; +the hooks are in a `bfd_coff_backend_data' structure, one of which +exists for each target. + + The essentially similar target-specific routines are in +`coffcode.h'. This header file includes executable C code. The +various Coff targets first include the appropriate Coff header file, +make any special defines that are needed, and then include `coffcode.h'. + + Some of the Coff targets then also have additional routines in the +target source file itself. + + For example, `coff-i960.c' includes `coff/internal.h' and +`coff/i960.h'. It then defines a few constants, such as `I960', and +includes `coffcode.h'. Since the i960 has complex relocation types, +`coff-i960.c' also includes some code to manipulate the i960 relocs. +This code is not in `coffcode.h' because it would not be used by any +other target. + +3.3.2.2 Bit twiddling +..................... + +Each flavour of coff supported in BFD has its own header file +describing the external layout of the structures. There is also an +internal description of the coff layout, in `coff/internal.h'. A major +function of the coff backend is swapping the bytes and twiddling the +bits to translate the external form of the structures into the normal +internal form. This is all performed in the `bfd_swap'_thing_direction +routines. Some elements are different sizes between different versions +of coff; it is the duty of the coff version specific include file to +override the definitions of various packing routines in `coffcode.h'. +E.g., the size of line number entry in coff is sometimes 16 bits, and +sometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO' +will select the correct one. No doubt, some day someone will find a +version of coff which has a varying field size not catered to at the +moment. To port BFD, that person will have to add more `#defines'. +Three of the bit twiddling routines are exported to `gdb'; +`coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB' +reads the symbol table on its own, but uses BFD to fix things up. More +of the bit twiddlers are exported for `gas'; `coff_swap_aux_out', +`coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out', +`coff_swap_filehdr_out', `coff_swap_aouthdr_out', +`coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symbol +table and reloc drudgery itself, thereby saving the internal BFD +overhead, but uses BFD to swap things on the way out, making cross +ports much safer. Doing so also allows BFD (and thus the linker) to +use the same header files as `gas', which makes one avenue to disaster +disappear. + +3.3.2.3 Symbol reading +...................... + +The simple canonical form for symbols used by BFD is not rich enough to +keep all the information available in a coff symbol table. The back end +gets around this problem by keeping the original symbol table around, +"behind the scenes". + + When a symbol table is requested (through a call to +`bfd_canonicalize_symtab'), a request gets through to +`coff_get_normalized_symtab'. This reads the symbol table from the coff +file and swaps all the structures inside into the internal form. It +also fixes up all the pointers in the table (represented in the file by +offsets from the first symbol in the table) into physical pointers to +elements in the new internal table. This involves some work since the +meanings of fields change depending upon context: a field that is a +pointer to another structure in the symbol table at one moment may be +the size in bytes of a structure at the next. Another pass is made +over the table. All symbols which mark file names (`C_FILE' symbols) +are modified so that the internal string points to the value in the +auxent (the real filename) rather than the normal text associated with +the symbol (`".file"'). + + At this time the symbol names are moved around. Coff stores all +symbols less than nine characters long physically within the symbol +table; longer strings are kept at the end of the file in the string +table. This pass moves all strings into memory and replaces them with +pointers to the strings. + + The symbol table is massaged once again, this time to create the +canonical table used by the BFD application. Each symbol is inspected +in turn, and a decision made (using the `sclass' field) about the +various flags to set in the `asymbol'. *Note Symbols::. The generated +canonical table shares strings with the hidden internal symbol table. + + Any linenumbers are read from the coff file too, and attached to the +symbols which own the functions the linenumbers belong to. + +3.3.2.4 Symbol writing +...................... + +Writing a symbol to a coff file which didn't come from a coff file will +lose any debugging information. The `asymbol' structure remembers the +BFD from which the symbol was taken, and on output the back end makes +sure that the same destination target as source target is present. + + When the symbols have come from a coff file then all the debugging +information is preserved. + + Symbol tables are provided for writing to the back end in a vector +of pointers to pointers. This allows applications like the linker to +accumulate and output large symbol tables without having to do too much +byte copying. + + This function runs through the provided symbol table and patches +each symbol marked as a file place holder (`C_FILE') to point to the +next file place holder in the list. It also marks each `offset' field +in the list with the offset from the first symbol of the current symbol. + + Another function of this procedure is to turn the canonical value +form of BFD into the form used by coff. Internally, BFD expects symbol +values to be offsets from a section base; so a symbol physically at +0x120, but in a section starting at 0x100, would have the value 0x20. +Coff expects symbols to contain their final value, so symbols have +their values changed at this point to reflect their sum with their +owning section. This transformation uses the `output_section' field of +the `asymbol''s `asection' *Note Sections::. + + * `coff_mangle_symbols' + This routine runs though the provided symbol table and uses the +offsets generated by the previous pass and the pointers generated when +the symbol table was read in to create the structured hierarchy +required by coff. It changes each pointer to a symbol into the index +into the symbol table of the asymbol. + + * `coff_write_symbols' + This routine runs through the symbol table and patches up the +symbols from their internal form into the coff way, calls the bit +twiddlers, and writes out the table to the file. + +3.3.2.5 `coff_symbol_type' +.......................... + +*Description* +The hidden information for an `asymbol' is described in a +`combined_entry_type': + + + typedef struct coff_ptr_struct + { + /* Remembers the offset from the first symbol in the file for + this symbol. Generated by coff_renumber_symbols. */ + unsigned int offset; + + /* Should the value of this symbol be renumbered. Used for + XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */ + unsigned int fix_value : 1; + + /* Should the tag field of this symbol be renumbered. + Created by coff_pointerize_aux. */ + unsigned int fix_tag : 1; + + /* Should the endidx field of this symbol be renumbered. + Created by coff_pointerize_aux. */ + unsigned int fix_end : 1; + + /* Should the x_csect.x_scnlen field be renumbered. + Created by coff_pointerize_aux. */ + unsigned int fix_scnlen : 1; + + /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the + index into the line number entries. Set by coff_slurp_symbol_table. */ + unsigned int fix_line : 1; + + /* The container for the symbol structure as read and translated + from the file. */ + union + { + union internal_auxent auxent; + struct internal_syment syment; + } u; + } combined_entry_type; + + + /* Each canonical asymbol really looks like this: */ + + typedef struct coff_symbol_struct + { + /* The actual symbol which the rest of BFD works with */ + asymbol symbol; + + /* A pointer to the hidden information for this symbol */ + combined_entry_type *native; + + /* A pointer to the linenumber information for this symbol */ + struct lineno_cache_entry *lineno; + + /* Have the line numbers been relocated yet ? */ + bfd_boolean done_lineno; + } coff_symbol_type; + +3.3.2.6 `bfd_coff_backend_data' +............................... + + /* COFF symbol classifications. */ + + enum coff_symbol_classification + { + /* Global symbol. */ + COFF_SYMBOL_GLOBAL, + /* Common symbol. */ + COFF_SYMBOL_COMMON, + /* Undefined symbol. */ + COFF_SYMBOL_UNDEFINED, + /* Local symbol. */ + COFF_SYMBOL_LOCAL, + /* PE section symbol. */ + COFF_SYMBOL_PE_SECTION + }; +Special entry points for gdb to swap in coff symbol table parts: + typedef struct + { + void (*_bfd_coff_swap_aux_in) + (bfd *, void *, int, int, int, int, void *); + + void (*_bfd_coff_swap_sym_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_lineno_in) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_aux_out) + (bfd *, void *, int, int, int, int, void *); + + unsigned int (*_bfd_coff_swap_sym_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_lineno_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_reloc_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_filehdr_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_aouthdr_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_scnhdr_out) + (bfd *, void *, void *); + + unsigned int _bfd_filhsz; + unsigned int _bfd_aoutsz; + unsigned int _bfd_scnhsz; + unsigned int _bfd_symesz; + unsigned int _bfd_auxesz; + unsigned int _bfd_relsz; + unsigned int _bfd_linesz; + unsigned int _bfd_filnmlen; + bfd_boolean _bfd_coff_long_filenames; + bfd_boolean _bfd_coff_long_section_names; + unsigned int _bfd_coff_default_section_alignment_power; + bfd_boolean _bfd_coff_force_symnames_in_strings; + unsigned int _bfd_coff_debug_string_prefix_length; + + void (*_bfd_coff_swap_filehdr_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_aouthdr_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_scnhdr_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_reloc_in) + (bfd *abfd, void *, void *); + + bfd_boolean (*_bfd_coff_bad_format_hook) + (bfd *, void *); + + bfd_boolean (*_bfd_coff_set_arch_mach_hook) + (bfd *, void *); + + void * (*_bfd_coff_mkobject_hook) + (bfd *, void *, void *); + + bfd_boolean (*_bfd_styp_to_sec_flags_hook) + (bfd *, void *, const char *, asection *, flagword *); + + void (*_bfd_set_alignment_hook) + (bfd *, asection *, void *); + + bfd_boolean (*_bfd_coff_slurp_symbol_table) + (bfd *); + + bfd_boolean (*_bfd_coff_symname_in_debug) + (bfd *, struct internal_syment *); + + bfd_boolean (*_bfd_coff_pointerize_aux_hook) + (bfd *, combined_entry_type *, combined_entry_type *, + unsigned int, combined_entry_type *); + + bfd_boolean (*_bfd_coff_print_aux) + (bfd *, FILE *, combined_entry_type *, combined_entry_type *, + combined_entry_type *, unsigned int); + + void (*_bfd_coff_reloc16_extra_cases) + (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *, + bfd_byte *, unsigned int *, unsigned int *); + + int (*_bfd_coff_reloc16_estimate) + (bfd *, asection *, arelent *, unsigned int, + struct bfd_link_info *); + + enum coff_symbol_classification (*_bfd_coff_classify_symbol) + (bfd *, struct internal_syment *); + + bfd_boolean (*_bfd_coff_compute_section_file_positions) + (bfd *); + + bfd_boolean (*_bfd_coff_start_final_link) + (bfd *, struct bfd_link_info *); + + bfd_boolean (*_bfd_coff_relocate_section) + (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, + struct internal_reloc *, struct internal_syment *, asection **); + + reloc_howto_type *(*_bfd_coff_rtype_to_howto) + (bfd *, asection *, struct internal_reloc *, + struct coff_link_hash_entry *, struct internal_syment *, + bfd_vma *); + + bfd_boolean (*_bfd_coff_adjust_symndx) + (bfd *, struct bfd_link_info *, bfd *, asection *, + struct internal_reloc *, bfd_boolean *); + + bfd_boolean (*_bfd_coff_link_add_one_symbol) + (struct bfd_link_info *, bfd *, const char *, flagword, + asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, + struct bfd_link_hash_entry **); + + bfd_boolean (*_bfd_coff_link_output_has_begun) + (bfd *, struct coff_final_link_info *); + + bfd_boolean (*_bfd_coff_final_link_postscript) + (bfd *, struct coff_final_link_info *); + + bfd_boolean (*_bfd_coff_print_pdata) + (bfd *, void *); + + } bfd_coff_backend_data; + + #define coff_backend_info(abfd) \ + ((bfd_coff_backend_data *) (abfd)->xvec->backend_data) + + #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \ + ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i)) + + #define bfd_coff_swap_sym_in(a,e,i) \ + ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i)) + + #define bfd_coff_swap_lineno_in(a,e,i) \ + ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i)) + + #define bfd_coff_swap_reloc_out(abfd, i, o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o)) + + #define bfd_coff_swap_lineno_out(abfd, i, o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o)) + + #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \ + ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o)) + + #define bfd_coff_swap_sym_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o)) + + #define bfd_coff_swap_scnhdr_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o)) + + #define bfd_coff_swap_filehdr_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o)) + + #define bfd_coff_swap_aouthdr_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o)) + + #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz) + #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz) + #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz) + #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz) + #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz) + #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz) + #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz) + #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen) + #define bfd_coff_long_filenames(abfd) \ + (coff_backend_info (abfd)->_bfd_coff_long_filenames) + #define bfd_coff_long_section_names(abfd) \ + (coff_backend_info (abfd)->_bfd_coff_long_section_names) + #define bfd_coff_default_section_alignment_power(abfd) \ + (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power) + #define bfd_coff_swap_filehdr_in(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o)) + + #define bfd_coff_swap_aouthdr_in(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o)) + + #define bfd_coff_swap_scnhdr_in(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o)) + + #define bfd_coff_swap_reloc_in(abfd, i, o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o)) + + #define bfd_coff_bad_format_hook(abfd, filehdr) \ + ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr)) + + #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\ + ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr)) + #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\ + ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\ + (abfd, filehdr, aouthdr)) + + #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\ + ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\ + (abfd, scnhdr, name, section, flags_ptr)) + + #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\ + ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr)) + + #define bfd_coff_slurp_symbol_table(abfd)\ + ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd)) + + #define bfd_coff_symname_in_debug(abfd, sym)\ + ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym)) + + #define bfd_coff_force_symnames_in_strings(abfd)\ + (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings) + + #define bfd_coff_debug_string_prefix_length(abfd)\ + (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length) + + #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\ + ((coff_backend_info (abfd)->_bfd_coff_print_aux)\ + (abfd, file, base, symbol, aux, indaux)) + + #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\ + reloc, data, src_ptr, dst_ptr)\ + ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\ + (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr)) + + #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\ + ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\ + (abfd, section, reloc, shrink, link_info)) + + #define bfd_coff_classify_symbol(abfd, sym)\ + ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\ + (abfd, sym)) + + #define bfd_coff_compute_section_file_positions(abfd)\ + ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\ + (abfd)) + + #define bfd_coff_start_final_link(obfd, info)\ + ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\ + (obfd, info)) + #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\ + ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\ + (obfd, info, ibfd, o, con, rel, isyms, secs)) + #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\ + ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\ + (abfd, sec, rel, h, sym, addendp)) + #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\ + ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\ + (obfd, info, ibfd, sec, rel, adjustedp)) + #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\ + value, string, cp, coll, hashp)\ + ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\ + (info, abfd, name, flags, section, value, string, cp, coll, hashp)) + + #define bfd_coff_link_output_has_begun(a,p) \ + ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p)) + #define bfd_coff_final_link_postscript(a,p) \ + ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p)) + + #define bfd_coff_have_print_pdata(a) \ + (coff_backend_info (a)->_bfd_coff_print_pdata) + #define bfd_coff_print_pdata(a,p) \ + ((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p)) + +3.3.2.7 Writing relocations +........................... + +To write relocations, the back end steps though the canonical +relocation table and create an `internal_reloc'. The symbol index to +use is removed from the `offset' field in the symbol table supplied. +The address comes directly from the sum of the section base address and +the relocation offset; the type is dug directly from the howto field. +Then the `internal_reloc' is swapped into the shape of an +`external_reloc' and written out to disk. + +3.3.2.8 Reading linenumbers +........................... + +Creating the linenumber table is done by reading in the entire coff +linenumber table, and creating another table for internal use. + + A coff linenumber table is structured so that each function is +marked as having a line number of 0. Each line within the function is +an offset from the first line in the function. The base of the line +number information for the table is stored in the symbol associated +with the function. + + Note: The PE format uses line number 0 for a flag indicating a new +source file. + + The information is copied from the external to the internal table, +and each symbol which marks a function is marked by pointing its... + + How does this work ? + +3.3.2.9 Reading relocations +........................... + +Coff relocations are easily transformed into the internal BFD form +(`arelent'). + + Reading a coff relocation table is done in the following stages: + + * Read the entire coff relocation table into memory. + + * Process each relocation in turn; first swap it from the external + to the internal form. + + * Turn the symbol referenced in the relocation's symbol index into a + pointer into the canonical symbol table. This table is the same + as the one returned by a call to `bfd_canonicalize_symtab'. The + back end will call that routine and save the result if a + canonicalization hasn't been done. + + * The reloc index is turned into a pointer to a howto structure, in + a back end specific way. For instance, the 386 and 960 use the + `r_type' to directly produce an index into a howto table vector; + the 88k subtracts a number from the `r_type' field and creates an + addend field. + + +File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends + +3.4 ELF backends +================ + +BFD support for ELF formats is being worked on. Currently, the best +supported back ends are for sparc and i386 (running svr4 or Solaris 2). + + Documentation of the internals of the support code still needs to be +written. The code is changing quickly enough that we haven't bothered +yet. + +3.4.0.1 `bfd_elf_find_section' +.............................. + +*Synopsis* + struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); + *Description* +Helper functions for GDB to locate the string tables. Since BFD hides +string tables from callers, GDB needs to use an internal hook to find +them. Sun's .stabstr, in particular, isn't even pointed to by the +.stab section, so ordinary mechanisms wouldn't work to find it, even if +we had some. + + +File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends + +3.5 mmo backend +=============== + +The mmo object format is used exclusively together with Professor +Donald E. Knuth's educational 64-bit processor MMIX. The simulator +`mmix' which is available at +`http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz' +understands this format. That package also includes a combined +assembler and linker called `mmixal'. The mmo format has no advantages +feature-wise compared to e.g. ELF. It is a simple non-relocatable +object format with no support for archives or debugging information, +except for symbol value information and line numbers (which is not yet +implemented in BFD). See +`http://www-cs-faculty.stanford.edu/~knuth/mmix.html' for more +information about MMIX. The ELF format is used for intermediate object +files in the BFD implementation. + +* Menu: + +* File layout:: +* Symbol-table:: +* mmo section mapping:: + + +File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo + +3.5.1 File layout +----------------- + +The mmo file contents is not partitioned into named sections as with +e.g. ELF. Memory areas is formed by specifying the location of the +data that follows. Only the memory area `0x0000...00' to `0x01ff...ff' +is executable, so it is used for code (and constants) and the area +`0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmo +section mapping::. + + There is provision for specifying "special data" of 65536 different +types. We use type 80 (decimal), arbitrarily chosen the same as the +ELF `e_machine' number for MMIX, filling it with section information +normally found in ELF objects. *Note mmo section mapping::. + + Contents is entered as 32-bit words, xor:ed over previous contents, +always zero-initialized. A word that starts with the byte `0x98' forms +a command called a `lopcode', where the next byte distinguished between +the thirteen lopcodes. The two remaining bytes, called the `Y' and `Z' +fields, or the `YZ' field (a 16-bit big-endian number), are used for +various purposes different for each lopcode. As documented in +`http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz', the +lopcodes are: + +`lop_quote' + 0x98000001. The next word is contents, regardless of whether it + starts with 0x98 or not. + +`lop_loc' + 0x9801YYZZ, where `Z' is 1 or 2. This is a location directive, + setting the location for the next data to the next 32-bit word + (for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally + `Y' is 0 for the text segment and 2 for the data segment. + +`lop_skip' + 0x9802YYZZ. Increase the current location by `YZ' bytes. + +`lop_fixo' + 0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64 + bits into the location pointed to by the next 32-bit (Z = 1) or + 64-bit (Z = 2) word, plus Y * 2^56. + +`lop_fixr' + 0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 * + YZ. + +`lop_fixrx' + 0x980500ZZ. `Z' is 16 or 24. A value `L' derived from the + following 32-bit word are used in a manner similar to `YZ' in + lop_fixr: it is xor:ed into the current location minus 4 * L. The + first byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24 + BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD). + +`lop_file' + 0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words. + Set the file number to `Y' and the line counter to 0. The next Z + * 4 bytes contain the file name, padded with zeros if the count is + not a multiple of four. The same `Y' may occur multiple times, + but `Z' must be 0 for all but the first occurrence. + +`lop_line' + 0x9807YYZZ. `YZ' is the line number. Together with lop_file, it + forms the source location for the next 32-bit word. Note that for + each non-lopcode 32-bit word, line numbers are assumed incremented + by one. + +`lop_spec' + 0x9808YYZZ. `YZ' is the type number. Data until the next lopcode + other than lop_quote forms special data of type `YZ'. *Note mmo + section mapping::. + + Other types than 80, (or type 80 with a content that does not + parse) is stored in sections named `.MMIX.spec_data.N' where N is + the `YZ'-type. The flags for such a sections say not to allocate + or load the data. The vma is 0. Contents of multiple occurrences + of special data N is concatenated to the data of the previous + lop_spec Ns. The location in data or code at which the lop_spec + occurred is lost. + +`lop_pre' + 0x980901ZZ. The first lopcode in a file. The `Z' field forms the + length of header information in 32-bit words, where the first word + tells the time in seconds since `00:00:00 GMT Jan 1 1970'. + +`lop_post' + 0x980a00ZZ. Z > 32. This lopcode follows after all + content-generating lopcodes in a program. The `Z' field denotes + the value of `rG' at the beginning of the program. The following + 256 - Z big-endian 64-bit words are loaded into global registers + `$G' ... `$255'. + +`lop_stab' + 0x980b0000. The next-to-last lopcode in a program. Must follow + immediately after the lop_post lopcode and its data. After this + lopcode follows all symbols in a compressed format (*note + Symbol-table::). + +`lop_end' + 0x980cYYZZ. The last lopcode in a program. It must follow the + lop_stab lopcode and its data. The `YZ' field contains the number + of 32-bit words of symbol table information after the preceding + lop_stab lopcode. + + Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and +`lop_fixo' are not generated by BFD, but are handled. They are +generated by `mmixal'. + + This trivial one-label, one-instruction file: + + :Main TRAP 1,2,3 + + can be represented this way in mmo: + + 0x98090101 - lop_pre, one 32-bit word with timestamp. + <timestamp> + 0x98010002 - lop_loc, text segment, using a 64-bit address. + Note that mmixal does not emit this for the file above. + 0x00000000 - Address, high 32 bits. + 0x00000000 - Address, low 32 bits. + 0x98060002 - lop_file, 2 32-bit words for file-name. + 0x74657374 - "test" + 0x2e730000 - ".s\0\0" + 0x98070001 - lop_line, line 1. + 0x00010203 - TRAP 1,2,3 + 0x980a00ff - lop_post, setting $255 to 0. + 0x00000000 + 0x00000000 + 0x980b0000 - lop_stab for ":Main" = 0, serial 1. + 0x203a4040 *Note Symbol-table::. + 0x10404020 + 0x4d206120 + 0x69016e00 + 0x81000000 + 0x980c0005 - lop_end; symbol table contained five 32-bit words. + + +File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo + +3.5.2 Symbol table format +------------------------- + +From mmixal.w (or really, the generated mmixal.tex) in +`http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'): +"Symbols are stored and retrieved by means of a `ternary search trie', +following ideas of Bentley and Sedgewick. (See ACM-SIAM Symp. on +Discrete Algorithms `8' (1997), 360-369; R.Sedgewick, `Algorithms in C' +(Reading, Mass. Addison-Wesley, 1998), `15.4'.) Each trie node stores +a character, and there are branches to subtries for the cases where a +given character is less than, equal to, or greater than the character +in the trie. There also is a pointer to a symbol table entry if a +symbol ends at the current node." + + So it's a tree encoded as a stream of bytes. The stream of bytes +acts on a single virtual global symbol, adding and removing characters +and signalling complete symbol points. Here, we read the stream and +create symbols at the completion points. + + First, there's a control byte `m'. If any of the listed bits in `m' +is nonzero, we execute what stands at the right, in the listed order: + + (MMO3_LEFT) + 0x40 - Traverse left trie. + (Read a new command byte and recurse.) + + (MMO3_SYMBITS) + 0x2f - Read the next byte as a character and store it in the + current character position; increment character position. + Test the bits of `m': + + (MMO3_WCHAR) + 0x80 - The character is 16-bit (so read another byte, + merge into current character. + + (MMO3_TYPEBITS) + 0xf - We have a complete symbol; parse the type, value + and serial number and do what should be done + with a symbol. The type and length information + is in j = (m & 0xf). + + (MMO3_REGQUAL_BITS) + j == 0xf: A register variable. The following + byte tells which register. + j <= 8: An absolute symbol. Read j bytes as the + big-endian number the symbol equals. + A j = 2 with two zero bytes denotes an + unknown symbol. + j > 8: As with j <= 8, but add (0x20 << 56) + to the value in the following j - 8 + bytes. + + Then comes the serial number, as a variant of + uleb128, but better named ubeb128: + Read bytes and shift the previous value left 7 + (multiply by 128). Add in the new byte, repeat + until a byte has bit 7 set. The serial number + is the computed value minus 128. + + (MMO3_MIDDLE) + 0x20 - Traverse middle trie. (Read a new command byte + and recurse.) Decrement character position. + + (MMO3_RIGHT) + 0x10 - Traverse right trie. (Read a new command byte and + recurse.) + + Let's look again at the `lop_stab' for the trivial file (*note File +layout::). + + 0x980b0000 - lop_stab for ":Main" = 0, serial 1. + 0x203a4040 + 0x10404020 + 0x4d206120 + 0x69016e00 + 0x81000000 + + This forms the trivial trie (note that the path between ":" and "M" +is redundant): + + 203a ":" + 40 / + 40 / + 10 \ + 40 / + 40 / + 204d "M" + 2061 "a" + 2069 "i" + 016e "n" is the last character in a full symbol, and + with a value represented in one byte. + 00 The value is 0. + 81 The serial number is 1. + + +File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo + +3.5.3 mmo section mapping +------------------------- + +The implementation in BFD uses special data type 80 (decimal) to +encapsulate and describe named sections, containing e.g. debug +information. If needed, any datum in the encapsulation will be quoted +using lop_quote. First comes a 32-bit word holding the number of +32-bit words containing the zero-terminated zero-padded segment name. +After the name there's a 32-bit word holding flags describing the +section type. Then comes a 64-bit big-endian word with the section +length (in bytes), then another with the section start address. +Depending on the type of section, the contents might follow, +zero-padded to 32-bit boundary. For a loadable section (such as data +or code), the contents might follow at some later point, not +necessarily immediately, as a lop_loc with the same start address as in +the section description, followed by the contents. This in effect +forms a descriptor that must be emitted before the actual contents. +Sections described this way must not overlap. + + For areas that don't have such descriptors, synthetic sections are +formed by BFD. Consecutive contents in the two memory areas +`0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' are +entered in sections named `.text' and `.data' respectively. If an area +is not otherwise described, but would together with a neighboring lower +area be less than `0x40000000' bytes long, it is joined with the lower +area and the gap is zero-filled. For other cases, a new section is +formed, named `.MMIX.sec.N'. Here, N is a number, a running count +through the mmo file, starting at 0. + + A loadable section specified as: + + .section secname,"ax" + TETRA 1,2,3,4,-1,-2009 + BYTE 80 + + and linked to address `0x4', is represented by the sequence: + + 0x98080050 - lop_spec 80 + 0x00000002 - two 32-bit words for the section name + 0x7365636e - "secn" + 0x616d6500 - "ame\0" + 0x00000033 - flags CODE, READONLY, LOAD, ALLOC + 0x00000000 - high 32 bits of section length + 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits + 0x00000000 - high 32 bits of section address + 0x00000004 - section address is 4 + 0x98010002 - 64 bits with address of following data + 0x00000000 - high 32 bits of address + 0x00000004 - low 32 bits: data starts at address 4 + 0x00000001 - 1 + 0x00000002 - 2 + 0x00000003 - 3 + 0x00000004 - 4 + 0xffffffff - -1 + 0xfffff827 - -2009 + 0x50000000 - 80 as a byte, padded with zeros. + + Note that the lop_spec wrapping does not include the section +contents. Compare this to a non-loaded section specified as: + + .section thirdsec + TETRA 200001,100002 + BYTE 38,40 + + This, when linked to address `0x200000000000001c', is represented by: + + 0x98080050 - lop_spec 80 + 0x00000002 - two 32-bit words for the section name + 0x7365636e - "thir" + 0x616d6500 - "dsec" + 0x00000010 - flag READONLY + 0x00000000 - high 32 bits of section length + 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits + 0x20000000 - high 32 bits of address + 0x0000001c - low 32 bits of address 0x200000000000001c + 0x00030d41 - 200001 + 0x000186a2 - 100002 + 0x26280000 - 38, 40 as bytes, padded with zeros + + For the latter example, the section contents must not be loaded in +memory, and is therefore specified as part of the special data. The +address is usually unimportant but might provide information for e.g. +the DWARF 2 debugging format. + + +File: bfd.info, Node: GNU Free Documentation License, Next: BFD Index, Prev: BFD back ends, Up: Top + +Appendix A GNU Free Documentation License +***************************************** + + Version 1.1, March 2000 + + Copyright (C) 2000, 2003 Free Software Foundation, Inc. + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + + 0. PREAMBLE + + The purpose of this License is to make a manual, textbook, or other + written document "free" in the sense of freedom: to assure everyone + the effective freedom to copy and redistribute it, with or without + modifying it, either commercially or noncommercially. Secondarily, + this License preserves for the author and publisher a way to get + credit for their work, while not being considered responsible for + modifications made by others. + + This License is a kind of "copyleft", which means that derivative + works of the document must themselves be free in the same sense. + It complements the GNU General Public License, which is a copyleft + license designed for free software. + + We have designed this License in order to use it for manuals for + free software, because free software needs free documentation: a + free program should come with manuals providing the same freedoms + that the software does. But this License is not limited to + software manuals; it can be used for any textual work, regardless + of subject matter or whether it is published as a printed book. + We recommend this License principally for works whose purpose is + instruction or reference. + + + 1. APPLICABILITY AND DEFINITIONS + + This License applies to any manual or other work that contains a + notice placed by the copyright holder saying it can be distributed + under the terms of this License. The "Document", below, refers to + any such manual or work. Any member of the public is a licensee, + and is addressed as "you." + + A "Modified Version" of the Document means any work containing the + Document or a portion of it, either copied verbatim, or with + modifications and/or translated into another language. + + A "Secondary Section" is a named appendix or a front-matter + section of the Document that deals exclusively with the + relationship of the publishers or authors of the Document to the + Document's overall subject (or to related matters) and contains + nothing that could fall directly within that overall subject. + (For example, if the Document is in part a textbook of + mathematics, a Secondary Section may not explain any mathematics.) + The relationship could be a matter of historical connection with + the subject or with related matters, or of legal, commercial, + philosophical, ethical or political position regarding them. + + The "Invariant Sections" are certain Secondary Sections whose + titles are designated, as being those of Invariant Sections, in + the notice that says that the Document is released under this + License. + + The "Cover Texts" are certain short passages of text that are + listed, as Front-Cover Texts or Back-Cover Texts, in the notice + that says that the Document is released under this License. + + A "Transparent" copy of the Document means a machine-readable copy, + represented in a format whose specification is available to the + general public, whose contents can be viewed and edited directly + and straightforwardly with generic text editors or (for images + composed of pixels) generic paint programs or (for drawings) some + widely available drawing editor, and that is suitable for input to + text formatters or for automatic translation to a variety of + formats suitable for input to text formatters. A copy made in an + otherwise Transparent file format whose markup has been designed + to thwart or discourage subsequent modification by readers is not + Transparent. A copy that is not "Transparent" is called "Opaque." + + Examples of suitable formats for Transparent copies include plain + ASCII without markup, Texinfo input format, LaTeX input format, + SGML or XML using a publicly available DTD, and + standard-conforming simple HTML designed for human modification. + Opaque formats include PostScript, PDF, proprietary formats that + can be read and edited only by proprietary word processors, SGML + or XML for which the DTD and/or processing tools are not generally + available, and the machine-generated HTML produced by some word + processors for output purposes only. + + The "Title Page" means, for a printed book, the title page itself, + plus such following pages as are needed to hold, legibly, the + material this License requires to appear in the title page. For + works in formats which do not have any title page as such, "Title + Page" means the text near the most prominent appearance of the + work's title, preceding the beginning of the body of the text. + + 2. VERBATIM COPYING + + You may copy and distribute the Document in any medium, either + commercially or noncommercially, provided that this License, the + copyright notices, and the license notice saying this License + applies to the Document are reproduced in all copies, and that you + add no other conditions whatsoever to those of this License. You + may not use technical measures to obstruct or control the reading + or further copying of the copies you make or distribute. However, + you may accept compensation in exchange for copies. If you + distribute a large enough number of copies you must also follow + the conditions in section 3. + + You may also lend copies, under the same conditions stated above, + and you may publicly display copies. + + 3. COPYING IN QUANTITY + + If you publish printed copies of the Document numbering more than + 100, and the Document's license notice requires Cover Texts, you + must enclose the copies in covers that carry, clearly and legibly, + all these Cover Texts: Front-Cover Texts on the front cover, and + Back-Cover Texts on the back cover. Both covers must also clearly + and legibly identify you as the publisher of these copies. The + front cover must present the full title with all words of the + title equally prominent and visible. You may add other material + on the covers in addition. Copying with changes limited to the + covers, as long as they preserve the title of the Document and + satisfy these conditions, can be treated as verbatim copying in + other respects. + + If the required texts for either cover are too voluminous to fit + legibly, you should put the first ones listed (as many as fit + reasonably) on the actual cover, and continue the rest onto + adjacent pages. + + If you publish or distribute Opaque copies of the Document + numbering more than 100, you must either include a + machine-readable Transparent copy along with each Opaque copy, or + state in or with each Opaque copy a publicly-accessible + computer-network location containing a complete Transparent copy + of the Document, free of added material, which the general + network-using public has access to download anonymously at no + charge using public-standard network protocols. If you use the + latter option, you must take reasonably prudent steps, when you + begin distribution of Opaque copies in quantity, to ensure that + this Transparent copy will remain thus accessible at the stated + location until at least one year after the last time you + distribute an Opaque copy (directly or through your agents or + retailers) of that edition to the public. + + It is requested, but not required, that you contact the authors of + the Document well before redistributing any large number of + copies, to give them a chance to provide you with an updated + version of the Document. + + 4. MODIFICATIONS + + You may copy and distribute a Modified Version of the Document + under the conditions of sections 2 and 3 above, provided that you + release the Modified Version under precisely this License, with + the Modified Version filling the role of the Document, thus + licensing distribution and modification of the Modified Version to + whoever possesses a copy of it. In addition, you must do these + things in the Modified Version: + + A. Use in the Title Page (and on the covers, if any) a title + distinct from that of the Document, and from those of previous + versions (which should, if there were any, be listed in the + History section of the Document). You may use the same title + as a previous version if the original publisher of that version + gives permission. + B. List on the Title Page, as authors, one or more persons or + entities responsible for authorship of the modifications in the + Modified Version, together with at least five of the principal + authors of the Document (all of its principal authors, if it + has less than five). + C. State on the Title page the name of the publisher of the + Modified Version, as the publisher. + D. Preserve all the copyright notices of the Document. + E. Add an appropriate copyright notice for your modifications + adjacent to the other copyright notices. + F. Include, immediately after the copyright notices, a license + notice giving the public permission to use the Modified Version + under the terms of this License, in the form shown in the + Addendum below. + G. Preserve in that license notice the full lists of Invariant + Sections and required Cover Texts given in the Document's + license notice. + H. Include an unaltered copy of this License. + I. Preserve the section entitled "History", and its title, and add + to it an item stating at least the title, year, new authors, and + publisher of the Modified Version as given on the Title Page. + If there is no section entitled "History" in the Document, + create one stating the title, year, authors, and publisher of + the Document as given on its Title Page, then add an item + describing the Modified Version as stated in the previous + sentence. + J. Preserve the network location, if any, given in the Document for + public access to a Transparent copy of the Document, and + likewise the network locations given in the Document for + previous versions it was based on. These may be placed in the + "History" section. You may omit a network location for a work + that was published at least four years before the Document + itself, or if the original publisher of the version it refers + to gives permission. + K. In any section entitled "Acknowledgements" or "Dedications", + preserve the section's title, and preserve in the section all the + substance and tone of each of the contributor acknowledgements + and/or dedications given therein. + L. Preserve all the Invariant Sections of the Document, + unaltered in their text and in their titles. Section numbers + or the equivalent are not considered part of the section titles. + M. Delete any section entitled "Endorsements." Such a section + may not be included in the Modified Version. + N. Do not retitle any existing section as "Endorsements" or to + conflict in title with any Invariant Section. + + If the Modified Version includes new front-matter sections or + appendices that qualify as Secondary Sections and contain no + material copied from the Document, you may at your option + designate some or all of these sections as invariant. To do this, + add their titles to the list of Invariant Sections in the Modified + Version's license notice. These titles must be distinct from any + other section titles. + + You may add a section entitled "Endorsements", provided it contains + nothing but endorsements of your Modified Version by various + parties-for example, statements of peer review or that the text has + been approved by an organization as the authoritative definition + of a standard. + + You may add a passage of up to five words as a Front-Cover Text, + and a passage of up to 25 words as a Back-Cover Text, to the end + of the list of Cover Texts in the Modified Version. Only one + passage of Front-Cover Text and one of Back-Cover Text may be + added by (or through arrangements made by) any one entity. If the + Document already includes a cover text for the same cover, + previously added by you or by arrangement made by the same entity + you are acting on behalf of, you may not add another; but you may + replace the old one, on explicit permission from the previous + publisher that added the old one. + + The author(s) and publisher(s) of the Document do not by this + License give permission to use their names for publicity for or to + assert or imply endorsement of any Modified Version. + + 5. COMBINING DOCUMENTS + + You may combine the Document with other documents released under + this License, under the terms defined in section 4 above for + modified versions, provided that you include in the combination + all of the Invariant Sections of all of the original documents, + unmodified, and list them all as Invariant Sections of your + combined work in its license notice. + + The combined work need only contain one copy of this License, and + multiple identical Invariant Sections may be replaced with a single + copy. If there are multiple Invariant Sections with the same name + but different contents, make the title of each such section unique + by adding at the end of it, in parentheses, the name of the + original author or publisher of that section if known, or else a + unique number. Make the same adjustment to the section titles in + the list of Invariant Sections in the license notice of the + combined work. + + In the combination, you must combine any sections entitled + "History" in the various original documents, forming one section + entitled "History"; likewise combine any sections entitled + "Acknowledgements", and any sections entitled "Dedications." You + must delete all sections entitled "Endorsements." + + 6. COLLECTIONS OF DOCUMENTS + + You may make a collection consisting of the Document and other + documents released under this License, and replace the individual + copies of this License in the various documents with a single copy + that is included in the collection, provided that you follow the + rules of this License for verbatim copying of each of the + documents in all other respects. + + You may extract a single document from such a collection, and + distribute it individually under this License, provided you insert + a copy of this License into the extracted document, and follow + this License in all other respects regarding verbatim copying of + that document. + + 7. AGGREGATION WITH INDEPENDENT WORKS + + A compilation of the Document or its derivatives with other + separate and independent documents or works, in or on a volume of + a storage or distribution medium, does not as a whole count as a + Modified Version of the Document, provided no compilation + copyright is claimed for the compilation. Such a compilation is + called an "aggregate", and this License does not apply to the + other self-contained works thus compiled with the Document, on + account of their being thus compiled, if they are not themselves + derivative works of the Document. + + If the Cover Text requirement of section 3 is applicable to these + copies of the Document, then if the Document is less than one + quarter of the entire aggregate, the Document's Cover Texts may be + placed on covers that surround only the Document within the + aggregate. Otherwise they must appear on covers around the whole + aggregate. + + 8. TRANSLATION + + Translation is considered a kind of modification, so you may + distribute translations of the Document under the terms of section + 4. Replacing Invariant Sections with translations requires special + permission from their copyright holders, but you may include + translations of some or all Invariant Sections in addition to the + original versions of these Invariant Sections. You may include a + translation of this License provided that you also include the + original English version of this License. In case of a + disagreement between the translation and the original English + version of this License, the original English version will prevail. + + 9. TERMINATION + + You may not copy, modify, sublicense, or distribute the Document + except as expressly provided for under this License. Any other + attempt to copy, modify, sublicense or distribute the Document is + void, and will automatically terminate your rights under this + License. However, parties who have received copies, or rights, + from you under this License will not have their licenses + terminated so long as such parties remain in full compliance. + + 10. FUTURE REVISIONS OF THIS LICENSE + + The Free Software Foundation may publish new, revised versions of + the GNU Free Documentation License from time to time. Such new + versions will be similar in spirit to the present version, but may + differ in detail to address new problems or concerns. See + http://www.gnu.org/copyleft/. + + Each version of the License is given a distinguishing version + number. If the Document specifies that a particular numbered + version of this License "or any later version" applies to it, you + have the option of following the terms and conditions either of + that specified version or of any later version that has been + published (not as a draft) by the Free Software Foundation. If + the Document does not specify a version number of this License, + you may choose any version ever published (not as a draft) by the + Free Software Foundation. + + +ADDENDUM: How to use this License for your documents +==================================================== + +To use this License in a document you have written, include a copy of +the License in the document and put the following copyright and license +notices just after the title page: + + Copyright (C) YEAR YOUR NAME. + Permission is granted to copy, distribute and/or modify this document + under the terms of the GNU Free Documentation License, Version 1.1 + or any later version published by the Free Software Foundation; + with the Invariant Sections being LIST THEIR TITLES, with the + Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. + A copy of the license is included in the section entitled "GNU + Free Documentation License." + + If you have no Invariant Sections, write "with no Invariant Sections" +instead of saying which ones are invariant. If you have no Front-Cover +Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being +LIST"; likewise for Back-Cover Texts. + + If your document contains nontrivial examples of program code, we +recommend releasing these examples in parallel under your choice of +free software license, such as the GNU General Public License, to +permit their use in free software. + + +File: bfd.info, Node: BFD Index, Prev: GNU Free Documentation License, Up: Top + +BFD Index +********* + + +* Menu: + +* _bfd_final_link_relocate: Relocating the section contents. + (line 22) +* _bfd_generic_link_add_archive_symbols: Adding symbols from an archive. + (line 12) +* _bfd_generic_link_add_one_symbol: Adding symbols from an object file. + (line 19) +* _bfd_generic_make_empty_symbol: symbol handling functions. + (line 92) +* _bfd_link_add_symbols in target vector: Adding Symbols to the Hash Table. + (line 6) +* _bfd_link_final_link in target vector: Performing the Final Link. + (line 6) +* _bfd_link_hash_table_create in target vector: Creating a Linker Hash Table. + (line 6) +* _bfd_relocate_contents: Relocating the section contents. + (line 22) +* aout_SIZE_machine_type: aout. (line 147) +* aout_SIZE_mkobject: aout. (line 139) +* aout_SIZE_new_section_hook: aout. (line 177) +* aout_SIZE_set_arch_mach: aout. (line 164) +* aout_SIZE_some_aout_object_p: aout. (line 125) +* aout_SIZE_swap_exec_header_in: aout. (line 101) +* aout_SIZE_swap_exec_header_out: aout. (line 113) +* arelent_chain: typedef arelent. (line 339) +* BFD: Overview. (line 6) +* BFD canonical format: Canonical format. (line 11) +* bfd_alloc: Opening and Closing. + (line 210) +* bfd_alloc2: Opening and Closing. + (line 219) +* bfd_alt_mach_code: BFD front end. (line 681) +* bfd_arch_bits_per_address: Architectures. (line 501) +* bfd_arch_bits_per_byte: Architectures. (line 493) +* bfd_arch_get_compatible: Architectures. (line 436) +* bfd_arch_list: Architectures. (line 427) +* bfd_arch_mach_octets_per_byte: Architectures. (line 570) +* BFD_ARELOC_BFIN_ADD: howto manager. (line 966) +* BFD_ARELOC_BFIN_ADDR: howto manager. (line 1017) +* BFD_ARELOC_BFIN_AND: howto manager. (line 987) +* BFD_ARELOC_BFIN_COMP: howto manager. (line 1008) +* BFD_ARELOC_BFIN_CONST: howto manager. (line 963) +* BFD_ARELOC_BFIN_DIV: howto manager. (line 975) +* BFD_ARELOC_BFIN_HWPAGE: howto manager. (line 1014) +* BFD_ARELOC_BFIN_LAND: howto manager. (line 996) +* BFD_ARELOC_BFIN_LEN: howto manager. (line 1002) +* BFD_ARELOC_BFIN_LOR: howto manager. (line 999) +* BFD_ARELOC_BFIN_LSHIFT: howto manager. (line 981) +* BFD_ARELOC_BFIN_MOD: howto manager. (line 978) +* BFD_ARELOC_BFIN_MULT: howto manager. (line 972) +* BFD_ARELOC_BFIN_NEG: howto manager. (line 1005) +* BFD_ARELOC_BFIN_OR: howto manager. (line 990) +* BFD_ARELOC_BFIN_PAGE: howto manager. (line 1011) +* BFD_ARELOC_BFIN_PUSH: howto manager. (line 960) +* BFD_ARELOC_BFIN_RSHIFT: howto manager. (line 984) +* BFD_ARELOC_BFIN_SUB: howto manager. (line 969) +* BFD_ARELOC_BFIN_XOR: howto manager. (line 993) +* bfd_cache_close: File Caching. (line 26) +* bfd_cache_close_all: File Caching. (line 39) +* bfd_cache_init: File Caching. (line 18) +* bfd_calc_gnu_debuglink_crc32: Opening and Closing. + (line 246) +* bfd_canonicalize_reloc: BFD front end. (line 400) +* bfd_canonicalize_symtab: symbol handling functions. + (line 50) +* bfd_check_format: Formats. (line 21) +* bfd_check_format_matches: Formats. (line 52) +* bfd_check_overflow: typedef arelent. (line 351) +* bfd_close: Opening and Closing. + (line 135) +* bfd_close_all_done: Opening and Closing. + (line 153) +* bfd_coff_backend_data: coff. (line 246) +* bfd_copy_private_bfd_data: BFD front end. (line 539) +* bfd_copy_private_header_data: BFD front end. (line 521) +* bfd_copy_private_section_data: section prototypes. (line 255) +* bfd_copy_private_symbol_data: symbol handling functions. + (line 140) +* bfd_core_file_failing_command: Core Files. (line 12) +* bfd_core_file_failing_signal: Core Files. (line 21) +* bfd_create: Opening and Closing. + (line 172) +* bfd_create_gnu_debuglink_section: Opening and Closing. + (line 312) +* bfd_decode_symclass: symbol handling functions. + (line 111) +* bfd_default_arch_struct: Architectures. (line 448) +* bfd_default_compatible: Architectures. (line 510) +* bfd_default_reloc_type_lookup: howto manager. (line 2115) +* bfd_default_scan: Architectures. (line 519) +* bfd_default_set_arch_mach: Architectures. (line 466) +* bfd_demangle: BFD front end. (line 779) +* bfd_elf_find_section: elf. (line 13) +* bfd_emul_get_commonpagesize: BFD front end. (line 759) +* bfd_emul_get_maxpagesize: BFD front end. (line 739) +* bfd_emul_set_commonpagesize: BFD front end. (line 770) +* bfd_emul_set_maxpagesize: BFD front end. (line 750) +* bfd_errmsg: BFD front end. (line 325) +* bfd_fdopenr: Opening and Closing. + (line 46) +* bfd_fill_in_gnu_debuglink_section: Opening and Closing. + (line 326) +* bfd_find_target: bfd_target. (line 439) +* bfd_follow_gnu_debuglink: Opening and Closing. + (line 291) +* bfd_fopen: Opening and Closing. + (line 9) +* bfd_format_string: Formats. (line 79) +* bfd_generic_discard_group: section prototypes. (line 281) +* bfd_generic_gc_sections: howto manager. (line 2146) +* bfd_generic_get_relocated_section_contents: howto manager. (line 2166) +* bfd_generic_is_group_section: section prototypes. (line 273) +* bfd_generic_merge_sections: howto manager. (line 2156) +* bfd_generic_relax_section: howto manager. (line 2133) +* bfd_get_arch: Architectures. (line 477) +* bfd_get_arch_info: Architectures. (line 529) +* bfd_get_arch_size: BFD front end. (line 444) +* bfd_get_error: BFD front end. (line 306) +* bfd_get_error_handler: BFD front end. (line 376) +* bfd_get_gp_size: BFD front end. (line 485) +* bfd_get_mach: Architectures. (line 485) +* bfd_get_mtime: BFD front end. (line 820) +* bfd_get_next_mapent: Archives. (line 52) +* bfd_get_reloc_code_name: howto manager. (line 2124) +* bfd_get_reloc_size: typedef arelent. (line 330) +* bfd_get_reloc_upper_bound: BFD front end. (line 390) +* bfd_get_section_by_name: section prototypes. (line 17) +* bfd_get_section_by_name_if: section prototypes. (line 31) +* bfd_get_section_contents: section prototypes. (line 228) +* bfd_get_sign_extend_vma: BFD front end. (line 457) +* bfd_get_size <1>: Internal. (line 25) +* bfd_get_size: BFD front end. (line 829) +* bfd_get_symtab_upper_bound: symbol handling functions. + (line 6) +* bfd_get_unique_section_name: section prototypes. (line 50) +* bfd_h_put_size: Internal. (line 97) +* bfd_hash_allocate: Creating and Freeing a Hash Table. + (line 17) +* bfd_hash_lookup: Looking Up or Entering a String. + (line 6) +* bfd_hash_newfunc: Creating and Freeing a Hash Table. + (line 12) +* bfd_hash_set_default_size: Creating and Freeing a Hash Table. + (line 25) +* bfd_hash_table_free: Creating and Freeing a Hash Table. + (line 21) +* bfd_hash_table_init: Creating and Freeing a Hash Table. + (line 6) +* bfd_hash_table_init_n: Creating and Freeing a Hash Table. + (line 6) +* bfd_hash_traverse: Traversing a Hash Table. + (line 6) +* bfd_init: Initialization. (line 11) +* bfd_install_relocation: typedef arelent. (line 392) +* bfd_is_local_label: symbol handling functions. + (line 17) +* bfd_is_local_label_name: symbol handling functions. + (line 26) +* bfd_is_target_special_symbol: symbol handling functions. + (line 38) +* bfd_is_undefined_symclass: symbol handling functions. + (line 120) +* bfd_link_split_section: Writing the symbol table. + (line 44) +* bfd_log2: Internal. (line 164) +* bfd_lookup_arch: Architectures. (line 537) +* bfd_make_debug_symbol: symbol handling functions. + (line 102) +* bfd_make_empty_symbol: symbol handling functions. + (line 78) +* bfd_make_readable: Opening and Closing. + (line 196) +* bfd_make_section: section prototypes. (line 129) +* bfd_make_section_anyway: section prototypes. (line 100) +* bfd_make_section_anyway_with_flags: section prototypes. (line 82) +* bfd_make_section_old_way: section prototypes. (line 62) +* bfd_make_section_with_flags: section prototypes. (line 116) +* bfd_make_writable: Opening and Closing. + (line 182) +* bfd_malloc_and_get_section: section prototypes. (line 245) +* bfd_map_over_sections: section prototypes. (line 155) +* bfd_merge_private_bfd_data: BFD front end. (line 555) +* bfd_octets_per_byte: Architectures. (line 560) +* bfd_open_file: File Caching. (line 52) +* bfd_openr: Opening and Closing. + (line 30) +* bfd_openr_iovec: Opening and Closing. + (line 76) +* bfd_openr_next_archived_file: Archives. (line 78) +* bfd_openstreamr: Opening and Closing. + (line 67) +* bfd_openw: Opening and Closing. + (line 123) +* bfd_perform_relocation: typedef arelent. (line 367) +* bfd_perror: BFD front end. (line 334) +* bfd_preserve_finish: BFD front end. (line 729) +* bfd_preserve_restore: BFD front end. (line 719) +* bfd_preserve_save: BFD front end. (line 703) +* bfd_print_symbol_vandf: symbol handling functions. + (line 70) +* bfd_printable_arch_mach: Architectures. (line 548) +* bfd_printable_name: Architectures. (line 408) +* bfd_put_size: Internal. (line 22) +* BFD_RELOC_12_PCREL: howto manager. (line 39) +* BFD_RELOC_14: howto manager. (line 31) +* BFD_RELOC_16: howto manager. (line 30) +* BFD_RELOC_16_BASEREL: howto manager. (line 80) +* BFD_RELOC_16_GOT_PCREL: howto manager. (line 52) +* BFD_RELOC_16_GOTOFF: howto manager. (line 55) +* BFD_RELOC_16_PCREL: howto manager. (line 38) +* BFD_RELOC_16_PCREL_S2: howto manager. (line 92) +* BFD_RELOC_16_PLT_PCREL: howto manager. (line 63) +* BFD_RELOC_16_PLTOFF: howto manager. (line 67) +* BFD_RELOC_16C_ABS20: howto manager. (line 1793) +* BFD_RELOC_16C_ABS20_C: howto manager. (line 1794) +* BFD_RELOC_16C_ABS24: howto manager. (line 1795) +* BFD_RELOC_16C_ABS24_C: howto manager. (line 1796) +* BFD_RELOC_16C_DISP04: howto manager. (line 1773) +* BFD_RELOC_16C_DISP04_C: howto manager. (line 1774) +* BFD_RELOC_16C_DISP08: howto manager. (line 1775) +* BFD_RELOC_16C_DISP08_C: howto manager. (line 1776) +* BFD_RELOC_16C_DISP16: howto manager. (line 1777) +* BFD_RELOC_16C_DISP16_C: howto manager. (line 1778) +* BFD_RELOC_16C_DISP24: howto manager. (line 1779) +* BFD_RELOC_16C_DISP24_C: howto manager. (line 1780) +* BFD_RELOC_16C_DISP24a: howto manager. (line 1781) +* BFD_RELOC_16C_DISP24a_C: howto manager. (line 1782) +* BFD_RELOC_16C_IMM04: howto manager. (line 1797) +* BFD_RELOC_16C_IMM04_C: howto manager. (line 1798) +* BFD_RELOC_16C_IMM16: howto manager. (line 1799) +* BFD_RELOC_16C_IMM16_C: howto manager. (line 1800) +* BFD_RELOC_16C_IMM20: howto manager. (line 1801) +* BFD_RELOC_16C_IMM20_C: howto manager. (line 1802) +* BFD_RELOC_16C_IMM24: howto manager. (line 1803) +* BFD_RELOC_16C_IMM24_C: howto manager. (line 1804) +* BFD_RELOC_16C_IMM32: howto manager. (line 1805) +* BFD_RELOC_16C_IMM32_C: howto manager. (line 1806) +* BFD_RELOC_16C_NUM08: howto manager. (line 1767) +* BFD_RELOC_16C_NUM08_C: howto manager. (line 1768) +* BFD_RELOC_16C_NUM16: howto manager. (line 1769) +* BFD_RELOC_16C_NUM16_C: howto manager. (line 1770) +* BFD_RELOC_16C_NUM32: howto manager. (line 1771) +* BFD_RELOC_16C_NUM32_C: howto manager. (line 1772) +* BFD_RELOC_16C_REG04: howto manager. (line 1783) +* BFD_RELOC_16C_REG04_C: howto manager. (line 1784) +* BFD_RELOC_16C_REG04a: howto manager. (line 1785) +* BFD_RELOC_16C_REG04a_C: howto manager. (line 1786) +* BFD_RELOC_16C_REG14: howto manager. (line 1787) +* BFD_RELOC_16C_REG14_C: howto manager. (line 1788) +* BFD_RELOC_16C_REG16: howto manager. (line 1789) +* BFD_RELOC_16C_REG16_C: howto manager. (line 1790) +* BFD_RELOC_16C_REG20: howto manager. (line 1791) +* BFD_RELOC_16C_REG20_C: howto manager. (line 1792) +* BFD_RELOC_23_PCREL_S2: howto manager. (line 93) +* BFD_RELOC_24: howto manager. (line 29) +* BFD_RELOC_24_PCREL: howto manager. (line 37) +* BFD_RELOC_24_PLT_PCREL: howto manager. (line 62) +* BFD_RELOC_26: howto manager. (line 28) +* BFD_RELOC_32: howto manager. (line 27) +* BFD_RELOC_32_BASEREL: howto manager. (line 79) +* BFD_RELOC_32_GOT_PCREL: howto manager. (line 51) +* BFD_RELOC_32_GOTOFF: howto manager. (line 54) +* BFD_RELOC_32_PCREL: howto manager. (line 36) +* BFD_RELOC_32_PCREL_S2: howto manager. (line 91) +* BFD_RELOC_32_PLT_PCREL: howto manager. (line 61) +* BFD_RELOC_32_PLTOFF: howto manager. (line 66) +* BFD_RELOC_32_SECREL: howto manager. (line 48) +* BFD_RELOC_386_COPY: howto manager. (line 470) +* BFD_RELOC_386_GLOB_DAT: howto manager. (line 471) +* BFD_RELOC_386_GOT32: howto manager. (line 468) +* BFD_RELOC_386_GOTOFF: howto manager. (line 474) +* BFD_RELOC_386_GOTPC: howto manager. (line 475) +* BFD_RELOC_386_JUMP_SLOT: howto manager. (line 472) +* BFD_RELOC_386_PLT32: howto manager. (line 469) +* BFD_RELOC_386_RELATIVE: howto manager. (line 473) +* BFD_RELOC_386_TLS_DESC: howto manager. (line 490) +* BFD_RELOC_386_TLS_DESC_CALL: howto manager. (line 489) +* BFD_RELOC_386_TLS_DTPMOD32: howto manager. (line 485) +* BFD_RELOC_386_TLS_DTPOFF32: howto manager. (line 486) +* BFD_RELOC_386_TLS_GD: howto manager. (line 480) +* BFD_RELOC_386_TLS_GOTDESC: howto manager. (line 488) +* BFD_RELOC_386_TLS_GOTIE: howto manager. (line 478) +* BFD_RELOC_386_TLS_IE: howto manager. (line 477) +* BFD_RELOC_386_TLS_IE_32: howto manager. (line 483) +* BFD_RELOC_386_TLS_LDM: howto manager. (line 481) +* BFD_RELOC_386_TLS_LDO_32: howto manager. (line 482) +* BFD_RELOC_386_TLS_LE: howto manager. (line 479) +* BFD_RELOC_386_TLS_LE_32: howto manager. (line 484) +* BFD_RELOC_386_TLS_TPOFF: howto manager. (line 476) +* BFD_RELOC_386_TLS_TPOFF32: howto manager. (line 487) +* BFD_RELOC_390_12: howto manager. (line 1459) +* BFD_RELOC_390_20: howto manager. (line 1559) +* BFD_RELOC_390_COPY: howto manager. (line 1468) +* BFD_RELOC_390_GLOB_DAT: howto manager. (line 1471) +* BFD_RELOC_390_GOT12: howto manager. (line 1462) +* BFD_RELOC_390_GOT16: howto manager. (line 1483) +* BFD_RELOC_390_GOT20: howto manager. (line 1560) +* BFD_RELOC_390_GOT64: howto manager. (line 1501) +* BFD_RELOC_390_GOTENT: howto manager. (line 1507) +* BFD_RELOC_390_GOTOFF64: howto manager. (line 1510) +* BFD_RELOC_390_GOTPC: howto manager. (line 1480) +* BFD_RELOC_390_GOTPCDBL: howto manager. (line 1498) +* BFD_RELOC_390_GOTPLT12: howto manager. (line 1513) +* BFD_RELOC_390_GOTPLT16: howto manager. (line 1516) +* BFD_RELOC_390_GOTPLT20: howto manager. (line 1561) +* BFD_RELOC_390_GOTPLT32: howto manager. (line 1519) +* BFD_RELOC_390_GOTPLT64: howto manager. (line 1522) +* BFD_RELOC_390_GOTPLTENT: howto manager. (line 1525) +* BFD_RELOC_390_JMP_SLOT: howto manager. (line 1474) +* BFD_RELOC_390_PC16DBL: howto manager. (line 1486) +* BFD_RELOC_390_PC32DBL: howto manager. (line 1492) +* BFD_RELOC_390_PLT16DBL: howto manager. (line 1489) +* BFD_RELOC_390_PLT32: howto manager. (line 1465) +* BFD_RELOC_390_PLT32DBL: howto manager. (line 1495) +* BFD_RELOC_390_PLT64: howto manager. (line 1504) +* BFD_RELOC_390_PLTOFF16: howto manager. (line 1528) +* BFD_RELOC_390_PLTOFF32: howto manager. (line 1531) +* BFD_RELOC_390_PLTOFF64: howto manager. (line 1534) +* BFD_RELOC_390_RELATIVE: howto manager. (line 1477) +* BFD_RELOC_390_TLS_DTPMOD: howto manager. (line 1554) +* BFD_RELOC_390_TLS_DTPOFF: howto manager. (line 1555) +* BFD_RELOC_390_TLS_GD32: howto manager. (line 1540) +* BFD_RELOC_390_TLS_GD64: howto manager. (line 1541) +* BFD_RELOC_390_TLS_GDCALL: howto manager. (line 1538) +* BFD_RELOC_390_TLS_GOTIE12: howto manager. (line 1542) +* BFD_RELOC_390_TLS_GOTIE20: howto manager. (line 1562) +* BFD_RELOC_390_TLS_GOTIE32: howto manager. (line 1543) +* BFD_RELOC_390_TLS_GOTIE64: howto manager. (line 1544) +* BFD_RELOC_390_TLS_IE32: howto manager. (line 1547) +* BFD_RELOC_390_TLS_IE64: howto manager. (line 1548) +* BFD_RELOC_390_TLS_IEENT: howto manager. (line 1549) +* BFD_RELOC_390_TLS_LDCALL: howto manager. (line 1539) +* BFD_RELOC_390_TLS_LDM32: howto manager. (line 1545) +* BFD_RELOC_390_TLS_LDM64: howto manager. (line 1546) +* BFD_RELOC_390_TLS_LDO32: howto manager. (line 1552) +* BFD_RELOC_390_TLS_LDO64: howto manager. (line 1553) +* BFD_RELOC_390_TLS_LE32: howto manager. (line 1550) +* BFD_RELOC_390_TLS_LE64: howto manager. (line 1551) +* BFD_RELOC_390_TLS_LOAD: howto manager. (line 1537) +* BFD_RELOC_390_TLS_TPOFF: howto manager. (line 1556) +* BFD_RELOC_64: howto manager. (line 26) +* BFD_RELOC_64_PCREL: howto manager. (line 35) +* BFD_RELOC_64_PLT_PCREL: howto manager. (line 60) +* BFD_RELOC_64_PLTOFF: howto manager. (line 65) +* BFD_RELOC_68K_GLOB_DAT: howto manager. (line 74) +* BFD_RELOC_68K_JMP_SLOT: howto manager. (line 75) +* BFD_RELOC_68K_RELATIVE: howto manager. (line 76) +* BFD_RELOC_8: howto manager. (line 32) +* BFD_RELOC_860_COPY: howto manager. (line 1904) +* BFD_RELOC_860_GLOB_DAT: howto manager. (line 1905) +* BFD_RELOC_860_HAGOT: howto manager. (line 1930) +* BFD_RELOC_860_HAGOTOFF: howto manager. (line 1931) +* BFD_RELOC_860_HAPC: howto manager. (line 1932) +* BFD_RELOC_860_HIGH: howto manager. (line 1933) +* BFD_RELOC_860_HIGHADJ: howto manager. (line 1929) +* BFD_RELOC_860_HIGOT: howto manager. (line 1934) +* BFD_RELOC_860_HIGOTOFF: howto manager. (line 1935) +* BFD_RELOC_860_JUMP_SLOT: howto manager. (line 1906) +* BFD_RELOC_860_LOGOT0: howto manager. (line 1918) +* BFD_RELOC_860_LOGOT1: howto manager. (line 1920) +* BFD_RELOC_860_LOGOTOFF0: howto manager. (line 1922) +* BFD_RELOC_860_LOGOTOFF1: howto manager. (line 1924) +* BFD_RELOC_860_LOGOTOFF2: howto manager. (line 1926) +* BFD_RELOC_860_LOGOTOFF3: howto manager. (line 1927) +* BFD_RELOC_860_LOPC: howto manager. (line 1928) +* BFD_RELOC_860_LOW0: howto manager. (line 1911) +* BFD_RELOC_860_LOW1: howto manager. (line 1913) +* BFD_RELOC_860_LOW2: howto manager. (line 1915) +* BFD_RELOC_860_LOW3: howto manager. (line 1917) +* BFD_RELOC_860_PC16: howto manager. (line 1910) +* BFD_RELOC_860_PC26: howto manager. (line 1908) +* BFD_RELOC_860_PLT26: howto manager. (line 1909) +* BFD_RELOC_860_RELATIVE: howto manager. (line 1907) +* BFD_RELOC_860_SPGOT0: howto manager. (line 1919) +* BFD_RELOC_860_SPGOT1: howto manager. (line 1921) +* BFD_RELOC_860_SPGOTOFF0: howto manager. (line 1923) +* BFD_RELOC_860_SPGOTOFF1: howto manager. (line 1925) +* BFD_RELOC_860_SPLIT0: howto manager. (line 1912) +* BFD_RELOC_860_SPLIT1: howto manager. (line 1914) +* BFD_RELOC_860_SPLIT2: howto manager. (line 1916) +* BFD_RELOC_8_BASEREL: howto manager. (line 84) +* BFD_RELOC_8_FFnn: howto manager. (line 88) +* BFD_RELOC_8_GOT_PCREL: howto manager. (line 53) +* BFD_RELOC_8_GOTOFF: howto manager. (line 59) +* BFD_RELOC_8_PCREL: howto manager. (line 40) +* BFD_RELOC_8_PLT_PCREL: howto manager. (line 64) +* BFD_RELOC_8_PLTOFF: howto manager. (line 71) +* BFD_RELOC_ALPHA_BRSGP: howto manager. (line 280) +* BFD_RELOC_ALPHA_CODEADDR: howto manager. (line 271) +* BFD_RELOC_ALPHA_DTPMOD64: howto manager. (line 287) +* BFD_RELOC_ALPHA_DTPREL16: howto manager. (line 292) +* BFD_RELOC_ALPHA_DTPREL64: howto manager. (line 289) +* BFD_RELOC_ALPHA_DTPREL_HI16: howto manager. (line 290) +* BFD_RELOC_ALPHA_DTPREL_LO16: howto manager. (line 291) +* BFD_RELOC_ALPHA_ELF_LITERAL: howto manager. (line 236) +* BFD_RELOC_ALPHA_GOTDTPREL16: howto manager. (line 288) +* BFD_RELOC_ALPHA_GOTTPREL16: howto manager. (line 293) +* BFD_RELOC_ALPHA_GPDISP: howto manager. (line 230) +* BFD_RELOC_ALPHA_GPDISP_HI16: howto manager. (line 216) +* BFD_RELOC_ALPHA_GPDISP_LO16: howto manager. (line 224) +* BFD_RELOC_ALPHA_GPREL_HI16: howto manager. (line 275) +* BFD_RELOC_ALPHA_GPREL_LO16: howto manager. (line 276) +* BFD_RELOC_ALPHA_HINT: howto manager. (line 262) +* BFD_RELOC_ALPHA_LINKAGE: howto manager. (line 267) +* BFD_RELOC_ALPHA_LITERAL: howto manager. (line 235) +* BFD_RELOC_ALPHA_LITUSE: howto manager. (line 237) +* BFD_RELOC_ALPHA_TLSGD: howto manager. (line 285) +* BFD_RELOC_ALPHA_TLSLDM: howto manager. (line 286) +* BFD_RELOC_ALPHA_TPREL16: howto manager. (line 297) +* BFD_RELOC_ALPHA_TPREL64: howto manager. (line 294) +* BFD_RELOC_ALPHA_TPREL_HI16: howto manager. (line 295) +* BFD_RELOC_ALPHA_TPREL_LO16: howto manager. (line 296) +* BFD_RELOC_ARC_B22_PCREL: howto manager. (line 895) +* BFD_RELOC_ARC_B26: howto manager. (line 900) +* BFD_RELOC_ARM_ADR_IMM: howto manager. (line 788) +* BFD_RELOC_ARM_ADRL_IMMEDIATE: howto manager. (line 775) +* BFD_RELOC_ARM_ALU_PC_G0: howto manager. (line 742) +* BFD_RELOC_ARM_ALU_PC_G0_NC: howto manager. (line 741) +* BFD_RELOC_ARM_ALU_PC_G1: howto manager. (line 744) +* BFD_RELOC_ARM_ALU_PC_G1_NC: howto manager. (line 743) +* BFD_RELOC_ARM_ALU_PC_G2: howto manager. (line 745) +* BFD_RELOC_ARM_ALU_SB_G0: howto manager. (line 756) +* BFD_RELOC_ARM_ALU_SB_G0_NC: howto manager. (line 755) +* BFD_RELOC_ARM_ALU_SB_G1: howto manager. (line 758) +* BFD_RELOC_ARM_ALU_SB_G1_NC: howto manager. (line 757) +* BFD_RELOC_ARM_ALU_SB_G2: howto manager. (line 759) +* BFD_RELOC_ARM_CP_OFF_IMM: howto manager. (line 784) +* BFD_RELOC_ARM_CP_OFF_IMM_S2: howto manager. (line 785) +* BFD_RELOC_ARM_GLOB_DAT: howto manager. (line 723) +* BFD_RELOC_ARM_GOT32: howto manager. (line 724) +* BFD_RELOC_ARM_GOTOFF: howto manager. (line 727) +* BFD_RELOC_ARM_GOTPC: howto manager. (line 728) +* BFD_RELOC_ARM_HWLITERAL: howto manager. (line 795) +* BFD_RELOC_ARM_IMMEDIATE: howto manager. (line 774) +* BFD_RELOC_ARM_IN_POOL: howto manager. (line 791) +* BFD_RELOC_ARM_JUMP_SLOT: howto manager. (line 722) +* BFD_RELOC_ARM_LDC_PC_G0: howto manager. (line 752) +* BFD_RELOC_ARM_LDC_PC_G1: howto manager. (line 753) +* BFD_RELOC_ARM_LDC_PC_G2: howto manager. (line 754) +* BFD_RELOC_ARM_LDC_SB_G0: howto manager. (line 766) +* BFD_RELOC_ARM_LDC_SB_G1: howto manager. (line 767) +* BFD_RELOC_ARM_LDC_SB_G2: howto manager. (line 768) +* BFD_RELOC_ARM_LDR_IMM: howto manager. (line 789) +* BFD_RELOC_ARM_LDR_PC_G0: howto manager. (line 746) +* BFD_RELOC_ARM_LDR_PC_G1: howto manager. (line 747) +* BFD_RELOC_ARM_LDR_PC_G2: howto manager. (line 748) +* BFD_RELOC_ARM_LDR_SB_G0: howto manager. (line 760) +* BFD_RELOC_ARM_LDR_SB_G1: howto manager. (line 761) +* BFD_RELOC_ARM_LDR_SB_G2: howto manager. (line 762) +* BFD_RELOC_ARM_LDRS_PC_G0: howto manager. (line 749) +* BFD_RELOC_ARM_LDRS_PC_G1: howto manager. (line 750) +* BFD_RELOC_ARM_LDRS_PC_G2: howto manager. (line 751) +* BFD_RELOC_ARM_LDRS_SB_G0: howto manager. (line 763) +* BFD_RELOC_ARM_LDRS_SB_G1: howto manager. (line 764) +* BFD_RELOC_ARM_LDRS_SB_G2: howto manager. (line 765) +* BFD_RELOC_ARM_LITERAL: howto manager. (line 790) +* BFD_RELOC_ARM_MOVT: howto manager. (line 713) +* BFD_RELOC_ARM_MOVT_PCREL: howto manager. (line 715) +* BFD_RELOC_ARM_MOVW: howto manager. (line 712) +* BFD_RELOC_ARM_MOVW_PCREL: howto manager. (line 714) +* BFD_RELOC_ARM_MULTI: howto manager. (line 783) +* BFD_RELOC_ARM_OFFSET_IMM: howto manager. (line 686) +* BFD_RELOC_ARM_OFFSET_IMM8: howto manager. (line 792) +* BFD_RELOC_ARM_PCREL_BLX: howto manager. (line 657) +* BFD_RELOC_ARM_PCREL_BRANCH: howto manager. (line 653) +* BFD_RELOC_ARM_PCREL_CALL: howto manager. (line 667) +* BFD_RELOC_ARM_PCREL_JUMP: howto manager. (line 671) +* BFD_RELOC_ARM_PLT32: howto manager. (line 725) +* BFD_RELOC_ARM_PREL31: howto manager. (line 709) +* BFD_RELOC_ARM_RELATIVE: howto manager. (line 726) +* BFD_RELOC_ARM_ROSEGREL32: howto manager. (line 698) +* BFD_RELOC_ARM_SBREL32: howto manager. (line 701) +* BFD_RELOC_ARM_SHIFT_IMM: howto manager. (line 780) +* BFD_RELOC_ARM_SMC: howto manager. (line 781) +* BFD_RELOC_ARM_SWI: howto manager. (line 782) +* BFD_RELOC_ARM_T32_ADD_IMM: howto manager. (line 777) +* BFD_RELOC_ARM_T32_ADD_PC12: howto manager. (line 779) +* BFD_RELOC_ARM_T32_CP_OFF_IMM: howto manager. (line 786) +* BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: howto manager. (line 787) +* BFD_RELOC_ARM_T32_IMM12: howto manager. (line 778) +* BFD_RELOC_ARM_T32_IMMEDIATE: howto manager. (line 776) +* BFD_RELOC_ARM_T32_OFFSET_IMM: howto manager. (line 794) +* BFD_RELOC_ARM_T32_OFFSET_U8: howto manager. (line 793) +* BFD_RELOC_ARM_TARGET1: howto manager. (line 694) +* BFD_RELOC_ARM_TARGET2: howto manager. (line 704) +* BFD_RELOC_ARM_THUMB_ADD: howto manager. (line 796) +* BFD_RELOC_ARM_THUMB_IMM: howto manager. (line 797) +* BFD_RELOC_ARM_THUMB_MOVT: howto manager. (line 717) +* BFD_RELOC_ARM_THUMB_MOVT_PCREL: howto manager. (line 719) +* BFD_RELOC_ARM_THUMB_MOVW: howto manager. (line 716) +* BFD_RELOC_ARM_THUMB_MOVW_PCREL: howto manager. (line 718) +* BFD_RELOC_ARM_THUMB_OFFSET: howto manager. (line 690) +* BFD_RELOC_ARM_THUMB_SHIFT: howto manager. (line 798) +* BFD_RELOC_ARM_TLS_DTPMOD32: howto manager. (line 735) +* BFD_RELOC_ARM_TLS_DTPOFF32: howto manager. (line 734) +* BFD_RELOC_ARM_TLS_GD32: howto manager. (line 731) +* BFD_RELOC_ARM_TLS_IE32: howto manager. (line 737) +* BFD_RELOC_ARM_TLS_LDM32: howto manager. (line 733) +* BFD_RELOC_ARM_TLS_LDO32: howto manager. (line 732) +* BFD_RELOC_ARM_TLS_LE32: howto manager. (line 738) +* BFD_RELOC_ARM_TLS_TPOFF32: howto manager. (line 736) +* BFD_RELOC_ARM_V4BX: howto manager. (line 771) +* BFD_RELOC_AVR_13_PCREL: howto manager. (line 1360) +* BFD_RELOC_AVR_16_PM: howto manager. (line 1364) +* BFD_RELOC_AVR_6: howto manager. (line 1451) +* BFD_RELOC_AVR_6_ADIW: howto manager. (line 1455) +* BFD_RELOC_AVR_7_PCREL: howto manager. (line 1356) +* BFD_RELOC_AVR_CALL: howto manager. (line 1443) +* BFD_RELOC_AVR_HH8_LDI: howto manager. (line 1376) +* BFD_RELOC_AVR_HH8_LDI_NEG: howto manager. (line 1395) +* BFD_RELOC_AVR_HH8_LDI_PM: howto manager. (line 1424) +* BFD_RELOC_AVR_HH8_LDI_PM_NEG: howto manager. (line 1438) +* BFD_RELOC_AVR_HI8_LDI: howto manager. (line 1372) +* BFD_RELOC_AVR_HI8_LDI_GS: howto manager. (line 1418) +* BFD_RELOC_AVR_HI8_LDI_NEG: howto manager. (line 1390) +* BFD_RELOC_AVR_HI8_LDI_PM: howto manager. (line 1414) +* BFD_RELOC_AVR_HI8_LDI_PM_NEG: howto manager. (line 1433) +* BFD_RELOC_AVR_LDI: howto manager. (line 1447) +* BFD_RELOC_AVR_LO8_LDI: howto manager. (line 1368) +* BFD_RELOC_AVR_LO8_LDI_GS: howto manager. (line 1408) +* BFD_RELOC_AVR_LO8_LDI_NEG: howto manager. (line 1385) +* BFD_RELOC_AVR_LO8_LDI_PM: howto manager. (line 1404) +* BFD_RELOC_AVR_LO8_LDI_PM_NEG: howto manager. (line 1429) +* BFD_RELOC_AVR_MS8_LDI: howto manager. (line 1381) +* BFD_RELOC_AVR_MS8_LDI_NEG: howto manager. (line 1400) +* BFD_RELOC_BFIN_10_PCREL: howto manager. (line 920) +* BFD_RELOC_BFIN_11_PCREL: howto manager. (line 923) +* BFD_RELOC_BFIN_12_PCREL_JUMP: howto manager. (line 926) +* BFD_RELOC_BFIN_12_PCREL_JUMP_S: howto manager. (line 929) +* BFD_RELOC_BFIN_16_HIGH: howto manager. (line 908) +* BFD_RELOC_BFIN_16_IMM: howto manager. (line 905) +* BFD_RELOC_BFIN_16_LOW: howto manager. (line 917) +* BFD_RELOC_BFIN_24_PCREL_CALL_X: howto manager. (line 932) +* BFD_RELOC_BFIN_24_PCREL_JUMP_L: howto manager. (line 935) +* BFD_RELOC_BFIN_4_PCREL: howto manager. (line 911) +* BFD_RELOC_BFIN_5_PCREL: howto manager. (line 914) +* BFD_RELOC_BFIN_FUNCDESC: howto manager. (line 941) +* BFD_RELOC_BFIN_FUNCDESC_GOT17M4: howto manager. (line 942) +* BFD_RELOC_BFIN_FUNCDESC_GOTHI: howto manager. (line 943) +* BFD_RELOC_BFIN_FUNCDESC_GOTLO: howto manager. (line 944) +* BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4: howto manager. (line 946) +* BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI: howto manager. (line 947) +* BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO: howto manager. (line 948) +* BFD_RELOC_BFIN_FUNCDESC_VALUE: howto manager. (line 945) +* BFD_RELOC_BFIN_GOT: howto manager. (line 954) +* BFD_RELOC_BFIN_GOT17M4: howto manager. (line 938) +* BFD_RELOC_BFIN_GOTHI: howto manager. (line 939) +* BFD_RELOC_BFIN_GOTLO: howto manager. (line 940) +* BFD_RELOC_BFIN_GOTOFF17M4: howto manager. (line 949) +* BFD_RELOC_BFIN_GOTOFFHI: howto manager. (line 950) +* BFD_RELOC_BFIN_GOTOFFLO: howto manager. (line 951) +* BFD_RELOC_BFIN_PLTPC: howto manager. (line 957) +* bfd_reloc_code_type: howto manager. (line 10) +* BFD_RELOC_CR16_ABS20: howto manager. (line 1821) +* BFD_RELOC_CR16_ABS24: howto manager. (line 1822) +* BFD_RELOC_CR16_DISP16: howto manager. (line 1832) +* BFD_RELOC_CR16_DISP20: howto manager. (line 1833) +* BFD_RELOC_CR16_DISP24: howto manager. (line 1834) +* BFD_RELOC_CR16_DISP24a: howto manager. (line 1835) +* BFD_RELOC_CR16_DISP4: howto manager. (line 1830) +* BFD_RELOC_CR16_DISP8: howto manager. (line 1831) +* BFD_RELOC_CR16_IMM16: howto manager. (line 1825) +* BFD_RELOC_CR16_IMM20: howto manager. (line 1826) +* BFD_RELOC_CR16_IMM24: howto manager. (line 1827) +* BFD_RELOC_CR16_IMM32: howto manager. (line 1828) +* BFD_RELOC_CR16_IMM32a: howto manager. (line 1829) +* BFD_RELOC_CR16_IMM4: howto manager. (line 1823) +* BFD_RELOC_CR16_IMM8: howto manager. (line 1824) +* BFD_RELOC_CR16_NUM16: howto manager. (line 1810) +* BFD_RELOC_CR16_NUM32: howto manager. (line 1811) +* BFD_RELOC_CR16_NUM32a: howto manager. (line 1812) +* BFD_RELOC_CR16_NUM8: howto manager. (line 1809) +* BFD_RELOC_CR16_REGREL0: howto manager. (line 1813) +* BFD_RELOC_CR16_REGREL14: howto manager. (line 1816) +* BFD_RELOC_CR16_REGREL14a: howto manager. (line 1817) +* BFD_RELOC_CR16_REGREL16: howto manager. (line 1818) +* BFD_RELOC_CR16_REGREL20: howto manager. (line 1819) +* BFD_RELOC_CR16_REGREL20a: howto manager. (line 1820) +* BFD_RELOC_CR16_REGREL4: howto manager. (line 1814) +* BFD_RELOC_CR16_REGREL4a: howto manager. (line 1815) +* BFD_RELOC_CR16_SWITCH16: howto manager. (line 1837) +* BFD_RELOC_CR16_SWITCH32: howto manager. (line 1838) +* BFD_RELOC_CR16_SWITCH8: howto manager. (line 1836) +* BFD_RELOC_CRIS_16_GOT: howto manager. (line 1885) +* BFD_RELOC_CRIS_16_GOTPLT: howto manager. (line 1891) +* BFD_RELOC_CRIS_32_GOT: howto manager. (line 1882) +* BFD_RELOC_CRIS_32_GOTPLT: howto manager. (line 1888) +* BFD_RELOC_CRIS_32_GOTREL: howto manager. (line 1894) +* BFD_RELOC_CRIS_32_PLT_GOTREL: howto manager. (line 1897) +* BFD_RELOC_CRIS_32_PLT_PCREL: howto manager. (line 1900) +* BFD_RELOC_CRIS_BDISP8: howto manager. (line 1863) +* BFD_RELOC_CRIS_COPY: howto manager. (line 1876) +* BFD_RELOC_CRIS_GLOB_DAT: howto manager. (line 1877) +* BFD_RELOC_CRIS_JUMP_SLOT: howto manager. (line 1878) +* BFD_RELOC_CRIS_LAPCQ_OFFSET: howto manager. (line 1871) +* BFD_RELOC_CRIS_RELATIVE: howto manager. (line 1879) +* BFD_RELOC_CRIS_SIGNED_16: howto manager. (line 1869) +* BFD_RELOC_CRIS_SIGNED_6: howto manager. (line 1865) +* BFD_RELOC_CRIS_SIGNED_8: howto manager. (line 1867) +* BFD_RELOC_CRIS_UNSIGNED_16: howto manager. (line 1870) +* BFD_RELOC_CRIS_UNSIGNED_4: howto manager. (line 1872) +* BFD_RELOC_CRIS_UNSIGNED_5: howto manager. (line 1864) +* BFD_RELOC_CRIS_UNSIGNED_6: howto manager. (line 1866) +* BFD_RELOC_CRIS_UNSIGNED_8: howto manager. (line 1868) +* BFD_RELOC_CRX_ABS16: howto manager. (line 1851) +* BFD_RELOC_CRX_ABS32: howto manager. (line 1852) +* BFD_RELOC_CRX_IMM16: howto manager. (line 1856) +* BFD_RELOC_CRX_IMM32: howto manager. (line 1857) +* BFD_RELOC_CRX_NUM16: howto manager. (line 1854) +* BFD_RELOC_CRX_NUM32: howto manager. (line 1855) +* BFD_RELOC_CRX_NUM8: howto manager. (line 1853) +* BFD_RELOC_CRX_REGREL12: howto manager. (line 1847) +* BFD_RELOC_CRX_REGREL22: howto manager. (line 1848) +* BFD_RELOC_CRX_REGREL28: howto manager. (line 1849) +* BFD_RELOC_CRX_REGREL32: howto manager. (line 1850) +* BFD_RELOC_CRX_REL16: howto manager. (line 1844) +* BFD_RELOC_CRX_REL24: howto manager. (line 1845) +* BFD_RELOC_CRX_REL32: howto manager. (line 1846) +* BFD_RELOC_CRX_REL4: howto manager. (line 1841) +* BFD_RELOC_CRX_REL8: howto manager. (line 1842) +* BFD_RELOC_CRX_REL8_CMP: howto manager. (line 1843) +* BFD_RELOC_CRX_SWITCH16: howto manager. (line 1859) +* BFD_RELOC_CRX_SWITCH32: howto manager. (line 1860) +* BFD_RELOC_CRX_SWITCH8: howto manager. (line 1858) +* BFD_RELOC_CTOR: howto manager. (line 647) +* BFD_RELOC_D10V_10_PCREL_L: howto manager. (line 1024) +* BFD_RELOC_D10V_10_PCREL_R: howto manager. (line 1020) +* BFD_RELOC_D10V_18: howto manager. (line 1029) +* BFD_RELOC_D10V_18_PCREL: howto manager. (line 1032) +* BFD_RELOC_D30V_15: howto manager. (line 1047) +* BFD_RELOC_D30V_15_PCREL: howto manager. (line 1051) +* BFD_RELOC_D30V_15_PCREL_R: howto manager. (line 1055) +* BFD_RELOC_D30V_21: howto manager. (line 1060) +* BFD_RELOC_D30V_21_PCREL: howto manager. (line 1064) +* BFD_RELOC_D30V_21_PCREL_R: howto manager. (line 1068) +* BFD_RELOC_D30V_32: howto manager. (line 1073) +* BFD_RELOC_D30V_32_PCREL: howto manager. (line 1076) +* BFD_RELOC_D30V_6: howto manager. (line 1035) +* BFD_RELOC_D30V_9_PCREL: howto manager. (line 1038) +* BFD_RELOC_D30V_9_PCREL_R: howto manager. (line 1042) +* BFD_RELOC_DLX_HI16_S: howto manager. (line 1079) +* BFD_RELOC_DLX_JMP26: howto manager. (line 1085) +* BFD_RELOC_DLX_LO16: howto manager. (line 1082) +* BFD_RELOC_FR30_10_IN_8: howto manager. (line 1264) +* BFD_RELOC_FR30_12_PCREL: howto manager. (line 1272) +* BFD_RELOC_FR30_20: howto manager. (line 1248) +* BFD_RELOC_FR30_48: howto manager. (line 1245) +* BFD_RELOC_FR30_6_IN_4: howto manager. (line 1252) +* BFD_RELOC_FR30_8_IN_8: howto manager. (line 1256) +* BFD_RELOC_FR30_9_IN_8: howto manager. (line 1260) +* BFD_RELOC_FR30_9_PCREL: howto manager. (line 1268) +* BFD_RELOC_FRV_FUNCDESC: howto manager. (line 403) +* BFD_RELOC_FRV_FUNCDESC_GOT12: howto manager. (line 404) +* BFD_RELOC_FRV_FUNCDESC_GOTHI: howto manager. (line 405) +* BFD_RELOC_FRV_FUNCDESC_GOTLO: howto manager. (line 406) +* BFD_RELOC_FRV_FUNCDESC_GOTOFF12: howto manager. (line 408) +* BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: howto manager. (line 409) +* BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: howto manager. (line 410) +* BFD_RELOC_FRV_FUNCDESC_VALUE: howto manager. (line 407) +* BFD_RELOC_FRV_GETTLSOFF: howto manager. (line 414) +* BFD_RELOC_FRV_GETTLSOFF_RELAX: howto manager. (line 427) +* BFD_RELOC_FRV_GOT12: howto manager. (line 400) +* BFD_RELOC_FRV_GOTHI: howto manager. (line 401) +* BFD_RELOC_FRV_GOTLO: howto manager. (line 402) +* BFD_RELOC_FRV_GOTOFF12: howto manager. (line 411) +* BFD_RELOC_FRV_GOTOFFHI: howto manager. (line 412) +* BFD_RELOC_FRV_GOTOFFLO: howto manager. (line 413) +* BFD_RELOC_FRV_GOTTLSDESC12: howto manager. (line 416) +* BFD_RELOC_FRV_GOTTLSDESCHI: howto manager. (line 417) +* BFD_RELOC_FRV_GOTTLSDESCLO: howto manager. (line 418) +* BFD_RELOC_FRV_GOTTLSOFF12: howto manager. (line 422) +* BFD_RELOC_FRV_GOTTLSOFFHI: howto manager. (line 423) +* BFD_RELOC_FRV_GOTTLSOFFLO: howto manager. (line 424) +* BFD_RELOC_FRV_GPREL12: howto manager. (line 395) +* BFD_RELOC_FRV_GPREL32: howto manager. (line 397) +* BFD_RELOC_FRV_GPRELHI: howto manager. (line 398) +* BFD_RELOC_FRV_GPRELLO: howto manager. (line 399) +* BFD_RELOC_FRV_GPRELU12: howto manager. (line 396) +* BFD_RELOC_FRV_HI16: howto manager. (line 394) +* BFD_RELOC_FRV_LABEL16: howto manager. (line 391) +* BFD_RELOC_FRV_LABEL24: howto manager. (line 392) +* BFD_RELOC_FRV_LO16: howto manager. (line 393) +* BFD_RELOC_FRV_TLSDESC_RELAX: howto manager. (line 426) +* BFD_RELOC_FRV_TLSDESC_VALUE: howto manager. (line 415) +* BFD_RELOC_FRV_TLSMOFF: howto manager. (line 429) +* BFD_RELOC_FRV_TLSMOFF12: howto manager. (line 419) +* BFD_RELOC_FRV_TLSMOFFHI: howto manager. (line 420) +* BFD_RELOC_FRV_TLSMOFFLO: howto manager. (line 421) +* BFD_RELOC_FRV_TLSOFF: howto manager. (line 425) +* BFD_RELOC_FRV_TLSOFF_RELAX: howto manager. (line 428) +* BFD_RELOC_GPREL16: howto manager. (line 106) +* BFD_RELOC_GPREL32: howto manager. (line 107) +* BFD_RELOC_H8_DIR16A8: howto manager. (line 1942) +* BFD_RELOC_H8_DIR16R8: howto manager. (line 1943) +* BFD_RELOC_H8_DIR24A8: howto manager. (line 1944) +* BFD_RELOC_H8_DIR24R8: howto manager. (line 1945) +* BFD_RELOC_H8_DIR32A16: howto manager. (line 1946) +* BFD_RELOC_HI16: howto manager. (line 310) +* BFD_RELOC_HI16_BASEREL: howto manager. (line 82) +* BFD_RELOC_HI16_GOTOFF: howto manager. (line 57) +* BFD_RELOC_HI16_PCREL: howto manager. (line 322) +* BFD_RELOC_HI16_PLTOFF: howto manager. (line 69) +* BFD_RELOC_HI16_S: howto manager. (line 313) +* BFD_RELOC_HI16_S_BASEREL: howto manager. (line 83) +* BFD_RELOC_HI16_S_GOTOFF: howto manager. (line 58) +* BFD_RELOC_HI16_S_PCREL: howto manager. (line 325) +* BFD_RELOC_HI16_S_PLTOFF: howto manager. (line 70) +* BFD_RELOC_HI22: howto manager. (line 101) +* BFD_RELOC_I370_D12: howto manager. (line 644) +* BFD_RELOC_I960_CALLJ: howto manager. (line 113) +* BFD_RELOC_IA64_COPY: howto manager. (line 1703) +* BFD_RELOC_IA64_DIR32LSB: howto manager. (line 1648) +* BFD_RELOC_IA64_DIR32MSB: howto manager. (line 1647) +* BFD_RELOC_IA64_DIR64LSB: howto manager. (line 1650) +* BFD_RELOC_IA64_DIR64MSB: howto manager. (line 1649) +* BFD_RELOC_IA64_DTPMOD64LSB: howto manager. (line 1713) +* BFD_RELOC_IA64_DTPMOD64MSB: howto manager. (line 1712) +* BFD_RELOC_IA64_DTPREL14: howto manager. (line 1715) +* BFD_RELOC_IA64_DTPREL22: howto manager. (line 1716) +* BFD_RELOC_IA64_DTPREL32LSB: howto manager. (line 1719) +* BFD_RELOC_IA64_DTPREL32MSB: howto manager. (line 1718) +* BFD_RELOC_IA64_DTPREL64I: howto manager. (line 1717) +* BFD_RELOC_IA64_DTPREL64LSB: howto manager. (line 1721) +* BFD_RELOC_IA64_DTPREL64MSB: howto manager. (line 1720) +* BFD_RELOC_IA64_FPTR32LSB: howto manager. (line 1665) +* BFD_RELOC_IA64_FPTR32MSB: howto manager. (line 1664) +* BFD_RELOC_IA64_FPTR64I: howto manager. (line 1663) +* BFD_RELOC_IA64_FPTR64LSB: howto manager. (line 1667) +* BFD_RELOC_IA64_FPTR64MSB: howto manager. (line 1666) +* BFD_RELOC_IA64_GPREL22: howto manager. (line 1651) +* BFD_RELOC_IA64_GPREL32LSB: howto manager. (line 1654) +* BFD_RELOC_IA64_GPREL32MSB: howto manager. (line 1653) +* BFD_RELOC_IA64_GPREL64I: howto manager. (line 1652) +* BFD_RELOC_IA64_GPREL64LSB: howto manager. (line 1656) +* BFD_RELOC_IA64_GPREL64MSB: howto manager. (line 1655) +* BFD_RELOC_IA64_IMM14: howto manager. (line 1644) +* BFD_RELOC_IA64_IMM22: howto manager. (line 1645) +* BFD_RELOC_IA64_IMM64: howto manager. (line 1646) +* BFD_RELOC_IA64_IPLTLSB: howto manager. (line 1702) +* BFD_RELOC_IA64_IPLTMSB: howto manager. (line 1701) +* BFD_RELOC_IA64_LDXMOV: howto manager. (line 1705) +* BFD_RELOC_IA64_LTOFF22: howto manager. (line 1657) +* BFD_RELOC_IA64_LTOFF22X: howto manager. (line 1704) +* BFD_RELOC_IA64_LTOFF64I: howto manager. (line 1658) +* BFD_RELOC_IA64_LTOFF_DTPMOD22: howto manager. (line 1714) +* BFD_RELOC_IA64_LTOFF_DTPREL22: howto manager. (line 1722) +* BFD_RELOC_IA64_LTOFF_FPTR22: howto manager. (line 1679) +* BFD_RELOC_IA64_LTOFF_FPTR32LSB: howto manager. (line 1682) +* BFD_RELOC_IA64_LTOFF_FPTR32MSB: howto manager. (line 1681) +* BFD_RELOC_IA64_LTOFF_FPTR64I: howto manager. (line 1680) +* BFD_RELOC_IA64_LTOFF_FPTR64LSB: howto manager. (line 1684) +* BFD_RELOC_IA64_LTOFF_FPTR64MSB: howto manager. (line 1683) +* BFD_RELOC_IA64_LTOFF_TPREL22: howto manager. (line 1711) +* BFD_RELOC_IA64_LTV32LSB: howto manager. (line 1698) +* BFD_RELOC_IA64_LTV32MSB: howto manager. (line 1697) +* BFD_RELOC_IA64_LTV64LSB: howto manager. (line 1700) +* BFD_RELOC_IA64_LTV64MSB: howto manager. (line 1699) +* BFD_RELOC_IA64_PCREL21B: howto manager. (line 1668) +* BFD_RELOC_IA64_PCREL21BI: howto manager. (line 1669) +* BFD_RELOC_IA64_PCREL21F: howto manager. (line 1671) +* BFD_RELOC_IA64_PCREL21M: howto manager. (line 1670) +* BFD_RELOC_IA64_PCREL22: howto manager. (line 1672) +* BFD_RELOC_IA64_PCREL32LSB: howto manager. (line 1676) +* BFD_RELOC_IA64_PCREL32MSB: howto manager. (line 1675) +* BFD_RELOC_IA64_PCREL60B: howto manager. (line 1673) +* BFD_RELOC_IA64_PCREL64I: howto manager. (line 1674) +* BFD_RELOC_IA64_PCREL64LSB: howto manager. (line 1678) +* BFD_RELOC_IA64_PCREL64MSB: howto manager. (line 1677) +* BFD_RELOC_IA64_PLTOFF22: howto manager. (line 1659) +* BFD_RELOC_IA64_PLTOFF64I: howto manager. (line 1660) +* BFD_RELOC_IA64_PLTOFF64LSB: howto manager. (line 1662) +* BFD_RELOC_IA64_PLTOFF64MSB: howto manager. (line 1661) +* BFD_RELOC_IA64_REL32LSB: howto manager. (line 1694) +* BFD_RELOC_IA64_REL32MSB: howto manager. (line 1693) +* BFD_RELOC_IA64_REL64LSB: howto manager. (line 1696) +* BFD_RELOC_IA64_REL64MSB: howto manager. (line 1695) +* BFD_RELOC_IA64_SECREL32LSB: howto manager. (line 1690) +* BFD_RELOC_IA64_SECREL32MSB: howto manager. (line 1689) +* BFD_RELOC_IA64_SECREL64LSB: howto manager. (line 1692) +* BFD_RELOC_IA64_SECREL64MSB: howto manager. (line 1691) +* BFD_RELOC_IA64_SEGREL32LSB: howto manager. (line 1686) +* BFD_RELOC_IA64_SEGREL32MSB: howto manager. (line 1685) +* BFD_RELOC_IA64_SEGREL64LSB: howto manager. (line 1688) +* BFD_RELOC_IA64_SEGREL64MSB: howto manager. (line 1687) +* BFD_RELOC_IA64_TPREL14: howto manager. (line 1706) +* BFD_RELOC_IA64_TPREL22: howto manager. (line 1707) +* BFD_RELOC_IA64_TPREL64I: howto manager. (line 1708) +* BFD_RELOC_IA64_TPREL64LSB: howto manager. (line 1710) +* BFD_RELOC_IA64_TPREL64MSB: howto manager. (line 1709) +* BFD_RELOC_IP2K_ADDR16CJP: howto manager. (line 1596) +* BFD_RELOC_IP2K_BANK: howto manager. (line 1593) +* BFD_RELOC_IP2K_EX8DATA: howto manager. (line 1604) +* BFD_RELOC_IP2K_FR9: howto manager. (line 1590) +* BFD_RELOC_IP2K_FR_OFFSET: howto manager. (line 1617) +* BFD_RELOC_IP2K_HI8DATA: howto manager. (line 1603) +* BFD_RELOC_IP2K_HI8INSN: howto manager. (line 1608) +* BFD_RELOC_IP2K_LO8DATA: howto manager. (line 1602) +* BFD_RELOC_IP2K_LO8INSN: howto manager. (line 1607) +* BFD_RELOC_IP2K_PAGE3: howto manager. (line 1599) +* BFD_RELOC_IP2K_PC_SKIP: howto manager. (line 1611) +* BFD_RELOC_IP2K_TEXT: howto manager. (line 1614) +* BFD_RELOC_IQ2000_OFFSET_16: howto manager. (line 1996) +* BFD_RELOC_IQ2000_OFFSET_21: howto manager. (line 1997) +* BFD_RELOC_IQ2000_UHI16: howto manager. (line 1998) +* BFD_RELOC_LO10: howto manager. (line 102) +* BFD_RELOC_LO16: howto manager. (line 319) +* BFD_RELOC_LO16_BASEREL: howto manager. (line 81) +* BFD_RELOC_LO16_GOTOFF: howto manager. (line 56) +* BFD_RELOC_LO16_PCREL: howto manager. (line 328) +* BFD_RELOC_LO16_PLTOFF: howto manager. (line 68) +* BFD_RELOC_M32C_HI8: howto manager. (line 1088) +* BFD_RELOC_M32C_RL_1ADDR: howto manager. (line 1090) +* BFD_RELOC_M32C_RL_2ADDR: howto manager. (line 1091) +* BFD_RELOC_M32C_RL_JUMP: howto manager. (line 1089) +* BFD_RELOC_M32R_10_PCREL: howto manager. (line 1098) +* BFD_RELOC_M32R_18_PCREL: howto manager. (line 1102) +* BFD_RELOC_M32R_24: howto manager. (line 1094) +* BFD_RELOC_M32R_26_PCREL: howto manager. (line 1105) +* BFD_RELOC_M32R_26_PLTREL: howto manager. (line 1124) +* BFD_RELOC_M32R_COPY: howto manager. (line 1125) +* BFD_RELOC_M32R_GLOB_DAT: howto manager. (line 1126) +* BFD_RELOC_M32R_GOT16_HI_SLO: howto manager. (line 1135) +* BFD_RELOC_M32R_GOT16_HI_ULO: howto manager. (line 1134) +* BFD_RELOC_M32R_GOT16_LO: howto manager. (line 1136) +* BFD_RELOC_M32R_GOT24: howto manager. (line 1123) +* BFD_RELOC_M32R_GOTOFF: howto manager. (line 1129) +* BFD_RELOC_M32R_GOTOFF_HI_SLO: howto manager. (line 1131) +* BFD_RELOC_M32R_GOTOFF_HI_ULO: howto manager. (line 1130) +* BFD_RELOC_M32R_GOTOFF_LO: howto manager. (line 1132) +* BFD_RELOC_M32R_GOTPC24: howto manager. (line 1133) +* BFD_RELOC_M32R_GOTPC_HI_SLO: howto manager. (line 1138) +* BFD_RELOC_M32R_GOTPC_HI_ULO: howto manager. (line 1137) +* BFD_RELOC_M32R_GOTPC_LO: howto manager. (line 1139) +* BFD_RELOC_M32R_HI16_SLO: howto manager. (line 1112) +* BFD_RELOC_M32R_HI16_ULO: howto manager. (line 1108) +* BFD_RELOC_M32R_JMP_SLOT: howto manager. (line 1127) +* BFD_RELOC_M32R_LO16: howto manager. (line 1116) +* BFD_RELOC_M32R_RELATIVE: howto manager. (line 1128) +* BFD_RELOC_M32R_SDA16: howto manager. (line 1119) +* BFD_RELOC_M68HC11_24: howto manager. (line 1758) +* BFD_RELOC_M68HC11_3B: howto manager. (line 1733) +* BFD_RELOC_M68HC11_HI8: howto manager. (line 1725) +* BFD_RELOC_M68HC11_LO16: howto manager. (line 1747) +* BFD_RELOC_M68HC11_LO8: howto manager. (line 1729) +* BFD_RELOC_M68HC11_PAGE: howto manager. (line 1753) +* BFD_RELOC_M68HC11_RL_GROUP: howto manager. (line 1742) +* BFD_RELOC_M68HC11_RL_JUMP: howto manager. (line 1736) +* BFD_RELOC_M68HC12_5B: howto manager. (line 1764) +* BFD_RELOC_MCORE_PCREL_32: howto manager. (line 1279) +* BFD_RELOC_MCORE_PCREL_IMM11BY2: howto manager. (line 1277) +* BFD_RELOC_MCORE_PCREL_IMM4BY2: howto manager. (line 1278) +* BFD_RELOC_MCORE_PCREL_IMM8BY4: howto manager. (line 1276) +* BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2: howto manager. (line 1280) +* BFD_RELOC_MCORE_RVA: howto manager. (line 1281) +* BFD_RELOC_MEP_16: howto manager. (line 1285) +* BFD_RELOC_MEP_32: howto manager. (line 1286) +* BFD_RELOC_MEP_8: howto manager. (line 1284) +* BFD_RELOC_MEP_ADDR24A4: howto manager. (line 1301) +* BFD_RELOC_MEP_GNU_VTENTRY: howto manager. (line 1303) +* BFD_RELOC_MEP_GNU_VTINHERIT: howto manager. (line 1302) +* BFD_RELOC_MEP_GPREL: howto manager. (line 1295) +* BFD_RELOC_MEP_HI16S: howto manager. (line 1294) +* BFD_RELOC_MEP_HI16U: howto manager. (line 1293) +* BFD_RELOC_MEP_LOW16: howto manager. (line 1292) +* BFD_RELOC_MEP_PCABS24A2: howto manager. (line 1291) +* BFD_RELOC_MEP_PCREL12A2: howto manager. (line 1288) +* BFD_RELOC_MEP_PCREL17A2: howto manager. (line 1289) +* BFD_RELOC_MEP_PCREL24A2: howto manager. (line 1290) +* BFD_RELOC_MEP_PCREL8A2: howto manager. (line 1287) +* BFD_RELOC_MEP_TPREL: howto manager. (line 1296) +* BFD_RELOC_MEP_TPREL7: howto manager. (line 1297) +* BFD_RELOC_MEP_TPREL7A2: howto manager. (line 1298) +* BFD_RELOC_MEP_TPREL7A4: howto manager. (line 1299) +* BFD_RELOC_MEP_UIMM24: howto manager. (line 1300) +* BFD_RELOC_MIPS16_CALL16: howto manager. (line 332) +* BFD_RELOC_MIPS16_GOT16: howto manager. (line 331) +* BFD_RELOC_MIPS16_GPREL: howto manager. (line 307) +* BFD_RELOC_MIPS16_HI16: howto manager. (line 336) +* BFD_RELOC_MIPS16_HI16_S: howto manager. (line 339) +* BFD_RELOC_MIPS16_JMP: howto manager. (line 304) +* BFD_RELOC_MIPS16_LO16: howto manager. (line 345) +* BFD_RELOC_MIPS_CALL16: howto manager. (line 352) +* BFD_RELOC_MIPS_CALL_HI16: howto manager. (line 355) +* BFD_RELOC_MIPS_CALL_LO16: howto manager. (line 356) +* BFD_RELOC_MIPS_COPY: howto manager. (line 387) +* BFD_RELOC_MIPS_DELETE: howto manager. (line 365) +* BFD_RELOC_MIPS_GOT16: howto manager. (line 351) +* BFD_RELOC_MIPS_GOT_DISP: howto manager. (line 360) +* BFD_RELOC_MIPS_GOT_HI16: howto manager. (line 353) +* BFD_RELOC_MIPS_GOT_LO16: howto manager. (line 354) +* BFD_RELOC_MIPS_GOT_OFST: howto manager. (line 359) +* BFD_RELOC_MIPS_GOT_PAGE: howto manager. (line 358) +* BFD_RELOC_MIPS_HIGHER: howto manager. (line 367) +* BFD_RELOC_MIPS_HIGHEST: howto manager. (line 366) +* BFD_RELOC_MIPS_INSERT_A: howto manager. (line 363) +* BFD_RELOC_MIPS_INSERT_B: howto manager. (line 364) +* BFD_RELOC_MIPS_JALR: howto manager. (line 371) +* BFD_RELOC_MIPS_JMP: howto manager. (line 300) +* BFD_RELOC_MIPS_JUMP_SLOT: howto manager. (line 388) +* BFD_RELOC_MIPS_LITERAL: howto manager. (line 348) +* BFD_RELOC_MIPS_REL16: howto manager. (line 369) +* BFD_RELOC_MIPS_RELGOT: howto manager. (line 370) +* BFD_RELOC_MIPS_SCN_DISP: howto manager. (line 368) +* BFD_RELOC_MIPS_SHIFT5: howto manager. (line 361) +* BFD_RELOC_MIPS_SHIFT6: howto manager. (line 362) +* BFD_RELOC_MIPS_SUB: howto manager. (line 357) +* BFD_RELOC_MIPS_TLS_DTPMOD32: howto manager. (line 372) +* BFD_RELOC_MIPS_TLS_DTPMOD64: howto manager. (line 374) +* BFD_RELOC_MIPS_TLS_DTPREL32: howto manager. (line 373) +* BFD_RELOC_MIPS_TLS_DTPREL64: howto manager. (line 375) +* BFD_RELOC_MIPS_TLS_DTPREL_HI16: howto manager. (line 378) +* BFD_RELOC_MIPS_TLS_DTPREL_LO16: howto manager. (line 379) +* BFD_RELOC_MIPS_TLS_GD: howto manager. (line 376) +* BFD_RELOC_MIPS_TLS_GOTTPREL: howto manager. (line 380) +* BFD_RELOC_MIPS_TLS_LDM: howto manager. (line 377) +* BFD_RELOC_MIPS_TLS_TPREL32: howto manager. (line 381) +* BFD_RELOC_MIPS_TLS_TPREL64: howto manager. (line 382) +* BFD_RELOC_MIPS_TLS_TPREL_HI16: howto manager. (line 383) +* BFD_RELOC_MIPS_TLS_TPREL_LO16: howto manager. (line 384) +* BFD_RELOC_MMIX_ADDR19: howto manager. (line 1332) +* BFD_RELOC_MMIX_ADDR27: howto manager. (line 1336) +* BFD_RELOC_MMIX_BASE_PLUS_OFFSET: howto manager. (line 1348) +* BFD_RELOC_MMIX_CBRANCH: howto manager. (line 1312) +* BFD_RELOC_MMIX_CBRANCH_1: howto manager. (line 1314) +* BFD_RELOC_MMIX_CBRANCH_2: howto manager. (line 1315) +* BFD_RELOC_MMIX_CBRANCH_3: howto manager. (line 1316) +* BFD_RELOC_MMIX_CBRANCH_J: howto manager. (line 1313) +* BFD_RELOC_MMIX_GETA: howto manager. (line 1306) +* BFD_RELOC_MMIX_GETA_1: howto manager. (line 1307) +* BFD_RELOC_MMIX_GETA_2: howto manager. (line 1308) +* BFD_RELOC_MMIX_GETA_3: howto manager. (line 1309) +* BFD_RELOC_MMIX_JMP: howto manager. (line 1326) +* BFD_RELOC_MMIX_JMP_1: howto manager. (line 1327) +* BFD_RELOC_MMIX_JMP_2: howto manager. (line 1328) +* BFD_RELOC_MMIX_JMP_3: howto manager. (line 1329) +* BFD_RELOC_MMIX_LOCAL: howto manager. (line 1352) +* BFD_RELOC_MMIX_PUSHJ: howto manager. (line 1319) +* BFD_RELOC_MMIX_PUSHJ_1: howto manager. (line 1320) +* BFD_RELOC_MMIX_PUSHJ_2: howto manager. (line 1321) +* BFD_RELOC_MMIX_PUSHJ_3: howto manager. (line 1322) +* BFD_RELOC_MMIX_PUSHJ_STUBBABLE: howto manager. (line 1323) +* BFD_RELOC_MMIX_REG: howto manager. (line 1344) +* BFD_RELOC_MMIX_REG_OR_BYTE: howto manager. (line 1340) +* BFD_RELOC_MN10300_16_PCREL: howto manager. (line 1214) +* BFD_RELOC_MN10300_32_PCREL: howto manager. (line 1210) +* BFD_RELOC_MN10300_ALIGN: howto manager. (line 464) +* BFD_RELOC_MN10300_COPY: howto manager. (line 447) +* BFD_RELOC_MN10300_GLOB_DAT: howto manager. (line 450) +* BFD_RELOC_MN10300_GOT16: howto manager. (line 443) +* BFD_RELOC_MN10300_GOT24: howto manager. (line 439) +* BFD_RELOC_MN10300_GOT32: howto manager. (line 435) +* BFD_RELOC_MN10300_GOTOFF24: howto manager. (line 432) +* BFD_RELOC_MN10300_JMP_SLOT: howto manager. (line 453) +* BFD_RELOC_MN10300_RELATIVE: howto manager. (line 456) +* BFD_RELOC_MN10300_SYM_DIFF: howto manager. (line 459) +* BFD_RELOC_MSP430_10_PCREL: howto manager. (line 1987) +* BFD_RELOC_MSP430_16: howto manager. (line 1989) +* BFD_RELOC_MSP430_16_BYTE: howto manager. (line 1991) +* BFD_RELOC_MSP430_16_PCREL: howto manager. (line 1988) +* BFD_RELOC_MSP430_16_PCREL_BYTE: howto manager. (line 1990) +* BFD_RELOC_MSP430_2X_PCREL: howto manager. (line 1992) +* BFD_RELOC_MSP430_RL_PCREL: howto manager. (line 1993) +* BFD_RELOC_MT_GNU_VTENTRY: howto manager. (line 1981) +* BFD_RELOC_MT_GNU_VTINHERIT: howto manager. (line 1978) +* BFD_RELOC_MT_HI16: howto manager. (line 1972) +* BFD_RELOC_MT_LO16: howto manager. (line 1975) +* BFD_RELOC_MT_PC16: howto manager. (line 1969) +* BFD_RELOC_MT_PCINSN8: howto manager. (line 1984) +* BFD_RELOC_NONE: howto manager. (line 116) +* BFD_RELOC_NS32K_DISP_16: howto manager. (line 528) +* BFD_RELOC_NS32K_DISP_16_PCREL: howto manager. (line 531) +* BFD_RELOC_NS32K_DISP_32: howto manager. (line 529) +* BFD_RELOC_NS32K_DISP_32_PCREL: howto manager. (line 532) +* BFD_RELOC_NS32K_DISP_8: howto manager. (line 527) +* BFD_RELOC_NS32K_DISP_8_PCREL: howto manager. (line 530) +* BFD_RELOC_NS32K_IMM_16: howto manager. (line 522) +* BFD_RELOC_NS32K_IMM_16_PCREL: howto manager. (line 525) +* BFD_RELOC_NS32K_IMM_32: howto manager. (line 523) +* BFD_RELOC_NS32K_IMM_32_PCREL: howto manager. (line 526) +* BFD_RELOC_NS32K_IMM_8: howto manager. (line 521) +* BFD_RELOC_NS32K_IMM_8_PCREL: howto manager. (line 524) +* BFD_RELOC_OPENRISC_ABS_26: howto manager. (line 1938) +* BFD_RELOC_OPENRISC_REL_26: howto manager. (line 1939) +* BFD_RELOC_PDP11_DISP_6_PCREL: howto manager. (line 536) +* BFD_RELOC_PDP11_DISP_8_PCREL: howto manager. (line 535) +* BFD_RELOC_PJ_CODE_DIR16: howto manager. (line 541) +* BFD_RELOC_PJ_CODE_DIR32: howto manager. (line 542) +* BFD_RELOC_PJ_CODE_HI16: howto manager. (line 539) +* BFD_RELOC_PJ_CODE_LO16: howto manager. (line 540) +* BFD_RELOC_PJ_CODE_REL16: howto manager. (line 543) +* BFD_RELOC_PJ_CODE_REL32: howto manager. (line 544) +* BFD_RELOC_PPC64_ADDR16_DS: howto manager. (line 589) +* BFD_RELOC_PPC64_ADDR16_LO_DS: howto manager. (line 590) +* BFD_RELOC_PPC64_DTPREL16_DS: howto manager. (line 636) +* BFD_RELOC_PPC64_DTPREL16_HIGHER: howto manager. (line 638) +* BFD_RELOC_PPC64_DTPREL16_HIGHERA: howto manager. (line 639) +* BFD_RELOC_PPC64_DTPREL16_HIGHEST: howto manager. (line 640) +* BFD_RELOC_PPC64_DTPREL16_HIGHESTA: howto manager. (line 641) +* BFD_RELOC_PPC64_DTPREL16_LO_DS: howto manager. (line 637) +* BFD_RELOC_PPC64_GOT16_DS: howto manager. (line 591) +* BFD_RELOC_PPC64_GOT16_LO_DS: howto manager. (line 592) +* BFD_RELOC_PPC64_HIGHER: howto manager. (line 577) +* BFD_RELOC_PPC64_HIGHER_S: howto manager. (line 578) +* BFD_RELOC_PPC64_HIGHEST: howto manager. (line 579) +* BFD_RELOC_PPC64_HIGHEST_S: howto manager. (line 580) +* BFD_RELOC_PPC64_PLT16_LO_DS: howto manager. (line 593) +* BFD_RELOC_PPC64_PLTGOT16: howto manager. (line 585) +* BFD_RELOC_PPC64_PLTGOT16_DS: howto manager. (line 598) +* BFD_RELOC_PPC64_PLTGOT16_HA: howto manager. (line 588) +* BFD_RELOC_PPC64_PLTGOT16_HI: howto manager. (line 587) +* BFD_RELOC_PPC64_PLTGOT16_LO: howto manager. (line 586) +* BFD_RELOC_PPC64_PLTGOT16_LO_DS: howto manager. (line 599) +* BFD_RELOC_PPC64_SECTOFF_DS: howto manager. (line 594) +* BFD_RELOC_PPC64_SECTOFF_LO_DS: howto manager. (line 595) +* BFD_RELOC_PPC64_TOC: howto manager. (line 584) +* BFD_RELOC_PPC64_TOC16_DS: howto manager. (line 596) +* BFD_RELOC_PPC64_TOC16_HA: howto manager. (line 583) +* BFD_RELOC_PPC64_TOC16_HI: howto manager. (line 582) +* BFD_RELOC_PPC64_TOC16_LO: howto manager. (line 581) +* BFD_RELOC_PPC64_TOC16_LO_DS: howto manager. (line 597) +* BFD_RELOC_PPC64_TPREL16_DS: howto manager. (line 630) +* BFD_RELOC_PPC64_TPREL16_HIGHER: howto manager. (line 632) +* BFD_RELOC_PPC64_TPREL16_HIGHERA: howto manager. (line 633) +* BFD_RELOC_PPC64_TPREL16_HIGHEST: howto manager. (line 634) +* BFD_RELOC_PPC64_TPREL16_HIGHESTA: howto manager. (line 635) +* BFD_RELOC_PPC64_TPREL16_LO_DS: howto manager. (line 631) +* BFD_RELOC_PPC_B16: howto manager. (line 550) +* BFD_RELOC_PPC_B16_BRNTAKEN: howto manager. (line 552) +* BFD_RELOC_PPC_B16_BRTAKEN: howto manager. (line 551) +* BFD_RELOC_PPC_B26: howto manager. (line 547) +* BFD_RELOC_PPC_BA16: howto manager. (line 553) +* BFD_RELOC_PPC_BA16_BRNTAKEN: howto manager. (line 555) +* BFD_RELOC_PPC_BA16_BRTAKEN: howto manager. (line 554) +* BFD_RELOC_PPC_BA26: howto manager. (line 548) +* BFD_RELOC_PPC_COPY: howto manager. (line 556) +* BFD_RELOC_PPC_DTPMOD: howto manager. (line 603) +* BFD_RELOC_PPC_DTPREL: howto manager. (line 613) +* BFD_RELOC_PPC_DTPREL16: howto manager. (line 609) +* BFD_RELOC_PPC_DTPREL16_HA: howto manager. (line 612) +* BFD_RELOC_PPC_DTPREL16_HI: howto manager. (line 611) +* BFD_RELOC_PPC_DTPREL16_LO: howto manager. (line 610) +* BFD_RELOC_PPC_EMB_BIT_FLD: howto manager. (line 575) +* BFD_RELOC_PPC_EMB_MRKREF: howto manager. (line 570) +* BFD_RELOC_PPC_EMB_NADDR16: howto manager. (line 562) +* BFD_RELOC_PPC_EMB_NADDR16_HA: howto manager. (line 565) +* BFD_RELOC_PPC_EMB_NADDR16_HI: howto manager. (line 564) +* BFD_RELOC_PPC_EMB_NADDR16_LO: howto manager. (line 563) +* BFD_RELOC_PPC_EMB_NADDR32: howto manager. (line 561) +* BFD_RELOC_PPC_EMB_RELSDA: howto manager. (line 576) +* BFD_RELOC_PPC_EMB_RELSEC16: howto manager. (line 571) +* BFD_RELOC_PPC_EMB_RELST_HA: howto manager. (line 574) +* BFD_RELOC_PPC_EMB_RELST_HI: howto manager. (line 573) +* BFD_RELOC_PPC_EMB_RELST_LO: howto manager. (line 572) +* BFD_RELOC_PPC_EMB_SDA21: howto manager. (line 569) +* BFD_RELOC_PPC_EMB_SDA2I16: howto manager. (line 567) +* BFD_RELOC_PPC_EMB_SDA2REL: howto manager. (line 568) +* BFD_RELOC_PPC_EMB_SDAI16: howto manager. (line 566) +* BFD_RELOC_PPC_GLOB_DAT: howto manager. (line 557) +* BFD_RELOC_PPC_GOT_DTPREL16: howto manager. (line 626) +* BFD_RELOC_PPC_GOT_DTPREL16_HA: howto manager. (line 629) +* BFD_RELOC_PPC_GOT_DTPREL16_HI: howto manager. (line 628) +* BFD_RELOC_PPC_GOT_DTPREL16_LO: howto manager. (line 627) +* BFD_RELOC_PPC_GOT_TLSGD16: howto manager. (line 614) +* BFD_RELOC_PPC_GOT_TLSGD16_HA: howto manager. (line 617) +* BFD_RELOC_PPC_GOT_TLSGD16_HI: howto manager. (line 616) +* BFD_RELOC_PPC_GOT_TLSGD16_LO: howto manager. (line 615) +* BFD_RELOC_PPC_GOT_TLSLD16: howto manager. (line 618) +* BFD_RELOC_PPC_GOT_TLSLD16_HA: howto manager. (line 621) +* BFD_RELOC_PPC_GOT_TLSLD16_HI: howto manager. (line 620) +* BFD_RELOC_PPC_GOT_TLSLD16_LO: howto manager. (line 619) +* BFD_RELOC_PPC_GOT_TPREL16: howto manager. (line 622) +* BFD_RELOC_PPC_GOT_TPREL16_HA: howto manager. (line 625) +* BFD_RELOC_PPC_GOT_TPREL16_HI: howto manager. (line 624) +* BFD_RELOC_PPC_GOT_TPREL16_LO: howto manager. (line 623) +* BFD_RELOC_PPC_JMP_SLOT: howto manager. (line 558) +* BFD_RELOC_PPC_LOCAL24PC: howto manager. (line 560) +* BFD_RELOC_PPC_RELATIVE: howto manager. (line 559) +* BFD_RELOC_PPC_TLS: howto manager. (line 602) +* BFD_RELOC_PPC_TOC16: howto manager. (line 549) +* BFD_RELOC_PPC_TPREL: howto manager. (line 608) +* BFD_RELOC_PPC_TPREL16: howto manager. (line 604) +* BFD_RELOC_PPC_TPREL16_HA: howto manager. (line 607) +* BFD_RELOC_PPC_TPREL16_HI: howto manager. (line 606) +* BFD_RELOC_PPC_TPREL16_LO: howto manager. (line 605) +* BFD_RELOC_RELC: howto manager. (line 1955) +* BFD_RELOC_RVA: howto manager. (line 85) +* BFD_RELOC_SCORE16_BRANCH: howto manager. (line 1581) +* BFD_RELOC_SCORE16_JMP: howto manager. (line 1578) +* BFD_RELOC_SCORE_BRANCH: howto manager. (line 1575) +* BFD_RELOC_SCORE_CALL15: howto manager. (line 1586) +* BFD_RELOC_SCORE_DUMMY1: howto manager. (line 1565) +* BFD_RELOC_SCORE_DUMMY2: howto manager. (line 1571) +* BFD_RELOC_SCORE_DUMMY_HI16: howto manager. (line 1587) +* BFD_RELOC_SCORE_GOT15: howto manager. (line 1584) +* BFD_RELOC_SCORE_GOT_LO16: howto manager. (line 1585) +* BFD_RELOC_SCORE_GPREL15: howto manager. (line 1568) +* BFD_RELOC_SCORE_JMP: howto manager. (line 1572) +* BFD_RELOC_SH_ALIGN: howto manager. (line 824) +* BFD_RELOC_SH_CODE: howto manager. (line 825) +* BFD_RELOC_SH_COPY: howto manager. (line 830) +* BFD_RELOC_SH_COPY64: howto manager. (line 855) +* BFD_RELOC_SH_COUNT: howto manager. (line 823) +* BFD_RELOC_SH_DATA: howto manager. (line 826) +* BFD_RELOC_SH_DISP12: howto manager. (line 806) +* BFD_RELOC_SH_DISP12BY2: howto manager. (line 807) +* BFD_RELOC_SH_DISP12BY4: howto manager. (line 808) +* BFD_RELOC_SH_DISP12BY8: howto manager. (line 809) +* BFD_RELOC_SH_DISP20: howto manager. (line 810) +* BFD_RELOC_SH_DISP20BY8: howto manager. (line 811) +* BFD_RELOC_SH_GLOB_DAT: howto manager. (line 831) +* BFD_RELOC_SH_GLOB_DAT64: howto manager. (line 856) +* BFD_RELOC_SH_GOT10BY4: howto manager. (line 859) +* BFD_RELOC_SH_GOT10BY8: howto manager. (line 860) +* BFD_RELOC_SH_GOT_HI16: howto manager. (line 838) +* BFD_RELOC_SH_GOT_LOW16: howto manager. (line 835) +* BFD_RELOC_SH_GOT_MEDHI16: howto manager. (line 837) +* BFD_RELOC_SH_GOT_MEDLOW16: howto manager. (line 836) +* BFD_RELOC_SH_GOTOFF_HI16: howto manager. (line 850) +* BFD_RELOC_SH_GOTOFF_LOW16: howto manager. (line 847) +* BFD_RELOC_SH_GOTOFF_MEDHI16: howto manager. (line 849) +* BFD_RELOC_SH_GOTOFF_MEDLOW16: howto manager. (line 848) +* BFD_RELOC_SH_GOTPC: howto manager. (line 834) +* BFD_RELOC_SH_GOTPC_HI16: howto manager. (line 854) +* BFD_RELOC_SH_GOTPC_LOW16: howto manager. (line 851) +* BFD_RELOC_SH_GOTPC_MEDHI16: howto manager. (line 853) +* BFD_RELOC_SH_GOTPC_MEDLOW16: howto manager. (line 852) +* BFD_RELOC_SH_GOTPLT10BY4: howto manager. (line 861) +* BFD_RELOC_SH_GOTPLT10BY8: howto manager. (line 862) +* BFD_RELOC_SH_GOTPLT32: howto manager. (line 863) +* BFD_RELOC_SH_GOTPLT_HI16: howto manager. (line 842) +* BFD_RELOC_SH_GOTPLT_LOW16: howto manager. (line 839) +* BFD_RELOC_SH_GOTPLT_MEDHI16: howto manager. (line 841) +* BFD_RELOC_SH_GOTPLT_MEDLOW16: howto manager. (line 840) +* BFD_RELOC_SH_IMM3: howto manager. (line 804) +* BFD_RELOC_SH_IMM3U: howto manager. (line 805) +* BFD_RELOC_SH_IMM4: howto manager. (line 812) +* BFD_RELOC_SH_IMM4BY2: howto manager. (line 813) +* BFD_RELOC_SH_IMM4BY4: howto manager. (line 814) +* BFD_RELOC_SH_IMM8: howto manager. (line 815) +* BFD_RELOC_SH_IMM8BY2: howto manager. (line 816) +* BFD_RELOC_SH_IMM8BY4: howto manager. (line 817) +* BFD_RELOC_SH_IMM_HI16: howto manager. (line 881) +* BFD_RELOC_SH_IMM_HI16_PCREL: howto manager. (line 882) +* BFD_RELOC_SH_IMM_LOW16: howto manager. (line 875) +* BFD_RELOC_SH_IMM_LOW16_PCREL: howto manager. (line 876) +* BFD_RELOC_SH_IMM_MEDHI16: howto manager. (line 879) +* BFD_RELOC_SH_IMM_MEDHI16_PCREL: howto manager. (line 880) +* BFD_RELOC_SH_IMM_MEDLOW16: howto manager. (line 877) +* BFD_RELOC_SH_IMM_MEDLOW16_PCREL: howto manager. (line 878) +* BFD_RELOC_SH_IMMS10: howto manager. (line 869) +* BFD_RELOC_SH_IMMS10BY2: howto manager. (line 870) +* BFD_RELOC_SH_IMMS10BY4: howto manager. (line 871) +* BFD_RELOC_SH_IMMS10BY8: howto manager. (line 872) +* BFD_RELOC_SH_IMMS16: howto manager. (line 873) +* BFD_RELOC_SH_IMMS6: howto manager. (line 866) +* BFD_RELOC_SH_IMMS6BY32: howto manager. (line 867) +* BFD_RELOC_SH_IMMU16: howto manager. (line 874) +* BFD_RELOC_SH_IMMU5: howto manager. (line 865) +* BFD_RELOC_SH_IMMU6: howto manager. (line 868) +* BFD_RELOC_SH_JMP_SLOT: howto manager. (line 832) +* BFD_RELOC_SH_JMP_SLOT64: howto manager. (line 857) +* BFD_RELOC_SH_LABEL: howto manager. (line 827) +* BFD_RELOC_SH_LOOP_END: howto manager. (line 829) +* BFD_RELOC_SH_LOOP_START: howto manager. (line 828) +* BFD_RELOC_SH_PCDISP12BY2: howto manager. (line 803) +* BFD_RELOC_SH_PCDISP8BY2: howto manager. (line 802) +* BFD_RELOC_SH_PCRELIMM8BY2: howto manager. (line 818) +* BFD_RELOC_SH_PCRELIMM8BY4: howto manager. (line 819) +* BFD_RELOC_SH_PLT_HI16: howto manager. (line 846) +* BFD_RELOC_SH_PLT_LOW16: howto manager. (line 843) +* BFD_RELOC_SH_PLT_MEDHI16: howto manager. (line 845) +* BFD_RELOC_SH_PLT_MEDLOW16: howto manager. (line 844) +* BFD_RELOC_SH_PT_16: howto manager. (line 883) +* BFD_RELOC_SH_RELATIVE: howto manager. (line 833) +* BFD_RELOC_SH_RELATIVE64: howto manager. (line 858) +* BFD_RELOC_SH_SHMEDIA_CODE: howto manager. (line 864) +* BFD_RELOC_SH_SWITCH16: howto manager. (line 820) +* BFD_RELOC_SH_SWITCH32: howto manager. (line 821) +* BFD_RELOC_SH_TLS_DTPMOD32: howto manager. (line 889) +* BFD_RELOC_SH_TLS_DTPOFF32: howto manager. (line 890) +* BFD_RELOC_SH_TLS_GD_32: howto manager. (line 884) +* BFD_RELOC_SH_TLS_IE_32: howto manager. (line 887) +* BFD_RELOC_SH_TLS_LD_32: howto manager. (line 885) +* BFD_RELOC_SH_TLS_LDO_32: howto manager. (line 886) +* BFD_RELOC_SH_TLS_LE_32: howto manager. (line 888) +* BFD_RELOC_SH_TLS_TPOFF32: howto manager. (line 891) +* BFD_RELOC_SH_USES: howto manager. (line 822) +* BFD_RELOC_SPARC13: howto manager. (line 119) +* BFD_RELOC_SPARC22: howto manager. (line 118) +* BFD_RELOC_SPARC_10: howto manager. (line 146) +* BFD_RELOC_SPARC_11: howto manager. (line 147) +* BFD_RELOC_SPARC_5: howto manager. (line 159) +* BFD_RELOC_SPARC_6: howto manager. (line 158) +* BFD_RELOC_SPARC_64: howto manager. (line 145) +* BFD_RELOC_SPARC_7: howto manager. (line 157) +* BFD_RELOC_SPARC_BASE13: howto manager. (line 141) +* BFD_RELOC_SPARC_BASE22: howto manager. (line 142) +* BFD_RELOC_SPARC_COPY: howto manager. (line 126) +* BFD_RELOC_SPARC_DISP64: howto manager. (line 160) +* BFD_RELOC_SPARC_GLOB_DAT: howto manager. (line 127) +* BFD_RELOC_SPARC_GOT10: howto manager. (line 120) +* BFD_RELOC_SPARC_GOT13: howto manager. (line 121) +* BFD_RELOC_SPARC_GOT22: howto manager. (line 122) +* BFD_RELOC_SPARC_GOTDATA_HIX22: howto manager. (line 133) +* BFD_RELOC_SPARC_GOTDATA_LOX10: howto manager. (line 134) +* BFD_RELOC_SPARC_GOTDATA_OP: howto manager. (line 137) +* BFD_RELOC_SPARC_GOTDATA_OP_HIX22: howto manager. (line 135) +* BFD_RELOC_SPARC_GOTDATA_OP_LOX10: howto manager. (line 136) +* BFD_RELOC_SPARC_H44: howto manager. (line 165) +* BFD_RELOC_SPARC_HH22: howto manager. (line 149) +* BFD_RELOC_SPARC_HIX22: howto manager. (line 163) +* BFD_RELOC_SPARC_HM10: howto manager. (line 150) +* BFD_RELOC_SPARC_JMP_SLOT: howto manager. (line 128) +* BFD_RELOC_SPARC_L44: howto manager. (line 167) +* BFD_RELOC_SPARC_LM22: howto manager. (line 151) +* BFD_RELOC_SPARC_LOX10: howto manager. (line 164) +* BFD_RELOC_SPARC_M44: howto manager. (line 166) +* BFD_RELOC_SPARC_OLO10: howto manager. (line 148) +* BFD_RELOC_SPARC_PC10: howto manager. (line 123) +* BFD_RELOC_SPARC_PC22: howto manager. (line 124) +* BFD_RELOC_SPARC_PC_HH22: howto manager. (line 152) +* BFD_RELOC_SPARC_PC_HM10: howto manager. (line 153) +* BFD_RELOC_SPARC_PC_LM22: howto manager. (line 154) +* BFD_RELOC_SPARC_PLT32: howto manager. (line 161) +* BFD_RELOC_SPARC_PLT64: howto manager. (line 162) +* BFD_RELOC_SPARC_REGISTER: howto manager. (line 168) +* BFD_RELOC_SPARC_RELATIVE: howto manager. (line 129) +* BFD_RELOC_SPARC_REV32: howto manager. (line 171) +* BFD_RELOC_SPARC_TLS_DTPMOD32: howto manager. (line 192) +* BFD_RELOC_SPARC_TLS_DTPMOD64: howto manager. (line 193) +* BFD_RELOC_SPARC_TLS_DTPOFF32: howto manager. (line 194) +* BFD_RELOC_SPARC_TLS_DTPOFF64: howto manager. (line 195) +* BFD_RELOC_SPARC_TLS_GD_ADD: howto manager. (line 176) +* BFD_RELOC_SPARC_TLS_GD_CALL: howto manager. (line 177) +* BFD_RELOC_SPARC_TLS_GD_HI22: howto manager. (line 174) +* BFD_RELOC_SPARC_TLS_GD_LO10: howto manager. (line 175) +* BFD_RELOC_SPARC_TLS_IE_ADD: howto manager. (line 189) +* BFD_RELOC_SPARC_TLS_IE_HI22: howto manager. (line 185) +* BFD_RELOC_SPARC_TLS_IE_LD: howto manager. (line 187) +* BFD_RELOC_SPARC_TLS_IE_LDX: howto manager. (line 188) +* BFD_RELOC_SPARC_TLS_IE_LO10: howto manager. (line 186) +* BFD_RELOC_SPARC_TLS_LDM_ADD: howto manager. (line 180) +* BFD_RELOC_SPARC_TLS_LDM_CALL: howto manager. (line 181) +* BFD_RELOC_SPARC_TLS_LDM_HI22: howto manager. (line 178) +* BFD_RELOC_SPARC_TLS_LDM_LO10: howto manager. (line 179) +* BFD_RELOC_SPARC_TLS_LDO_ADD: howto manager. (line 184) +* BFD_RELOC_SPARC_TLS_LDO_HIX22: howto manager. (line 182) +* BFD_RELOC_SPARC_TLS_LDO_LOX10: howto manager. (line 183) +* BFD_RELOC_SPARC_TLS_LE_HIX22: howto manager. (line 190) +* BFD_RELOC_SPARC_TLS_LE_LOX10: howto manager. (line 191) +* BFD_RELOC_SPARC_TLS_TPOFF32: howto manager. (line 196) +* BFD_RELOC_SPARC_TLS_TPOFF64: howto manager. (line 197) +* BFD_RELOC_SPARC_UA16: howto manager. (line 130) +* BFD_RELOC_SPARC_UA32: howto manager. (line 131) +* BFD_RELOC_SPARC_UA64: howto manager. (line 132) +* BFD_RELOC_SPARC_WDISP16: howto manager. (line 155) +* BFD_RELOC_SPARC_WDISP19: howto manager. (line 156) +* BFD_RELOC_SPARC_WDISP22: howto manager. (line 117) +* BFD_RELOC_SPARC_WPLT30: howto manager. (line 125) +* BFD_RELOC_SPU_HI16: howto manager. (line 211) +* BFD_RELOC_SPU_IMM10: howto manager. (line 202) +* BFD_RELOC_SPU_IMM10W: howto manager. (line 203) +* BFD_RELOC_SPU_IMM16: howto manager. (line 204) +* BFD_RELOC_SPU_IMM16W: howto manager. (line 205) +* BFD_RELOC_SPU_IMM18: howto manager. (line 206) +* BFD_RELOC_SPU_IMM7: howto manager. (line 200) +* BFD_RELOC_SPU_IMM8: howto manager. (line 201) +* BFD_RELOC_SPU_LO16: howto manager. (line 210) +* BFD_RELOC_SPU_PCREL16: howto manager. (line 209) +* BFD_RELOC_SPU_PCREL9a: howto manager. (line 207) +* BFD_RELOC_SPU_PCREL9b: howto manager. (line 208) +* BFD_RELOC_SPU_PPU32: howto manager. (line 212) +* BFD_RELOC_SPU_PPU64: howto manager. (line 213) +* BFD_RELOC_THUMB_PCREL_BLX: howto manager. (line 662) +* BFD_RELOC_THUMB_PCREL_BRANCH12: howto manager. (line 676) +* BFD_RELOC_THUMB_PCREL_BRANCH20: howto manager. (line 677) +* BFD_RELOC_THUMB_PCREL_BRANCH23: howto manager. (line 678) +* BFD_RELOC_THUMB_PCREL_BRANCH25: howto manager. (line 679) +* BFD_RELOC_THUMB_PCREL_BRANCH7: howto manager. (line 674) +* BFD_RELOC_THUMB_PCREL_BRANCH9: howto manager. (line 675) +* BFD_RELOC_TIC30_LDP: howto manager. (line 1218) +* BFD_RELOC_TIC54X_16_OF_23: howto manager. (line 1236) +* BFD_RELOC_TIC54X_23: howto manager. (line 1233) +* BFD_RELOC_TIC54X_MS7_OF_23: howto manager. (line 1241) +* BFD_RELOC_TIC54X_PARTLS7: howto manager. (line 1223) +* BFD_RELOC_TIC54X_PARTMS9: howto manager. (line 1228) +* bfd_reloc_type_lookup: howto manager. (line 2102) +* BFD_RELOC_V850_22_PCREL: howto manager. (line 1145) +* BFD_RELOC_V850_9_PCREL: howto manager. (line 1142) +* BFD_RELOC_V850_ALIGN: howto manager. (line 1203) +* BFD_RELOC_V850_CALLT_16_16_OFFSET: howto manager. (line 1194) +* BFD_RELOC_V850_CALLT_6_7_OFFSET: howto manager. (line 1191) +* BFD_RELOC_V850_LO16_SPLIT_OFFSET: howto manager. (line 1206) +* BFD_RELOC_V850_LONGCALL: howto manager. (line 1197) +* BFD_RELOC_V850_LONGJUMP: howto manager. (line 1200) +* BFD_RELOC_V850_SDA_15_16_OFFSET: howto manager. (line 1151) +* BFD_RELOC_V850_SDA_16_16_OFFSET: howto manager. (line 1148) +* BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET: howto manager. (line 1183) +* BFD_RELOC_V850_TDA_16_16_OFFSET: howto manager. (line 1173) +* BFD_RELOC_V850_TDA_4_4_OFFSET: howto manager. (line 1180) +* BFD_RELOC_V850_TDA_4_5_OFFSET: howto manager. (line 1176) +* BFD_RELOC_V850_TDA_6_8_OFFSET: howto manager. (line 1162) +* BFD_RELOC_V850_TDA_7_7_OFFSET: howto manager. (line 1170) +* BFD_RELOC_V850_TDA_7_8_OFFSET: howto manager. (line 1166) +* BFD_RELOC_V850_ZDA_15_16_OFFSET: howto manager. (line 1158) +* BFD_RELOC_V850_ZDA_16_16_OFFSET: howto manager. (line 1155) +* BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET: howto manager. (line 1187) +* BFD_RELOC_VAX_GLOB_DAT: howto manager. (line 1964) +* BFD_RELOC_VAX_JMP_SLOT: howto manager. (line 1965) +* BFD_RELOC_VAX_RELATIVE: howto manager. (line 1966) +* BFD_RELOC_VPE4KMATH_DATA: howto manager. (line 1620) +* BFD_RELOC_VPE4KMATH_INSN: howto manager. (line 1621) +* BFD_RELOC_VTABLE_ENTRY: howto manager. (line 1625) +* BFD_RELOC_VTABLE_INHERIT: howto manager. (line 1624) +* BFD_RELOC_X86_64_32S: howto manager. (line 500) +* BFD_RELOC_X86_64_COPY: howto manager. (line 495) +* BFD_RELOC_X86_64_DTPMOD64: howto manager. (line 501) +* BFD_RELOC_X86_64_DTPOFF32: howto manager. (line 506) +* BFD_RELOC_X86_64_DTPOFF64: howto manager. (line 502) +* BFD_RELOC_X86_64_GLOB_DAT: howto manager. (line 496) +* BFD_RELOC_X86_64_GOT32: howto manager. (line 493) +* BFD_RELOC_X86_64_GOT64: howto manager. (line 511) +* BFD_RELOC_X86_64_GOTOFF64: howto manager. (line 509) +* BFD_RELOC_X86_64_GOTPC32: howto manager. (line 510) +* BFD_RELOC_X86_64_GOTPC32_TLSDESC: howto manager. (line 516) +* BFD_RELOC_X86_64_GOTPC64: howto manager. (line 513) +* BFD_RELOC_X86_64_GOTPCREL: howto manager. (line 499) +* BFD_RELOC_X86_64_GOTPCREL64: howto manager. (line 512) +* BFD_RELOC_X86_64_GOTPLT64: howto manager. (line 514) +* BFD_RELOC_X86_64_GOTTPOFF: howto manager. (line 507) +* BFD_RELOC_X86_64_JUMP_SLOT: howto manager. (line 497) +* BFD_RELOC_X86_64_PLT32: howto manager. (line 494) +* BFD_RELOC_X86_64_PLTOFF64: howto manager. (line 515) +* BFD_RELOC_X86_64_RELATIVE: howto manager. (line 498) +* BFD_RELOC_X86_64_TLSDESC: howto manager. (line 518) +* BFD_RELOC_X86_64_TLSDESC_CALL: howto manager. (line 517) +* BFD_RELOC_X86_64_TLSGD: howto manager. (line 504) +* BFD_RELOC_X86_64_TLSLD: howto manager. (line 505) +* BFD_RELOC_X86_64_TPOFF32: howto manager. (line 508) +* BFD_RELOC_X86_64_TPOFF64: howto manager. (line 503) +* BFD_RELOC_XC16X_PAG: howto manager. (line 1958) +* BFD_RELOC_XC16X_POF: howto manager. (line 1959) +* BFD_RELOC_XC16X_SEG: howto manager. (line 1960) +* BFD_RELOC_XC16X_SOF: howto manager. (line 1961) +* BFD_RELOC_XSTORMY16_12: howto manager. (line 1950) +* BFD_RELOC_XSTORMY16_24: howto manager. (line 1951) +* BFD_RELOC_XSTORMY16_FPTR16: howto manager. (line 1952) +* BFD_RELOC_XSTORMY16_REL_12: howto manager. (line 1949) +* BFD_RELOC_XTENSA_ASM_EXPAND: howto manager. (line 2070) +* BFD_RELOC_XTENSA_ASM_SIMPLIFY: howto manager. (line 2075) +* BFD_RELOC_XTENSA_DIFF16: howto manager. (line 2017) +* BFD_RELOC_XTENSA_DIFF32: howto manager. (line 2018) +* BFD_RELOC_XTENSA_DIFF8: howto manager. (line 2016) +* BFD_RELOC_XTENSA_GLOB_DAT: howto manager. (line 2006) +* BFD_RELOC_XTENSA_JMP_SLOT: howto manager. (line 2007) +* BFD_RELOC_XTENSA_OP0: howto manager. (line 2064) +* BFD_RELOC_XTENSA_OP1: howto manager. (line 2065) +* BFD_RELOC_XTENSA_OP2: howto manager. (line 2066) +* BFD_RELOC_XTENSA_PLT: howto manager. (line 2011) +* BFD_RELOC_XTENSA_RELATIVE: howto manager. (line 2008) +* BFD_RELOC_XTENSA_RTLD: howto manager. (line 2001) +* BFD_RELOC_XTENSA_SLOT0_ALT: howto manager. (line 2046) +* BFD_RELOC_XTENSA_SLOT0_OP: howto manager. (line 2026) +* BFD_RELOC_XTENSA_SLOT10_ALT: howto manager. (line 2056) +* BFD_RELOC_XTENSA_SLOT10_OP: howto manager. (line 2036) +* BFD_RELOC_XTENSA_SLOT11_ALT: howto manager. (line 2057) +* BFD_RELOC_XTENSA_SLOT11_OP: howto manager. (line 2037) +* BFD_RELOC_XTENSA_SLOT12_ALT: howto manager. (line 2058) +* BFD_RELOC_XTENSA_SLOT12_OP: howto manager. (line 2038) +* BFD_RELOC_XTENSA_SLOT13_ALT: howto manager. (line 2059) +* BFD_RELOC_XTENSA_SLOT13_OP: howto manager. (line 2039) +* BFD_RELOC_XTENSA_SLOT14_ALT: howto manager. (line 2060) +* BFD_RELOC_XTENSA_SLOT14_OP: howto manager. (line 2040) +* BFD_RELOC_XTENSA_SLOT1_ALT: howto manager. (line 2047) +* BFD_RELOC_XTENSA_SLOT1_OP: howto manager. (line 2027) +* BFD_RELOC_XTENSA_SLOT2_ALT: howto manager. (line 2048) +* BFD_RELOC_XTENSA_SLOT2_OP: howto manager. (line 2028) +* BFD_RELOC_XTENSA_SLOT3_ALT: howto manager. (line 2049) +* BFD_RELOC_XTENSA_SLOT3_OP: howto manager. (line 2029) +* BFD_RELOC_XTENSA_SLOT4_ALT: howto manager. (line 2050) +* BFD_RELOC_XTENSA_SLOT4_OP: howto manager. (line 2030) +* BFD_RELOC_XTENSA_SLOT5_ALT: howto manager. (line 2051) +* BFD_RELOC_XTENSA_SLOT5_OP: howto manager. (line 2031) +* BFD_RELOC_XTENSA_SLOT6_ALT: howto manager. (line 2052) +* BFD_RELOC_XTENSA_SLOT6_OP: howto manager. (line 2032) +* BFD_RELOC_XTENSA_SLOT7_ALT: howto manager. (line 2053) +* BFD_RELOC_XTENSA_SLOT7_OP: howto manager. (line 2033) +* BFD_RELOC_XTENSA_SLOT8_ALT: howto manager. (line 2054) +* BFD_RELOC_XTENSA_SLOT8_OP: howto manager. (line 2034) +* BFD_RELOC_XTENSA_SLOT9_ALT: howto manager. (line 2055) +* BFD_RELOC_XTENSA_SLOT9_OP: howto manager. (line 2035) +* BFD_RELOC_XTENSA_TLS_ARG: howto manager. (line 2085) +* BFD_RELOC_XTENSA_TLS_CALL: howto manager. (line 2086) +* BFD_RELOC_XTENSA_TLS_DTPOFF: howto manager. (line 2082) +* BFD_RELOC_XTENSA_TLS_FUNC: howto manager. (line 2084) +* BFD_RELOC_XTENSA_TLS_TPOFF: howto manager. (line 2083) +* BFD_RELOC_XTENSA_TLSDESC_ARG: howto manager. (line 2081) +* BFD_RELOC_XTENSA_TLSDESC_FN: howto manager. (line 2080) +* BFD_RELOC_Z80_DISP8: howto manager. (line 2089) +* BFD_RELOC_Z8K_CALLR: howto manager. (line 2095) +* BFD_RELOC_Z8K_DISP7: howto manager. (line 2092) +* BFD_RELOC_Z8K_IMM4L: howto manager. (line 2098) +* bfd_scan_arch: Architectures. (line 417) +* bfd_scan_vma: BFD front end. (line 505) +* bfd_seach_for_target: bfd_target. (line 464) +* bfd_section_already_linked: Writing the symbol table. + (line 55) +* bfd_section_list_clear: section prototypes. (line 8) +* bfd_sections_find_if: section prototypes. (line 176) +* bfd_set_arch_info: Architectures. (line 458) +* bfd_set_archive_head: Archives. (line 69) +* bfd_set_default_target: bfd_target. (line 429) +* bfd_set_error: BFD front end. (line 315) +* bfd_set_error_handler: BFD front end. (line 357) +* bfd_set_error_program_name: BFD front end. (line 366) +* bfd_set_file_flags: BFD front end. (line 425) +* bfd_set_format: Formats. (line 68) +* bfd_set_gp_size: BFD front end. (line 495) +* bfd_set_private_flags: BFD front end. (line 572) +* bfd_set_reloc: BFD front end. (line 415) +* bfd_set_section_contents: section prototypes. (line 207) +* bfd_set_section_flags: section prototypes. (line 140) +* bfd_set_section_size: section prototypes. (line 193) +* bfd_set_start_address: BFD front end. (line 474) +* bfd_set_symtab: symbol handling functions. + (line 60) +* bfd_symbol_info: symbol handling functions. + (line 130) +* bfd_target_list: bfd_target. (line 455) +* bfd_write_bigendian_4byte_int: Internal. (line 13) +* bfd_zalloc: Opening and Closing. + (line 228) +* bfd_zalloc2: Opening and Closing. + (line 237) +* coff_symbol_type: coff. (line 186) +* core_file_matches_executable_p: Core Files. (line 30) +* find_separate_debug_file: Opening and Closing. + (line 279) +* generic_core_file_matches_executable_p: Core Files. (line 40) +* get_debug_link_info: Opening and Closing. + (line 260) +* Hash tables: Hash Tables. (line 6) +* internal object-file format: Canonical format. (line 11) +* Linker: Linker Functions. (line 6) +* Other functions: BFD front end. (line 587) +* separate_debug_file_exists: Opening and Closing. + (line 270) +* struct bfd_iovec: BFD front end. (line 790) +* target vector (_bfd_final_link): Performing the Final Link. + (line 6) +* target vector (_bfd_link_add_symbols): Adding Symbols to the Hash Table. + (line 6) +* target vector (_bfd_link_hash_table_create): Creating a Linker Hash Table. + (line 6) +* The HOWTO Macro: typedef arelent. (line 291) +* what is it?: Overview. (line 6) + + + +Tag Table: +Node: Top1045 +Node: Overview1384 +Node: History2435 +Node: How It Works3381 +Node: What BFD Version 2 Can Do4924 +Node: BFD information loss6239 +Node: Canonical format8771 +Node: BFD front end13143 +Node: Memory Usage43650 +Node: Initialization44878 +Node: Sections45337 +Node: Section Input45820 +Node: Section Output47185 +Node: typedef asection49671 +Node: section prototypes74252 +Node: Symbols83932 +Node: Reading Symbols85527 +Node: Writing Symbols86634 +Node: Mini Symbols88343 +Node: typedef asymbol89317 +Node: symbol handling functions94682 +Node: Archives100024 +Node: Formats103750 +Node: Relocations106698 +Node: typedef arelent107425 +Node: howto manager123236 +Node: Core Files191032 +Node: Targets192849 +Node: bfd_target194819 +Node: Architectures215124 +Node: Opening and Closing237607 +Node: Internal248871 +Node: File Caching255204 +Node: Linker Functions257118 +Node: Creating a Linker Hash Table258791 +Node: Adding Symbols to the Hash Table260529 +Node: Differing file formats261429 +Node: Adding symbols from an object file263154 +Node: Adding symbols from an archive265305 +Node: Performing the Final Link267719 +Node: Information provided by the linker268961 +Node: Relocating the section contents270115 +Node: Writing the symbol table271866 +Node: Hash Tables274908 +Node: Creating and Freeing a Hash Table276106 +Node: Looking Up or Entering a String277356 +Node: Traversing a Hash Table278609 +Node: Deriving a New Hash Table Type279398 +Node: Define the Derived Structures280464 +Node: Write the Derived Creation Routine281545 +Node: Write Other Derived Routines284169 +Node: BFD back ends285484 +Node: What to Put Where285754 +Node: aout285934 +Node: coff292252 +Node: elf317003 +Node: mmo317866 +Node: File layout318794 +Node: Symbol-table324441 +Node: mmo section mapping328210 +Node: GNU Free Documentation License331862 +Node: BFD Index351591 + +End Tag Table diff --git a/bfd/doc/bfdio.texi b/bfd/doc/bfdio.texi new file mode 100644 index 00000000000..7a7fe3c48de --- /dev/null +++ b/bfd/doc/bfdio.texi @@ -0,0 +1,72 @@ +@findex struct bfd_iovec +@subsubsection @code{struct bfd_iovec} +@strong{Description}@* +The @code{struct bfd_iovec} contains the internal file I/O class. +Each @code{BFD} has an instance of this class and all file I/O is +routed through it (it is assumed that the instance implements +all methods listed below). +@example +struct bfd_iovec +@{ + /* To avoid problems with macros, a "b" rather than "f" + prefix is prepended to each method name. */ + /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching + bytes starting at PTR. Return the number of bytes actually + transfered (a read past end-of-file returns less than NBYTES), + or -1 (setting @code{bfd_error}) if an error occurs. */ + file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes); + file_ptr (*bwrite) (struct bfd *abfd, const void *ptr, + file_ptr nbytes); + /* Return the current IOSTREAM file offset, or -1 (setting @code{bfd_error} + if an error occurs. */ + file_ptr (*btell) (struct bfd *abfd); + /* For the following, on successful completion a value of 0 is returned. + Otherwise, a value of -1 is returned (and @code{bfd_error} is set). */ + int (*bseek) (struct bfd *abfd, file_ptr offset, int whence); + int (*bclose) (struct bfd *abfd); + int (*bflush) (struct bfd *abfd); + int (*bstat) (struct bfd *abfd, struct stat *sb); +@}; +@end example + +@findex bfd_get_mtime +@subsubsection @code{bfd_get_mtime} +@strong{Synopsis} +@example +long bfd_get_mtime (bfd *abfd); +@end example +@strong{Description}@* +Return the file modification time (as read from the file system, or +from the archive header for archive members). + +@findex bfd_get_size +@subsubsection @code{bfd_get_size} +@strong{Synopsis} +@example +file_ptr bfd_get_size (bfd *abfd); +@end example +@strong{Description}@* +Return the file size (as read from file system) for the file +associated with BFD @var{abfd}. + +The initial motivation for, and use of, this routine is not +so we can get the exact size of the object the BFD applies to, since +that might not be generally possible (archive members for example). +It would be ideal if someone could eventually modify +it so that such results were guaranteed. + +Instead, we want to ask questions like "is this NNN byte sized +object I'm about to try read from file offset YYY reasonable?" +As as example of where we might do this, some object formats +use string tables for which the first @code{sizeof (long)} bytes of the +table contain the size of the table itself, including the size bytes. +If an application tries to read what it thinks is one of these +string tables, without some way to validate the size, and for +some reason the size is wrong (byte swapping error, wrong location +for the string table, etc.), the only clue is likely to be a read +error when it tries to read the table, or a "virtual memory +exhausted" error when it tries to allocate 15 bazillon bytes +of space for the 15 bazillon byte table it is about to read. +This function at least allows us to answer the question, "is the +size reasonable?". + diff --git a/bfd/doc/bfdt.texi b/bfd/doc/bfdt.texi new file mode 100644 index 00000000000..d58c67d8b02 --- /dev/null +++ b/bfd/doc/bfdt.texi @@ -0,0 +1,864 @@ +@section @code{typedef bfd} +A BFD has type @code{bfd}; objects of this type are the +cornerstone of any application using BFD. Using BFD +consists of making references though the BFD and to data in the BFD. + +Here is the structure that defines the type @code{bfd}. It +contains the major data about the file and pointers +to the rest of the data. + + +@example + +struct bfd +@{ + /* A unique identifier of the BFD */ + unsigned int id; + + /* The filename the application opened the BFD with. */ + const char *filename; + + /* A pointer to the target jump table. */ + const struct bfd_target *xvec; + + /* The IOSTREAM, and corresponding IO vector that provide access + to the file backing the BFD. */ + void *iostream; + const struct bfd_iovec *iovec; + + /* The caching routines use these to maintain a + least-recently-used list of BFDs. */ + struct bfd *lru_prev, *lru_next; + + /* When a file is closed by the caching routines, BFD retains + state information on the file here... */ + ufile_ptr where; + + /* File modified time, if mtime_set is TRUE. */ + long mtime; + + /* Reserved for an unimplemented file locking extension. */ + int ifd; + + /* The format which belongs to the BFD. (object, core, etc.) */ + bfd_format format; + + /* The direction with which the BFD was opened. */ + enum bfd_direction + @{ + no_direction = 0, + read_direction = 1, + write_direction = 2, + both_direction = 3 + @} + direction; + + /* Format_specific flags. */ + flagword flags; + + /* Values that may appear in the flags field of a BFD. These also + appear in the object_flags field of the bfd_target structure, where + they indicate the set of flags used by that backend (not all flags + are meaningful for all object file formats) (FIXME: at the moment, + the object_flags values have mostly just been copied from backend + to another, and are not necessarily correct). */ + +#define BFD_NO_FLAGS 0x00 + + /* BFD contains relocation entries. */ +#define HAS_RELOC 0x01 + + /* BFD is directly executable. */ +#define EXEC_P 0x02 + + /* BFD has line number information (basically used for F_LNNO in a + COFF header). */ +#define HAS_LINENO 0x04 + + /* BFD has debugging information. */ +#define HAS_DEBUG 0x08 + + /* BFD has symbols. */ +#define HAS_SYMS 0x10 + + /* BFD has local symbols (basically used for F_LSYMS in a COFF + header). */ +#define HAS_LOCALS 0x20 + + /* BFD is a dynamic object. */ +#define DYNAMIC 0x40 + + /* Text section is write protected (if D_PAGED is not set, this is + like an a.out NMAGIC file) (the linker sets this by default, but + clears it for -r or -N). */ +#define WP_TEXT 0x80 + + /* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the + linker sets this by default, but clears it for -r or -n or -N). */ +#define D_PAGED 0x100 + + /* BFD is relaxable (this means that bfd_relax_section may be able to + do something) (sometimes bfd_relax_section can do something even if + this is not set). */ +#define BFD_IS_RELAXABLE 0x200 + + /* This may be set before writing out a BFD to request using a + traditional format. For example, this is used to request that when + writing out an a.out object the symbols not be hashed to eliminate + duplicates. */ +#define BFD_TRADITIONAL_FORMAT 0x400 + + /* This flag indicates that the BFD contents are actually cached + in memory. If this is set, iostream points to a bfd_in_memory + struct. */ +#define BFD_IN_MEMORY 0x800 + + /* The sections in this BFD specify a memory page. */ +#define HAS_LOAD_PAGE 0x1000 + + /* This BFD has been created by the linker and doesn't correspond + to any input file. */ +#define BFD_LINKER_CREATED 0x2000 + + /* Currently my_archive is tested before adding origin to + anything. I believe that this can become always an add of + origin, with origin set to 0 for non archive files. */ + ufile_ptr origin; + + /* The origin in the archive of the proxy entry. This will + normally be the same as origin, except for thin archives, + when it will contain the current offset of the proxy in the + thin archive rather than the offset of the bfd in its actual + container. */ + ufile_ptr proxy_origin; + + /* A hash table for section names. */ + struct bfd_hash_table section_htab; + + /* Pointer to linked list of sections. */ + struct bfd_section *sections; + + /* The last section on the section list. */ + struct bfd_section *section_last; + + /* The number of sections. */ + unsigned int section_count; + + /* Stuff only useful for object files: + The start address. */ + bfd_vma start_address; + + /* Used for input and output. */ + unsigned int symcount; + + /* Symbol table for output BFD (with symcount entries). + Also used by the linker to cache input BFD symbols. */ + struct bfd_symbol **outsymbols; + + /* Used for slurped dynamic symbol tables. */ + unsigned int dynsymcount; + + /* Pointer to structure which contains architecture information. */ + const struct bfd_arch_info *arch_info; + + /* Stuff only useful for archives. */ + void *arelt_data; + struct bfd *my_archive; /* The containing archive BFD. */ + struct bfd *archive_next; /* The next BFD in the archive. */ + struct bfd *archive_head; /* The first BFD in the archive. */ + struct bfd *nested_archives; /* List of nested archive in a flattened + thin archive. */ + + /* A chain of BFD structures involved in a link. */ + struct bfd *link_next; + + /* A field used by _bfd_generic_link_add_archive_symbols. This will + be used only for archive elements. */ + int archive_pass; + + /* Used by the back end to hold private data. */ + union + @{ + struct aout_data_struct *aout_data; + struct artdata *aout_ar_data; + struct _oasys_data *oasys_obj_data; + struct _oasys_ar_data *oasys_ar_data; + struct coff_tdata *coff_obj_data; + struct pe_tdata *pe_obj_data; + struct xcoff_tdata *xcoff_obj_data; + struct ecoff_tdata *ecoff_obj_data; + struct ieee_data_struct *ieee_data; + struct ieee_ar_data_struct *ieee_ar_data; + struct srec_data_struct *srec_data; + struct ihex_data_struct *ihex_data; + struct tekhex_data_struct *tekhex_data; + struct elf_obj_tdata *elf_obj_data; + struct nlm_obj_tdata *nlm_obj_data; + struct bout_data_struct *bout_data; + struct mmo_data_struct *mmo_data; + struct sun_core_struct *sun_core_data; + struct sco5_core_struct *sco5_core_data; + struct trad_core_struct *trad_core_data; + struct som_data_struct *som_data; + struct hpux_core_struct *hpux_core_data; + struct hppabsd_core_struct *hppabsd_core_data; + struct sgi_core_struct *sgi_core_data; + struct lynx_core_struct *lynx_core_data; + struct osf_core_struct *osf_core_data; + struct cisco_core_struct *cisco_core_data; + struct versados_data_struct *versados_data; + struct netbsd_core_struct *netbsd_core_data; + struct mach_o_data_struct *mach_o_data; + struct mach_o_fat_data_struct *mach_o_fat_data; + struct bfd_pef_data_struct *pef_data; + struct bfd_pef_xlib_data_struct *pef_xlib_data; + struct bfd_sym_data_struct *sym_data; + void *any; + @} + tdata; + + /* Used by the application to hold private data. */ + void *usrdata; + + /* Where all the allocated stuff under this BFD goes. This is a + struct objalloc *, but we use void * to avoid requiring the inclusion + of objalloc.h. */ + void *memory; + + /* Is the file descriptor being cached? That is, can it be closed as + needed, and re-opened when accessed later? */ + unsigned int cacheable : 1; + + /* Marks whether there was a default target specified when the + BFD was opened. This is used to select which matching algorithm + to use to choose the back end. */ + unsigned int target_defaulted : 1; + + /* ... and here: (``once'' means at least once). */ + unsigned int opened_once : 1; + + /* Set if we have a locally maintained mtime value, rather than + getting it from the file each time. */ + unsigned int mtime_set : 1; + + /* Flag set if symbols from this BFD should not be exported. */ + unsigned int no_export : 1; + + /* Remember when output has begun, to stop strange things + from happening. */ + unsigned int output_has_begun : 1; + + /* Have archive map. */ + unsigned int has_armap : 1; + + /* Set if this is a thin archive. */ + unsigned int is_thin_archive : 1; +@}; + +@end example +@section Error reporting +Most BFD functions return nonzero on success (check their +individual documentation for precise semantics). On an error, +they call @code{bfd_set_error} to set an error condition that callers +can check by calling @code{bfd_get_error}. +If that returns @code{bfd_error_system_call}, then check +@code{errno}. + +The easiest way to report a BFD error to the user is to +use @code{bfd_perror}. + +@subsection Type @code{bfd_error_type} +The values returned by @code{bfd_get_error} are defined by the +enumerated type @code{bfd_error_type}. + + +@example + +typedef enum bfd_error +@{ + bfd_error_no_error = 0, + bfd_error_system_call, + bfd_error_invalid_target, + bfd_error_wrong_format, + bfd_error_wrong_object_format, + bfd_error_invalid_operation, + bfd_error_no_memory, + bfd_error_no_symbols, + bfd_error_no_armap, + bfd_error_no_more_archived_files, + bfd_error_malformed_archive, + bfd_error_file_not_recognized, + bfd_error_file_ambiguously_recognized, + bfd_error_no_contents, + bfd_error_nonrepresentable_section, + bfd_error_no_debug_section, + bfd_error_bad_value, + bfd_error_file_truncated, + bfd_error_file_too_big, + bfd_error_on_input, + bfd_error_invalid_error_code +@} +bfd_error_type; + +@end example +@findex bfd_get_error +@subsubsection @code{bfd_get_error} +@strong{Synopsis} +@example +bfd_error_type bfd_get_error (void); +@end example +@strong{Description}@* +Return the current BFD error condition. + +@findex bfd_set_error +@subsubsection @code{bfd_set_error} +@strong{Synopsis} +@example +void bfd_set_error (bfd_error_type error_tag, ...); +@end example +@strong{Description}@* +Set the BFD error condition to be @var{error_tag}. +If @var{error_tag} is bfd_error_on_input, then this function +takes two more parameters, the input bfd where the error +occurred, and the bfd_error_type error. + +@findex bfd_errmsg +@subsubsection @code{bfd_errmsg} +@strong{Synopsis} +@example +const char *bfd_errmsg (bfd_error_type error_tag); +@end example +@strong{Description}@* +Return a string describing the error @var{error_tag}, or +the system error if @var{error_tag} is @code{bfd_error_system_call}. + +@findex bfd_perror +@subsubsection @code{bfd_perror} +@strong{Synopsis} +@example +void bfd_perror (const char *message); +@end example +@strong{Description}@* +Print to the standard error stream a string describing the +last BFD error that occurred, or the last system error if +the last BFD error was a system call failure. If @var{message} +is non-NULL and non-empty, the error string printed is preceded +by @var{message}, a colon, and a space. It is followed by a newline. + +@subsection BFD error handler +Some BFD functions want to print messages describing the +problem. They call a BFD error handler function. This +function may be overridden by the program. + +The BFD error handler acts like printf. + + +@example + +typedef void (*bfd_error_handler_type) (const char *, ...); + +@end example +@findex bfd_set_error_handler +@subsubsection @code{bfd_set_error_handler} +@strong{Synopsis} +@example +bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type); +@end example +@strong{Description}@* +Set the BFD error handler function. Returns the previous +function. + +@findex bfd_set_error_program_name +@subsubsection @code{bfd_set_error_program_name} +@strong{Synopsis} +@example +void bfd_set_error_program_name (const char *); +@end example +@strong{Description}@* +Set the program name to use when printing a BFD error. This +is printed before the error message followed by a colon and +space. The string must not be changed after it is passed to +this function. + +@findex bfd_get_error_handler +@subsubsection @code{bfd_get_error_handler} +@strong{Synopsis} +@example +bfd_error_handler_type bfd_get_error_handler (void); +@end example +@strong{Description}@* +Return the BFD error handler function. + +@section Miscellaneous + + +@subsection Miscellaneous functions + + +@findex bfd_get_reloc_upper_bound +@subsubsection @code{bfd_get_reloc_upper_bound} +@strong{Synopsis} +@example +long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect); +@end example +@strong{Description}@* +Return the number of bytes required to store the +relocation information associated with section @var{sect} +attached to bfd @var{abfd}. If an error occurs, return -1. + +@findex bfd_canonicalize_reloc +@subsubsection @code{bfd_canonicalize_reloc} +@strong{Synopsis} +@example +long bfd_canonicalize_reloc + (bfd *abfd, asection *sec, arelent **loc, asymbol **syms); +@end example +@strong{Description}@* +Call the back end associated with the open BFD +@var{abfd} and translate the external form of the relocation +information attached to @var{sec} into the internal canonical +form. Place the table into memory at @var{loc}, which has +been preallocated, usually by a call to +@code{bfd_get_reloc_upper_bound}. Returns the number of relocs, or +-1 on error. + +The @var{syms} table is also needed for horrible internal magic +reasons. + +@findex bfd_set_reloc +@subsubsection @code{bfd_set_reloc} +@strong{Synopsis} +@example +void bfd_set_reloc + (bfd *abfd, asection *sec, arelent **rel, unsigned int count); +@end example +@strong{Description}@* +Set the relocation pointer and count within +section @var{sec} to the values @var{rel} and @var{count}. +The argument @var{abfd} is ignored. + +@findex bfd_set_file_flags +@subsubsection @code{bfd_set_file_flags} +@strong{Synopsis} +@example +bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags); +@end example +@strong{Description}@* +Set the flag word in the BFD @var{abfd} to the value @var{flags}. + +Possible errors are: +@itemize @bullet + +@item +@code{bfd_error_wrong_format} - The target bfd was not of object format. +@item +@code{bfd_error_invalid_operation} - The target bfd was open for reading. +@item +@code{bfd_error_invalid_operation} - +The flag word contained a bit which was not applicable to the +type of file. E.g., an attempt was made to set the @code{D_PAGED} bit +on a BFD format which does not support demand paging. +@end itemize + +@findex bfd_get_arch_size +@subsubsection @code{bfd_get_arch_size} +@strong{Synopsis} +@example +int bfd_get_arch_size (bfd *abfd); +@end example +@strong{Description}@* +Returns the architecture address size, in bits, as determined +by the object file's format. For ELF, this information is +included in the header. + +@strong{Returns}@* +Returns the arch size in bits if known, @code{-1} otherwise. + +@findex bfd_get_sign_extend_vma +@subsubsection @code{bfd_get_sign_extend_vma} +@strong{Synopsis} +@example +int bfd_get_sign_extend_vma (bfd *abfd); +@end example +@strong{Description}@* +Indicates if the target architecture "naturally" sign extends +an address. Some architectures implicitly sign extend address +values when they are converted to types larger than the size +of an address. For instance, bfd_get_start_address() will +return an address sign extended to fill a bfd_vma when this is +the case. + +@strong{Returns}@* +Returns @code{1} if the target architecture is known to sign +extend addresses, @code{0} if the target architecture is known to +not sign extend addresses, and @code{-1} otherwise. + +@findex bfd_set_start_address +@subsubsection @code{bfd_set_start_address} +@strong{Synopsis} +@example +bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma); +@end example +@strong{Description}@* +Make @var{vma} the entry point of output BFD @var{abfd}. + +@strong{Returns}@* +Returns @code{TRUE} on success, @code{FALSE} otherwise. + +@findex bfd_get_gp_size +@subsubsection @code{bfd_get_gp_size} +@strong{Synopsis} +@example +unsigned int bfd_get_gp_size (bfd *abfd); +@end example +@strong{Description}@* +Return the maximum size of objects to be optimized using the GP +register under MIPS ECOFF. This is typically set by the @code{-G} +argument to the compiler, assembler or linker. + +@findex bfd_set_gp_size +@subsubsection @code{bfd_set_gp_size} +@strong{Synopsis} +@example +void bfd_set_gp_size (bfd *abfd, unsigned int i); +@end example +@strong{Description}@* +Set the maximum size of objects to be optimized using the GP +register under ECOFF or MIPS ELF. This is typically set by +the @code{-G} argument to the compiler, assembler or linker. + +@findex bfd_scan_vma +@subsubsection @code{bfd_scan_vma} +@strong{Synopsis} +@example +bfd_vma bfd_scan_vma (const char *string, const char **end, int base); +@end example +@strong{Description}@* +Convert, like @code{strtoul}, a numerical expression +@var{string} into a @code{bfd_vma} integer, and return that integer. +(Though without as many bells and whistles as @code{strtoul}.) +The expression is assumed to be unsigned (i.e., positive). +If given a @var{base}, it is used as the base for conversion. +A base of 0 causes the function to interpret the string +in hex if a leading "0x" or "0X" is found, otherwise +in octal if a leading zero is found, otherwise in decimal. + +If the value would overflow, the maximum @code{bfd_vma} value is +returned. + +@findex bfd_copy_private_header_data +@subsubsection @code{bfd_copy_private_header_data} +@strong{Synopsis} +@example +bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd); +@end example +@strong{Description}@* +Copy private BFD header information from the BFD @var{ibfd} to the +the BFD @var{obfd}. This copies information that may require +sections to exist, but does not require symbol tables. Return +@code{true} on success, @code{false} on error. +Possible error returns are: + +@itemize @bullet + +@item +@code{bfd_error_no_memory} - +Not enough memory exists to create private data for @var{obfd}. +@end itemize +@example +#define bfd_copy_private_header_data(ibfd, obfd) \ + BFD_SEND (obfd, _bfd_copy_private_header_data, \ + (ibfd, obfd)) +@end example + +@findex bfd_copy_private_bfd_data +@subsubsection @code{bfd_copy_private_bfd_data} +@strong{Synopsis} +@example +bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd); +@end example +@strong{Description}@* +Copy private BFD information from the BFD @var{ibfd} to the +the BFD @var{obfd}. Return @code{TRUE} on success, @code{FALSE} on error. +Possible error returns are: + +@itemize @bullet + +@item +@code{bfd_error_no_memory} - +Not enough memory exists to create private data for @var{obfd}. +@end itemize +@example +#define bfd_copy_private_bfd_data(ibfd, obfd) \ + BFD_SEND (obfd, _bfd_copy_private_bfd_data, \ + (ibfd, obfd)) +@end example + +@findex bfd_merge_private_bfd_data +@subsubsection @code{bfd_merge_private_bfd_data} +@strong{Synopsis} +@example +bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd); +@end example +@strong{Description}@* +Merge private BFD information from the BFD @var{ibfd} to the +the output file BFD @var{obfd} when linking. Return @code{TRUE} +on success, @code{FALSE} on error. Possible error returns are: + +@itemize @bullet + +@item +@code{bfd_error_no_memory} - +Not enough memory exists to create private data for @var{obfd}. +@end itemize +@example +#define bfd_merge_private_bfd_data(ibfd, obfd) \ + BFD_SEND (obfd, _bfd_merge_private_bfd_data, \ + (ibfd, obfd)) +@end example + +@findex bfd_set_private_flags +@subsubsection @code{bfd_set_private_flags} +@strong{Synopsis} +@example +bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags); +@end example +@strong{Description}@* +Set private BFD flag information in the BFD @var{abfd}. +Return @code{TRUE} on success, @code{FALSE} on error. Possible error +returns are: + +@itemize @bullet + +@item +@code{bfd_error_no_memory} - +Not enough memory exists to create private data for @var{obfd}. +@end itemize +@example +#define bfd_set_private_flags(abfd, flags) \ + BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags)) +@end example + +@findex Other functions +@subsubsection @code{Other functions} +@strong{Description}@* +The following functions exist but have not yet been documented. +@example +#define bfd_sizeof_headers(abfd, info) \ + BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info)) + +#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \ + BFD_SEND (abfd, _bfd_find_nearest_line, \ + (abfd, sec, syms, off, file, func, line)) + +#define bfd_find_line(abfd, syms, sym, file, line) \ + BFD_SEND (abfd, _bfd_find_line, \ + (abfd, syms, sym, file, line)) + +#define bfd_find_inliner_info(abfd, file, func, line) \ + BFD_SEND (abfd, _bfd_find_inliner_info, \ + (abfd, file, func, line)) + +#define bfd_debug_info_start(abfd) \ + BFD_SEND (abfd, _bfd_debug_info_start, (abfd)) + +#define bfd_debug_info_end(abfd) \ + BFD_SEND (abfd, _bfd_debug_info_end, (abfd)) + +#define bfd_debug_info_accumulate(abfd, section) \ + BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section)) + +#define bfd_stat_arch_elt(abfd, stat) \ + BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat)) + +#define bfd_update_armap_timestamp(abfd) \ + BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd)) + +#define bfd_set_arch_mach(abfd, arch, mach)\ + BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach)) + +#define bfd_relax_section(abfd, section, link_info, again) \ + BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again)) + +#define bfd_gc_sections(abfd, link_info) \ + BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info)) + +#define bfd_merge_sections(abfd, link_info) \ + BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info)) + +#define bfd_is_group_section(abfd, sec) \ + BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec)) + +#define bfd_discard_group(abfd, sec) \ + BFD_SEND (abfd, _bfd_discard_group, (abfd, sec)) + +#define bfd_link_hash_table_create(abfd) \ + BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd)) + +#define bfd_link_hash_table_free(abfd, hash) \ + BFD_SEND (abfd, _bfd_link_hash_table_free, (hash)) + +#define bfd_link_add_symbols(abfd, info) \ + BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info)) + +#define bfd_link_just_syms(abfd, sec, info) \ + BFD_SEND (abfd, _bfd_link_just_syms, (sec, info)) + +#define bfd_final_link(abfd, info) \ + BFD_SEND (abfd, _bfd_final_link, (abfd, info)) + +#define bfd_free_cached_info(abfd) \ + BFD_SEND (abfd, _bfd_free_cached_info, (abfd)) + +#define bfd_get_dynamic_symtab_upper_bound(abfd) \ + BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd)) + +#define bfd_print_private_bfd_data(abfd, file)\ + BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file)) + +#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \ + BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols)) + +#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \ + BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \ + dyncount, dynsyms, ret)) + +#define bfd_get_dynamic_reloc_upper_bound(abfd) \ + BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd)) + +#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \ + BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms)) + +extern bfd_byte *bfd_get_relocated_section_contents + (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, + bfd_boolean, asymbol **); + +@end example + +@findex bfd_alt_mach_code +@subsubsection @code{bfd_alt_mach_code} +@strong{Synopsis} +@example +bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative); +@end example +@strong{Description}@* +When more than one machine code number is available for the +same machine type, this function can be used to switch between +the preferred one (alternative == 0) and any others. Currently, +only ELF supports this feature, with up to two alternate +machine codes. + + +@example +struct bfd_preserve +@{ + void *marker; + void *tdata; + flagword flags; + const struct bfd_arch_info *arch_info; + struct bfd_section *sections; + struct bfd_section *section_last; + unsigned int section_count; + struct bfd_hash_table section_htab; +@}; + +@end example +@findex bfd_preserve_save +@subsubsection @code{bfd_preserve_save} +@strong{Synopsis} +@example +bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *); +@end example +@strong{Description}@* +When testing an object for compatibility with a particular +target back-end, the back-end object_p function needs to set +up certain fields in the bfd on successfully recognizing the +object. This typically happens in a piecemeal fashion, with +failures possible at many points. On failure, the bfd is +supposed to be restored to its initial state, which is +virtually impossible. However, restoring a subset of the bfd +state works in practice. This function stores the subset and +reinitializes the bfd. + +@findex bfd_preserve_restore +@subsubsection @code{bfd_preserve_restore} +@strong{Synopsis} +@example +void bfd_preserve_restore (bfd *, struct bfd_preserve *); +@end example +@strong{Description}@* +This function restores bfd state saved by bfd_preserve_save. +If MARKER is non-NULL in struct bfd_preserve then that block +and all subsequently bfd_alloc'd memory is freed. + +@findex bfd_preserve_finish +@subsubsection @code{bfd_preserve_finish} +@strong{Synopsis} +@example +void bfd_preserve_finish (bfd *, struct bfd_preserve *); +@end example +@strong{Description}@* +This function should be called when the bfd state saved by +bfd_preserve_save is no longer needed. ie. when the back-end +object_p function returns with success. + +@findex bfd_emul_get_maxpagesize +@subsubsection @code{bfd_emul_get_maxpagesize} +@strong{Synopsis} +@example +bfd_vma bfd_emul_get_maxpagesize (const char *); +@end example +@strong{Description}@* +Returns the maximum page size, in bytes, as determined by +emulation. + +@strong{Returns}@* +Returns the maximum page size in bytes for ELF, abort +otherwise. + +@findex bfd_emul_set_maxpagesize +@subsubsection @code{bfd_emul_set_maxpagesize} +@strong{Synopsis} +@example +void bfd_emul_set_maxpagesize (const char *, bfd_vma); +@end example +@strong{Description}@* +For ELF, set the maximum page size for the emulation. It is +a no-op for other formats. + +@findex bfd_emul_get_commonpagesize +@subsubsection @code{bfd_emul_get_commonpagesize} +@strong{Synopsis} +@example +bfd_vma bfd_emul_get_commonpagesize (const char *); +@end example +@strong{Description}@* +Returns the common page size, in bytes, as determined by +emulation. + +@strong{Returns}@* +Returns the common page size in bytes for ELF, abort otherwise. + +@findex bfd_emul_set_commonpagesize +@subsubsection @code{bfd_emul_set_commonpagesize} +@strong{Synopsis} +@example +void bfd_emul_set_commonpagesize (const char *, bfd_vma); +@end example +@strong{Description}@* +For ELF, set the common page size for the emulation. It is +a no-op for other formats. + +@findex bfd_demangle +@subsubsection @code{bfd_demangle} +@strong{Synopsis} +@example +char *bfd_demangle (bfd *, const char *, int); +@end example +@strong{Description}@* +Wrapper around cplus_demangle. Strips leading underscores and +other such chars that would otherwise confuse the demangler. +If passed a g++ v3 ABI mangled name, returns a buffer allocated +with malloc holding the demangled name. Returns NULL otherwise +and on memory alloc failure. + diff --git a/bfd/doc/bfdver.texi b/bfd/doc/bfdver.texi new file mode 100644 index 00000000000..f0a4f134356 --- /dev/null +++ b/bfd/doc/bfdver.texi @@ -0,0 +1,4 @@ +@set VERSION 2.18.90 +@set VERSION_PACKAGE (GNU Binutils) +@set UPDATED September 2008 +@set BUGURL @uref{http://www.sourceware.org/bugzilla/} diff --git a/bfd/doc/bfdwin.texi b/bfd/doc/bfdwin.texi new file mode 100644 index 00000000000..b1fd7d5bed6 --- /dev/null +++ b/bfd/doc/bfdwin.texi @@ -0,0 +1,2 @@ +@findex +@subsubsection @code{} diff --git a/bfd/doc/cache.texi b/bfd/doc/cache.texi new file mode 100644 index 00000000000..5820a2a6a1d --- /dev/null +++ b/bfd/doc/cache.texi @@ -0,0 +1,65 @@ +@section File caching +The file caching mechanism is embedded within BFD and allows +the application to open as many BFDs as it wants without +regard to the underlying operating system's file descriptor +limit (often as low as 20 open files). The module in +@code{cache.c} maintains a least recently used list of +@code{BFD_CACHE_MAX_OPEN} files, and exports the name +@code{bfd_cache_lookup}, which runs around and makes sure that +the required BFD is open. If not, then it chooses a file to +close, closes it and opens the one wanted, returning its file +handle. + +@subsection Caching functions + + +@findex bfd_cache_init +@subsubsection @code{bfd_cache_init} +@strong{Synopsis} +@example +bfd_boolean bfd_cache_init (bfd *abfd); +@end example +@strong{Description}@* +Add a newly opened BFD to the cache. + +@findex bfd_cache_close +@subsubsection @code{bfd_cache_close} +@strong{Synopsis} +@example +bfd_boolean bfd_cache_close (bfd *abfd); +@end example +@strong{Description}@* +Remove the BFD @var{abfd} from the cache. If the attached file is open, +then close it too. + +@strong{Returns}@* +@code{FALSE} is returned if closing the file fails, @code{TRUE} is +returned if all is well. + +@findex bfd_cache_close_all +@subsubsection @code{bfd_cache_close_all} +@strong{Synopsis} +@example +bfd_boolean bfd_cache_close_all (void); +@end example +@strong{Description}@* +Remove all BFDs from the cache. If the attached file is open, +then close it too. + +@strong{Returns}@* +@code{FALSE} is returned if closing one of the file fails, @code{TRUE} is +returned if all is well. + +@findex bfd_open_file +@subsubsection @code{bfd_open_file} +@strong{Synopsis} +@example +FILE* bfd_open_file (bfd *abfd); +@end example +@strong{Description}@* +Call the OS to open a file for @var{abfd}. Return the @code{FILE *} +(possibly @code{NULL}) that results from this operation. Set up the +BFD so that future accesses know the file is open. If the @code{FILE *} +returned is @code{NULL}, then it won't have been put in the +cache, so it won't have to be removed from it. + diff --git a/bfd/doc/coffcode.texi b/bfd/doc/coffcode.texi new file mode 100644 index 00000000000..763c0603d8d --- /dev/null +++ b/bfd/doc/coffcode.texi @@ -0,0 +1,616 @@ +@section coff backends +BFD supports a number of different flavours of coff format. +The major differences between formats are the sizes and +alignments of fields in structures on disk, and the occasional +extra field. + +Coff in all its varieties is implemented with a few common +files and a number of implementation specific files. For +example, The 88k bcs coff format is implemented in the file +@file{coff-m88k.c}. This file @code{#include}s +@file{coff/m88k.h} which defines the external structure of the +coff format for the 88k, and @file{coff/internal.h} which +defines the internal structure. @file{coff-m88k.c} also +defines the relocations used by the 88k format +@xref{Relocations}. + +The Intel i960 processor version of coff is implemented in +@file{coff-i960.c}. This file has the same structure as +@file{coff-m88k.c}, except that it includes @file{coff/i960.h} +rather than @file{coff-m88k.h}. + +@subsection Porting to a new version of coff +The recommended method is to select from the existing +implementations the version of coff which is most like the one +you want to use. For example, we'll say that i386 coff is +the one you select, and that your coff flavour is called foo. +Copy @file{i386coff.c} to @file{foocoff.c}, copy +@file{../include/coff/i386.h} to @file{../include/coff/foo.h}, +and add the lines to @file{targets.c} and @file{Makefile.in} +so that your new back end is used. Alter the shapes of the +structures in @file{../include/coff/foo.h} so that they match +what you need. You will probably also have to add +@code{#ifdef}s to the code in @file{coff/internal.h} and +@file{coffcode.h} if your version of coff is too wild. + +You can verify that your new BFD backend works quite simply by +building @file{objdump} from the @file{binutils} directory, +and making sure that its version of what's going on and your +host system's idea (assuming it has the pretty standard coff +dump utility, usually called @code{att-dump} or just +@code{dump}) are the same. Then clean up your code, and send +what you've done to Cygnus. Then your stuff will be in the +next release, and you won't have to keep integrating it. + +@subsection How the coff backend works + + +@subsubsection File layout +The Coff backend is split into generic routines that are +applicable to any Coff target and routines that are specific +to a particular target. The target-specific routines are +further split into ones which are basically the same for all +Coff targets except that they use the external symbol format +or use different values for certain constants. + +The generic routines are in @file{coffgen.c}. These routines +work for any Coff target. They use some hooks into the target +specific code; the hooks are in a @code{bfd_coff_backend_data} +structure, one of which exists for each target. + +The essentially similar target-specific routines are in +@file{coffcode.h}. This header file includes executable C code. +The various Coff targets first include the appropriate Coff +header file, make any special defines that are needed, and +then include @file{coffcode.h}. + +Some of the Coff targets then also have additional routines in +the target source file itself. + +For example, @file{coff-i960.c} includes +@file{coff/internal.h} and @file{coff/i960.h}. It then +defines a few constants, such as @code{I960}, and includes +@file{coffcode.h}. Since the i960 has complex relocation +types, @file{coff-i960.c} also includes some code to +manipulate the i960 relocs. This code is not in +@file{coffcode.h} because it would not be used by any other +target. + +@subsubsection Bit twiddling +Each flavour of coff supported in BFD has its own header file +describing the external layout of the structures. There is also +an internal description of the coff layout, in +@file{coff/internal.h}. A major function of the +coff backend is swapping the bytes and twiddling the bits to +translate the external form of the structures into the normal +internal form. This is all performed in the +@code{bfd_swap}_@i{thing}_@i{direction} routines. Some +elements are different sizes between different versions of +coff; it is the duty of the coff version specific include file +to override the definitions of various packing routines in +@file{coffcode.h}. E.g., the size of line number entry in coff is +sometimes 16 bits, and sometimes 32 bits. @code{#define}ing +@code{PUT_LNSZ_LNNO} and @code{GET_LNSZ_LNNO} will select the +correct one. No doubt, some day someone will find a version of +coff which has a varying field size not catered to at the +moment. To port BFD, that person will have to add more @code{#defines}. +Three of the bit twiddling routines are exported to +@code{gdb}; @code{coff_swap_aux_in}, @code{coff_swap_sym_in} +and @code{coff_swap_lineno_in}. @code{GDB} reads the symbol +table on its own, but uses BFD to fix things up. More of the +bit twiddlers are exported for @code{gas}; +@code{coff_swap_aux_out}, @code{coff_swap_sym_out}, +@code{coff_swap_lineno_out}, @code{coff_swap_reloc_out}, +@code{coff_swap_filehdr_out}, @code{coff_swap_aouthdr_out}, +@code{coff_swap_scnhdr_out}. @code{Gas} currently keeps track +of all the symbol table and reloc drudgery itself, thereby +saving the internal BFD overhead, but uses BFD to swap things +on the way out, making cross ports much safer. Doing so also +allows BFD (and thus the linker) to use the same header files +as @code{gas}, which makes one avenue to disaster disappear. + +@subsubsection Symbol reading +The simple canonical form for symbols used by BFD is not rich +enough to keep all the information available in a coff symbol +table. The back end gets around this problem by keeping the original +symbol table around, "behind the scenes". + +When a symbol table is requested (through a call to +@code{bfd_canonicalize_symtab}), a request gets through to +@code{coff_get_normalized_symtab}. This reads the symbol table from +the coff file and swaps all the structures inside into the +internal form. It also fixes up all the pointers in the table +(represented in the file by offsets from the first symbol in +the table) into physical pointers to elements in the new +internal table. This involves some work since the meanings of +fields change depending upon context: a field that is a +pointer to another structure in the symbol table at one moment +may be the size in bytes of a structure at the next. Another +pass is made over the table. All symbols which mark file names +(@code{C_FILE} symbols) are modified so that the internal +string points to the value in the auxent (the real filename) +rather than the normal text associated with the symbol +(@code{".file"}). + +At this time the symbol names are moved around. Coff stores +all symbols less than nine characters long physically +within the symbol table; longer strings are kept at the end of +the file in the string table. This pass moves all strings +into memory and replaces them with pointers to the strings. + +The symbol table is massaged once again, this time to create +the canonical table used by the BFD application. Each symbol +is inspected in turn, and a decision made (using the +@code{sclass} field) about the various flags to set in the +@code{asymbol}. @xref{Symbols}. The generated canonical table +shares strings with the hidden internal symbol table. + +Any linenumbers are read from the coff file too, and attached +to the symbols which own the functions the linenumbers belong to. + +@subsubsection Symbol writing +Writing a symbol to a coff file which didn't come from a coff +file will lose any debugging information. The @code{asymbol} +structure remembers the BFD from which the symbol was taken, and on +output the back end makes sure that the same destination target as +source target is present. + +When the symbols have come from a coff file then all the +debugging information is preserved. + +Symbol tables are provided for writing to the back end in a +vector of pointers to pointers. This allows applications like +the linker to accumulate and output large symbol tables +without having to do too much byte copying. + +This function runs through the provided symbol table and +patches each symbol marked as a file place holder +(@code{C_FILE}) to point to the next file place holder in the +list. It also marks each @code{offset} field in the list with +the offset from the first symbol of the current symbol. + +Another function of this procedure is to turn the canonical +value form of BFD into the form used by coff. Internally, BFD +expects symbol values to be offsets from a section base; so a +symbol physically at 0x120, but in a section starting at +0x100, would have the value 0x20. Coff expects symbols to +contain their final value, so symbols have their values +changed at this point to reflect their sum with their owning +section. This transformation uses the +@code{output_section} field of the @code{asymbol}'s +@code{asection} @xref{Sections}. + +@itemize @bullet + +@item +@code{coff_mangle_symbols} +@end itemize +This routine runs though the provided symbol table and uses +the offsets generated by the previous pass and the pointers +generated when the symbol table was read in to create the +structured hierarchy required by coff. It changes each pointer +to a symbol into the index into the symbol table of the asymbol. + +@itemize @bullet + +@item +@code{coff_write_symbols} +@end itemize +This routine runs through the symbol table and patches up the +symbols from their internal form into the coff way, calls the +bit twiddlers, and writes out the table to the file. + +@findex coff_symbol_type +@subsubsection @code{coff_symbol_type} +@strong{Description}@* +The hidden information for an @code{asymbol} is described in a +@code{combined_entry_type}: + + +@example + +typedef struct coff_ptr_struct +@{ + /* Remembers the offset from the first symbol in the file for + this symbol. Generated by coff_renumber_symbols. */ + unsigned int offset; + + /* Should the value of this symbol be renumbered. Used for + XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */ + unsigned int fix_value : 1; + + /* Should the tag field of this symbol be renumbered. + Created by coff_pointerize_aux. */ + unsigned int fix_tag : 1; + + /* Should the endidx field of this symbol be renumbered. + Created by coff_pointerize_aux. */ + unsigned int fix_end : 1; + + /* Should the x_csect.x_scnlen field be renumbered. + Created by coff_pointerize_aux. */ + unsigned int fix_scnlen : 1; + + /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the + index into the line number entries. Set by coff_slurp_symbol_table. */ + unsigned int fix_line : 1; + + /* The container for the symbol structure as read and translated + from the file. */ + union + @{ + union internal_auxent auxent; + struct internal_syment syment; + @} u; +@} combined_entry_type; + + +/* Each canonical asymbol really looks like this: */ + +typedef struct coff_symbol_struct +@{ + /* The actual symbol which the rest of BFD works with */ + asymbol symbol; + + /* A pointer to the hidden information for this symbol */ + combined_entry_type *native; + + /* A pointer to the linenumber information for this symbol */ + struct lineno_cache_entry *lineno; + + /* Have the line numbers been relocated yet ? */ + bfd_boolean done_lineno; +@} coff_symbol_type; +@end example +@findex bfd_coff_backend_data +@subsubsection @code{bfd_coff_backend_data} + +@example +/* COFF symbol classifications. */ + +enum coff_symbol_classification +@{ + /* Global symbol. */ + COFF_SYMBOL_GLOBAL, + /* Common symbol. */ + COFF_SYMBOL_COMMON, + /* Undefined symbol. */ + COFF_SYMBOL_UNDEFINED, + /* Local symbol. */ + COFF_SYMBOL_LOCAL, + /* PE section symbol. */ + COFF_SYMBOL_PE_SECTION +@}; + +@end example +Special entry points for gdb to swap in coff symbol table parts: +@example +typedef struct +@{ + void (*_bfd_coff_swap_aux_in) + (bfd *, void *, int, int, int, int, void *); + + void (*_bfd_coff_swap_sym_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_lineno_in) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_aux_out) + (bfd *, void *, int, int, int, int, void *); + + unsigned int (*_bfd_coff_swap_sym_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_lineno_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_reloc_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_filehdr_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_aouthdr_out) + (bfd *, void *, void *); + + unsigned int (*_bfd_coff_swap_scnhdr_out) + (bfd *, void *, void *); + + unsigned int _bfd_filhsz; + unsigned int _bfd_aoutsz; + unsigned int _bfd_scnhsz; + unsigned int _bfd_symesz; + unsigned int _bfd_auxesz; + unsigned int _bfd_relsz; + unsigned int _bfd_linesz; + unsigned int _bfd_filnmlen; + bfd_boolean _bfd_coff_long_filenames; + bfd_boolean _bfd_coff_long_section_names; + unsigned int _bfd_coff_default_section_alignment_power; + bfd_boolean _bfd_coff_force_symnames_in_strings; + unsigned int _bfd_coff_debug_string_prefix_length; + + void (*_bfd_coff_swap_filehdr_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_aouthdr_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_scnhdr_in) + (bfd *, void *, void *); + + void (*_bfd_coff_swap_reloc_in) + (bfd *abfd, void *, void *); + + bfd_boolean (*_bfd_coff_bad_format_hook) + (bfd *, void *); + + bfd_boolean (*_bfd_coff_set_arch_mach_hook) + (bfd *, void *); + + void * (*_bfd_coff_mkobject_hook) + (bfd *, void *, void *); + + bfd_boolean (*_bfd_styp_to_sec_flags_hook) + (bfd *, void *, const char *, asection *, flagword *); + + void (*_bfd_set_alignment_hook) + (bfd *, asection *, void *); + + bfd_boolean (*_bfd_coff_slurp_symbol_table) + (bfd *); + + bfd_boolean (*_bfd_coff_symname_in_debug) + (bfd *, struct internal_syment *); + + bfd_boolean (*_bfd_coff_pointerize_aux_hook) + (bfd *, combined_entry_type *, combined_entry_type *, + unsigned int, combined_entry_type *); + + bfd_boolean (*_bfd_coff_print_aux) + (bfd *, FILE *, combined_entry_type *, combined_entry_type *, + combined_entry_type *, unsigned int); + + void (*_bfd_coff_reloc16_extra_cases) + (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *, + bfd_byte *, unsigned int *, unsigned int *); + + int (*_bfd_coff_reloc16_estimate) + (bfd *, asection *, arelent *, unsigned int, + struct bfd_link_info *); + + enum coff_symbol_classification (*_bfd_coff_classify_symbol) + (bfd *, struct internal_syment *); + + bfd_boolean (*_bfd_coff_compute_section_file_positions) + (bfd *); + + bfd_boolean (*_bfd_coff_start_final_link) + (bfd *, struct bfd_link_info *); + + bfd_boolean (*_bfd_coff_relocate_section) + (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, + struct internal_reloc *, struct internal_syment *, asection **); + + reloc_howto_type *(*_bfd_coff_rtype_to_howto) + (bfd *, asection *, struct internal_reloc *, + struct coff_link_hash_entry *, struct internal_syment *, + bfd_vma *); + + bfd_boolean (*_bfd_coff_adjust_symndx) + (bfd *, struct bfd_link_info *, bfd *, asection *, + struct internal_reloc *, bfd_boolean *); + + bfd_boolean (*_bfd_coff_link_add_one_symbol) + (struct bfd_link_info *, bfd *, const char *, flagword, + asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, + struct bfd_link_hash_entry **); + + bfd_boolean (*_bfd_coff_link_output_has_begun) + (bfd *, struct coff_final_link_info *); + + bfd_boolean (*_bfd_coff_final_link_postscript) + (bfd *, struct coff_final_link_info *); + + bfd_boolean (*_bfd_coff_print_pdata) + (bfd *, void *); + +@} bfd_coff_backend_data; + +#define coff_backend_info(abfd) \ + ((bfd_coff_backend_data *) (abfd)->xvec->backend_data) + +#define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \ + ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i)) + +#define bfd_coff_swap_sym_in(a,e,i) \ + ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i)) + +#define bfd_coff_swap_lineno_in(a,e,i) \ + ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i)) + +#define bfd_coff_swap_reloc_out(abfd, i, o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o)) + +#define bfd_coff_swap_lineno_out(abfd, i, o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o)) + +#define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \ + ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o)) + +#define bfd_coff_swap_sym_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o)) + +#define bfd_coff_swap_scnhdr_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o)) + +#define bfd_coff_swap_filehdr_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o)) + +#define bfd_coff_swap_aouthdr_out(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o)) + +#define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz) +#define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz) +#define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz) +#define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz) +#define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz) +#define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz) +#define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz) +#define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen) +#define bfd_coff_long_filenames(abfd) \ + (coff_backend_info (abfd)->_bfd_coff_long_filenames) +#define bfd_coff_long_section_names(abfd) \ + (coff_backend_info (abfd)->_bfd_coff_long_section_names) +#define bfd_coff_default_section_alignment_power(abfd) \ + (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power) +#define bfd_coff_swap_filehdr_in(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o)) + +#define bfd_coff_swap_aouthdr_in(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o)) + +#define bfd_coff_swap_scnhdr_in(abfd, i,o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o)) + +#define bfd_coff_swap_reloc_in(abfd, i, o) \ + ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o)) + +#define bfd_coff_bad_format_hook(abfd, filehdr) \ + ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr)) + +#define bfd_coff_set_arch_mach_hook(abfd, filehdr)\ + ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr)) +#define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\ + ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\ + (abfd, filehdr, aouthdr)) + +#define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\ + ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\ + (abfd, scnhdr, name, section, flags_ptr)) + +#define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\ + ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr)) + +#define bfd_coff_slurp_symbol_table(abfd)\ + ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd)) + +#define bfd_coff_symname_in_debug(abfd, sym)\ + ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym)) + +#define bfd_coff_force_symnames_in_strings(abfd)\ + (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings) + +#define bfd_coff_debug_string_prefix_length(abfd)\ + (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length) + +#define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\ + ((coff_backend_info (abfd)->_bfd_coff_print_aux)\ + (abfd, file, base, symbol, aux, indaux)) + +#define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\ + reloc, data, src_ptr, dst_ptr)\ + ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\ + (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr)) + +#define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\ + ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\ + (abfd, section, reloc, shrink, link_info)) + +#define bfd_coff_classify_symbol(abfd, sym)\ + ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\ + (abfd, sym)) + +#define bfd_coff_compute_section_file_positions(abfd)\ + ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\ + (abfd)) + +#define bfd_coff_start_final_link(obfd, info)\ + ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\ + (obfd, info)) +#define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\ + ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\ + (obfd, info, ibfd, o, con, rel, isyms, secs)) +#define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\ + ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\ + (abfd, sec, rel, h, sym, addendp)) +#define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\ + ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\ + (obfd, info, ibfd, sec, rel, adjustedp)) +#define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\ + value, string, cp, coll, hashp)\ + ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\ + (info, abfd, name, flags, section, value, string, cp, coll, hashp)) + +#define bfd_coff_link_output_has_begun(a,p) \ + ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p)) +#define bfd_coff_final_link_postscript(a,p) \ + ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p)) + +#define bfd_coff_have_print_pdata(a) \ + (coff_backend_info (a)->_bfd_coff_print_pdata) +#define bfd_coff_print_pdata(a,p) \ + ((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p)) + +@end example +@subsubsection Writing relocations +To write relocations, the back end steps though the +canonical relocation table and create an +@code{internal_reloc}. The symbol index to use is removed from +the @code{offset} field in the symbol table supplied. The +address comes directly from the sum of the section base +address and the relocation offset; the type is dug directly +from the howto field. Then the @code{internal_reloc} is +swapped into the shape of an @code{external_reloc} and written +out to disk. + +@subsubsection Reading linenumbers +Creating the linenumber table is done by reading in the entire +coff linenumber table, and creating another table for internal use. + +A coff linenumber table is structured so that each function +is marked as having a line number of 0. Each line within the +function is an offset from the first line in the function. The +base of the line number information for the table is stored in +the symbol associated with the function. + +Note: The PE format uses line number 0 for a flag indicating a +new source file. + +The information is copied from the external to the internal +table, and each symbol which marks a function is marked by +pointing its... + +How does this work ? + +@subsubsection Reading relocations +Coff relocations are easily transformed into the internal BFD form +(@code{arelent}). + +Reading a coff relocation table is done in the following stages: + +@itemize @bullet + +@item +Read the entire coff relocation table into memory. + +@item +Process each relocation in turn; first swap it from the +external to the internal form. + +@item +Turn the symbol referenced in the relocation's symbol index +into a pointer into the canonical symbol table. +This table is the same as the one returned by a call to +@code{bfd_canonicalize_symtab}. The back end will call that +routine and save the result if a canonicalization hasn't been done. + +@item +The reloc index is turned into a pointer to a howto +structure, in a back end specific way. For instance, the 386 +and 960 use the @code{r_type} to directly produce an index +into a howto table vector; the 88k subtracts a number from the +@code{r_type} field and creates an addend field. +@end itemize + diff --git a/bfd/doc/core.texi b/bfd/doc/core.texi new file mode 100644 index 00000000000..1f09445ef76 --- /dev/null +++ b/bfd/doc/core.texi @@ -0,0 +1,60 @@ +@section Core files + + +@subsection Core file functions + + +@strong{Description}@* +These are functions pertaining to core files. + +@findex bfd_core_file_failing_command +@subsubsection @code{bfd_core_file_failing_command} +@strong{Synopsis} +@example +const char *bfd_core_file_failing_command (bfd *abfd); +@end example +@strong{Description}@* +Return a read-only string explaining which program was running +when it failed and produced the core file @var{abfd}. + +@findex bfd_core_file_failing_signal +@subsubsection @code{bfd_core_file_failing_signal} +@strong{Synopsis} +@example +int bfd_core_file_failing_signal (bfd *abfd); +@end example +@strong{Description}@* +Returns the signal number which caused the core dump which +generated the file the BFD @var{abfd} is attached to. + +@findex core_file_matches_executable_p +@subsubsection @code{core_file_matches_executable_p} +@strong{Synopsis} +@example +bfd_boolean core_file_matches_executable_p + (bfd *core_bfd, bfd *exec_bfd); +@end example +@strong{Description}@* +Return @code{TRUE} if the core file attached to @var{core_bfd} +was generated by a run of the executable file attached to +@var{exec_bfd}, @code{FALSE} otherwise. + +@findex generic_core_file_matches_executable_p +@subsubsection @code{generic_core_file_matches_executable_p} +@strong{Synopsis} +@example +bfd_boolean generic_core_file_matches_executable_p + (bfd *core_bfd, bfd *exec_bfd); +@end example +@strong{Description}@* +Return TRUE if the core file attached to @var{core_bfd} +was generated by a run of the executable file attached +to @var{exec_bfd}. The match is based on executable +basenames only. + +Note: When not able to determine the core file failing +command or the executable name, we still return TRUE even +though we're not sure that core file and executable match. +This is to avoid generating a false warning in situations +where we really don't know whether they match or not. + diff --git a/bfd/doc/elf.texi b/bfd/doc/elf.texi new file mode 100644 index 00000000000..4f9434cf69d --- /dev/null +++ b/bfd/doc/elf.texi @@ -0,0 +1,22 @@ +@section ELF backends +BFD support for ELF formats is being worked on. +Currently, the best supported back ends are for sparc and i386 +(running svr4 or Solaris 2). + +Documentation of the internals of the support code still needs +to be written. The code is changing quickly enough that we +haven't bothered yet. + +@findex bfd_elf_find_section +@subsubsection @code{bfd_elf_find_section} +@strong{Synopsis} +@example +struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); +@end example +@strong{Description}@* +Helper functions for GDB to locate the string tables. +Since BFD hides string tables from callers, GDB needs to use an +internal hook to find them. Sun's .stabstr, in particular, +isn't even pointed to by the .stab section, so ordinary +mechanisms wouldn't work to find it, even if we had some. + diff --git a/bfd/doc/elfcode.texi b/bfd/doc/elfcode.texi new file mode 100644 index 00000000000..e69de29bb2d --- /dev/null +++ b/bfd/doc/elfcode.texi diff --git a/bfd/doc/format.texi b/bfd/doc/format.texi new file mode 100644 index 00000000000..9674acff440 --- /dev/null +++ b/bfd/doc/format.texi @@ -0,0 +1,112 @@ +@section File formats +A format is a BFD concept of high level file contents type. The +formats supported by BFD are: + +@itemize @bullet + +@item +@code{bfd_object} +@end itemize +The BFD may contain data, symbols, relocations and debug info. + +@itemize @bullet + +@item +@code{bfd_archive} +@end itemize +The BFD contains other BFDs and an optional index. + +@itemize @bullet + +@item +@code{bfd_core} +@end itemize +The BFD contains the result of an executable core dump. + +@subsection File format functions + + +@findex bfd_check_format +@subsubsection @code{bfd_check_format} +@strong{Synopsis} +@example +bfd_boolean bfd_check_format (bfd *abfd, bfd_format format); +@end example +@strong{Description}@* +Verify if the file attached to the BFD @var{abfd} is compatible +with the format @var{format} (i.e., one of @code{bfd_object}, +@code{bfd_archive} or @code{bfd_core}). + +If the BFD has been set to a specific target before the +call, only the named target and format combination is +checked. If the target has not been set, or has been set to +@code{default}, then all the known target backends is +interrogated to determine a match. If the default target +matches, it is used. If not, exactly one target must recognize +the file, or an error results. + +The function returns @code{TRUE} on success, otherwise @code{FALSE} +with one of the following error codes: + +@itemize @bullet + +@item +@code{bfd_error_invalid_operation} - +if @code{format} is not one of @code{bfd_object}, @code{bfd_archive} or +@code{bfd_core}. + +@item +@code{bfd_error_system_call} - +if an error occured during a read - even some file mismatches +can cause bfd_error_system_calls. + +@item +@code{file_not_recognised} - +none of the backends recognised the file format. + +@item +@code{bfd_error_file_ambiguously_recognized} - +more than one backend recognised the file format. +@end itemize + +@findex bfd_check_format_matches +@subsubsection @code{bfd_check_format_matches} +@strong{Synopsis} +@example +bfd_boolean bfd_check_format_matches + (bfd *abfd, bfd_format format, char ***matching); +@end example +@strong{Description}@* +Like @code{bfd_check_format}, except when it returns FALSE with +@code{bfd_errno} set to @code{bfd_error_file_ambiguously_recognized}. In that +case, if @var{matching} is not NULL, it will be filled in with +a NULL-terminated list of the names of the formats that matched, +allocated with @code{malloc}. +Then the user may choose a format and try again. + +When done with the list that @var{matching} points to, the caller +should free it. + +@findex bfd_set_format +@subsubsection @code{bfd_set_format} +@strong{Synopsis} +@example +bfd_boolean bfd_set_format (bfd *abfd, bfd_format format); +@end example +@strong{Description}@* +This function sets the file format of the BFD @var{abfd} to the +format @var{format}. If the target set in the BFD does not +support the format requested, the format is invalid, or the BFD +is not open for writing, then an error occurs. + +@findex bfd_format_string +@subsubsection @code{bfd_format_string} +@strong{Synopsis} +@example +const char *bfd_format_string (bfd_format format); +@end example +@strong{Description}@* +Return a pointer to a const string +@code{invalid}, @code{object}, @code{archive}, @code{core}, or @code{unknown}, +depending upon the value of @var{format}. + diff --git a/bfd/doc/hash.texi b/bfd/doc/hash.texi new file mode 100644 index 00000000000..88d9585cc40 --- /dev/null +++ b/bfd/doc/hash.texi @@ -0,0 +1,247 @@ +@section Hash Tables +@cindex Hash tables +BFD provides a simple set of hash table functions. Routines +are provided to initialize a hash table, to free a hash table, +to look up a string in a hash table and optionally create an +entry for it, and to traverse a hash table. There is +currently no routine to delete an string from a hash table. + +The basic hash table does not permit any data to be stored +with a string. However, a hash table is designed to present a +base class from which other types of hash tables may be +derived. These derived types may store additional information +with the string. Hash tables were implemented in this way, +rather than simply providing a data pointer in a hash table +entry, because they were designed for use by the linker back +ends. The linker may create thousands of hash table entries, +and the overhead of allocating private data and storing and +following pointers becomes noticeable. + +The basic hash table code is in @code{hash.c}. + +@menu +* Creating and Freeing a Hash Table:: +* Looking Up or Entering a String:: +* Traversing a Hash Table:: +* Deriving a New Hash Table Type:: +@end menu + +@node Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables +@subsection Creating and freeing a hash table +@findex bfd_hash_table_init +@findex bfd_hash_table_init_n +To create a hash table, create an instance of a @code{struct +bfd_hash_table} (defined in @code{bfd.h}) and call +@code{bfd_hash_table_init} (if you know approximately how many +entries you will need, the function @code{bfd_hash_table_init_n}, +which takes a @var{size} argument, may be used). +@code{bfd_hash_table_init} returns @code{FALSE} if some sort of +error occurs. + +@findex bfd_hash_newfunc +The function @code{bfd_hash_table_init} take as an argument a +function to use to create new entries. For a basic hash +table, use the function @code{bfd_hash_newfunc}. @xref{Deriving +a New Hash Table Type}, for why you would want to use a +different value for this argument. + +@findex bfd_hash_allocate +@code{bfd_hash_table_init} will create an objalloc which will be +used to allocate new entries. You may allocate memory on this +objalloc using @code{bfd_hash_allocate}. + +@findex bfd_hash_table_free +Use @code{bfd_hash_table_free} to free up all the memory that has +been allocated for a hash table. This will not free up the +@code{struct bfd_hash_table} itself, which you must provide. + +@findex bfd_hash_set_default_size +Use @code{bfd_hash_set_default_size} to set the default size of +hash table to use. + +@node Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables +@subsection Looking up or entering a string +@findex bfd_hash_lookup +The function @code{bfd_hash_lookup} is used both to look up a +string in the hash table and to create a new entry. + +If the @var{create} argument is @code{FALSE}, @code{bfd_hash_lookup} +will look up a string. If the string is found, it will +returns a pointer to a @code{struct bfd_hash_entry}. If the +string is not found in the table @code{bfd_hash_lookup} will +return @code{NULL}. You should not modify any of the fields in +the returns @code{struct bfd_hash_entry}. + +If the @var{create} argument is @code{TRUE}, the string will be +entered into the hash table if it is not already there. +Either way a pointer to a @code{struct bfd_hash_entry} will be +returned, either to the existing structure or to a newly +created one. In this case, a @code{NULL} return means that an +error occurred. + +If the @var{create} argument is @code{TRUE}, and a new entry is +created, the @var{copy} argument is used to decide whether to +copy the string onto the hash table objalloc or not. If +@var{copy} is passed as @code{FALSE}, you must be careful not to +deallocate or modify the string as long as the hash table +exists. + +@node Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables +@subsection Traversing a hash table +@findex bfd_hash_traverse +The function @code{bfd_hash_traverse} may be used to traverse a +hash table, calling a function on each element. The traversal +is done in a random order. + +@code{bfd_hash_traverse} takes as arguments a function and a +generic @code{void *} pointer. The function is called with a +hash table entry (a @code{struct bfd_hash_entry *}) and the +generic pointer passed to @code{bfd_hash_traverse}. The function +must return a @code{boolean} value, which indicates whether to +continue traversing the hash table. If the function returns +@code{FALSE}, @code{bfd_hash_traverse} will stop the traversal and +return immediately. + +@node Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables +@subsection Deriving a new hash table type +Many uses of hash tables want to store additional information +which each entry in the hash table. Some also find it +convenient to store additional information with the hash table +itself. This may be done using a derived hash table. + +Since C is not an object oriented language, creating a derived +hash table requires sticking together some boilerplate +routines with a few differences specific to the type of hash +table you want to create. + +An example of a derived hash table is the linker hash table. +The structures for this are defined in @code{bfdlink.h}. The +functions are in @code{linker.c}. + +You may also derive a hash table from an already derived hash +table. For example, the a.out linker backend code uses a hash +table derived from the linker hash table. + +@menu +* Define the Derived Structures:: +* Write the Derived Creation Routine:: +* Write Other Derived Routines:: +@end menu + +@node Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type +@subsubsection Define the derived structures +You must define a structure for an entry in the hash table, +and a structure for the hash table itself. + +The first field in the structure for an entry in the hash +table must be of the type used for an entry in the hash table +you are deriving from. If you are deriving from a basic hash +table this is @code{struct bfd_hash_entry}, which is defined in +@code{bfd.h}. The first field in the structure for the hash +table itself must be of the type of the hash table you are +deriving from itself. If you are deriving from a basic hash +table, this is @code{struct bfd_hash_table}. + +For example, the linker hash table defines @code{struct +bfd_link_hash_entry} (in @code{bfdlink.h}). The first field, +@code{root}, is of type @code{struct bfd_hash_entry}. Similarly, +the first field in @code{struct bfd_link_hash_table}, @code{table}, +is of type @code{struct bfd_hash_table}. + +@node Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type +@subsubsection Write the derived creation routine +You must write a routine which will create and initialize an +entry in the hash table. This routine is passed as the +function argument to @code{bfd_hash_table_init}. + +In order to permit other hash tables to be derived from the +hash table you are creating, this routine must be written in a +standard way. + +The first argument to the creation routine is a pointer to a +hash table entry. This may be @code{NULL}, in which case the +routine should allocate the right amount of space. Otherwise +the space has already been allocated by a hash table type +derived from this one. + +After allocating space, the creation routine must call the +creation routine of the hash table type it is derived from, +passing in a pointer to the space it just allocated. This +will initialize any fields used by the base hash table. + +Finally the creation routine must initialize any local fields +for the new hash table type. + +Here is a boilerplate example of a creation routine. +@var{function_name} is the name of the routine. +@var{entry_type} is the type of an entry in the hash table you +are creating. @var{base_newfunc} is the name of the creation +routine of the hash table type your hash table is derived +from. + + +@example +struct bfd_hash_entry * +@var{function_name} (struct bfd_hash_entry *entry, + struct bfd_hash_table *table, + const char *string) +@{ + struct @var{entry_type} *ret = (@var{entry_type} *) entry; + + /* Allocate the structure if it has not already been allocated by a + derived class. */ + if (ret == NULL) + @{ + ret = bfd_hash_allocate (table, sizeof (* ret)); + if (ret == NULL) + return NULL; + @} + + /* Call the allocation method of the base class. */ + ret = ((@var{entry_type} *) + @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string)); + + /* Initialize the local fields here. */ + + return (struct bfd_hash_entry *) ret; +@} +@end example +@strong{Description}@* +The creation routine for the linker hash table, which is in +@code{linker.c}, looks just like this example. +@var{function_name} is @code{_bfd_link_hash_newfunc}. +@var{entry_type} is @code{struct bfd_link_hash_entry}. +@var{base_newfunc} is @code{bfd_hash_newfunc}, the creation +routine for a basic hash table. + +@code{_bfd_link_hash_newfunc} also initializes the local fields +in a linker hash table entry: @code{type}, @code{written} and +@code{next}. + +@node Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type +@subsubsection Write other derived routines +You will want to write other routines for your new hash table, +as well. + +You will want an initialization routine which calls the +initialization routine of the hash table you are deriving from +and initializes any other local fields. For the linker hash +table, this is @code{_bfd_link_hash_table_init} in @code{linker.c}. + +You will want a lookup routine which calls the lookup routine +of the hash table you are deriving from and casts the result. +The linker hash table uses @code{bfd_link_hash_lookup} in +@code{linker.c} (this actually takes an additional argument which +it uses to decide how to return the looked up value). + +You may want a traversal routine. This should just call the +traversal routine of the hash table you are deriving from with +appropriate casts. The linker hash table uses +@code{bfd_link_hash_traverse} in @code{linker.c}. + +These routines may simply be defined as macros. For example, +the a.out backend linker hash table, which is derived from the +linker hash table, uses macros for the lookup and traversal +routines. These are @code{aout_link_hash_lookup} and +@code{aout_link_hash_traverse} in aoutx.h. + diff --git a/bfd/doc/init.texi b/bfd/doc/init.texi new file mode 100644 index 00000000000..ab735f8e986 --- /dev/null +++ b/bfd/doc/init.texi @@ -0,0 +1,16 @@ +@section Initialization + + +@subsection Initialization functions +These are the functions that handle initializing a BFD. + +@findex bfd_init +@subsubsection @code{bfd_init} +@strong{Synopsis} +@example +void bfd_init (void); +@end example +@strong{Description}@* +This routine must be called before any other BFD function to +initialize magical internal data structures. + diff --git a/bfd/doc/libbfd.texi b/bfd/doc/libbfd.texi new file mode 100644 index 00000000000..fef6e0e842e --- /dev/null +++ b/bfd/doc/libbfd.texi @@ -0,0 +1,179 @@ +@section Implementation details + + +@subsection Internal functions + + +@strong{Description}@* +These routines are used within BFD. +They are not intended for export, but are documented here for +completeness. + +@findex bfd_write_bigendian_4byte_int +@subsubsection @code{bfd_write_bigendian_4byte_int} +@strong{Synopsis} +@example +bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int); +@end example +@strong{Description}@* +Write a 4 byte integer @var{i} to the output BFD @var{abfd}, in big +endian order regardless of what else is going on. This is useful in +archives. + +@findex bfd_put_size +@subsubsection @code{bfd_put_size} +@findex bfd_get_size +@subsubsection @code{bfd_get_size} +@strong{Description}@* +These macros as used for reading and writing raw data in +sections; each access (except for bytes) is vectored through +the target format of the BFD and mangled accordingly. The +mangling performs any necessary endian translations and +removes alignment restrictions. Note that types accepted and +returned by these macros are identical so they can be swapped +around in macros---for example, @file{libaout.h} defines @code{GET_WORD} +to either @code{bfd_get_32} or @code{bfd_get_64}. + +In the put routines, @var{val} must be a @code{bfd_vma}. If we are on a +system without prototypes, the caller is responsible for making +sure that is true, with a cast if necessary. We don't cast +them in the macro definitions because that would prevent @code{lint} +or @code{gcc -Wall} from detecting sins such as passing a pointer. +To detect calling these with less than a @code{bfd_vma}, use +@code{gcc -Wconversion} on a host with 64 bit @code{bfd_vma}'s. +@example + +/* Byte swapping macros for user section data. */ + +#define bfd_put_8(abfd, val, ptr) \ + ((void) (*((unsigned char *) (ptr)) = (val) & 0xff)) +#define bfd_put_signed_8 \ + bfd_put_8 +#define bfd_get_8(abfd, ptr) \ + (*(unsigned char *) (ptr) & 0xff) +#define bfd_get_signed_8(abfd, ptr) \ + (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80) + +#define bfd_put_16(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_putx16, ((val),(ptr))) +#define bfd_put_signed_16 \ + bfd_put_16 +#define bfd_get_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx16, (ptr)) +#define bfd_get_signed_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx_signed_16, (ptr)) + +#define bfd_put_32(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_putx32, ((val),(ptr))) +#define bfd_put_signed_32 \ + bfd_put_32 +#define bfd_get_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx32, (ptr)) +#define bfd_get_signed_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx_signed_32, (ptr)) + +#define bfd_put_64(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_putx64, ((val), (ptr))) +#define bfd_put_signed_64 \ + bfd_put_64 +#define bfd_get_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx64, (ptr)) +#define bfd_get_signed_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_getx_signed_64, (ptr)) + +#define bfd_get(bits, abfd, ptr) \ + ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \ + : (bits) == 16 ? bfd_get_16 (abfd, ptr) \ + : (bits) == 32 ? bfd_get_32 (abfd, ptr) \ + : (bits) == 64 ? bfd_get_64 (abfd, ptr) \ + : (abort (), (bfd_vma) - 1)) + +#define bfd_put(bits, abfd, val, ptr) \ + ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \ + : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \ + : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \ + : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \ + : (abort (), (void) 0)) + +@end example + +@findex bfd_h_put_size +@subsubsection @code{bfd_h_put_size} +@strong{Description}@* +These macros have the same function as their @code{bfd_get_x} +brethren, except that they are used for removing information +for the header records of object files. Believe it or not, +some object files keep their header records in big endian +order and their data in little endian order. +@example + +/* Byte swapping macros for file header data. */ + +#define bfd_h_put_8(abfd, val, ptr) \ + bfd_put_8 (abfd, val, ptr) +#define bfd_h_put_signed_8(abfd, val, ptr) \ + bfd_put_8 (abfd, val, ptr) +#define bfd_h_get_8(abfd, ptr) \ + bfd_get_8 (abfd, ptr) +#define bfd_h_get_signed_8(abfd, ptr) \ + bfd_get_signed_8 (abfd, ptr) + +#define bfd_h_put_16(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_h_putx16, (val, ptr)) +#define bfd_h_put_signed_16 \ + bfd_h_put_16 +#define bfd_h_get_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx16, (ptr)) +#define bfd_h_get_signed_16(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr)) + +#define bfd_h_put_32(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_h_putx32, (val, ptr)) +#define bfd_h_put_signed_32 \ + bfd_h_put_32 +#define bfd_h_get_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx32, (ptr)) +#define bfd_h_get_signed_32(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr)) + +#define bfd_h_put_64(abfd, val, ptr) \ + BFD_SEND (abfd, bfd_h_putx64, (val, ptr)) +#define bfd_h_put_signed_64 \ + bfd_h_put_64 +#define bfd_h_get_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx64, (ptr)) +#define bfd_h_get_signed_64(abfd, ptr) \ + BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr)) + +/* Aliases for the above, which should eventually go away. */ + +#define H_PUT_64 bfd_h_put_64 +#define H_PUT_32 bfd_h_put_32 +#define H_PUT_16 bfd_h_put_16 +#define H_PUT_8 bfd_h_put_8 +#define H_PUT_S64 bfd_h_put_signed_64 +#define H_PUT_S32 bfd_h_put_signed_32 +#define H_PUT_S16 bfd_h_put_signed_16 +#define H_PUT_S8 bfd_h_put_signed_8 +#define H_GET_64 bfd_h_get_64 +#define H_GET_32 bfd_h_get_32 +#define H_GET_16 bfd_h_get_16 +#define H_GET_8 bfd_h_get_8 +#define H_GET_S64 bfd_h_get_signed_64 +#define H_GET_S32 bfd_h_get_signed_32 +#define H_GET_S16 bfd_h_get_signed_16 +#define H_GET_S8 bfd_h_get_signed_8 + + +@end example + +@findex bfd_log2 +@subsubsection @code{bfd_log2} +@strong{Synopsis} +@example +unsigned int bfd_log2 (bfd_vma x); +@end example +@strong{Description}@* +Return the log base 2 of the value supplied, rounded up. E.g., an +@var{x} of 1025 returns 11. A @var{x} of 0 returns 0. + diff --git a/bfd/doc/linker.texi b/bfd/doc/linker.texi new file mode 100644 index 00000000000..35d0e9eb86f --- /dev/null +++ b/bfd/doc/linker.texi @@ -0,0 +1,381 @@ +@section Linker Functions +@cindex Linker +The linker uses three special entry points in the BFD target +vector. It is not necessary to write special routines for +these entry points when creating a new BFD back end, since +generic versions are provided. However, writing them can +speed up linking and make it use significantly less runtime +memory. + +The first routine creates a hash table used by the other +routines. The second routine adds the symbols from an object +file to the hash table. The third routine takes all the +object files and links them together to create the output +file. These routines are designed so that the linker proper +does not need to know anything about the symbols in the object +files that it is linking. The linker merely arranges the +sections as directed by the linker script and lets BFD handle +the details of symbols and relocs. + +The second routine and third routines are passed a pointer to +a @code{struct bfd_link_info} structure (defined in +@code{bfdlink.h}) which holds information relevant to the link, +including the linker hash table (which was created by the +first routine) and a set of callback functions to the linker +proper. + +The generic linker routines are in @code{linker.c}, and use the +header file @code{genlink.h}. As of this writing, the only back +ends which have implemented versions of these routines are +a.out (in @code{aoutx.h}) and ECOFF (in @code{ecoff.c}). The a.out +routines are used as examples throughout this section. + +@menu +* Creating a Linker Hash Table:: +* Adding Symbols to the Hash Table:: +* Performing the Final Link:: +@end menu + +@node Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions +@subsection Creating a linker hash table +@cindex _bfd_link_hash_table_create in target vector +@cindex target vector (_bfd_link_hash_table_create) +The linker routines must create a hash table, which must be +derived from @code{struct bfd_link_hash_table} described in +@code{bfdlink.c}. @xref{Hash Tables}, for information on how to +create a derived hash table. This entry point is called using +the target vector of the linker output file. + +The @code{_bfd_link_hash_table_create} entry point must allocate +and initialize an instance of the desired hash table. If the +back end does not require any additional information to be +stored with the entries in the hash table, the entry point may +simply create a @code{struct bfd_link_hash_table}. Most likely, +however, some additional information will be needed. + +For example, with each entry in the hash table the a.out +linker keeps the index the symbol has in the final output file +(this index number is used so that when doing a relocatable +link the symbol index used in the output file can be quickly +filled in when copying over a reloc). The a.out linker code +defines the required structures and functions for a hash table +derived from @code{struct bfd_link_hash_table}. The a.out linker +hash table is created by the function +@code{NAME(aout,link_hash_table_create)}; it simply allocates +space for the hash table, initializes it, and returns a +pointer to it. + +When writing the linker routines for a new back end, you will +generally not know exactly which fields will be required until +you have finished. You should simply create a new hash table +which defines no additional fields, and then simply add fields +as they become necessary. + +@node Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions +@subsection Adding symbols to the hash table +@cindex _bfd_link_add_symbols in target vector +@cindex target vector (_bfd_link_add_symbols) +The linker proper will call the @code{_bfd_link_add_symbols} +entry point for each object file or archive which is to be +linked (typically these are the files named on the command +line, but some may also come from the linker script). The +entry point is responsible for examining the file. For an +object file, BFD must add any relevant symbol information to +the hash table. For an archive, BFD must determine which +elements of the archive should be used and adding them to the +link. + +The a.out version of this entry point is +@code{NAME(aout,link_add_symbols)}. + +@menu +* Differing file formats:: +* Adding symbols from an object file:: +* Adding symbols from an archive:: +@end menu + +@node Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table +@subsubsection Differing file formats +Normally all the files involved in a link will be of the same +format, but it is also possible to link together different +format object files, and the back end must support that. The +@code{_bfd_link_add_symbols} entry point is called via the target +vector of the file to be added. This has an important +consequence: the function may not assume that the hash table +is the type created by the corresponding +@code{_bfd_link_hash_table_create} vector. All the +@code{_bfd_link_add_symbols} function can assume about the hash +table is that it is derived from @code{struct +bfd_link_hash_table}. + +Sometimes the @code{_bfd_link_add_symbols} function must store +some information in the hash table entry to be used by the +@code{_bfd_final_link} function. In such a case the output bfd +xvec must be checked to make sure that the hash table was +created by an object file of the same format. + +The @code{_bfd_final_link} routine must be prepared to handle a +hash entry without any extra information added by the +@code{_bfd_link_add_symbols} function. A hash entry without +extra information will also occur when the linker script +directs the linker to create a symbol. Note that, regardless +of how a hash table entry is added, all the fields will be +initialized to some sort of null value by the hash table entry +initialization function. + +See @code{ecoff_link_add_externals} for an example of how to +check the output bfd before saving information (in this +case, the ECOFF external symbol debugging information) in a +hash table entry. + +@node Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table +@subsubsection Adding symbols from an object file +When the @code{_bfd_link_add_symbols} routine is passed an object +file, it must add all externally visible symbols in that +object file to the hash table. The actual work of adding the +symbol to the hash table is normally handled by the function +@code{_bfd_generic_link_add_one_symbol}. The +@code{_bfd_link_add_symbols} routine is responsible for reading +all the symbols from the object file and passing the correct +information to @code{_bfd_generic_link_add_one_symbol}. + +The @code{_bfd_link_add_symbols} routine should not use +@code{bfd_canonicalize_symtab} to read the symbols. The point of +providing this routine is to avoid the overhead of converting +the symbols into generic @code{asymbol} structures. + +@findex _bfd_generic_link_add_one_symbol +@code{_bfd_generic_link_add_one_symbol} handles the details of +combining common symbols, warning about multiple definitions, +and so forth. It takes arguments which describe the symbol to +add, notably symbol flags, a section, and an offset. The +symbol flags include such things as @code{BSF_WEAK} or +@code{BSF_INDIRECT}. The section is a section in the object +file, or something like @code{bfd_und_section_ptr} for an undefined +symbol or @code{bfd_com_section_ptr} for a common symbol. + +If the @code{_bfd_final_link} routine is also going to need to +read the symbol information, the @code{_bfd_link_add_symbols} +routine should save it somewhere attached to the object file +BFD. However, the information should only be saved if the +@code{keep_memory} field of the @code{info} argument is TRUE, so +that the @code{-no-keep-memory} linker switch is effective. + +The a.out function which adds symbols from an object file is +@code{aout_link_add_object_symbols}, and most of the interesting +work is in @code{aout_link_add_symbols}. The latter saves +pointers to the hash tables entries created by +@code{_bfd_generic_link_add_one_symbol} indexed by symbol number, +so that the @code{_bfd_final_link} routine does not have to call +the hash table lookup routine to locate the entry. + +@node Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table +@subsubsection Adding symbols from an archive +When the @code{_bfd_link_add_symbols} routine is passed an +archive, it must look through the symbols defined by the +archive and decide which elements of the archive should be +included in the link. For each such element it must call the +@code{add_archive_element} linker callback, and it must add the +symbols from the object file to the linker hash table. + +@findex _bfd_generic_link_add_archive_symbols +In most cases the work of looking through the symbols in the +archive should be done by the +@code{_bfd_generic_link_add_archive_symbols} function. This +function builds a hash table from the archive symbol table and +looks through the list of undefined symbols to see which +elements should be included. +@code{_bfd_generic_link_add_archive_symbols} is passed a function +to call to make the final decision about adding an archive +element to the link and to do the actual work of adding the +symbols to the linker hash table. + +The function passed to +@code{_bfd_generic_link_add_archive_symbols} must read the +symbols of the archive element and decide whether the archive +element should be included in the link. If the element is to +be included, the @code{add_archive_element} linker callback +routine must be called with the element as an argument, and +the elements symbols must be added to the linker hash table +just as though the element had itself been passed to the +@code{_bfd_link_add_symbols} function. + +When the a.out @code{_bfd_link_add_symbols} function receives an +archive, it calls @code{_bfd_generic_link_add_archive_symbols} +passing @code{aout_link_check_archive_element} as the function +argument. @code{aout_link_check_archive_element} calls +@code{aout_link_check_ar_symbols}. If the latter decides to add +the element (an element is only added if it provides a real, +non-common, definition for a previously undefined or common +symbol) it calls the @code{add_archive_element} callback and then +@code{aout_link_check_archive_element} calls +@code{aout_link_add_symbols} to actually add the symbols to the +linker hash table. + +The ECOFF back end is unusual in that it does not normally +call @code{_bfd_generic_link_add_archive_symbols}, because ECOFF +archives already contain a hash table of symbols. The ECOFF +back end searches the archive itself to avoid the overhead of +creating a new hash table. + +@node Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions +@subsection Performing the final link +@cindex _bfd_link_final_link in target vector +@cindex target vector (_bfd_final_link) +When all the input files have been processed, the linker calls +the @code{_bfd_final_link} entry point of the output BFD. This +routine is responsible for producing the final output file, +which has several aspects. It must relocate the contents of +the input sections and copy the data into the output sections. +It must build an output symbol table including any local +symbols from the input files and the global symbols from the +hash table. When producing relocatable output, it must +modify the input relocs and write them into the output file. +There may also be object format dependent work to be done. + +The linker will also call the @code{write_object_contents} entry +point when the BFD is closed. The two entry points must work +together in order to produce the correct output file. + +The details of how this works are inevitably dependent upon +the specific object file format. The a.out +@code{_bfd_final_link} routine is @code{NAME(aout,final_link)}. + +@menu +* Information provided by the linker:: +* Relocating the section contents:: +* Writing the symbol table:: +@end menu + +@node Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link +@subsubsection Information provided by the linker +Before the linker calls the @code{_bfd_final_link} entry point, +it sets up some data structures for the function to use. + +The @code{input_bfds} field of the @code{bfd_link_info} structure +will point to a list of all the input files included in the +link. These files are linked through the @code{link_next} field +of the @code{bfd} structure. + +Each section in the output file will have a list of +@code{link_order} structures attached to the @code{map_head.link_order} +field (the @code{link_order} structure is defined in +@code{bfdlink.h}). These structures describe how to create the +contents of the output section in terms of the contents of +various input sections, fill constants, and, eventually, other +types of information. They also describe relocs that must be +created by the BFD backend, but do not correspond to any input +file; this is used to support -Ur, which builds constructors +while generating a relocatable object file. + +@node Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link +@subsubsection Relocating the section contents +The @code{_bfd_final_link} function should look through the +@code{link_order} structures attached to each section of the +output file. Each @code{link_order} structure should either be +handled specially, or it should be passed to the function +@code{_bfd_default_link_order} which will do the right thing +(@code{_bfd_default_link_order} is defined in @code{linker.c}). + +For efficiency, a @code{link_order} of type +@code{bfd_indirect_link_order} whose associated section belongs +to a BFD of the same format as the output BFD must be handled +specially. This type of @code{link_order} describes part of an +output section in terms of a section belonging to one of the +input files. The @code{_bfd_final_link} function should read the +contents of the section and any associated relocs, apply the +relocs to the section contents, and write out the modified +section contents. If performing a relocatable link, the +relocs themselves must also be modified and written out. + +@findex _bfd_relocate_contents +@findex _bfd_final_link_relocate +The functions @code{_bfd_relocate_contents} and +@code{_bfd_final_link_relocate} provide some general support for +performing the actual relocations, notably overflow checking. +Their arguments include information about the symbol the +relocation is against and a @code{reloc_howto_type} argument +which describes the relocation to perform. These functions +are defined in @code{reloc.c}. + +The a.out function which handles reading, relocating, and +writing section contents is @code{aout_link_input_section}. The +actual relocation is done in @code{aout_link_input_section_std} +and @code{aout_link_input_section_ext}. + +@node Writing the symbol table, , Relocating the section contents, Performing the Final Link +@subsubsection Writing the symbol table +The @code{_bfd_final_link} function must gather all the symbols +in the input files and write them out. It must also write out +all the symbols in the global hash table. This must be +controlled by the @code{strip} and @code{discard} fields of the +@code{bfd_link_info} structure. + +The local symbols of the input files will not have been +entered into the linker hash table. The @code{_bfd_final_link} +routine must consider each input file and include the symbols +in the output file. It may be convenient to do this when +looking through the @code{link_order} structures, or it may be +done by stepping through the @code{input_bfds} list. + +The @code{_bfd_final_link} routine must also traverse the global +hash table to gather all the externally visible symbols. It +is possible that most of the externally visible symbols may be +written out when considering the symbols of each input file, +but it is still necessary to traverse the hash table since the +linker script may have defined some symbols that are not in +any of the input files. + +The @code{strip} field of the @code{bfd_link_info} structure +controls which symbols are written out. The possible values +are listed in @code{bfdlink.h}. If the value is @code{strip_some}, +then the @code{keep_hash} field of the @code{bfd_link_info} +structure is a hash table of symbols to keep; each symbol +should be looked up in this hash table, and only symbols which +are present should be included in the output file. + +If the @code{strip} field of the @code{bfd_link_info} structure +permits local symbols to be written out, the @code{discard} field +is used to further controls which local symbols are included +in the output file. If the value is @code{discard_l}, then all +local symbols which begin with a certain prefix are discarded; +this is controlled by the @code{bfd_is_local_label_name} entry point. + +The a.out backend handles symbols by calling +@code{aout_link_write_symbols} on each input BFD and then +traversing the global hash table with the function +@code{aout_link_write_other_symbol}. It builds a string table +while writing out the symbols, which is written to the output +file at the end of @code{NAME(aout,final_link)}. + +@findex bfd_link_split_section +@subsubsection @code{bfd_link_split_section} +@strong{Synopsis} +@example +bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); +@end example +@strong{Description}@* +Return nonzero if @var{sec} should be split during a +reloceatable or final link. +@example +#define bfd_link_split_section(abfd, sec) \ + BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) + +@end example + +@findex bfd_section_already_linked +@subsubsection @code{bfd_section_already_linked} +@strong{Synopsis} +@example +void bfd_section_already_linked (bfd *abfd, asection *sec, + struct bfd_link_info *info); +@end example +@strong{Description}@* +Check if @var{sec} has been already linked during a reloceatable +or final link. +@example +#define bfd_section_already_linked(abfd, sec, info) \ + BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) + +@end example + diff --git a/bfd/doc/mmo.texi b/bfd/doc/mmo.texi new file mode 100644 index 00000000000..b0d726aad9c --- /dev/null +++ b/bfd/doc/mmo.texi @@ -0,0 +1,365 @@ +@section mmo backend +The mmo object format is used exclusively together with Professor +Donald E.@: Knuth's educational 64-bit processor MMIX. The simulator +@command{mmix} which is available at +@url{http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz} +understands this format. That package also includes a combined +assembler and linker called @command{mmixal}. The mmo format has +no advantages feature-wise compared to e.g. ELF. It is a simple +non-relocatable object format with no support for archives or +debugging information, except for symbol value information and +line numbers (which is not yet implemented in BFD). See +@url{http://www-cs-faculty.stanford.edu/~knuth/mmix.html} for more +information about MMIX. The ELF format is used for intermediate +object files in the BFD implementation. + +@c We want to xref the symbol table node. A feature in "chew" +@c requires that "commands" do not contain spaces in the +@c arguments. Hence the hyphen in "Symbol-table". +@menu +* File layout:: +* Symbol-table:: +* mmo section mapping:: +@end menu + +@node File layout, Symbol-table, mmo, mmo +@subsection File layout +The mmo file contents is not partitioned into named sections as +with e.g.@: ELF. Memory areas is formed by specifying the +location of the data that follows. Only the memory area +@samp{0x0000@dots{}00} to @samp{0x01ff@dots{}ff} is executable, so +it is used for code (and constants) and the area +@samp{0x2000@dots{}00} to @samp{0x20ff@dots{}ff} is used for +writable data. @xref{mmo section mapping}. + +There is provision for specifying ``special data'' of 65536 +different types. We use type 80 (decimal), arbitrarily chosen the +same as the ELF @code{e_machine} number for MMIX, filling it with +section information normally found in ELF objects. @xref{mmo +section mapping}. + +Contents is entered as 32-bit words, xor:ed over previous +contents, always zero-initialized. A word that starts with the +byte @samp{0x98} forms a command called a @samp{lopcode}, where +the next byte distinguished between the thirteen lopcodes. The +two remaining bytes, called the @samp{Y} and @samp{Z} fields, or +the @samp{YZ} field (a 16-bit big-endian number), are used for +various purposes different for each lopcode. As documented in +@url{http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz}, +the lopcodes are: + +@table @code +@item lop_quote +0x98000001. The next word is contents, regardless of whether it +starts with 0x98 or not. + +@item lop_loc +0x9801YYZZ, where @samp{Z} is 1 or 2. This is a location +directive, setting the location for the next data to the next +32-bit word (for @math{Z = 1}) or 64-bit word (for @math{Z = 2}), +plus @math{Y * 2^56}. Normally @samp{Y} is 0 for the text segment +and 2 for the data segment. + +@item lop_skip +0x9802YYZZ. Increase the current location by @samp{YZ} bytes. + +@item lop_fixo +0x9803YYZZ, where @samp{Z} is 1 or 2. Store the current location +as 64 bits into the location pointed to by the next 32-bit +(@math{Z = 1}) or 64-bit (@math{Z = 2}) word, plus @math{Y * +2^56}. + +@item lop_fixr +0x9804YYZZ. @samp{YZ} is stored into the current location plus +@math{2 - 4 * YZ}. + +@item lop_fixrx +0x980500ZZ. @samp{Z} is 16 or 24. A value @samp{L} derived from +the following 32-bit word are used in a manner similar to +@samp{YZ} in lop_fixr: it is xor:ed into the current location +minus @math{4 * L}. The first byte of the word is 0 or 1. If it +is 1, then @math{L = (@var{lowest 24 bits of word}) - 2^Z}, if 0, +then @math{L = (@var{lowest 24 bits of word})}. + +@item lop_file +0x9806YYZZ. @samp{Y} is the file number, @samp{Z} is count of +32-bit words. Set the file number to @samp{Y} and the line +counter to 0. The next @math{Z * 4} bytes contain the file name, +padded with zeros if the count is not a multiple of four. The +same @samp{Y} may occur multiple times, but @samp{Z} must be 0 for +all but the first occurrence. + +@item lop_line +0x9807YYZZ. @samp{YZ} is the line number. Together with +lop_file, it forms the source location for the next 32-bit word. +Note that for each non-lopcode 32-bit word, line numbers are +assumed incremented by one. + +@item lop_spec +0x9808YYZZ. @samp{YZ} is the type number. Data until the next +lopcode other than lop_quote forms special data of type @samp{YZ}. +@xref{mmo section mapping}. + +Other types than 80, (or type 80 with a content that does not +parse) is stored in sections named @code{.MMIX.spec_data.@var{n}} +where @var{n} is the @samp{YZ}-type. The flags for such a +sections say not to allocate or load the data. The vma is 0. +Contents of multiple occurrences of special data @var{n} is +concatenated to the data of the previous lop_spec @var{n}s. The +location in data or code at which the lop_spec occurred is lost. + +@item lop_pre +0x980901ZZ. The first lopcode in a file. The @samp{Z} field forms the +length of header information in 32-bit words, where the first word +tells the time in seconds since @samp{00:00:00 GMT Jan 1 1970}. + +@item lop_post +0x980a00ZZ. @math{Z > 32}. This lopcode follows after all +content-generating lopcodes in a program. The @samp{Z} field +denotes the value of @samp{rG} at the beginning of the program. +The following @math{256 - Z} big-endian 64-bit words are loaded +into global registers @samp{$G} @dots{} @samp{$255}. + +@item lop_stab +0x980b0000. The next-to-last lopcode in a program. Must follow +immediately after the lop_post lopcode and its data. After this +lopcode follows all symbols in a compressed format +(@pxref{Symbol-table}). + +@item lop_end +0x980cYYZZ. The last lopcode in a program. It must follow the +lop_stab lopcode and its data. The @samp{YZ} field contains the +number of 32-bit words of symbol table information after the +preceding lop_stab lopcode. +@end table + +Note that the lopcode "fixups"; @code{lop_fixr}, @code{lop_fixrx} and +@code{lop_fixo} are not generated by BFD, but are handled. They are +generated by @code{mmixal}. + +This trivial one-label, one-instruction file: + +@example + :Main TRAP 1,2,3 +@end example + +can be represented this way in mmo: + +@example + 0x98090101 - lop_pre, one 32-bit word with timestamp. + <timestamp> + 0x98010002 - lop_loc, text segment, using a 64-bit address. + Note that mmixal does not emit this for the file above. + 0x00000000 - Address, high 32 bits. + 0x00000000 - Address, low 32 bits. + 0x98060002 - lop_file, 2 32-bit words for file-name. + 0x74657374 - "test" + 0x2e730000 - ".s\0\0" + 0x98070001 - lop_line, line 1. + 0x00010203 - TRAP 1,2,3 + 0x980a00ff - lop_post, setting $255 to 0. + 0x00000000 + 0x00000000 + 0x980b0000 - lop_stab for ":Main" = 0, serial 1. + 0x203a4040 @xref{Symbol-table}. + 0x10404020 + 0x4d206120 + 0x69016e00 + 0x81000000 + 0x980c0005 - lop_end; symbol table contained five 32-bit words. +@end example +@node Symbol-table, mmo section mapping, File layout, mmo +@subsection Symbol table format +From mmixal.w (or really, the generated mmixal.tex) in +@url{http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz}): +``Symbols are stored and retrieved by means of a @samp{ternary +search trie}, following ideas of Bentley and Sedgewick. (See +ACM--SIAM Symp.@: on Discrete Algorithms @samp{8} (1997), 360--369; +R.@:Sedgewick, @samp{Algorithms in C} (Reading, Mass.@: +Addison--Wesley, 1998), @samp{15.4}.) Each trie node stores a +character, and there are branches to subtries for the cases where +a given character is less than, equal to, or greater than the +character in the trie. There also is a pointer to a symbol table +entry if a symbol ends at the current node.'' + +So it's a tree encoded as a stream of bytes. The stream of bytes +acts on a single virtual global symbol, adding and removing +characters and signalling complete symbol points. Here, we read +the stream and create symbols at the completion points. + +First, there's a control byte @code{m}. If any of the listed bits +in @code{m} is nonzero, we execute what stands at the right, in +the listed order: + +@example + (MMO3_LEFT) + 0x40 - Traverse left trie. + (Read a new command byte and recurse.) + + (MMO3_SYMBITS) + 0x2f - Read the next byte as a character and store it in the + current character position; increment character position. + Test the bits of @code{m}: + + (MMO3_WCHAR) + 0x80 - The character is 16-bit (so read another byte, + merge into current character. + + (MMO3_TYPEBITS) + 0xf - We have a complete symbol; parse the type, value + and serial number and do what should be done + with a symbol. The type and length information + is in j = (m & 0xf). + + (MMO3_REGQUAL_BITS) + j == 0xf: A register variable. The following + byte tells which register. + j <= 8: An absolute symbol. Read j bytes as the + big-endian number the symbol equals. + A j = 2 with two zero bytes denotes an + unknown symbol. + j > 8: As with j <= 8, but add (0x20 << 56) + to the value in the following j - 8 + bytes. + + Then comes the serial number, as a variant of + uleb128, but better named ubeb128: + Read bytes and shift the previous value left 7 + (multiply by 128). Add in the new byte, repeat + until a byte has bit 7 set. The serial number + is the computed value minus 128. + + (MMO3_MIDDLE) + 0x20 - Traverse middle trie. (Read a new command byte + and recurse.) Decrement character position. + + (MMO3_RIGHT) + 0x10 - Traverse right trie. (Read a new command byte and + recurse.) +@end example + +Let's look again at the @code{lop_stab} for the trivial file +(@pxref{File layout}). + +@example + 0x980b0000 - lop_stab for ":Main" = 0, serial 1. + 0x203a4040 + 0x10404020 + 0x4d206120 + 0x69016e00 + 0x81000000 +@end example + +This forms the trivial trie (note that the path between ``:'' and +``M'' is redundant): + +@example + 203a ":" + 40 / + 40 / + 10 \ + 40 / + 40 / + 204d "M" + 2061 "a" + 2069 "i" + 016e "n" is the last character in a full symbol, and + with a value represented in one byte. + 00 The value is 0. + 81 The serial number is 1. +@end example + +@node mmo section mapping, , Symbol-table, mmo +@subsection mmo section mapping +The implementation in BFD uses special data type 80 (decimal) to +encapsulate and describe named sections, containing e.g.@: debug +information. If needed, any datum in the encapsulation will be +quoted using lop_quote. First comes a 32-bit word holding the +number of 32-bit words containing the zero-terminated zero-padded +segment name. After the name there's a 32-bit word holding flags +describing the section type. Then comes a 64-bit big-endian word +with the section length (in bytes), then another with the section +start address. Depending on the type of section, the contents +might follow, zero-padded to 32-bit boundary. For a loadable +section (such as data or code), the contents might follow at some +later point, not necessarily immediately, as a lop_loc with the +same start address as in the section description, followed by the +contents. This in effect forms a descriptor that must be emitted +before the actual contents. Sections described this way must not +overlap. + +For areas that don't have such descriptors, synthetic sections are +formed by BFD. Consecutive contents in the two memory areas +@samp{0x0000@dots{}00} to @samp{0x01ff@dots{}ff} and +@samp{0x2000@dots{}00} to @samp{0x20ff@dots{}ff} are entered in +sections named @code{.text} and @code{.data} respectively. If an area +is not otherwise described, but would together with a neighboring +lower area be less than @samp{0x40000000} bytes long, it is joined +with the lower area and the gap is zero-filled. For other cases, +a new section is formed, named @code{.MMIX.sec.@var{n}}. Here, +@var{n} is a number, a running count through the mmo file, +starting at 0. + +A loadable section specified as: + +@example + .section secname,"ax" + TETRA 1,2,3,4,-1,-2009 + BYTE 80 +@end example + +and linked to address @samp{0x4}, is represented by the sequence: + +@example + 0x98080050 - lop_spec 80 + 0x00000002 - two 32-bit words for the section name + 0x7365636e - "secn" + 0x616d6500 - "ame\0" + 0x00000033 - flags CODE, READONLY, LOAD, ALLOC + 0x00000000 - high 32 bits of section length + 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits + 0x00000000 - high 32 bits of section address + 0x00000004 - section address is 4 + 0x98010002 - 64 bits with address of following data + 0x00000000 - high 32 bits of address + 0x00000004 - low 32 bits: data starts at address 4 + 0x00000001 - 1 + 0x00000002 - 2 + 0x00000003 - 3 + 0x00000004 - 4 + 0xffffffff - -1 + 0xfffff827 - -2009 + 0x50000000 - 80 as a byte, padded with zeros. +@end example + +Note that the lop_spec wrapping does not include the section +contents. Compare this to a non-loaded section specified as: + +@example + .section thirdsec + TETRA 200001,100002 + BYTE 38,40 +@end example + +This, when linked to address @samp{0x200000000000001c}, is +represented by: + +@example + 0x98080050 - lop_spec 80 + 0x00000002 - two 32-bit words for the section name + 0x7365636e - "thir" + 0x616d6500 - "dsec" + 0x00000010 - flag READONLY + 0x00000000 - high 32 bits of section length + 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits + 0x20000000 - high 32 bits of address + 0x0000001c - low 32 bits of address 0x200000000000001c + 0x00030d41 - 200001 + 0x000186a2 - 100002 + 0x26280000 - 38, 40 as bytes, padded with zeros +@end example + +For the latter example, the section contents must not be +loaded in memory, and is therefore specified as part of the +special data. The address is usually unimportant but might +provide information for e.g.@: the DWARF 2 debugging format. diff --git a/bfd/doc/opncls.texi b/bfd/doc/opncls.texi new file mode 100644 index 00000000000..94f2f9fc5c1 --- /dev/null +++ b/bfd/doc/opncls.texi @@ -0,0 +1,372 @@ +@section Opening and closing BFDs + + +@subsection Functions for opening and closing + + +@findex bfd_fopen +@subsubsection @code{bfd_fopen} +@strong{Synopsis} +@example +bfd *bfd_fopen (const char *filename, const char *target, + const char *mode, int fd); +@end example +@strong{Description}@* +Open the file @var{filename} with the target @var{target}. +Return a pointer to the created BFD. If @var{fd} is not -1, +then @code{fdopen} is used to open the file; otherwise, @code{fopen} +is used. @var{mode} is passed directly to @code{fopen} or +@code{fdopen}. + +Calls @code{bfd_find_target}, so @var{target} is interpreted as by +that function. + +The new BFD is marked as cacheable iff @var{fd} is -1. + +If @code{NULL} is returned then an error has occured. Possible errors +are @code{bfd_error_no_memory}, @code{bfd_error_invalid_target} or +@code{system_call} error. + +@findex bfd_openr +@subsubsection @code{bfd_openr} +@strong{Synopsis} +@example +bfd *bfd_openr (const char *filename, const char *target); +@end example +@strong{Description}@* +Open the file @var{filename} (using @code{fopen}) with the target +@var{target}. Return a pointer to the created BFD. + +Calls @code{bfd_find_target}, so @var{target} is interpreted as by +that function. + +If @code{NULL} is returned then an error has occured. Possible errors +are @code{bfd_error_no_memory}, @code{bfd_error_invalid_target} or +@code{system_call} error. + +@findex bfd_fdopenr +@subsubsection @code{bfd_fdopenr} +@strong{Synopsis} +@example +bfd *bfd_fdopenr (const char *filename, const char *target, int fd); +@end example +@strong{Description}@* +@code{bfd_fdopenr} is to @code{bfd_fopenr} much like @code{fdopen} is to +@code{fopen}. It opens a BFD on a file already described by the +@var{fd} supplied. + +When the file is later @code{bfd_close}d, the file descriptor will +be closed. If the caller desires that this file descriptor be +cached by BFD (opened as needed, closed as needed to free +descriptors for other opens), with the supplied @var{fd} used as +an initial file descriptor (but subject to closure at any time), +call bfd_set_cacheable(bfd, 1) on the returned BFD. The default +is to assume no caching; the file descriptor will remain open +until @code{bfd_close}, and will not be affected by BFD operations +on other files. + +Possible errors are @code{bfd_error_no_memory}, +@code{bfd_error_invalid_target} and @code{bfd_error_system_call}. + +@findex bfd_openstreamr +@subsubsection @code{bfd_openstreamr} +@strong{Synopsis} +@example +bfd *bfd_openstreamr (const char *, const char *, void *); +@end example +@strong{Description}@* +Open a BFD for read access on an existing stdio stream. When +the BFD is passed to @code{bfd_close}, the stream will be closed. + +@findex bfd_openr_iovec +@subsubsection @code{bfd_openr_iovec} +@strong{Synopsis} +@example +bfd *bfd_openr_iovec (const char *filename, const char *target, + void *(*open) (struct bfd *nbfd, + void *open_closure), + void *open_closure, + file_ptr (*pread) (struct bfd *nbfd, + void *stream, + void *buf, + file_ptr nbytes, + file_ptr offset), + int (*close) (struct bfd *nbfd, + void *stream), + int (*stat) (struct bfd *abfd, + void *stream, + struct stat *sb)); +@end example +@strong{Description}@* +Create and return a BFD backed by a read-only @var{stream}. +The @var{stream} is created using @var{open}, accessed using +@var{pread} and destroyed using @var{close}. + +Calls @code{bfd_find_target}, so @var{target} is interpreted as by +that function. + +Calls @var{open} (which can call @code{bfd_zalloc} and +@code{bfd_get_filename}) to obtain the read-only stream backing +the BFD. @var{open} either succeeds returning the +non-@code{NULL} @var{stream}, or fails returning @code{NULL} +(setting @code{bfd_error}). + +Calls @var{pread} to request @var{nbytes} of data from +@var{stream} starting at @var{offset} (e.g., via a call to +@code{bfd_read}). @var{pread} either succeeds returning the +number of bytes read (which can be less than @var{nbytes} when +end-of-file), or fails returning -1 (setting @code{bfd_error}). + +Calls @var{close} when the BFD is later closed using +@code{bfd_close}. @var{close} either succeeds returning 0, or +fails returning -1 (setting @code{bfd_error}). + +Calls @var{stat} to fill in a stat structure for bfd_stat, +bfd_get_size, and bfd_get_mtime calls. @var{stat} returns 0 +on success, or returns -1 on failure (setting @code{bfd_error}). + +If @code{bfd_openr_iovec} returns @code{NULL} then an error has +occurred. Possible errors are @code{bfd_error_no_memory}, +@code{bfd_error_invalid_target} and @code{bfd_error_system_call}. + +@findex bfd_openw +@subsubsection @code{bfd_openw} +@strong{Synopsis} +@example +bfd *bfd_openw (const char *filename, const char *target); +@end example +@strong{Description}@* +Create a BFD, associated with file @var{filename}, using the +file format @var{target}, and return a pointer to it. + +Possible errors are @code{bfd_error_system_call}, @code{bfd_error_no_memory}, +@code{bfd_error_invalid_target}. + +@findex bfd_close +@subsubsection @code{bfd_close} +@strong{Synopsis} +@example +bfd_boolean bfd_close (bfd *abfd); +@end example +@strong{Description}@* +Close a BFD. If the BFD was open for writing, then pending +operations are completed and the file written out and closed. +If the created file is executable, then @code{chmod} is called +to mark it as such. + +All memory attached to the BFD is released. + +The file descriptor associated with the BFD is closed (even +if it was passed in to BFD by @code{bfd_fdopenr}). + +@strong{Returns}@* +@code{TRUE} is returned if all is ok, otherwise @code{FALSE}. + +@findex bfd_close_all_done +@subsubsection @code{bfd_close_all_done} +@strong{Synopsis} +@example +bfd_boolean bfd_close_all_done (bfd *); +@end example +@strong{Description}@* +Close a BFD. Differs from @code{bfd_close} since it does not +complete any pending operations. This routine would be used +if the application had just used BFD for swapping and didn't +want to use any of the writing code. + +If the created file is executable, then @code{chmod} is called +to mark it as such. + +All memory attached to the BFD is released. + +@strong{Returns}@* +@code{TRUE} is returned if all is ok, otherwise @code{FALSE}. + +@findex bfd_create +@subsubsection @code{bfd_create} +@strong{Synopsis} +@example +bfd *bfd_create (const char *filename, bfd *templ); +@end example +@strong{Description}@* +Create a new BFD in the manner of @code{bfd_openw}, but without +opening a file. The new BFD takes the target from the target +used by @var{template}. The format is always set to @code{bfd_object}. + +@findex bfd_make_writable +@subsubsection @code{bfd_make_writable} +@strong{Synopsis} +@example +bfd_boolean bfd_make_writable (bfd *abfd); +@end example +@strong{Description}@* +Takes a BFD as created by @code{bfd_create} and converts it +into one like as returned by @code{bfd_openw}. It does this +by converting the BFD to BFD_IN_MEMORY. It's assumed that +you will call @code{bfd_make_readable} on this bfd later. + +@strong{Returns}@* +@code{TRUE} is returned if all is ok, otherwise @code{FALSE}. + +@findex bfd_make_readable +@subsubsection @code{bfd_make_readable} +@strong{Synopsis} +@example +bfd_boolean bfd_make_readable (bfd *abfd); +@end example +@strong{Description}@* +Takes a BFD as created by @code{bfd_create} and +@code{bfd_make_writable} and converts it into one like as +returned by @code{bfd_openr}. It does this by writing the +contents out to the memory buffer, then reversing the +direction. + +@strong{Returns}@* +@code{TRUE} is returned if all is ok, otherwise @code{FALSE}. + +@findex bfd_alloc +@subsubsection @code{bfd_alloc} +@strong{Synopsis} +@example +void *bfd_alloc (bfd *abfd, bfd_size_type wanted); +@end example +@strong{Description}@* +Allocate a block of @var{wanted} bytes of memory attached to +@code{abfd} and return a pointer to it. + +@findex bfd_alloc2 +@subsubsection @code{bfd_alloc2} +@strong{Synopsis} +@example +void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); +@end example +@strong{Description}@* +Allocate a block of @var{nmemb} elements of @var{size} bytes each +of memory attached to @code{abfd} and return a pointer to it. + +@findex bfd_zalloc +@subsubsection @code{bfd_zalloc} +@strong{Synopsis} +@example +void *bfd_zalloc (bfd *abfd, bfd_size_type wanted); +@end example +@strong{Description}@* +Allocate a block of @var{wanted} bytes of zeroed memory +attached to @code{abfd} and return a pointer to it. + +@findex bfd_zalloc2 +@subsubsection @code{bfd_zalloc2} +@strong{Synopsis} +@example +void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); +@end example +@strong{Description}@* +Allocate a block of @var{nmemb} elements of @var{size} bytes each +of zeroed memory attached to @code{abfd} and return a pointer to it. + +@findex bfd_calc_gnu_debuglink_crc32 +@subsubsection @code{bfd_calc_gnu_debuglink_crc32} +@strong{Synopsis} +@example +unsigned long bfd_calc_gnu_debuglink_crc32 + (unsigned long crc, const unsigned char *buf, bfd_size_type len); +@end example +@strong{Description}@* +Computes a CRC value as used in the .gnu_debuglink section. +Advances the previously computed @var{crc} value by computing +and adding in the crc32 for @var{len} bytes of @var{buf}. + +@strong{Returns}@* +Return the updated CRC32 value. + +@findex get_debug_link_info +@subsubsection @code{get_debug_link_info} +@strong{Synopsis} +@example +char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out); +@end example +@strong{Description}@* +fetch the filename and CRC32 value for any separate debuginfo +associated with @var{abfd}. Return NULL if no such info found, +otherwise return filename and update @var{crc32_out}. + +@findex separate_debug_file_exists +@subsubsection @code{separate_debug_file_exists} +@strong{Synopsis} +@example +bfd_boolean separate_debug_file_exists + (char *name, unsigned long crc32); +@end example +@strong{Description}@* +Checks to see if @var{name} is a file and if its contents +match @var{crc32}. + +@findex find_separate_debug_file +@subsubsection @code{find_separate_debug_file} +@strong{Synopsis} +@example +char *find_separate_debug_file (bfd *abfd); +@end example +@strong{Description}@* +Searches @var{abfd} for a reference to separate debugging +information, scans various locations in the filesystem, including +the file tree rooted at @var{debug_file_directory}, and returns a +filename of such debugging information if the file is found and has +matching CRC32. Returns NULL if no reference to debugging file +exists, or file cannot be found. + +@findex bfd_follow_gnu_debuglink +@subsubsection @code{bfd_follow_gnu_debuglink} +@strong{Synopsis} +@example +char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir); +@end example +@strong{Description}@* +Takes a BFD and searches it for a .gnu_debuglink section. If this +section is found, it examines the section for the name and checksum +of a '.debug' file containing auxiliary debugging information. It +then searches the filesystem for this .debug file in some standard +locations, including the directory tree rooted at @var{dir}, and if +found returns the full filename. + +If @var{dir} is NULL, it will search a default path configured into +libbfd at build time. [XXX this feature is not currently +implemented]. + +@strong{Returns}@* +@code{NULL} on any errors or failure to locate the .debug file, +otherwise a pointer to a heap-allocated string containing the +filename. The caller is responsible for freeing this string. + +@findex bfd_create_gnu_debuglink_section +@subsubsection @code{bfd_create_gnu_debuglink_section} +@strong{Synopsis} +@example +struct bfd_section *bfd_create_gnu_debuglink_section + (bfd *abfd, const char *filename); +@end example +@strong{Description}@* +Takes a @var{BFD} and adds a .gnu_debuglink section to it. The section is sized +to be big enough to contain a link to the specified @var{filename}. + +@strong{Returns}@* +A pointer to the new section is returned if all is ok. Otherwise @code{NULL} is +returned and bfd_error is set. + +@findex bfd_fill_in_gnu_debuglink_section +@subsubsection @code{bfd_fill_in_gnu_debuglink_section} +@strong{Synopsis} +@example +bfd_boolean bfd_fill_in_gnu_debuglink_section + (bfd *abfd, struct bfd_section *sect, const char *filename); +@end example +@strong{Description}@* +Takes a @var{BFD} and containing a .gnu_debuglink section @var{SECT} +and fills in the contents of the section to contain a link to the +specified @var{filename}. The filename should be relative to the +current directory. + +@strong{Returns}@* +@code{TRUE} is returned if all is ok. Otherwise @code{FALSE} is returned +and bfd_error is set. + diff --git a/bfd/doc/reloc.texi b/bfd/doc/reloc.texi new file mode 100644 index 00000000000..b0877f6eef1 --- /dev/null +++ b/bfd/doc/reloc.texi @@ -0,0 +1,2679 @@ +@section Relocations +BFD maintains relocations in much the same way it maintains +symbols: they are left alone until required, then read in +en-masse and translated into an internal form. A common +routine @code{bfd_perform_relocation} acts upon the +canonical form to do the fixup. + +Relocations are maintained on a per section basis, +while symbols are maintained on a per BFD basis. + +All that a back end has to do to fit the BFD interface is to create +a @code{struct reloc_cache_entry} for each relocation +in a particular section, and fill in the right bits of the structures. + +@menu +* typedef arelent:: +* howto manager:: +@end menu + + +@node typedef arelent, howto manager, Relocations, Relocations +@subsection typedef arelent +This is the structure of a relocation entry: + + +@example + +typedef enum bfd_reloc_status +@{ + /* No errors detected. */ + bfd_reloc_ok, + + /* The relocation was performed, but there was an overflow. */ + bfd_reloc_overflow, + + /* The address to relocate was not within the section supplied. */ + bfd_reloc_outofrange, + + /* Used by special functions. */ + bfd_reloc_continue, + + /* Unsupported relocation size requested. */ + bfd_reloc_notsupported, + + /* Unused. */ + bfd_reloc_other, + + /* The symbol to relocate against was undefined. */ + bfd_reloc_undefined, + + /* The relocation was performed, but may not be ok - presently + generated only when linking i960 coff files with i960 b.out + symbols. If this type is returned, the error_message argument + to bfd_perform_relocation will be set. */ + bfd_reloc_dangerous + @} + bfd_reloc_status_type; + + +typedef struct reloc_cache_entry +@{ + /* A pointer into the canonical table of pointers. */ + struct bfd_symbol **sym_ptr_ptr; + + /* offset in section. */ + bfd_size_type address; + + /* addend for relocation value. */ + bfd_vma addend; + + /* Pointer to how to perform the required relocation. */ + reloc_howto_type *howto; + +@} +arelent; + +@end example +@strong{Description}@* +Here is a description of each of the fields within an @code{arelent}: + +@itemize @bullet + +@item +@code{sym_ptr_ptr} +@end itemize +The symbol table pointer points to a pointer to the symbol +associated with the relocation request. It is the pointer +into the table returned by the back end's +@code{canonicalize_symtab} action. @xref{Symbols}. The symbol is +referenced through a pointer to a pointer so that tools like +the linker can fix up all the symbols of the same name by +modifying only one pointer. The relocation routine looks in +the symbol and uses the base of the section the symbol is +attached to and the value of the symbol as the initial +relocation offset. If the symbol pointer is zero, then the +section provided is looked up. + +@itemize @bullet + +@item +@code{address} +@end itemize +The @code{address} field gives the offset in bytes from the base of +the section data which owns the relocation record to the first +byte of relocatable information. The actual data relocated +will be relative to this point; for example, a relocation +type which modifies the bottom two bytes of a four byte word +would not touch the first byte pointed to in a big endian +world. + +@itemize @bullet + +@item +@code{addend} +@end itemize +The @code{addend} is a value provided by the back end to be added (!) +to the relocation offset. Its interpretation is dependent upon +the howto. For example, on the 68k the code: + +@example + char foo[]; + main() + @{ + return foo[0x12345678]; + @} +@end example + +Could be compiled into: + +@example + linkw fp,#-4 + moveb @@#12345678,d0 + extbl d0 + unlk fp + rts +@end example + +This could create a reloc pointing to @code{foo}, but leave the +offset in the data, something like: + +@example +RELOCATION RECORDS FOR [.text]: +offset type value +00000006 32 _foo + +00000000 4e56 fffc ; linkw fp,#-4 +00000004 1039 1234 5678 ; moveb @@#12345678,d0 +0000000a 49c0 ; extbl d0 +0000000c 4e5e ; unlk fp +0000000e 4e75 ; rts +@end example + +Using coff and an 88k, some instructions don't have enough +space in them to represent the full address range, and +pointers have to be loaded in two parts. So you'd get something like: + +@example + or.u r13,r0,hi16(_foo+0x12345678) + ld.b r2,r13,lo16(_foo+0x12345678) + jmp r1 +@end example + +This should create two relocs, both pointing to @code{_foo}, and with +0x12340000 in their addend field. The data would consist of: + +@example +RELOCATION RECORDS FOR [.text]: +offset type value +00000002 HVRT16 _foo+0x12340000 +00000006 LVRT16 _foo+0x12340000 + +00000000 5da05678 ; or.u r13,r0,0x5678 +00000004 1c4d5678 ; ld.b r2,r13,0x5678 +00000008 f400c001 ; jmp r1 +@end example + +The relocation routine digs out the value from the data, adds +it to the addend to get the original offset, and then adds the +value of @code{_foo}. Note that all 32 bits have to be kept around +somewhere, to cope with carry from bit 15 to bit 16. + +One further example is the sparc and the a.out format. The +sparc has a similar problem to the 88k, in that some +instructions don't have room for an entire offset, but on the +sparc the parts are created in odd sized lumps. The designers of +the a.out format chose to not use the data within the section +for storing part of the offset; all the offset is kept within +the reloc. Anything in the data should be ignored. + +@example + save %sp,-112,%sp + sethi %hi(_foo+0x12345678),%g2 + ldsb [%g2+%lo(_foo+0x12345678)],%i0 + ret + restore +@end example + +Both relocs contain a pointer to @code{foo}, and the offsets +contain junk. + +@example +RELOCATION RECORDS FOR [.text]: +offset type value +00000004 HI22 _foo+0x12345678 +00000008 LO10 _foo+0x12345678 + +00000000 9de3bf90 ; save %sp,-112,%sp +00000004 05000000 ; sethi %hi(_foo+0),%g2 +00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 +0000000c 81c7e008 ; ret +00000010 81e80000 ; restore +@end example + +@itemize @bullet + +@item +@code{howto} +@end itemize +The @code{howto} field can be imagined as a +relocation instruction. It is a pointer to a structure which +contains information on what to do with all of the other +information in the reloc record and data section. A back end +would normally have a relocation instruction set and turn +relocations into pointers to the correct structure on input - +but it would be possible to create each howto field on demand. + +@subsubsection @code{enum complain_overflow} +Indicates what sort of overflow checking should be done when +performing a relocation. + + +@example + +enum complain_overflow +@{ + /* Do not complain on overflow. */ + complain_overflow_dont, + + /* Complain if the value overflows when considered as a signed + number one bit larger than the field. ie. A bitfield of N bits + is allowed to represent -2**n to 2**n-1. */ + complain_overflow_bitfield, + + /* Complain if the value overflows when considered as a signed + number. */ + complain_overflow_signed, + + /* Complain if the value overflows when considered as an + unsigned number. */ + complain_overflow_unsigned +@}; +@end example +@subsubsection @code{reloc_howto_type} +The @code{reloc_howto_type} is a structure which contains all the +information that libbfd needs to know to tie up a back end's data. + + +@example +struct bfd_symbol; /* Forward declaration. */ + +struct reloc_howto_struct +@{ + /* The type field has mainly a documentary use - the back end can + do what it wants with it, though normally the back end's + external idea of what a reloc number is stored + in this field. For example, a PC relative word relocation + in a coff environment has the type 023 - because that's + what the outside world calls a R_PCRWORD reloc. */ + unsigned int type; + + /* The value the final relocation is shifted right by. This drops + unwanted data from the relocation. */ + unsigned int rightshift; + + /* The size of the item to be relocated. This is *not* a + power-of-two measure. To get the number of bytes operated + on by a type of relocation, use bfd_get_reloc_size. */ + int size; + + /* The number of bits in the item to be relocated. This is used + when doing overflow checking. */ + unsigned int bitsize; + + /* Notes that the relocation is relative to the location in the + data section of the addend. The relocation function will + subtract from the relocation value the address of the location + being relocated. */ + bfd_boolean pc_relative; + + /* The bit position of the reloc value in the destination. + The relocated value is left shifted by this amount. */ + unsigned int bitpos; + + /* What type of overflow error should be checked for when + relocating. */ + enum complain_overflow complain_on_overflow; + + /* If this field is non null, then the supplied function is + called rather than the normal function. This allows really + strange relocation methods to be accommodated (e.g., i960 callj + instructions). */ + bfd_reloc_status_type (*special_function) + (bfd *, arelent *, struct bfd_symbol *, void *, asection *, + bfd *, char **); + + /* The textual name of the relocation type. */ + char *name; + + /* Some formats record a relocation addend in the section contents + rather than with the relocation. For ELF formats this is the + distinction between USE_REL and USE_RELA (though the code checks + for USE_REL == 1/0). The value of this field is TRUE if the + addend is recorded with the section contents; when performing a + partial link (ld -r) the section contents (the data) will be + modified. The value of this field is FALSE if addends are + recorded with the relocation (in arelent.addend); when performing + a partial link the relocation will be modified. + All relocations for all ELF USE_RELA targets should set this field + to FALSE (values of TRUE should be looked on with suspicion). + However, the converse is not true: not all relocations of all ELF + USE_REL targets set this field to TRUE. Why this is so is peculiar + to each particular target. For relocs that aren't used in partial + links (e.g. GOT stuff) it doesn't matter what this is set to. */ + bfd_boolean partial_inplace; + + /* src_mask selects the part of the instruction (or data) to be used + in the relocation sum. If the target relocations don't have an + addend in the reloc, eg. ELF USE_REL, src_mask will normally equal + dst_mask to extract the addend from the section contents. If + relocations do have an addend in the reloc, eg. ELF USE_RELA, this + field should be zero. Non-zero values for ELF USE_RELA targets are + bogus as in those cases the value in the dst_mask part of the + section contents should be treated as garbage. */ + bfd_vma src_mask; + + /* dst_mask selects which parts of the instruction (or data) are + replaced with a relocated value. */ + bfd_vma dst_mask; + + /* When some formats create PC relative instructions, they leave + the value of the pc of the place being relocated in the offset + slot of the instruction, so that a PC relative relocation can + be made just by adding in an ordinary offset (e.g., sun3 a.out). + Some formats leave the displacement part of an instruction + empty (e.g., m88k bcs); this flag signals the fact. */ + bfd_boolean pcrel_offset; +@}; + +@end example +@findex The HOWTO Macro +@subsubsection @code{The HOWTO Macro} +@strong{Description}@* +The HOWTO define is horrible and will go away. +@example +#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ + @{ (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC @} +@end example + +@strong{Description}@* +And will be replaced with the totally magic way. But for the +moment, we are compatible, so do it this way. +@example +#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \ + HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \ + NAME, FALSE, 0, 0, IN) + +@end example + +@strong{Description}@* +This is used to fill in an empty howto entry in an array. +@example +#define EMPTY_HOWTO(C) \ + HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \ + NULL, FALSE, 0, 0, FALSE) + +@end example + +@strong{Description}@* +Helper routine to turn a symbol into a relocation value. +@example +#define HOWTO_PREPARE(relocation, symbol) \ + @{ \ + if (symbol != NULL) \ + @{ \ + if (bfd_is_com_section (symbol->section)) \ + @{ \ + relocation = 0; \ + @} \ + else \ + @{ \ + relocation = symbol->value; \ + @} \ + @} \ + @} + +@end example + +@findex bfd_get_reloc_size +@subsubsection @code{bfd_get_reloc_size} +@strong{Synopsis} +@example +unsigned int bfd_get_reloc_size (reloc_howto_type *); +@end example +@strong{Description}@* +For a reloc_howto_type that operates on a fixed number of bytes, +this returns the number of bytes operated on. + +@findex arelent_chain +@subsubsection @code{arelent_chain} +@strong{Description}@* +How relocs are tied together in an @code{asection}: +@example +typedef struct relent_chain +@{ + arelent relent; + struct relent_chain *next; +@} +arelent_chain; + +@end example + +@findex bfd_check_overflow +@subsubsection @code{bfd_check_overflow} +@strong{Synopsis} +@example +bfd_reloc_status_type bfd_check_overflow + (enum complain_overflow how, + unsigned int bitsize, + unsigned int rightshift, + unsigned int addrsize, + bfd_vma relocation); +@end example +@strong{Description}@* +Perform overflow checking on @var{relocation} which has +@var{bitsize} significant bits and will be shifted right by +@var{rightshift} bits, on a machine with addresses containing +@var{addrsize} significant bits. The result is either of +@code{bfd_reloc_ok} or @code{bfd_reloc_overflow}. + +@findex bfd_perform_relocation +@subsubsection @code{bfd_perform_relocation} +@strong{Synopsis} +@example +bfd_reloc_status_type bfd_perform_relocation + (bfd *abfd, + arelent *reloc_entry, + void *data, + asection *input_section, + bfd *output_bfd, + char **error_message); +@end example +@strong{Description}@* +If @var{output_bfd} is supplied to this function, the +generated image will be relocatable; the relocations are +copied to the output file after they have been changed to +reflect the new state of the world. There are two ways of +reflecting the results of partial linkage in an output file: +by modifying the output data in place, and by modifying the +relocation record. Some native formats (e.g., basic a.out and +basic coff) have no way of specifying an addend in the +relocation type, so the addend has to go in the output data. +This is no big deal since in these formats the output data +slot will always be big enough for the addend. Complex reloc +types with addends were invented to solve just this problem. +The @var{error_message} argument is set to an error message if +this return @code{bfd_reloc_dangerous}. + +@findex bfd_install_relocation +@subsubsection @code{bfd_install_relocation} +@strong{Synopsis} +@example +bfd_reloc_status_type bfd_install_relocation + (bfd *abfd, + arelent *reloc_entry, + void *data, bfd_vma data_start, + asection *input_section, + char **error_message); +@end example +@strong{Description}@* +This looks remarkably like @code{bfd_perform_relocation}, except it +does not expect that the section contents have been filled in. +I.e., it's suitable for use when creating, rather than applying +a relocation. + +For now, this function should be considered reserved for the +assembler. + + +@node howto manager, , typedef arelent, Relocations +@subsection The howto manager +When an application wants to create a relocation, but doesn't +know what the target machine might call it, it can find out by +using this bit of code. + +@findex bfd_reloc_code_type +@subsubsection @code{bfd_reloc_code_type} +@strong{Description}@* +The insides of a reloc code. The idea is that, eventually, there +will be one enumerator for every type of relocation we ever do. +Pass one of these values to @code{bfd_reloc_type_lookup}, and it'll +return a howto pointer. + +This does mean that the application must determine the correct +enumerator value; you can't get a howto pointer from a random set +of attributes. + +Here are the possible values for @code{enum bfd_reloc_code_real}: + +@deffn {} BFD_RELOC_64 +@deffnx {} BFD_RELOC_32 +@deffnx {} BFD_RELOC_26 +@deffnx {} BFD_RELOC_24 +@deffnx {} BFD_RELOC_16 +@deffnx {} BFD_RELOC_14 +@deffnx {} BFD_RELOC_8 +Basic absolute relocations of N bits. +@end deffn +@deffn {} BFD_RELOC_64_PCREL +@deffnx {} BFD_RELOC_32_PCREL +@deffnx {} BFD_RELOC_24_PCREL +@deffnx {} BFD_RELOC_16_PCREL +@deffnx {} BFD_RELOC_12_PCREL +@deffnx {} BFD_RELOC_8_PCREL +PC-relative relocations. Sometimes these are relative to the address +of the relocation itself; sometimes they are relative to the start of +the section containing the relocation. It depends on the specific target. + +The 24-bit relocation is used in some Intel 960 configurations. +@end deffn +@deffn {} BFD_RELOC_32_SECREL +Section relative relocations. Some targets need this for DWARF2. +@end deffn +@deffn {} BFD_RELOC_32_GOT_PCREL +@deffnx {} BFD_RELOC_16_GOT_PCREL +@deffnx {} BFD_RELOC_8_GOT_PCREL +@deffnx {} BFD_RELOC_32_GOTOFF +@deffnx {} BFD_RELOC_16_GOTOFF +@deffnx {} BFD_RELOC_LO16_GOTOFF +@deffnx {} BFD_RELOC_HI16_GOTOFF +@deffnx {} BFD_RELOC_HI16_S_GOTOFF +@deffnx {} BFD_RELOC_8_GOTOFF +@deffnx {} BFD_RELOC_64_PLT_PCREL +@deffnx {} BFD_RELOC_32_PLT_PCREL +@deffnx {} BFD_RELOC_24_PLT_PCREL +@deffnx {} BFD_RELOC_16_PLT_PCREL +@deffnx {} BFD_RELOC_8_PLT_PCREL +@deffnx {} BFD_RELOC_64_PLTOFF +@deffnx {} BFD_RELOC_32_PLTOFF +@deffnx {} BFD_RELOC_16_PLTOFF +@deffnx {} BFD_RELOC_LO16_PLTOFF +@deffnx {} BFD_RELOC_HI16_PLTOFF +@deffnx {} BFD_RELOC_HI16_S_PLTOFF +@deffnx {} BFD_RELOC_8_PLTOFF +For ELF. +@end deffn +@deffn {} BFD_RELOC_68K_GLOB_DAT +@deffnx {} BFD_RELOC_68K_JMP_SLOT +@deffnx {} BFD_RELOC_68K_RELATIVE +Relocations used by 68K ELF. +@end deffn +@deffn {} BFD_RELOC_32_BASEREL +@deffnx {} BFD_RELOC_16_BASEREL +@deffnx {} BFD_RELOC_LO16_BASEREL +@deffnx {} BFD_RELOC_HI16_BASEREL +@deffnx {} BFD_RELOC_HI16_S_BASEREL +@deffnx {} BFD_RELOC_8_BASEREL +@deffnx {} BFD_RELOC_RVA +Linkage-table relative. +@end deffn +@deffn {} BFD_RELOC_8_FFnn +Absolute 8-bit relocation, but used to form an address like 0xFFnn. +@end deffn +@deffn {} BFD_RELOC_32_PCREL_S2 +@deffnx {} BFD_RELOC_16_PCREL_S2 +@deffnx {} BFD_RELOC_23_PCREL_S2 +These PC-relative relocations are stored as word displacements -- +i.e., byte displacements shifted right two bits. The 30-bit word +displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the +SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The +signed 16-bit displacement is used on the MIPS, and the 23-bit +displacement is used on the Alpha. +@end deffn +@deffn {} BFD_RELOC_HI22 +@deffnx {} BFD_RELOC_LO10 +High 22 bits and low 10 bits of 32-bit value, placed into lower bits of +the target word. These are used on the SPARC. +@end deffn +@deffn {} BFD_RELOC_GPREL16 +@deffnx {} BFD_RELOC_GPREL32 +For systems that allocate a Global Pointer register, these are +displacements off that register. These relocation types are +handled specially, because the value the register will have is +decided relatively late. +@end deffn +@deffn {} BFD_RELOC_I960_CALLJ +Reloc types used for i960/b.out. +@end deffn +@deffn {} BFD_RELOC_NONE +@deffnx {} BFD_RELOC_SPARC_WDISP22 +@deffnx {} BFD_RELOC_SPARC22 +@deffnx {} BFD_RELOC_SPARC13 +@deffnx {} BFD_RELOC_SPARC_GOT10 +@deffnx {} BFD_RELOC_SPARC_GOT13 +@deffnx {} BFD_RELOC_SPARC_GOT22 +@deffnx {} BFD_RELOC_SPARC_PC10 +@deffnx {} BFD_RELOC_SPARC_PC22 +@deffnx {} BFD_RELOC_SPARC_WPLT30 +@deffnx {} BFD_RELOC_SPARC_COPY +@deffnx {} BFD_RELOC_SPARC_GLOB_DAT +@deffnx {} BFD_RELOC_SPARC_JMP_SLOT +@deffnx {} BFD_RELOC_SPARC_RELATIVE +@deffnx {} BFD_RELOC_SPARC_UA16 +@deffnx {} BFD_RELOC_SPARC_UA32 +@deffnx {} BFD_RELOC_SPARC_UA64 +@deffnx {} BFD_RELOC_SPARC_GOTDATA_HIX22 +@deffnx {} BFD_RELOC_SPARC_GOTDATA_LOX10 +@deffnx {} BFD_RELOC_SPARC_GOTDATA_OP_HIX22 +@deffnx {} BFD_RELOC_SPARC_GOTDATA_OP_LOX10 +@deffnx {} BFD_RELOC_SPARC_GOTDATA_OP +SPARC ELF relocations. There is probably some overlap with other +relocation types already defined. +@end deffn +@deffn {} BFD_RELOC_SPARC_BASE13 +@deffnx {} BFD_RELOC_SPARC_BASE22 +I think these are specific to SPARC a.out (e.g., Sun 4). +@end deffn +@deffn {} BFD_RELOC_SPARC_64 +@deffnx {} BFD_RELOC_SPARC_10 +@deffnx {} BFD_RELOC_SPARC_11 +@deffnx {} BFD_RELOC_SPARC_OLO10 +@deffnx {} BFD_RELOC_SPARC_HH22 +@deffnx {} BFD_RELOC_SPARC_HM10 +@deffnx {} BFD_RELOC_SPARC_LM22 +@deffnx {} BFD_RELOC_SPARC_PC_HH22 +@deffnx {} BFD_RELOC_SPARC_PC_HM10 +@deffnx {} BFD_RELOC_SPARC_PC_LM22 +@deffnx {} BFD_RELOC_SPARC_WDISP16 +@deffnx {} BFD_RELOC_SPARC_WDISP19 +@deffnx {} BFD_RELOC_SPARC_7 +@deffnx {} BFD_RELOC_SPARC_6 +@deffnx {} BFD_RELOC_SPARC_5 +@deffnx {} BFD_RELOC_SPARC_DISP64 +@deffnx {} BFD_RELOC_SPARC_PLT32 +@deffnx {} BFD_RELOC_SPARC_PLT64 +@deffnx {} BFD_RELOC_SPARC_HIX22 +@deffnx {} BFD_RELOC_SPARC_LOX10 +@deffnx {} BFD_RELOC_SPARC_H44 +@deffnx {} BFD_RELOC_SPARC_M44 +@deffnx {} BFD_RELOC_SPARC_L44 +@deffnx {} BFD_RELOC_SPARC_REGISTER +SPARC64 relocations +@end deffn +@deffn {} BFD_RELOC_SPARC_REV32 +SPARC little endian relocation +@end deffn +@deffn {} BFD_RELOC_SPARC_TLS_GD_HI22 +@deffnx {} BFD_RELOC_SPARC_TLS_GD_LO10 +@deffnx {} BFD_RELOC_SPARC_TLS_GD_ADD +@deffnx {} BFD_RELOC_SPARC_TLS_GD_CALL +@deffnx {} BFD_RELOC_SPARC_TLS_LDM_HI22 +@deffnx {} BFD_RELOC_SPARC_TLS_LDM_LO10 +@deffnx {} BFD_RELOC_SPARC_TLS_LDM_ADD +@deffnx {} BFD_RELOC_SPARC_TLS_LDM_CALL +@deffnx {} BFD_RELOC_SPARC_TLS_LDO_HIX22 +@deffnx {} BFD_RELOC_SPARC_TLS_LDO_LOX10 +@deffnx {} BFD_RELOC_SPARC_TLS_LDO_ADD +@deffnx {} BFD_RELOC_SPARC_TLS_IE_HI22 +@deffnx {} BFD_RELOC_SPARC_TLS_IE_LO10 +@deffnx {} BFD_RELOC_SPARC_TLS_IE_LD +@deffnx {} BFD_RELOC_SPARC_TLS_IE_LDX +@deffnx {} BFD_RELOC_SPARC_TLS_IE_ADD +@deffnx {} BFD_RELOC_SPARC_TLS_LE_HIX22 +@deffnx {} BFD_RELOC_SPARC_TLS_LE_LOX10 +@deffnx {} BFD_RELOC_SPARC_TLS_DTPMOD32 +@deffnx {} BFD_RELOC_SPARC_TLS_DTPMOD64 +@deffnx {} BFD_RELOC_SPARC_TLS_DTPOFF32 +@deffnx {} BFD_RELOC_SPARC_TLS_DTPOFF64 +@deffnx {} BFD_RELOC_SPARC_TLS_TPOFF32 +@deffnx {} BFD_RELOC_SPARC_TLS_TPOFF64 +SPARC TLS relocations +@end deffn +@deffn {} BFD_RELOC_SPU_IMM7 +@deffnx {} BFD_RELOC_SPU_IMM8 +@deffnx {} BFD_RELOC_SPU_IMM10 +@deffnx {} BFD_RELOC_SPU_IMM10W +@deffnx {} BFD_RELOC_SPU_IMM16 +@deffnx {} BFD_RELOC_SPU_IMM16W +@deffnx {} BFD_RELOC_SPU_IMM18 +@deffnx {} BFD_RELOC_SPU_PCREL9a +@deffnx {} BFD_RELOC_SPU_PCREL9b +@deffnx {} BFD_RELOC_SPU_PCREL16 +@deffnx {} BFD_RELOC_SPU_LO16 +@deffnx {} BFD_RELOC_SPU_HI16 +@deffnx {} BFD_RELOC_SPU_PPU32 +@deffnx {} BFD_RELOC_SPU_PPU64 +SPU Relocations. +@end deffn +@deffn {} BFD_RELOC_ALPHA_GPDISP_HI16 +Alpha ECOFF and ELF relocations. Some of these treat the symbol or +"addend" in some special way. +For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when +writing; when reading, it will be the absolute section symbol. The +addend is the displacement in bytes of the "lda" instruction from +the "ldah" instruction (which is at the address of this reloc). +@end deffn +@deffn {} BFD_RELOC_ALPHA_GPDISP_LO16 +For GPDISP_LO16 ("ignore") relocations, the symbol is handled as +with GPDISP_HI16 relocs. The addend is ignored when writing the +relocations out, and is filled in with the file's GP value on +reading, for convenience. +@end deffn +@deffn {} BFD_RELOC_ALPHA_GPDISP +The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 +relocation except that there is no accompanying GPDISP_LO16 +relocation. +@end deffn +@deffn {} BFD_RELOC_ALPHA_LITERAL +@deffnx {} BFD_RELOC_ALPHA_ELF_LITERAL +@deffnx {} BFD_RELOC_ALPHA_LITUSE +The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; +the assembler turns it into a LDQ instruction to load the address of +the symbol, and then fills in a register in the real instruction. + +The LITERAL reloc, at the LDQ instruction, refers to the .lita +section symbol. The addend is ignored when writing, but is filled +in with the file's GP value on reading, for convenience, as with the +GPDISP_LO16 reloc. + +The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16. +It should refer to the symbol to be referenced, as with 16_GOTOFF, +but it generates output not based on the position within the .got +section, but relative to the GP value chosen for the file during the +final link stage. + +The LITUSE reloc, on the instruction using the loaded address, gives +information to the linker that it might be able to use to optimize +away some literal section references. The symbol is ignored (read +as the absolute section symbol), and the "addend" indicates the type +of instruction using the register: +1 - "memory" fmt insn +2 - byte-manipulation (byte offset reg) +3 - jsr (target of branch) +@end deffn +@deffn {} BFD_RELOC_ALPHA_HINT +The HINT relocation indicates a value that should be filled into the +"hint" field of a jmp/jsr/ret instruction, for possible branch- +prediction logic which may be provided on some processors. +@end deffn +@deffn {} BFD_RELOC_ALPHA_LINKAGE +The LINKAGE relocation outputs a linkage pair in the object file, +which is filled by the linker. +@end deffn +@deffn {} BFD_RELOC_ALPHA_CODEADDR +The CODEADDR relocation outputs a STO_CA in the object file, +which is filled by the linker. +@end deffn +@deffn {} BFD_RELOC_ALPHA_GPREL_HI16 +@deffnx {} BFD_RELOC_ALPHA_GPREL_LO16 +The GPREL_HI/LO relocations together form a 32-bit offset from the +GP register. +@end deffn +@deffn {} BFD_RELOC_ALPHA_BRSGP +Like BFD_RELOC_23_PCREL_S2, except that the source and target must +share a common GP, and the target address is adjusted for +STO_ALPHA_STD_GPLOAD. +@end deffn +@deffn {} BFD_RELOC_ALPHA_TLSGD +@deffnx {} BFD_RELOC_ALPHA_TLSLDM +@deffnx {} BFD_RELOC_ALPHA_DTPMOD64 +@deffnx {} BFD_RELOC_ALPHA_GOTDTPREL16 +@deffnx {} BFD_RELOC_ALPHA_DTPREL64 +@deffnx {} BFD_RELOC_ALPHA_DTPREL_HI16 +@deffnx {} BFD_RELOC_ALPHA_DTPREL_LO16 +@deffnx {} BFD_RELOC_ALPHA_DTPREL16 +@deffnx {} BFD_RELOC_ALPHA_GOTTPREL16 +@deffnx {} BFD_RELOC_ALPHA_TPREL64 +@deffnx {} BFD_RELOC_ALPHA_TPREL_HI16 +@deffnx {} BFD_RELOC_ALPHA_TPREL_LO16 +@deffnx {} BFD_RELOC_ALPHA_TPREL16 +Alpha thread-local storage relocations. +@end deffn +@deffn {} BFD_RELOC_MIPS_JMP +Bits 27..2 of the relocation address shifted right 2 bits; +simple reloc otherwise. +@end deffn +@deffn {} BFD_RELOC_MIPS16_JMP +The MIPS16 jump instruction. +@end deffn +@deffn {} BFD_RELOC_MIPS16_GPREL +MIPS16 GP relative reloc. +@end deffn +@deffn {} BFD_RELOC_HI16 +High 16 bits of 32-bit value; simple reloc. +@end deffn +@deffn {} BFD_RELOC_HI16_S +High 16 bits of 32-bit value but the low 16 bits will be sign +extended and added to form the final result. If the low 16 +bits form a negative number, we need to add one to the high value +to compensate for the borrow when the low bits are added. +@end deffn +@deffn {} BFD_RELOC_LO16 +Low 16 bits. +@end deffn +@deffn {} BFD_RELOC_HI16_PCREL +High 16 bits of 32-bit pc-relative value +@end deffn +@deffn {} BFD_RELOC_HI16_S_PCREL +High 16 bits of 32-bit pc-relative value, adjusted +@end deffn +@deffn {} BFD_RELOC_LO16_PCREL +Low 16 bits of pc-relative value +@end deffn +@deffn {} BFD_RELOC_MIPS16_GOT16 +@deffnx {} BFD_RELOC_MIPS16_CALL16 +Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of +16-bit immediate fields +@end deffn +@deffn {} BFD_RELOC_MIPS16_HI16 +MIPS16 high 16 bits of 32-bit value. +@end deffn +@deffn {} BFD_RELOC_MIPS16_HI16_S +MIPS16 high 16 bits of 32-bit value but the low 16 bits will be sign +extended and added to form the final result. If the low 16 +bits form a negative number, we need to add one to the high value +to compensate for the borrow when the low bits are added. +@end deffn +@deffn {} BFD_RELOC_MIPS16_LO16 +MIPS16 low 16 bits. +@end deffn +@deffn {} BFD_RELOC_MIPS_LITERAL +Relocation against a MIPS literal section. +@end deffn +@deffn {} BFD_RELOC_MIPS_GOT16 +@deffnx {} BFD_RELOC_MIPS_CALL16 +@deffnx {} BFD_RELOC_MIPS_GOT_HI16 +@deffnx {} BFD_RELOC_MIPS_GOT_LO16 +@deffnx {} BFD_RELOC_MIPS_CALL_HI16 +@deffnx {} BFD_RELOC_MIPS_CALL_LO16 +@deffnx {} BFD_RELOC_MIPS_SUB +@deffnx {} BFD_RELOC_MIPS_GOT_PAGE +@deffnx {} BFD_RELOC_MIPS_GOT_OFST +@deffnx {} BFD_RELOC_MIPS_GOT_DISP +@deffnx {} BFD_RELOC_MIPS_SHIFT5 +@deffnx {} BFD_RELOC_MIPS_SHIFT6 +@deffnx {} BFD_RELOC_MIPS_INSERT_A +@deffnx {} BFD_RELOC_MIPS_INSERT_B +@deffnx {} BFD_RELOC_MIPS_DELETE +@deffnx {} BFD_RELOC_MIPS_HIGHEST +@deffnx {} BFD_RELOC_MIPS_HIGHER +@deffnx {} BFD_RELOC_MIPS_SCN_DISP +@deffnx {} BFD_RELOC_MIPS_REL16 +@deffnx {} BFD_RELOC_MIPS_RELGOT +@deffnx {} BFD_RELOC_MIPS_JALR +@deffnx {} BFD_RELOC_MIPS_TLS_DTPMOD32 +@deffnx {} BFD_RELOC_MIPS_TLS_DTPREL32 +@deffnx {} BFD_RELOC_MIPS_TLS_DTPMOD64 +@deffnx {} BFD_RELOC_MIPS_TLS_DTPREL64 +@deffnx {} BFD_RELOC_MIPS_TLS_GD +@deffnx {} BFD_RELOC_MIPS_TLS_LDM +@deffnx {} BFD_RELOC_MIPS_TLS_DTPREL_HI16 +@deffnx {} BFD_RELOC_MIPS_TLS_DTPREL_LO16 +@deffnx {} BFD_RELOC_MIPS_TLS_GOTTPREL +@deffnx {} BFD_RELOC_MIPS_TLS_TPREL32 +@deffnx {} BFD_RELOC_MIPS_TLS_TPREL64 +@deffnx {} BFD_RELOC_MIPS_TLS_TPREL_HI16 +@deffnx {} BFD_RELOC_MIPS_TLS_TPREL_LO16 +MIPS ELF relocations. +@end deffn +@deffn {} BFD_RELOC_MIPS_COPY +@deffnx {} BFD_RELOC_MIPS_JUMP_SLOT +MIPS ELF relocations (VxWorks and PLT extensions). +@end deffn +@deffn {} BFD_RELOC_FRV_LABEL16 +@deffnx {} BFD_RELOC_FRV_LABEL24 +@deffnx {} BFD_RELOC_FRV_LO16 +@deffnx {} BFD_RELOC_FRV_HI16 +@deffnx {} BFD_RELOC_FRV_GPREL12 +@deffnx {} BFD_RELOC_FRV_GPRELU12 +@deffnx {} BFD_RELOC_FRV_GPREL32 +@deffnx {} BFD_RELOC_FRV_GPRELHI +@deffnx {} BFD_RELOC_FRV_GPRELLO +@deffnx {} BFD_RELOC_FRV_GOT12 +@deffnx {} BFD_RELOC_FRV_GOTHI +@deffnx {} BFD_RELOC_FRV_GOTLO +@deffnx {} BFD_RELOC_FRV_FUNCDESC +@deffnx {} BFD_RELOC_FRV_FUNCDESC_GOT12 +@deffnx {} BFD_RELOC_FRV_FUNCDESC_GOTHI +@deffnx {} BFD_RELOC_FRV_FUNCDESC_GOTLO +@deffnx {} BFD_RELOC_FRV_FUNCDESC_VALUE +@deffnx {} BFD_RELOC_FRV_FUNCDESC_GOTOFF12 +@deffnx {} BFD_RELOC_FRV_FUNCDESC_GOTOFFHI +@deffnx {} BFD_RELOC_FRV_FUNCDESC_GOTOFFLO +@deffnx {} BFD_RELOC_FRV_GOTOFF12 +@deffnx {} BFD_RELOC_FRV_GOTOFFHI +@deffnx {} BFD_RELOC_FRV_GOTOFFLO +@deffnx {} BFD_RELOC_FRV_GETTLSOFF +@deffnx {} BFD_RELOC_FRV_TLSDESC_VALUE +@deffnx {} BFD_RELOC_FRV_GOTTLSDESC12 +@deffnx {} BFD_RELOC_FRV_GOTTLSDESCHI +@deffnx {} BFD_RELOC_FRV_GOTTLSDESCLO +@deffnx {} BFD_RELOC_FRV_TLSMOFF12 +@deffnx {} BFD_RELOC_FRV_TLSMOFFHI +@deffnx {} BFD_RELOC_FRV_TLSMOFFLO +@deffnx {} BFD_RELOC_FRV_GOTTLSOFF12 +@deffnx {} BFD_RELOC_FRV_GOTTLSOFFHI +@deffnx {} BFD_RELOC_FRV_GOTTLSOFFLO +@deffnx {} BFD_RELOC_FRV_TLSOFF +@deffnx {} BFD_RELOC_FRV_TLSDESC_RELAX +@deffnx {} BFD_RELOC_FRV_GETTLSOFF_RELAX +@deffnx {} BFD_RELOC_FRV_TLSOFF_RELAX +@deffnx {} BFD_RELOC_FRV_TLSMOFF +Fujitsu Frv Relocations. +@end deffn +@deffn {} BFD_RELOC_MN10300_GOTOFF24 +This is a 24bit GOT-relative reloc for the mn10300. +@end deffn +@deffn {} BFD_RELOC_MN10300_GOT32 +This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes +in the instruction. +@end deffn +@deffn {} BFD_RELOC_MN10300_GOT24 +This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes +in the instruction. +@end deffn +@deffn {} BFD_RELOC_MN10300_GOT16 +This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes +in the instruction. +@end deffn +@deffn {} BFD_RELOC_MN10300_COPY +Copy symbol at runtime. +@end deffn +@deffn {} BFD_RELOC_MN10300_GLOB_DAT +Create GOT entry. +@end deffn +@deffn {} BFD_RELOC_MN10300_JMP_SLOT +Create PLT entry. +@end deffn +@deffn {} BFD_RELOC_MN10300_RELATIVE +Adjust by program base. +@end deffn +@deffn {} BFD_RELOC_MN10300_SYM_DIFF +Together with another reloc targeted at the same location, +allows for a value that is the difference of two symbols +in the same section. +@end deffn +@deffn {} BFD_RELOC_MN10300_ALIGN +The addend of this reloc is an alignment power that must +be honoured at the offset's location, regardless of linker +relaxation. +@end deffn +@deffn {} BFD_RELOC_386_GOT32 +@deffnx {} BFD_RELOC_386_PLT32 +@deffnx {} BFD_RELOC_386_COPY +@deffnx {} BFD_RELOC_386_GLOB_DAT +@deffnx {} BFD_RELOC_386_JUMP_SLOT +@deffnx {} BFD_RELOC_386_RELATIVE +@deffnx {} BFD_RELOC_386_GOTOFF +@deffnx {} BFD_RELOC_386_GOTPC +@deffnx {} BFD_RELOC_386_TLS_TPOFF +@deffnx {} BFD_RELOC_386_TLS_IE +@deffnx {} BFD_RELOC_386_TLS_GOTIE +@deffnx {} BFD_RELOC_386_TLS_LE +@deffnx {} BFD_RELOC_386_TLS_GD +@deffnx {} BFD_RELOC_386_TLS_LDM +@deffnx {} BFD_RELOC_386_TLS_LDO_32 +@deffnx {} BFD_RELOC_386_TLS_IE_32 +@deffnx {} BFD_RELOC_386_TLS_LE_32 +@deffnx {} BFD_RELOC_386_TLS_DTPMOD32 +@deffnx {} BFD_RELOC_386_TLS_DTPOFF32 +@deffnx {} BFD_RELOC_386_TLS_TPOFF32 +@deffnx {} BFD_RELOC_386_TLS_GOTDESC +@deffnx {} BFD_RELOC_386_TLS_DESC_CALL +@deffnx {} BFD_RELOC_386_TLS_DESC +i386/elf relocations +@end deffn +@deffn {} BFD_RELOC_X86_64_GOT32 +@deffnx {} BFD_RELOC_X86_64_PLT32 +@deffnx {} BFD_RELOC_X86_64_COPY +@deffnx {} BFD_RELOC_X86_64_GLOB_DAT +@deffnx {} BFD_RELOC_X86_64_JUMP_SLOT +@deffnx {} BFD_RELOC_X86_64_RELATIVE +@deffnx {} BFD_RELOC_X86_64_GOTPCREL +@deffnx {} BFD_RELOC_X86_64_32S +@deffnx {} BFD_RELOC_X86_64_DTPMOD64 +@deffnx {} BFD_RELOC_X86_64_DTPOFF64 +@deffnx {} BFD_RELOC_X86_64_TPOFF64 +@deffnx {} BFD_RELOC_X86_64_TLSGD +@deffnx {} BFD_RELOC_X86_64_TLSLD +@deffnx {} BFD_RELOC_X86_64_DTPOFF32 +@deffnx {} BFD_RELOC_X86_64_GOTTPOFF +@deffnx {} BFD_RELOC_X86_64_TPOFF32 +@deffnx {} BFD_RELOC_X86_64_GOTOFF64 +@deffnx {} BFD_RELOC_X86_64_GOTPC32 +@deffnx {} BFD_RELOC_X86_64_GOT64 +@deffnx {} BFD_RELOC_X86_64_GOTPCREL64 +@deffnx {} BFD_RELOC_X86_64_GOTPC64 +@deffnx {} BFD_RELOC_X86_64_GOTPLT64 +@deffnx {} BFD_RELOC_X86_64_PLTOFF64 +@deffnx {} BFD_RELOC_X86_64_GOTPC32_TLSDESC +@deffnx {} BFD_RELOC_X86_64_TLSDESC_CALL +@deffnx {} BFD_RELOC_X86_64_TLSDESC +x86-64/elf relocations +@end deffn +@deffn {} BFD_RELOC_NS32K_IMM_8 +@deffnx {} BFD_RELOC_NS32K_IMM_16 +@deffnx {} BFD_RELOC_NS32K_IMM_32 +@deffnx {} BFD_RELOC_NS32K_IMM_8_PCREL +@deffnx {} BFD_RELOC_NS32K_IMM_16_PCREL +@deffnx {} BFD_RELOC_NS32K_IMM_32_PCREL +@deffnx {} BFD_RELOC_NS32K_DISP_8 +@deffnx {} BFD_RELOC_NS32K_DISP_16 +@deffnx {} BFD_RELOC_NS32K_DISP_32 +@deffnx {} BFD_RELOC_NS32K_DISP_8_PCREL +@deffnx {} BFD_RELOC_NS32K_DISP_16_PCREL +@deffnx {} BFD_RELOC_NS32K_DISP_32_PCREL +ns32k relocations +@end deffn +@deffn {} BFD_RELOC_PDP11_DISP_8_PCREL +@deffnx {} BFD_RELOC_PDP11_DISP_6_PCREL +PDP11 relocations +@end deffn +@deffn {} BFD_RELOC_PJ_CODE_HI16 +@deffnx {} BFD_RELOC_PJ_CODE_LO16 +@deffnx {} BFD_RELOC_PJ_CODE_DIR16 +@deffnx {} BFD_RELOC_PJ_CODE_DIR32 +@deffnx {} BFD_RELOC_PJ_CODE_REL16 +@deffnx {} BFD_RELOC_PJ_CODE_REL32 +Picojava relocs. Not all of these appear in object files. +@end deffn +@deffn {} BFD_RELOC_PPC_B26 +@deffnx {} BFD_RELOC_PPC_BA26 +@deffnx {} BFD_RELOC_PPC_TOC16 +@deffnx {} BFD_RELOC_PPC_B16 +@deffnx {} BFD_RELOC_PPC_B16_BRTAKEN +@deffnx {} BFD_RELOC_PPC_B16_BRNTAKEN +@deffnx {} BFD_RELOC_PPC_BA16 +@deffnx {} BFD_RELOC_PPC_BA16_BRTAKEN +@deffnx {} BFD_RELOC_PPC_BA16_BRNTAKEN +@deffnx {} BFD_RELOC_PPC_COPY +@deffnx {} BFD_RELOC_PPC_GLOB_DAT +@deffnx {} BFD_RELOC_PPC_JMP_SLOT +@deffnx {} BFD_RELOC_PPC_RELATIVE +@deffnx {} BFD_RELOC_PPC_LOCAL24PC +@deffnx {} BFD_RELOC_PPC_EMB_NADDR32 +@deffnx {} BFD_RELOC_PPC_EMB_NADDR16 +@deffnx {} BFD_RELOC_PPC_EMB_NADDR16_LO +@deffnx {} BFD_RELOC_PPC_EMB_NADDR16_HI +@deffnx {} BFD_RELOC_PPC_EMB_NADDR16_HA +@deffnx {} BFD_RELOC_PPC_EMB_SDAI16 +@deffnx {} BFD_RELOC_PPC_EMB_SDA2I16 +@deffnx {} BFD_RELOC_PPC_EMB_SDA2REL +@deffnx {} BFD_RELOC_PPC_EMB_SDA21 +@deffnx {} BFD_RELOC_PPC_EMB_MRKREF +@deffnx {} BFD_RELOC_PPC_EMB_RELSEC16 +@deffnx {} BFD_RELOC_PPC_EMB_RELST_LO +@deffnx {} BFD_RELOC_PPC_EMB_RELST_HI +@deffnx {} BFD_RELOC_PPC_EMB_RELST_HA +@deffnx {} BFD_RELOC_PPC_EMB_BIT_FLD +@deffnx {} BFD_RELOC_PPC_EMB_RELSDA +@deffnx {} BFD_RELOC_PPC64_HIGHER +@deffnx {} BFD_RELOC_PPC64_HIGHER_S +@deffnx {} BFD_RELOC_PPC64_HIGHEST +@deffnx {} BFD_RELOC_PPC64_HIGHEST_S +@deffnx {} BFD_RELOC_PPC64_TOC16_LO +@deffnx {} BFD_RELOC_PPC64_TOC16_HI +@deffnx {} BFD_RELOC_PPC64_TOC16_HA +@deffnx {} BFD_RELOC_PPC64_TOC +@deffnx {} BFD_RELOC_PPC64_PLTGOT16 +@deffnx {} BFD_RELOC_PPC64_PLTGOT16_LO +@deffnx {} BFD_RELOC_PPC64_PLTGOT16_HI +@deffnx {} BFD_RELOC_PPC64_PLTGOT16_HA +@deffnx {} BFD_RELOC_PPC64_ADDR16_DS +@deffnx {} BFD_RELOC_PPC64_ADDR16_LO_DS +@deffnx {} BFD_RELOC_PPC64_GOT16_DS +@deffnx {} BFD_RELOC_PPC64_GOT16_LO_DS +@deffnx {} BFD_RELOC_PPC64_PLT16_LO_DS +@deffnx {} BFD_RELOC_PPC64_SECTOFF_DS +@deffnx {} BFD_RELOC_PPC64_SECTOFF_LO_DS +@deffnx {} BFD_RELOC_PPC64_TOC16_DS +@deffnx {} BFD_RELOC_PPC64_TOC16_LO_DS +@deffnx {} BFD_RELOC_PPC64_PLTGOT16_DS +@deffnx {} BFD_RELOC_PPC64_PLTGOT16_LO_DS +Power(rs6000) and PowerPC relocations. +@end deffn +@deffn {} BFD_RELOC_PPC_TLS +@deffnx {} BFD_RELOC_PPC_DTPMOD +@deffnx {} BFD_RELOC_PPC_TPREL16 +@deffnx {} BFD_RELOC_PPC_TPREL16_LO +@deffnx {} BFD_RELOC_PPC_TPREL16_HI +@deffnx {} BFD_RELOC_PPC_TPREL16_HA +@deffnx {} BFD_RELOC_PPC_TPREL +@deffnx {} BFD_RELOC_PPC_DTPREL16 +@deffnx {} BFD_RELOC_PPC_DTPREL16_LO +@deffnx {} BFD_RELOC_PPC_DTPREL16_HI +@deffnx {} BFD_RELOC_PPC_DTPREL16_HA +@deffnx {} BFD_RELOC_PPC_DTPREL +@deffnx {} BFD_RELOC_PPC_GOT_TLSGD16 +@deffnx {} BFD_RELOC_PPC_GOT_TLSGD16_LO +@deffnx {} BFD_RELOC_PPC_GOT_TLSGD16_HI +@deffnx {} BFD_RELOC_PPC_GOT_TLSGD16_HA +@deffnx {} BFD_RELOC_PPC_GOT_TLSLD16 +@deffnx {} BFD_RELOC_PPC_GOT_TLSLD16_LO +@deffnx {} BFD_RELOC_PPC_GOT_TLSLD16_HI +@deffnx {} BFD_RELOC_PPC_GOT_TLSLD16_HA +@deffnx {} BFD_RELOC_PPC_GOT_TPREL16 +@deffnx {} BFD_RELOC_PPC_GOT_TPREL16_LO +@deffnx {} BFD_RELOC_PPC_GOT_TPREL16_HI +@deffnx {} BFD_RELOC_PPC_GOT_TPREL16_HA +@deffnx {} BFD_RELOC_PPC_GOT_DTPREL16 +@deffnx {} BFD_RELOC_PPC_GOT_DTPREL16_LO +@deffnx {} BFD_RELOC_PPC_GOT_DTPREL16_HI +@deffnx {} BFD_RELOC_PPC_GOT_DTPREL16_HA +@deffnx {} BFD_RELOC_PPC64_TPREL16_DS +@deffnx {} BFD_RELOC_PPC64_TPREL16_LO_DS +@deffnx {} BFD_RELOC_PPC64_TPREL16_HIGHER +@deffnx {} BFD_RELOC_PPC64_TPREL16_HIGHERA +@deffnx {} BFD_RELOC_PPC64_TPREL16_HIGHEST +@deffnx {} BFD_RELOC_PPC64_TPREL16_HIGHESTA +@deffnx {} BFD_RELOC_PPC64_DTPREL16_DS +@deffnx {} BFD_RELOC_PPC64_DTPREL16_LO_DS +@deffnx {} BFD_RELOC_PPC64_DTPREL16_HIGHER +@deffnx {} BFD_RELOC_PPC64_DTPREL16_HIGHERA +@deffnx {} BFD_RELOC_PPC64_DTPREL16_HIGHEST +@deffnx {} BFD_RELOC_PPC64_DTPREL16_HIGHESTA +PowerPC and PowerPC64 thread-local storage relocations. +@end deffn +@deffn {} BFD_RELOC_I370_D12 +IBM 370/390 relocations +@end deffn +@deffn {} BFD_RELOC_CTOR +The type of reloc used to build a constructor table - at the moment +probably a 32 bit wide absolute relocation, but the target can choose. +It generally does map to one of the other relocation types. +@end deffn +@deffn {} BFD_RELOC_ARM_PCREL_BRANCH +ARM 26 bit pc-relative branch. The lowest two bits must be zero and are +not stored in the instruction. +@end deffn +@deffn {} BFD_RELOC_ARM_PCREL_BLX +ARM 26 bit pc-relative branch. The lowest bit must be zero and is +not stored in the instruction. The 2nd lowest bit comes from a 1 bit +field in the instruction. +@end deffn +@deffn {} BFD_RELOC_THUMB_PCREL_BLX +Thumb 22 bit pc-relative branch. The lowest bit must be zero and is +not stored in the instruction. The 2nd lowest bit comes from a 1 bit +field in the instruction. +@end deffn +@deffn {} BFD_RELOC_ARM_PCREL_CALL +ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction. +@end deffn +@deffn {} BFD_RELOC_ARM_PCREL_JUMP +ARM 26-bit pc-relative branch for B or conditional BL instruction. +@end deffn +@deffn {} BFD_RELOC_THUMB_PCREL_BRANCH7 +@deffnx {} BFD_RELOC_THUMB_PCREL_BRANCH9 +@deffnx {} BFD_RELOC_THUMB_PCREL_BRANCH12 +@deffnx {} BFD_RELOC_THUMB_PCREL_BRANCH20 +@deffnx {} BFD_RELOC_THUMB_PCREL_BRANCH23 +@deffnx {} BFD_RELOC_THUMB_PCREL_BRANCH25 +Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. +The lowest bit must be zero and is not stored in the instruction. +Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an +"nn" one smaller in all cases. Note further that BRANCH23 +corresponds to R_ARM_THM_CALL. +@end deffn +@deffn {} BFD_RELOC_ARM_OFFSET_IMM +12-bit immediate offset, used in ARM-format ldr and str instructions. +@end deffn +@deffn {} BFD_RELOC_ARM_THUMB_OFFSET +5-bit immediate offset, used in Thumb-format ldr and str instructions. +@end deffn +@deffn {} BFD_RELOC_ARM_TARGET1 +Pc-relative or absolute relocation depending on target. Used for +entries in .init_array sections. +@end deffn +@deffn {} BFD_RELOC_ARM_ROSEGREL32 +Read-only segment base relative address. +@end deffn +@deffn {} BFD_RELOC_ARM_SBREL32 +Data segment base relative address. +@end deffn +@deffn {} BFD_RELOC_ARM_TARGET2 +This reloc is used for references to RTTI data from exception handling +tables. The actual definition depends on the target. It may be a +pc-relative or some form of GOT-indirect relocation. +@end deffn +@deffn {} BFD_RELOC_ARM_PREL31 +31-bit PC relative address. +@end deffn +@deffn {} BFD_RELOC_ARM_MOVW +@deffnx {} BFD_RELOC_ARM_MOVT +@deffnx {} BFD_RELOC_ARM_MOVW_PCREL +@deffnx {} BFD_RELOC_ARM_MOVT_PCREL +@deffnx {} BFD_RELOC_ARM_THUMB_MOVW +@deffnx {} BFD_RELOC_ARM_THUMB_MOVT +@deffnx {} BFD_RELOC_ARM_THUMB_MOVW_PCREL +@deffnx {} BFD_RELOC_ARM_THUMB_MOVT_PCREL +Low and High halfword relocations for MOVW and MOVT instructions. +@end deffn +@deffn {} BFD_RELOC_ARM_JUMP_SLOT +@deffnx {} BFD_RELOC_ARM_GLOB_DAT +@deffnx {} BFD_RELOC_ARM_GOT32 +@deffnx {} BFD_RELOC_ARM_PLT32 +@deffnx {} BFD_RELOC_ARM_RELATIVE +@deffnx {} BFD_RELOC_ARM_GOTOFF +@deffnx {} BFD_RELOC_ARM_GOTPC +Relocations for setting up GOTs and PLTs for shared libraries. +@end deffn +@deffn {} BFD_RELOC_ARM_TLS_GD32 +@deffnx {} BFD_RELOC_ARM_TLS_LDO32 +@deffnx {} BFD_RELOC_ARM_TLS_LDM32 +@deffnx {} BFD_RELOC_ARM_TLS_DTPOFF32 +@deffnx {} BFD_RELOC_ARM_TLS_DTPMOD32 +@deffnx {} BFD_RELOC_ARM_TLS_TPOFF32 +@deffnx {} BFD_RELOC_ARM_TLS_IE32 +@deffnx {} BFD_RELOC_ARM_TLS_LE32 +ARM thread-local storage relocations. +@end deffn +@deffn {} BFD_RELOC_ARM_ALU_PC_G0_NC +@deffnx {} BFD_RELOC_ARM_ALU_PC_G0 +@deffnx {} BFD_RELOC_ARM_ALU_PC_G1_NC +@deffnx {} BFD_RELOC_ARM_ALU_PC_G1 +@deffnx {} BFD_RELOC_ARM_ALU_PC_G2 +@deffnx {} BFD_RELOC_ARM_LDR_PC_G0 +@deffnx {} BFD_RELOC_ARM_LDR_PC_G1 +@deffnx {} BFD_RELOC_ARM_LDR_PC_G2 +@deffnx {} BFD_RELOC_ARM_LDRS_PC_G0 +@deffnx {} BFD_RELOC_ARM_LDRS_PC_G1 +@deffnx {} BFD_RELOC_ARM_LDRS_PC_G2 +@deffnx {} BFD_RELOC_ARM_LDC_PC_G0 +@deffnx {} BFD_RELOC_ARM_LDC_PC_G1 +@deffnx {} BFD_RELOC_ARM_LDC_PC_G2 +@deffnx {} BFD_RELOC_ARM_ALU_SB_G0_NC +@deffnx {} BFD_RELOC_ARM_ALU_SB_G0 +@deffnx {} BFD_RELOC_ARM_ALU_SB_G1_NC +@deffnx {} BFD_RELOC_ARM_ALU_SB_G1 +@deffnx {} BFD_RELOC_ARM_ALU_SB_G2 +@deffnx {} BFD_RELOC_ARM_LDR_SB_G0 +@deffnx {} BFD_RELOC_ARM_LDR_SB_G1 +@deffnx {} BFD_RELOC_ARM_LDR_SB_G2 +@deffnx {} BFD_RELOC_ARM_LDRS_SB_G0 +@deffnx {} BFD_RELOC_ARM_LDRS_SB_G1 +@deffnx {} BFD_RELOC_ARM_LDRS_SB_G2 +@deffnx {} BFD_RELOC_ARM_LDC_SB_G0 +@deffnx {} BFD_RELOC_ARM_LDC_SB_G1 +@deffnx {} BFD_RELOC_ARM_LDC_SB_G2 +ARM group relocations. +@end deffn +@deffn {} BFD_RELOC_ARM_V4BX +Annotation of BX instructions. +@end deffn +@deffn {} BFD_RELOC_ARM_IMMEDIATE +@deffnx {} BFD_RELOC_ARM_ADRL_IMMEDIATE +@deffnx {} BFD_RELOC_ARM_T32_IMMEDIATE +@deffnx {} BFD_RELOC_ARM_T32_ADD_IMM +@deffnx {} BFD_RELOC_ARM_T32_IMM12 +@deffnx {} BFD_RELOC_ARM_T32_ADD_PC12 +@deffnx {} BFD_RELOC_ARM_SHIFT_IMM +@deffnx {} BFD_RELOC_ARM_SMC +@deffnx {} BFD_RELOC_ARM_SWI +@deffnx {} BFD_RELOC_ARM_MULTI +@deffnx {} BFD_RELOC_ARM_CP_OFF_IMM +@deffnx {} BFD_RELOC_ARM_CP_OFF_IMM_S2 +@deffnx {} BFD_RELOC_ARM_T32_CP_OFF_IMM +@deffnx {} BFD_RELOC_ARM_T32_CP_OFF_IMM_S2 +@deffnx {} BFD_RELOC_ARM_ADR_IMM +@deffnx {} BFD_RELOC_ARM_LDR_IMM +@deffnx {} BFD_RELOC_ARM_LITERAL +@deffnx {} BFD_RELOC_ARM_IN_POOL +@deffnx {} BFD_RELOC_ARM_OFFSET_IMM8 +@deffnx {} BFD_RELOC_ARM_T32_OFFSET_U8 +@deffnx {} BFD_RELOC_ARM_T32_OFFSET_IMM +@deffnx {} BFD_RELOC_ARM_HWLITERAL +@deffnx {} BFD_RELOC_ARM_THUMB_ADD +@deffnx {} BFD_RELOC_ARM_THUMB_IMM +@deffnx {} BFD_RELOC_ARM_THUMB_SHIFT +These relocs are only used within the ARM assembler. They are not +(at present) written to any object files. +@end deffn +@deffn {} BFD_RELOC_SH_PCDISP8BY2 +@deffnx {} BFD_RELOC_SH_PCDISP12BY2 +@deffnx {} BFD_RELOC_SH_IMM3 +@deffnx {} BFD_RELOC_SH_IMM3U +@deffnx {} BFD_RELOC_SH_DISP12 +@deffnx {} BFD_RELOC_SH_DISP12BY2 +@deffnx {} BFD_RELOC_SH_DISP12BY4 +@deffnx {} BFD_RELOC_SH_DISP12BY8 +@deffnx {} BFD_RELOC_SH_DISP20 +@deffnx {} BFD_RELOC_SH_DISP20BY8 +@deffnx {} BFD_RELOC_SH_IMM4 +@deffnx {} BFD_RELOC_SH_IMM4BY2 +@deffnx {} BFD_RELOC_SH_IMM4BY4 +@deffnx {} BFD_RELOC_SH_IMM8 +@deffnx {} BFD_RELOC_SH_IMM8BY2 +@deffnx {} BFD_RELOC_SH_IMM8BY4 +@deffnx {} BFD_RELOC_SH_PCRELIMM8BY2 +@deffnx {} BFD_RELOC_SH_PCRELIMM8BY4 +@deffnx {} BFD_RELOC_SH_SWITCH16 +@deffnx {} BFD_RELOC_SH_SWITCH32 +@deffnx {} BFD_RELOC_SH_USES +@deffnx {} BFD_RELOC_SH_COUNT +@deffnx {} BFD_RELOC_SH_ALIGN +@deffnx {} BFD_RELOC_SH_CODE +@deffnx {} BFD_RELOC_SH_DATA +@deffnx {} BFD_RELOC_SH_LABEL +@deffnx {} BFD_RELOC_SH_LOOP_START +@deffnx {} BFD_RELOC_SH_LOOP_END +@deffnx {} BFD_RELOC_SH_COPY +@deffnx {} BFD_RELOC_SH_GLOB_DAT +@deffnx {} BFD_RELOC_SH_JMP_SLOT +@deffnx {} BFD_RELOC_SH_RELATIVE +@deffnx {} BFD_RELOC_SH_GOTPC +@deffnx {} BFD_RELOC_SH_GOT_LOW16 +@deffnx {} BFD_RELOC_SH_GOT_MEDLOW16 +@deffnx {} BFD_RELOC_SH_GOT_MEDHI16 +@deffnx {} BFD_RELOC_SH_GOT_HI16 +@deffnx {} BFD_RELOC_SH_GOTPLT_LOW16 +@deffnx {} BFD_RELOC_SH_GOTPLT_MEDLOW16 +@deffnx {} BFD_RELOC_SH_GOTPLT_MEDHI16 +@deffnx {} BFD_RELOC_SH_GOTPLT_HI16 +@deffnx {} BFD_RELOC_SH_PLT_LOW16 +@deffnx {} BFD_RELOC_SH_PLT_MEDLOW16 +@deffnx {} BFD_RELOC_SH_PLT_MEDHI16 +@deffnx {} BFD_RELOC_SH_PLT_HI16 +@deffnx {} BFD_RELOC_SH_GOTOFF_LOW16 +@deffnx {} BFD_RELOC_SH_GOTOFF_MEDLOW16 +@deffnx {} BFD_RELOC_SH_GOTOFF_MEDHI16 +@deffnx {} BFD_RELOC_SH_GOTOFF_HI16 +@deffnx {} BFD_RELOC_SH_GOTPC_LOW16 +@deffnx {} BFD_RELOC_SH_GOTPC_MEDLOW16 +@deffnx {} BFD_RELOC_SH_GOTPC_MEDHI16 +@deffnx {} BFD_RELOC_SH_GOTPC_HI16 +@deffnx {} BFD_RELOC_SH_COPY64 +@deffnx {} BFD_RELOC_SH_GLOB_DAT64 +@deffnx {} BFD_RELOC_SH_JMP_SLOT64 +@deffnx {} BFD_RELOC_SH_RELATIVE64 +@deffnx {} BFD_RELOC_SH_GOT10BY4 +@deffnx {} BFD_RELOC_SH_GOT10BY8 +@deffnx {} BFD_RELOC_SH_GOTPLT10BY4 +@deffnx {} BFD_RELOC_SH_GOTPLT10BY8 +@deffnx {} BFD_RELOC_SH_GOTPLT32 +@deffnx {} BFD_RELOC_SH_SHMEDIA_CODE +@deffnx {} BFD_RELOC_SH_IMMU5 +@deffnx {} BFD_RELOC_SH_IMMS6 +@deffnx {} BFD_RELOC_SH_IMMS6BY32 +@deffnx {} BFD_RELOC_SH_IMMU6 +@deffnx {} BFD_RELOC_SH_IMMS10 +@deffnx {} BFD_RELOC_SH_IMMS10BY2 +@deffnx {} BFD_RELOC_SH_IMMS10BY4 +@deffnx {} BFD_RELOC_SH_IMMS10BY8 +@deffnx {} BFD_RELOC_SH_IMMS16 +@deffnx {} BFD_RELOC_SH_IMMU16 +@deffnx {} BFD_RELOC_SH_IMM_LOW16 +@deffnx {} BFD_RELOC_SH_IMM_LOW16_PCREL +@deffnx {} BFD_RELOC_SH_IMM_MEDLOW16 +@deffnx {} BFD_RELOC_SH_IMM_MEDLOW16_PCREL +@deffnx {} BFD_RELOC_SH_IMM_MEDHI16 +@deffnx {} BFD_RELOC_SH_IMM_MEDHI16_PCREL +@deffnx {} BFD_RELOC_SH_IMM_HI16 +@deffnx {} BFD_RELOC_SH_IMM_HI16_PCREL +@deffnx {} BFD_RELOC_SH_PT_16 +@deffnx {} BFD_RELOC_SH_TLS_GD_32 +@deffnx {} BFD_RELOC_SH_TLS_LD_32 +@deffnx {} BFD_RELOC_SH_TLS_LDO_32 +@deffnx {} BFD_RELOC_SH_TLS_IE_32 +@deffnx {} BFD_RELOC_SH_TLS_LE_32 +@deffnx {} BFD_RELOC_SH_TLS_DTPMOD32 +@deffnx {} BFD_RELOC_SH_TLS_DTPOFF32 +@deffnx {} BFD_RELOC_SH_TLS_TPOFF32 +Renesas / SuperH SH relocs. Not all of these appear in object files. +@end deffn +@deffn {} BFD_RELOC_ARC_B22_PCREL +ARC Cores relocs. +ARC 22 bit pc-relative branch. The lowest two bits must be zero and are +not stored in the instruction. The high 20 bits are installed in bits 26 +through 7 of the instruction. +@end deffn +@deffn {} BFD_RELOC_ARC_B26 +ARC 26 bit absolute branch. The lowest two bits must be zero and are not +stored in the instruction. The high 24 bits are installed in bits 23 +through 0. +@end deffn +@deffn {} BFD_RELOC_BFIN_16_IMM +ADI Blackfin 16 bit immediate absolute reloc. +@end deffn +@deffn {} BFD_RELOC_BFIN_16_HIGH +ADI Blackfin 16 bit immediate absolute reloc higher 16 bits. +@end deffn +@deffn {} BFD_RELOC_BFIN_4_PCREL +ADI Blackfin 'a' part of LSETUP. +@end deffn +@deffn {} BFD_RELOC_BFIN_5_PCREL +ADI Blackfin. +@end deffn +@deffn {} BFD_RELOC_BFIN_16_LOW +ADI Blackfin 16 bit immediate absolute reloc lower 16 bits. +@end deffn +@deffn {} BFD_RELOC_BFIN_10_PCREL +ADI Blackfin. +@end deffn +@deffn {} BFD_RELOC_BFIN_11_PCREL +ADI Blackfin 'b' part of LSETUP. +@end deffn +@deffn {} BFD_RELOC_BFIN_12_PCREL_JUMP +ADI Blackfin. +@end deffn +@deffn {} BFD_RELOC_BFIN_12_PCREL_JUMP_S +ADI Blackfin Short jump, pcrel. +@end deffn +@deffn {} BFD_RELOC_BFIN_24_PCREL_CALL_X +ADI Blackfin Call.x not implemented. +@end deffn +@deffn {} BFD_RELOC_BFIN_24_PCREL_JUMP_L +ADI Blackfin Long Jump pcrel. +@end deffn +@deffn {} BFD_RELOC_BFIN_GOT17M4 +@deffnx {} BFD_RELOC_BFIN_GOTHI +@deffnx {} BFD_RELOC_BFIN_GOTLO +@deffnx {} BFD_RELOC_BFIN_FUNCDESC +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_GOT17M4 +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_GOTHI +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_GOTLO +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_VALUE +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4 +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI +@deffnx {} BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO +@deffnx {} BFD_RELOC_BFIN_GOTOFF17M4 +@deffnx {} BFD_RELOC_BFIN_GOTOFFHI +@deffnx {} BFD_RELOC_BFIN_GOTOFFLO +ADI Blackfin FD-PIC relocations. +@end deffn +@deffn {} BFD_RELOC_BFIN_GOT +ADI Blackfin GOT relocation. +@end deffn +@deffn {} BFD_RELOC_BFIN_PLTPC +ADI Blackfin PLTPC relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_PUSH +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_CONST +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_ADD +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_SUB +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_MULT +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_DIV +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_MOD +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_LSHIFT +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_RSHIFT +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_AND +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_OR +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_XOR +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_LAND +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_LOR +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_LEN +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_NEG +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_COMP +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_PAGE +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_HWPAGE +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_ARELOC_BFIN_ADDR +ADI Blackfin arithmetic relocation. +@end deffn +@deffn {} BFD_RELOC_D10V_10_PCREL_R +Mitsubishi D10V relocs. +This is a 10-bit reloc with the right 2 bits +assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D10V_10_PCREL_L +Mitsubishi D10V relocs. +This is a 10-bit reloc with the right 2 bits +assumed to be 0. This is the same as the previous reloc +except it is in the left container, i.e., +shifted left 15 bits. +@end deffn +@deffn {} BFD_RELOC_D10V_18 +This is an 18-bit reloc with the right 2 bits +assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D10V_18_PCREL +This is an 18-bit reloc with the right 2 bits +assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D30V_6 +Mitsubishi D30V relocs. +This is a 6-bit absolute reloc. +@end deffn +@deffn {} BFD_RELOC_D30V_9_PCREL +This is a 6-bit pc-relative reloc with +the right 3 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D30V_9_PCREL_R +This is a 6-bit pc-relative reloc with +the right 3 bits assumed to be 0. Same +as the previous reloc but on the right side +of the container. +@end deffn +@deffn {} BFD_RELOC_D30V_15 +This is a 12-bit absolute reloc with the +right 3 bitsassumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D30V_15_PCREL +This is a 12-bit pc-relative reloc with +the right 3 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D30V_15_PCREL_R +This is a 12-bit pc-relative reloc with +the right 3 bits assumed to be 0. Same +as the previous reloc but on the right side +of the container. +@end deffn +@deffn {} BFD_RELOC_D30V_21 +This is an 18-bit absolute reloc with +the right 3 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D30V_21_PCREL +This is an 18-bit pc-relative reloc with +the right 3 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_D30V_21_PCREL_R +This is an 18-bit pc-relative reloc with +the right 3 bits assumed to be 0. Same +as the previous reloc but on the right side +of the container. +@end deffn +@deffn {} BFD_RELOC_D30V_32 +This is a 32-bit absolute reloc. +@end deffn +@deffn {} BFD_RELOC_D30V_32_PCREL +This is a 32-bit pc-relative reloc. +@end deffn +@deffn {} BFD_RELOC_DLX_HI16_S +DLX relocs +@end deffn +@deffn {} BFD_RELOC_DLX_LO16 +DLX relocs +@end deffn +@deffn {} BFD_RELOC_DLX_JMP26 +DLX relocs +@end deffn +@deffn {} BFD_RELOC_M32C_HI8 +@deffnx {} BFD_RELOC_M32C_RL_JUMP +@deffnx {} BFD_RELOC_M32C_RL_1ADDR +@deffnx {} BFD_RELOC_M32C_RL_2ADDR +Renesas M16C/M32C Relocations. +@end deffn +@deffn {} BFD_RELOC_M32R_24 +Renesas M32R (formerly Mitsubishi M32R) relocs. +This is a 24 bit absolute address. +@end deffn +@deffn {} BFD_RELOC_M32R_10_PCREL +This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_M32R_18_PCREL +This is an 18-bit reloc with the right 2 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_M32R_26_PCREL +This is a 26-bit reloc with the right 2 bits assumed to be 0. +@end deffn +@deffn {} BFD_RELOC_M32R_HI16_ULO +This is a 16-bit reloc containing the high 16 bits of an address +used when the lower 16 bits are treated as unsigned. +@end deffn +@deffn {} BFD_RELOC_M32R_HI16_SLO +This is a 16-bit reloc containing the high 16 bits of an address +used when the lower 16 bits are treated as signed. +@end deffn +@deffn {} BFD_RELOC_M32R_LO16 +This is a 16-bit reloc containing the lower 16 bits of an address. +@end deffn +@deffn {} BFD_RELOC_M32R_SDA16 +This is a 16-bit reloc containing the small data area offset for use in +add3, load, and store instructions. +@end deffn +@deffn {} BFD_RELOC_M32R_GOT24 +@deffnx {} BFD_RELOC_M32R_26_PLTREL +@deffnx {} BFD_RELOC_M32R_COPY +@deffnx {} BFD_RELOC_M32R_GLOB_DAT +@deffnx {} BFD_RELOC_M32R_JMP_SLOT +@deffnx {} BFD_RELOC_M32R_RELATIVE +@deffnx {} BFD_RELOC_M32R_GOTOFF +@deffnx {} BFD_RELOC_M32R_GOTOFF_HI_ULO +@deffnx {} BFD_RELOC_M32R_GOTOFF_HI_SLO +@deffnx {} BFD_RELOC_M32R_GOTOFF_LO +@deffnx {} BFD_RELOC_M32R_GOTPC24 +@deffnx {} BFD_RELOC_M32R_GOT16_HI_ULO +@deffnx {} BFD_RELOC_M32R_GOT16_HI_SLO +@deffnx {} BFD_RELOC_M32R_GOT16_LO +@deffnx {} BFD_RELOC_M32R_GOTPC_HI_ULO +@deffnx {} BFD_RELOC_M32R_GOTPC_HI_SLO +@deffnx {} BFD_RELOC_M32R_GOTPC_LO +For PIC. +@end deffn +@deffn {} BFD_RELOC_V850_9_PCREL +This is a 9-bit reloc +@end deffn +@deffn {} BFD_RELOC_V850_22_PCREL +This is a 22-bit reloc +@end deffn +@deffn {} BFD_RELOC_V850_SDA_16_16_OFFSET +This is a 16 bit offset from the short data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_SDA_15_16_OFFSET +This is a 16 bit offset (of which only 15 bits are used) from the +short data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_ZDA_16_16_OFFSET +This is a 16 bit offset from the zero data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_ZDA_15_16_OFFSET +This is a 16 bit offset (of which only 15 bits are used) from the +zero data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_TDA_6_8_OFFSET +This is an 8 bit offset (of which only 6 bits are used) from the +tiny data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_TDA_7_8_OFFSET +This is an 8bit offset (of which only 7 bits are used) from the tiny +data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_TDA_7_7_OFFSET +This is a 7 bit offset from the tiny data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_TDA_16_16_OFFSET +This is a 16 bit offset from the tiny data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_TDA_4_5_OFFSET +This is a 5 bit offset (of which only 4 bits are used) from the tiny +data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_TDA_4_4_OFFSET +This is a 4 bit offset from the tiny data area pointer. +@end deffn +@deffn {} BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET +This is a 16 bit offset from the short data area pointer, with the +bits placed non-contiguously in the instruction. +@end deffn +@deffn {} BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET +This is a 16 bit offset from the zero data area pointer, with the +bits placed non-contiguously in the instruction. +@end deffn +@deffn {} BFD_RELOC_V850_CALLT_6_7_OFFSET +This is a 6 bit offset from the call table base pointer. +@end deffn +@deffn {} BFD_RELOC_V850_CALLT_16_16_OFFSET +This is a 16 bit offset from the call table base pointer. +@end deffn +@deffn {} BFD_RELOC_V850_LONGCALL +Used for relaxing indirect function calls. +@end deffn +@deffn {} BFD_RELOC_V850_LONGJUMP +Used for relaxing indirect jumps. +@end deffn +@deffn {} BFD_RELOC_V850_ALIGN +Used to maintain alignment whilst relaxing. +@end deffn +@deffn {} BFD_RELOC_V850_LO16_SPLIT_OFFSET +This is a variation of BFD_RELOC_LO16 that can be used in v850e ld.bu +instructions. +@end deffn +@deffn {} BFD_RELOC_MN10300_32_PCREL +This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the +instruction. +@end deffn +@deffn {} BFD_RELOC_MN10300_16_PCREL +This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the +instruction. +@end deffn +@deffn {} BFD_RELOC_TIC30_LDP +This is a 8bit DP reloc for the tms320c30, where the most +significant 8 bits of a 24 bit word are placed into the least +significant 8 bits of the opcode. +@end deffn +@deffn {} BFD_RELOC_TIC54X_PARTLS7 +This is a 7bit reloc for the tms320c54x, where the least +significant 7 bits of a 16 bit word are placed into the least +significant 7 bits of the opcode. +@end deffn +@deffn {} BFD_RELOC_TIC54X_PARTMS9 +This is a 9bit DP reloc for the tms320c54x, where the most +significant 9 bits of a 16 bit word are placed into the least +significant 9 bits of the opcode. +@end deffn +@deffn {} BFD_RELOC_TIC54X_23 +This is an extended address 23-bit reloc for the tms320c54x. +@end deffn +@deffn {} BFD_RELOC_TIC54X_16_OF_23 +This is a 16-bit reloc for the tms320c54x, where the least +significant 16 bits of a 23-bit extended address are placed into +the opcode. +@end deffn +@deffn {} BFD_RELOC_TIC54X_MS7_OF_23 +This is a reloc for the tms320c54x, where the most +significant 7 bits of a 23-bit extended address are placed into +the opcode. +@end deffn +@deffn {} BFD_RELOC_FR30_48 +This is a 48 bit reloc for the FR30 that stores 32 bits. +@end deffn +@deffn {} BFD_RELOC_FR30_20 +This is a 32 bit reloc for the FR30 that stores 20 bits split up into +two sections. +@end deffn +@deffn {} BFD_RELOC_FR30_6_IN_4 +This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in +4 bits. +@end deffn +@deffn {} BFD_RELOC_FR30_8_IN_8 +This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset +into 8 bits. +@end deffn +@deffn {} BFD_RELOC_FR30_9_IN_8 +This is a 16 bit reloc for the FR30 that stores a 9 bit short offset +into 8 bits. +@end deffn +@deffn {} BFD_RELOC_FR30_10_IN_8 +This is a 16 bit reloc for the FR30 that stores a 10 bit word offset +into 8 bits. +@end deffn +@deffn {} BFD_RELOC_FR30_9_PCREL +This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative +short offset into 8 bits. +@end deffn +@deffn {} BFD_RELOC_FR30_12_PCREL +This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative +short offset into 11 bits. +@end deffn +@deffn {} BFD_RELOC_MCORE_PCREL_IMM8BY4 +@deffnx {} BFD_RELOC_MCORE_PCREL_IMM11BY2 +@deffnx {} BFD_RELOC_MCORE_PCREL_IMM4BY2 +@deffnx {} BFD_RELOC_MCORE_PCREL_32 +@deffnx {} BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 +@deffnx {} BFD_RELOC_MCORE_RVA +Motorola Mcore relocations. +@end deffn +@deffn {} BFD_RELOC_MEP_8 +@deffnx {} BFD_RELOC_MEP_16 +@deffnx {} BFD_RELOC_MEP_32 +@deffnx {} BFD_RELOC_MEP_PCREL8A2 +@deffnx {} BFD_RELOC_MEP_PCREL12A2 +@deffnx {} BFD_RELOC_MEP_PCREL17A2 +@deffnx {} BFD_RELOC_MEP_PCREL24A2 +@deffnx {} BFD_RELOC_MEP_PCABS24A2 +@deffnx {} BFD_RELOC_MEP_LOW16 +@deffnx {} BFD_RELOC_MEP_HI16U +@deffnx {} BFD_RELOC_MEP_HI16S +@deffnx {} BFD_RELOC_MEP_GPREL +@deffnx {} BFD_RELOC_MEP_TPREL +@deffnx {} BFD_RELOC_MEP_TPREL7 +@deffnx {} BFD_RELOC_MEP_TPREL7A2 +@deffnx {} BFD_RELOC_MEP_TPREL7A4 +@deffnx {} BFD_RELOC_MEP_UIMM24 +@deffnx {} BFD_RELOC_MEP_ADDR24A4 +@deffnx {} BFD_RELOC_MEP_GNU_VTINHERIT +@deffnx {} BFD_RELOC_MEP_GNU_VTENTRY +Toshiba Media Processor Relocations. +@end deffn +@deffn {} BFD_RELOC_MMIX_GETA +@deffnx {} BFD_RELOC_MMIX_GETA_1 +@deffnx {} BFD_RELOC_MMIX_GETA_2 +@deffnx {} BFD_RELOC_MMIX_GETA_3 +These are relocations for the GETA instruction. +@end deffn +@deffn {} BFD_RELOC_MMIX_CBRANCH +@deffnx {} BFD_RELOC_MMIX_CBRANCH_J +@deffnx {} BFD_RELOC_MMIX_CBRANCH_1 +@deffnx {} BFD_RELOC_MMIX_CBRANCH_2 +@deffnx {} BFD_RELOC_MMIX_CBRANCH_3 +These are relocations for a conditional branch instruction. +@end deffn +@deffn {} BFD_RELOC_MMIX_PUSHJ +@deffnx {} BFD_RELOC_MMIX_PUSHJ_1 +@deffnx {} BFD_RELOC_MMIX_PUSHJ_2 +@deffnx {} BFD_RELOC_MMIX_PUSHJ_3 +@deffnx {} BFD_RELOC_MMIX_PUSHJ_STUBBABLE +These are relocations for the PUSHJ instruction. +@end deffn +@deffn {} BFD_RELOC_MMIX_JMP +@deffnx {} BFD_RELOC_MMIX_JMP_1 +@deffnx {} BFD_RELOC_MMIX_JMP_2 +@deffnx {} BFD_RELOC_MMIX_JMP_3 +These are relocations for the JMP instruction. +@end deffn +@deffn {} BFD_RELOC_MMIX_ADDR19 +This is a relocation for a relative address as in a GETA instruction or +a branch. +@end deffn +@deffn {} BFD_RELOC_MMIX_ADDR27 +This is a relocation for a relative address as in a JMP instruction. +@end deffn +@deffn {} BFD_RELOC_MMIX_REG_OR_BYTE +This is a relocation for an instruction field that may be a general +register or a value 0..255. +@end deffn +@deffn {} BFD_RELOC_MMIX_REG +This is a relocation for an instruction field that may be a general +register. +@end deffn +@deffn {} BFD_RELOC_MMIX_BASE_PLUS_OFFSET +This is a relocation for two instruction fields holding a register and +an offset, the equivalent of the relocation. +@end deffn +@deffn {} BFD_RELOC_MMIX_LOCAL +This relocation is an assertion that the expression is not allocated as +a global register. It does not modify contents. +@end deffn +@deffn {} BFD_RELOC_AVR_7_PCREL +This is a 16 bit reloc for the AVR that stores 8 bit pc relative +short offset into 7 bits. +@end deffn +@deffn {} BFD_RELOC_AVR_13_PCREL +This is a 16 bit reloc for the AVR that stores 13 bit pc relative +short offset into 12 bits. +@end deffn +@deffn {} BFD_RELOC_AVR_16_PM +This is a 16 bit reloc for the AVR that stores 17 bit value (usually +program memory address) into 16 bits. +@end deffn +@deffn {} BFD_RELOC_AVR_LO8_LDI +This is a 16 bit reloc for the AVR that stores 8 bit value (usually +data memory address) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HI8_LDI +This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit +of data memory address) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HH8_LDI +This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit +of program memory address) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_MS8_LDI +This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit +of 32 bit value) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_LO8_LDI_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value +(usually data memory address) into 8 bit immediate value of SUBI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HI8_LDI_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value +(high 8 bit of data memory address) into 8 bit immediate value of +SUBI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HH8_LDI_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value +(most high 8 bit of program memory address) into 8 bit immediate value +of LDI or SUBI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_MS8_LDI_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value (msb +of 32 bit value) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_LO8_LDI_PM +This is a 16 bit reloc for the AVR that stores 8 bit value (usually +command address) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_LO8_LDI_GS +This is a 16 bit reloc for the AVR that stores 8 bit value +(command address) into 8 bit immediate value of LDI insn. If the address +is beyond the 128k boundary, the linker inserts a jump stub for this reloc +in the lower 128k. +@end deffn +@deffn {} BFD_RELOC_AVR_HI8_LDI_PM +This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit +of command address) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HI8_LDI_GS +This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit +of command address) into 8 bit immediate value of LDI insn. If the address +is beyond the 128k boundary, the linker inserts a jump stub for this reloc +below 128k. +@end deffn +@deffn {} BFD_RELOC_AVR_HH8_LDI_PM +This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit +of command address) into 8 bit immediate value of LDI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_LO8_LDI_PM_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value +(usually command address) into 8 bit immediate value of SUBI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HI8_LDI_PM_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value +(high 8 bit of 16 bit command address) into 8 bit immediate value +of SUBI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_HH8_LDI_PM_NEG +This is a 16 bit reloc for the AVR that stores negated 8 bit value +(high 6 bit of 22 bit command address) into 8 bit immediate +value of SUBI insn. +@end deffn +@deffn {} BFD_RELOC_AVR_CALL +This is a 32 bit reloc for the AVR that stores 23 bit value +into 22 bits. +@end deffn +@deffn {} BFD_RELOC_AVR_LDI +This is a 16 bit reloc for the AVR that stores all needed bits +for absolute addressing with ldi with overflow check to linktime +@end deffn +@deffn {} BFD_RELOC_AVR_6 +This is a 6 bit reloc for the AVR that stores offset for ldd/std +instructions +@end deffn +@deffn {} BFD_RELOC_AVR_6_ADIW +This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw +instructions +@end deffn +@deffn {} BFD_RELOC_390_12 +Direct 12 bit. +@end deffn +@deffn {} BFD_RELOC_390_GOT12 +12 bit GOT offset. +@end deffn +@deffn {} BFD_RELOC_390_PLT32 +32 bit PC relative PLT address. +@end deffn +@deffn {} BFD_RELOC_390_COPY +Copy symbol at runtime. +@end deffn +@deffn {} BFD_RELOC_390_GLOB_DAT +Create GOT entry. +@end deffn +@deffn {} BFD_RELOC_390_JMP_SLOT +Create PLT entry. +@end deffn +@deffn {} BFD_RELOC_390_RELATIVE +Adjust by program base. +@end deffn +@deffn {} BFD_RELOC_390_GOTPC +32 bit PC relative offset to GOT. +@end deffn +@deffn {} BFD_RELOC_390_GOT16 +16 bit GOT offset. +@end deffn +@deffn {} BFD_RELOC_390_PC16DBL +PC relative 16 bit shifted by 1. +@end deffn +@deffn {} BFD_RELOC_390_PLT16DBL +16 bit PC rel. PLT shifted by 1. +@end deffn +@deffn {} BFD_RELOC_390_PC32DBL +PC relative 32 bit shifted by 1. +@end deffn +@deffn {} BFD_RELOC_390_PLT32DBL +32 bit PC rel. PLT shifted by 1. +@end deffn +@deffn {} BFD_RELOC_390_GOTPCDBL +32 bit PC rel. GOT shifted by 1. +@end deffn +@deffn {} BFD_RELOC_390_GOT64 +64 bit GOT offset. +@end deffn +@deffn {} BFD_RELOC_390_PLT64 +64 bit PC relative PLT address. +@end deffn +@deffn {} BFD_RELOC_390_GOTENT +32 bit rel. offset to GOT entry. +@end deffn +@deffn {} BFD_RELOC_390_GOTOFF64 +64 bit offset to GOT. +@end deffn +@deffn {} BFD_RELOC_390_GOTPLT12 +12-bit offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_390_GOTPLT16 +16-bit offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_390_GOTPLT32 +32-bit offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_390_GOTPLT64 +64-bit offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_390_GOTPLTENT +32-bit rel. offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_390_PLTOFF16 +16-bit rel. offset from the GOT to a PLT entry. +@end deffn +@deffn {} BFD_RELOC_390_PLTOFF32 +32-bit rel. offset from the GOT to a PLT entry. +@end deffn +@deffn {} BFD_RELOC_390_PLTOFF64 +64-bit rel. offset from the GOT to a PLT entry. +@end deffn +@deffn {} BFD_RELOC_390_TLS_LOAD +@deffnx {} BFD_RELOC_390_TLS_GDCALL +@deffnx {} BFD_RELOC_390_TLS_LDCALL +@deffnx {} BFD_RELOC_390_TLS_GD32 +@deffnx {} BFD_RELOC_390_TLS_GD64 +@deffnx {} BFD_RELOC_390_TLS_GOTIE12 +@deffnx {} BFD_RELOC_390_TLS_GOTIE32 +@deffnx {} BFD_RELOC_390_TLS_GOTIE64 +@deffnx {} BFD_RELOC_390_TLS_LDM32 +@deffnx {} BFD_RELOC_390_TLS_LDM64 +@deffnx {} BFD_RELOC_390_TLS_IE32 +@deffnx {} BFD_RELOC_390_TLS_IE64 +@deffnx {} BFD_RELOC_390_TLS_IEENT +@deffnx {} BFD_RELOC_390_TLS_LE32 +@deffnx {} BFD_RELOC_390_TLS_LE64 +@deffnx {} BFD_RELOC_390_TLS_LDO32 +@deffnx {} BFD_RELOC_390_TLS_LDO64 +@deffnx {} BFD_RELOC_390_TLS_DTPMOD +@deffnx {} BFD_RELOC_390_TLS_DTPOFF +@deffnx {} BFD_RELOC_390_TLS_TPOFF +s390 tls relocations. +@end deffn +@deffn {} BFD_RELOC_390_20 +@deffnx {} BFD_RELOC_390_GOT20 +@deffnx {} BFD_RELOC_390_GOTPLT20 +@deffnx {} BFD_RELOC_390_TLS_GOTIE20 +Long displacement extension. +@end deffn +@deffn {} BFD_RELOC_SCORE_DUMMY1 +Score relocations +@end deffn +@deffn {} BFD_RELOC_SCORE_GPREL15 +Low 16 bit for load/store +@end deffn +@deffn {} BFD_RELOC_SCORE_DUMMY2 +@deffnx {} BFD_RELOC_SCORE_JMP +This is a 24-bit reloc with the right 1 bit assumed to be 0 +@end deffn +@deffn {} BFD_RELOC_SCORE_BRANCH +This is a 19-bit reloc with the right 1 bit assumed to be 0 +@end deffn +@deffn {} BFD_RELOC_SCORE16_JMP +This is a 11-bit reloc with the right 1 bit assumed to be 0 +@end deffn +@deffn {} BFD_RELOC_SCORE16_BRANCH +This is a 8-bit reloc with the right 1 bit assumed to be 0 +@end deffn +@deffn {} BFD_RELOC_SCORE_GOT15 +@deffnx {} BFD_RELOC_SCORE_GOT_LO16 +@deffnx {} BFD_RELOC_SCORE_CALL15 +@deffnx {} BFD_RELOC_SCORE_DUMMY_HI16 +Undocumented Score relocs +@end deffn +@deffn {} BFD_RELOC_IP2K_FR9 +Scenix IP2K - 9-bit register number / data address +@end deffn +@deffn {} BFD_RELOC_IP2K_BANK +Scenix IP2K - 4-bit register/data bank number +@end deffn +@deffn {} BFD_RELOC_IP2K_ADDR16CJP +Scenix IP2K - low 13 bits of instruction word address +@end deffn +@deffn {} BFD_RELOC_IP2K_PAGE3 +Scenix IP2K - high 3 bits of instruction word address +@end deffn +@deffn {} BFD_RELOC_IP2K_LO8DATA +@deffnx {} BFD_RELOC_IP2K_HI8DATA +@deffnx {} BFD_RELOC_IP2K_EX8DATA +Scenix IP2K - ext/low/high 8 bits of data address +@end deffn +@deffn {} BFD_RELOC_IP2K_LO8INSN +@deffnx {} BFD_RELOC_IP2K_HI8INSN +Scenix IP2K - low/high 8 bits of instruction word address +@end deffn +@deffn {} BFD_RELOC_IP2K_PC_SKIP +Scenix IP2K - even/odd PC modifier to modify snb pcl.0 +@end deffn +@deffn {} BFD_RELOC_IP2K_TEXT +Scenix IP2K - 16 bit word address in text section. +@end deffn +@deffn {} BFD_RELOC_IP2K_FR_OFFSET +Scenix IP2K - 7-bit sp or dp offset +@end deffn +@deffn {} BFD_RELOC_VPE4KMATH_DATA +@deffnx {} BFD_RELOC_VPE4KMATH_INSN +Scenix VPE4K coprocessor - data/insn-space addressing +@end deffn +@deffn {} BFD_RELOC_VTABLE_INHERIT +@deffnx {} BFD_RELOC_VTABLE_ENTRY +These two relocations are used by the linker to determine which of +the entries in a C++ virtual function table are actually used. When +the --gc-sections option is given, the linker will zero out the entries +that are not used, so that the code for those functions need not be +included in the output. + +VTABLE_INHERIT is a zero-space relocation used to describe to the +linker the inheritance tree of a C++ virtual function table. The +relocation's symbol should be the parent class' vtable, and the +relocation should be located at the child vtable. + +VTABLE_ENTRY is a zero-space relocation that describes the use of a +virtual function table entry. The reloc's symbol should refer to the +table of the class mentioned in the code. Off of that base, an offset +describes the entry that is being used. For Rela hosts, this offset +is stored in the reloc's addend. For Rel hosts, we are forced to put +this offset in the reloc's section offset. +@end deffn +@deffn {} BFD_RELOC_IA64_IMM14 +@deffnx {} BFD_RELOC_IA64_IMM22 +@deffnx {} BFD_RELOC_IA64_IMM64 +@deffnx {} BFD_RELOC_IA64_DIR32MSB +@deffnx {} BFD_RELOC_IA64_DIR32LSB +@deffnx {} BFD_RELOC_IA64_DIR64MSB +@deffnx {} BFD_RELOC_IA64_DIR64LSB +@deffnx {} BFD_RELOC_IA64_GPREL22 +@deffnx {} BFD_RELOC_IA64_GPREL64I +@deffnx {} BFD_RELOC_IA64_GPREL32MSB +@deffnx {} BFD_RELOC_IA64_GPREL32LSB +@deffnx {} BFD_RELOC_IA64_GPREL64MSB +@deffnx {} BFD_RELOC_IA64_GPREL64LSB +@deffnx {} BFD_RELOC_IA64_LTOFF22 +@deffnx {} BFD_RELOC_IA64_LTOFF64I +@deffnx {} BFD_RELOC_IA64_PLTOFF22 +@deffnx {} BFD_RELOC_IA64_PLTOFF64I +@deffnx {} BFD_RELOC_IA64_PLTOFF64MSB +@deffnx {} BFD_RELOC_IA64_PLTOFF64LSB +@deffnx {} BFD_RELOC_IA64_FPTR64I +@deffnx {} BFD_RELOC_IA64_FPTR32MSB +@deffnx {} BFD_RELOC_IA64_FPTR32LSB +@deffnx {} BFD_RELOC_IA64_FPTR64MSB +@deffnx {} BFD_RELOC_IA64_FPTR64LSB +@deffnx {} BFD_RELOC_IA64_PCREL21B +@deffnx {} BFD_RELOC_IA64_PCREL21BI +@deffnx {} BFD_RELOC_IA64_PCREL21M +@deffnx {} BFD_RELOC_IA64_PCREL21F +@deffnx {} BFD_RELOC_IA64_PCREL22 +@deffnx {} BFD_RELOC_IA64_PCREL60B +@deffnx {} BFD_RELOC_IA64_PCREL64I +@deffnx {} BFD_RELOC_IA64_PCREL32MSB +@deffnx {} BFD_RELOC_IA64_PCREL32LSB +@deffnx {} BFD_RELOC_IA64_PCREL64MSB +@deffnx {} BFD_RELOC_IA64_PCREL64LSB +@deffnx {} BFD_RELOC_IA64_LTOFF_FPTR22 +@deffnx {} BFD_RELOC_IA64_LTOFF_FPTR64I +@deffnx {} BFD_RELOC_IA64_LTOFF_FPTR32MSB +@deffnx {} BFD_RELOC_IA64_LTOFF_FPTR32LSB +@deffnx {} BFD_RELOC_IA64_LTOFF_FPTR64MSB +@deffnx {} BFD_RELOC_IA64_LTOFF_FPTR64LSB +@deffnx {} BFD_RELOC_IA64_SEGREL32MSB +@deffnx {} BFD_RELOC_IA64_SEGREL32LSB +@deffnx {} BFD_RELOC_IA64_SEGREL64MSB +@deffnx {} BFD_RELOC_IA64_SEGREL64LSB +@deffnx {} BFD_RELOC_IA64_SECREL32MSB +@deffnx {} BFD_RELOC_IA64_SECREL32LSB +@deffnx {} BFD_RELOC_IA64_SECREL64MSB +@deffnx {} BFD_RELOC_IA64_SECREL64LSB +@deffnx {} BFD_RELOC_IA64_REL32MSB +@deffnx {} BFD_RELOC_IA64_REL32LSB +@deffnx {} BFD_RELOC_IA64_REL64MSB +@deffnx {} BFD_RELOC_IA64_REL64LSB +@deffnx {} BFD_RELOC_IA64_LTV32MSB +@deffnx {} BFD_RELOC_IA64_LTV32LSB +@deffnx {} BFD_RELOC_IA64_LTV64MSB +@deffnx {} BFD_RELOC_IA64_LTV64LSB +@deffnx {} BFD_RELOC_IA64_IPLTMSB +@deffnx {} BFD_RELOC_IA64_IPLTLSB +@deffnx {} BFD_RELOC_IA64_COPY +@deffnx {} BFD_RELOC_IA64_LTOFF22X +@deffnx {} BFD_RELOC_IA64_LDXMOV +@deffnx {} BFD_RELOC_IA64_TPREL14 +@deffnx {} BFD_RELOC_IA64_TPREL22 +@deffnx {} BFD_RELOC_IA64_TPREL64I +@deffnx {} BFD_RELOC_IA64_TPREL64MSB +@deffnx {} BFD_RELOC_IA64_TPREL64LSB +@deffnx {} BFD_RELOC_IA64_LTOFF_TPREL22 +@deffnx {} BFD_RELOC_IA64_DTPMOD64MSB +@deffnx {} BFD_RELOC_IA64_DTPMOD64LSB +@deffnx {} BFD_RELOC_IA64_LTOFF_DTPMOD22 +@deffnx {} BFD_RELOC_IA64_DTPREL14 +@deffnx {} BFD_RELOC_IA64_DTPREL22 +@deffnx {} BFD_RELOC_IA64_DTPREL64I +@deffnx {} BFD_RELOC_IA64_DTPREL32MSB +@deffnx {} BFD_RELOC_IA64_DTPREL32LSB +@deffnx {} BFD_RELOC_IA64_DTPREL64MSB +@deffnx {} BFD_RELOC_IA64_DTPREL64LSB +@deffnx {} BFD_RELOC_IA64_LTOFF_DTPREL22 +Intel IA64 Relocations. +@end deffn +@deffn {} BFD_RELOC_M68HC11_HI8 +Motorola 68HC11 reloc. +This is the 8 bit high part of an absolute address. +@end deffn +@deffn {} BFD_RELOC_M68HC11_LO8 +Motorola 68HC11 reloc. +This is the 8 bit low part of an absolute address. +@end deffn +@deffn {} BFD_RELOC_M68HC11_3B +Motorola 68HC11 reloc. +This is the 3 bit of a value. +@end deffn +@deffn {} BFD_RELOC_M68HC11_RL_JUMP +Motorola 68HC11 reloc. +This reloc marks the beginning of a jump/call instruction. +It is used for linker relaxation to correctly identify beginning +of instruction and change some branches to use PC-relative +addressing mode. +@end deffn +@deffn {} BFD_RELOC_M68HC11_RL_GROUP +Motorola 68HC11 reloc. +This reloc marks a group of several instructions that gcc generates +and for which the linker relaxation pass can modify and/or remove +some of them. +@end deffn +@deffn {} BFD_RELOC_M68HC11_LO16 +Motorola 68HC11 reloc. +This is the 16-bit lower part of an address. It is used for 'call' +instruction to specify the symbol address without any special +transformation (due to memory bank window). +@end deffn +@deffn {} BFD_RELOC_M68HC11_PAGE +Motorola 68HC11 reloc. +This is a 8-bit reloc that specifies the page number of an address. +It is used by 'call' instruction to specify the page number of +the symbol. +@end deffn +@deffn {} BFD_RELOC_M68HC11_24 +Motorola 68HC11 reloc. +This is a 24-bit reloc that represents the address with a 16-bit +value and a 8-bit page number. The symbol address is transformed +to follow the 16K memory bank of 68HC12 (seen as mapped in the window). +@end deffn +@deffn {} BFD_RELOC_M68HC12_5B +Motorola 68HC12 reloc. +This is the 5 bits of a value. +@end deffn +@deffn {} BFD_RELOC_16C_NUM08 +@deffnx {} BFD_RELOC_16C_NUM08_C +@deffnx {} BFD_RELOC_16C_NUM16 +@deffnx {} BFD_RELOC_16C_NUM16_C +@deffnx {} BFD_RELOC_16C_NUM32 +@deffnx {} BFD_RELOC_16C_NUM32_C +@deffnx {} BFD_RELOC_16C_DISP04 +@deffnx {} BFD_RELOC_16C_DISP04_C +@deffnx {} BFD_RELOC_16C_DISP08 +@deffnx {} BFD_RELOC_16C_DISP08_C +@deffnx {} BFD_RELOC_16C_DISP16 +@deffnx {} BFD_RELOC_16C_DISP16_C +@deffnx {} BFD_RELOC_16C_DISP24 +@deffnx {} BFD_RELOC_16C_DISP24_C +@deffnx {} BFD_RELOC_16C_DISP24a +@deffnx {} BFD_RELOC_16C_DISP24a_C +@deffnx {} BFD_RELOC_16C_REG04 +@deffnx {} BFD_RELOC_16C_REG04_C +@deffnx {} BFD_RELOC_16C_REG04a +@deffnx {} BFD_RELOC_16C_REG04a_C +@deffnx {} BFD_RELOC_16C_REG14 +@deffnx {} BFD_RELOC_16C_REG14_C +@deffnx {} BFD_RELOC_16C_REG16 +@deffnx {} BFD_RELOC_16C_REG16_C +@deffnx {} BFD_RELOC_16C_REG20 +@deffnx {} BFD_RELOC_16C_REG20_C +@deffnx {} BFD_RELOC_16C_ABS20 +@deffnx {} BFD_RELOC_16C_ABS20_C +@deffnx {} BFD_RELOC_16C_ABS24 +@deffnx {} BFD_RELOC_16C_ABS24_C +@deffnx {} BFD_RELOC_16C_IMM04 +@deffnx {} BFD_RELOC_16C_IMM04_C +@deffnx {} BFD_RELOC_16C_IMM16 +@deffnx {} BFD_RELOC_16C_IMM16_C +@deffnx {} BFD_RELOC_16C_IMM20 +@deffnx {} BFD_RELOC_16C_IMM20_C +@deffnx {} BFD_RELOC_16C_IMM24 +@deffnx {} BFD_RELOC_16C_IMM24_C +@deffnx {} BFD_RELOC_16C_IMM32 +@deffnx {} BFD_RELOC_16C_IMM32_C +NS CR16C Relocations. +@end deffn +@deffn {} BFD_RELOC_CR16_NUM8 +@deffnx {} BFD_RELOC_CR16_NUM16 +@deffnx {} BFD_RELOC_CR16_NUM32 +@deffnx {} BFD_RELOC_CR16_NUM32a +@deffnx {} BFD_RELOC_CR16_REGREL0 +@deffnx {} BFD_RELOC_CR16_REGREL4 +@deffnx {} BFD_RELOC_CR16_REGREL4a +@deffnx {} BFD_RELOC_CR16_REGREL14 +@deffnx {} BFD_RELOC_CR16_REGREL14a +@deffnx {} BFD_RELOC_CR16_REGREL16 +@deffnx {} BFD_RELOC_CR16_REGREL20 +@deffnx {} BFD_RELOC_CR16_REGREL20a +@deffnx {} BFD_RELOC_CR16_ABS20 +@deffnx {} BFD_RELOC_CR16_ABS24 +@deffnx {} BFD_RELOC_CR16_IMM4 +@deffnx {} BFD_RELOC_CR16_IMM8 +@deffnx {} BFD_RELOC_CR16_IMM16 +@deffnx {} BFD_RELOC_CR16_IMM20 +@deffnx {} BFD_RELOC_CR16_IMM24 +@deffnx {} BFD_RELOC_CR16_IMM32 +@deffnx {} BFD_RELOC_CR16_IMM32a +@deffnx {} BFD_RELOC_CR16_DISP4 +@deffnx {} BFD_RELOC_CR16_DISP8 +@deffnx {} BFD_RELOC_CR16_DISP16 +@deffnx {} BFD_RELOC_CR16_DISP20 +@deffnx {} BFD_RELOC_CR16_DISP24 +@deffnx {} BFD_RELOC_CR16_DISP24a +@deffnx {} BFD_RELOC_CR16_SWITCH8 +@deffnx {} BFD_RELOC_CR16_SWITCH16 +@deffnx {} BFD_RELOC_CR16_SWITCH32 +NS CR16 Relocations. +@end deffn +@deffn {} BFD_RELOC_CRX_REL4 +@deffnx {} BFD_RELOC_CRX_REL8 +@deffnx {} BFD_RELOC_CRX_REL8_CMP +@deffnx {} BFD_RELOC_CRX_REL16 +@deffnx {} BFD_RELOC_CRX_REL24 +@deffnx {} BFD_RELOC_CRX_REL32 +@deffnx {} BFD_RELOC_CRX_REGREL12 +@deffnx {} BFD_RELOC_CRX_REGREL22 +@deffnx {} BFD_RELOC_CRX_REGREL28 +@deffnx {} BFD_RELOC_CRX_REGREL32 +@deffnx {} BFD_RELOC_CRX_ABS16 +@deffnx {} BFD_RELOC_CRX_ABS32 +@deffnx {} BFD_RELOC_CRX_NUM8 +@deffnx {} BFD_RELOC_CRX_NUM16 +@deffnx {} BFD_RELOC_CRX_NUM32 +@deffnx {} BFD_RELOC_CRX_IMM16 +@deffnx {} BFD_RELOC_CRX_IMM32 +@deffnx {} BFD_RELOC_CRX_SWITCH8 +@deffnx {} BFD_RELOC_CRX_SWITCH16 +@deffnx {} BFD_RELOC_CRX_SWITCH32 +NS CRX Relocations. +@end deffn +@deffn {} BFD_RELOC_CRIS_BDISP8 +@deffnx {} BFD_RELOC_CRIS_UNSIGNED_5 +@deffnx {} BFD_RELOC_CRIS_SIGNED_6 +@deffnx {} BFD_RELOC_CRIS_UNSIGNED_6 +@deffnx {} BFD_RELOC_CRIS_SIGNED_8 +@deffnx {} BFD_RELOC_CRIS_UNSIGNED_8 +@deffnx {} BFD_RELOC_CRIS_SIGNED_16 +@deffnx {} BFD_RELOC_CRIS_UNSIGNED_16 +@deffnx {} BFD_RELOC_CRIS_LAPCQ_OFFSET +@deffnx {} BFD_RELOC_CRIS_UNSIGNED_4 +These relocs are only used within the CRIS assembler. They are not +(at present) written to any object files. +@end deffn +@deffn {} BFD_RELOC_CRIS_COPY +@deffnx {} BFD_RELOC_CRIS_GLOB_DAT +@deffnx {} BFD_RELOC_CRIS_JUMP_SLOT +@deffnx {} BFD_RELOC_CRIS_RELATIVE +Relocs used in ELF shared libraries for CRIS. +@end deffn +@deffn {} BFD_RELOC_CRIS_32_GOT +32-bit offset to symbol-entry within GOT. +@end deffn +@deffn {} BFD_RELOC_CRIS_16_GOT +16-bit offset to symbol-entry within GOT. +@end deffn +@deffn {} BFD_RELOC_CRIS_32_GOTPLT +32-bit offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_CRIS_16_GOTPLT +16-bit offset to symbol-entry within GOT, with PLT handling. +@end deffn +@deffn {} BFD_RELOC_CRIS_32_GOTREL +32-bit offset to symbol, relative to GOT. +@end deffn +@deffn {} BFD_RELOC_CRIS_32_PLT_GOTREL +32-bit offset to symbol with PLT entry, relative to GOT. +@end deffn +@deffn {} BFD_RELOC_CRIS_32_PLT_PCREL +32-bit offset to symbol with PLT entry, relative to this relocation. +@end deffn +@deffn {} BFD_RELOC_860_COPY +@deffnx {} BFD_RELOC_860_GLOB_DAT +@deffnx {} BFD_RELOC_860_JUMP_SLOT +@deffnx {} BFD_RELOC_860_RELATIVE +@deffnx {} BFD_RELOC_860_PC26 +@deffnx {} BFD_RELOC_860_PLT26 +@deffnx {} BFD_RELOC_860_PC16 +@deffnx {} BFD_RELOC_860_LOW0 +@deffnx {} BFD_RELOC_860_SPLIT0 +@deffnx {} BFD_RELOC_860_LOW1 +@deffnx {} BFD_RELOC_860_SPLIT1 +@deffnx {} BFD_RELOC_860_LOW2 +@deffnx {} BFD_RELOC_860_SPLIT2 +@deffnx {} BFD_RELOC_860_LOW3 +@deffnx {} BFD_RELOC_860_LOGOT0 +@deffnx {} BFD_RELOC_860_SPGOT0 +@deffnx {} BFD_RELOC_860_LOGOT1 +@deffnx {} BFD_RELOC_860_SPGOT1 +@deffnx {} BFD_RELOC_860_LOGOTOFF0 +@deffnx {} BFD_RELOC_860_SPGOTOFF0 +@deffnx {} BFD_RELOC_860_LOGOTOFF1 +@deffnx {} BFD_RELOC_860_SPGOTOFF1 +@deffnx {} BFD_RELOC_860_LOGOTOFF2 +@deffnx {} BFD_RELOC_860_LOGOTOFF3 +@deffnx {} BFD_RELOC_860_LOPC +@deffnx {} BFD_RELOC_860_HIGHADJ +@deffnx {} BFD_RELOC_860_HAGOT +@deffnx {} BFD_RELOC_860_HAGOTOFF +@deffnx {} BFD_RELOC_860_HAPC +@deffnx {} BFD_RELOC_860_HIGH +@deffnx {} BFD_RELOC_860_HIGOT +@deffnx {} BFD_RELOC_860_HIGOTOFF +Intel i860 Relocations. +@end deffn +@deffn {} BFD_RELOC_OPENRISC_ABS_26 +@deffnx {} BFD_RELOC_OPENRISC_REL_26 +OpenRISC Relocations. +@end deffn +@deffn {} BFD_RELOC_H8_DIR16A8 +@deffnx {} BFD_RELOC_H8_DIR16R8 +@deffnx {} BFD_RELOC_H8_DIR24A8 +@deffnx {} BFD_RELOC_H8_DIR24R8 +@deffnx {} BFD_RELOC_H8_DIR32A16 +H8 elf Relocations. +@end deffn +@deffn {} BFD_RELOC_XSTORMY16_REL_12 +@deffnx {} BFD_RELOC_XSTORMY16_12 +@deffnx {} BFD_RELOC_XSTORMY16_24 +@deffnx {} BFD_RELOC_XSTORMY16_FPTR16 +Sony Xstormy16 Relocations. +@end deffn +@deffn {} BFD_RELOC_RELC +Self-describing complex relocations. +@end deffn +@deffn {} BFD_RELOC_XC16X_PAG +@deffnx {} BFD_RELOC_XC16X_POF +@deffnx {} BFD_RELOC_XC16X_SEG +@deffnx {} BFD_RELOC_XC16X_SOF +Infineon Relocations. +@end deffn +@deffn {} BFD_RELOC_VAX_GLOB_DAT +@deffnx {} BFD_RELOC_VAX_JMP_SLOT +@deffnx {} BFD_RELOC_VAX_RELATIVE +Relocations used by VAX ELF. +@end deffn +@deffn {} BFD_RELOC_MT_PC16 +Morpho MT - 16 bit immediate relocation. +@end deffn +@deffn {} BFD_RELOC_MT_HI16 +Morpho MT - Hi 16 bits of an address. +@end deffn +@deffn {} BFD_RELOC_MT_LO16 +Morpho MT - Low 16 bits of an address. +@end deffn +@deffn {} BFD_RELOC_MT_GNU_VTINHERIT +Morpho MT - Used to tell the linker which vtable entries are used. +@end deffn +@deffn {} BFD_RELOC_MT_GNU_VTENTRY +Morpho MT - Used to tell the linker which vtable entries are used. +@end deffn +@deffn {} BFD_RELOC_MT_PCINSN8 +Morpho MT - 8 bit immediate relocation. +@end deffn +@deffn {} BFD_RELOC_MSP430_10_PCREL +@deffnx {} BFD_RELOC_MSP430_16_PCREL +@deffnx {} BFD_RELOC_MSP430_16 +@deffnx {} BFD_RELOC_MSP430_16_PCREL_BYTE +@deffnx {} BFD_RELOC_MSP430_16_BYTE +@deffnx {} BFD_RELOC_MSP430_2X_PCREL +@deffnx {} BFD_RELOC_MSP430_RL_PCREL +msp430 specific relocation codes +@end deffn +@deffn {} BFD_RELOC_IQ2000_OFFSET_16 +@deffnx {} BFD_RELOC_IQ2000_OFFSET_21 +@deffnx {} BFD_RELOC_IQ2000_UHI16 +IQ2000 Relocations. +@end deffn +@deffn {} BFD_RELOC_XTENSA_RTLD +Special Xtensa relocation used only by PLT entries in ELF shared +objects to indicate that the runtime linker should set the value +to one of its own internal functions or data structures. +@end deffn +@deffn {} BFD_RELOC_XTENSA_GLOB_DAT +@deffnx {} BFD_RELOC_XTENSA_JMP_SLOT +@deffnx {} BFD_RELOC_XTENSA_RELATIVE +Xtensa relocations for ELF shared objects. +@end deffn +@deffn {} BFD_RELOC_XTENSA_PLT +Xtensa relocation used in ELF object files for symbols that may require +PLT entries. Otherwise, this is just a generic 32-bit relocation. +@end deffn +@deffn {} BFD_RELOC_XTENSA_DIFF8 +@deffnx {} BFD_RELOC_XTENSA_DIFF16 +@deffnx {} BFD_RELOC_XTENSA_DIFF32 +Xtensa relocations to mark the difference of two local symbols. +These are only needed to support linker relaxation and can be ignored +when not relaxing. The field is set to the value of the difference +assuming no relaxation. The relocation encodes the position of the +first symbol so the linker can determine whether to adjust the field +value. +@end deffn +@deffn {} BFD_RELOC_XTENSA_SLOT0_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT1_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT2_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT3_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT4_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT5_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT6_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT7_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT8_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT9_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT10_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT11_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT12_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT13_OP +@deffnx {} BFD_RELOC_XTENSA_SLOT14_OP +Generic Xtensa relocations for instruction operands. Only the slot +number is encoded in the relocation. The relocation applies to the +last PC-relative immediate operand, or if there are no PC-relative +immediates, to the last immediate operand. +@end deffn +@deffn {} BFD_RELOC_XTENSA_SLOT0_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT1_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT2_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT3_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT4_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT5_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT6_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT7_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT8_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT9_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT10_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT11_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT12_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT13_ALT +@deffnx {} BFD_RELOC_XTENSA_SLOT14_ALT +Alternate Xtensa relocations. Only the slot is encoded in the +relocation. The meaning of these relocations is opcode-specific. +@end deffn +@deffn {} BFD_RELOC_XTENSA_OP0 +@deffnx {} BFD_RELOC_XTENSA_OP1 +@deffnx {} BFD_RELOC_XTENSA_OP2 +Xtensa relocations for backward compatibility. These have all been +replaced by BFD_RELOC_XTENSA_SLOT0_OP. +@end deffn +@deffn {} BFD_RELOC_XTENSA_ASM_EXPAND +Xtensa relocation to mark that the assembler expanded the +instructions from an original target. The expansion size is +encoded in the reloc size. +@end deffn +@deffn {} BFD_RELOC_XTENSA_ASM_SIMPLIFY +Xtensa relocation to mark that the linker should simplify +assembler-expanded instructions. This is commonly used +internally by the linker after analysis of a +BFD_RELOC_XTENSA_ASM_EXPAND. +@end deffn +@deffn {} BFD_RELOC_XTENSA_TLSDESC_FN +@deffnx {} BFD_RELOC_XTENSA_TLSDESC_ARG +@deffnx {} BFD_RELOC_XTENSA_TLS_DTPOFF +@deffnx {} BFD_RELOC_XTENSA_TLS_TPOFF +@deffnx {} BFD_RELOC_XTENSA_TLS_FUNC +@deffnx {} BFD_RELOC_XTENSA_TLS_ARG +@deffnx {} BFD_RELOC_XTENSA_TLS_CALL +Xtensa TLS relocations. +@end deffn +@deffn {} BFD_RELOC_Z80_DISP8 +8 bit signed offset in (ix+d) or (iy+d). +@end deffn +@deffn {} BFD_RELOC_Z8K_DISP7 +DJNZ offset. +@end deffn +@deffn {} BFD_RELOC_Z8K_CALLR +CALR offset. +@end deffn +@deffn {} BFD_RELOC_Z8K_IMM4L +4 bit value. +@end deffn + +@example + +typedef enum bfd_reloc_code_real bfd_reloc_code_real_type; +@end example +@findex bfd_reloc_type_lookup +@subsubsection @code{bfd_reloc_type_lookup} +@strong{Synopsis} +@example +reloc_howto_type *bfd_reloc_type_lookup + (bfd *abfd, bfd_reloc_code_real_type code); +reloc_howto_type *bfd_reloc_name_lookup + (bfd *abfd, const char *reloc_name); +@end example +@strong{Description}@* +Return a pointer to a howto structure which, when +invoked, will perform the relocation @var{code} on data from the +architecture noted. + +@findex bfd_default_reloc_type_lookup +@subsubsection @code{bfd_default_reloc_type_lookup} +@strong{Synopsis} +@example +reloc_howto_type *bfd_default_reloc_type_lookup + (bfd *abfd, bfd_reloc_code_real_type code); +@end example +@strong{Description}@* +Provides a default relocation lookup routine for any architecture. + +@findex bfd_get_reloc_code_name +@subsubsection @code{bfd_get_reloc_code_name} +@strong{Synopsis} +@example +const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code); +@end example +@strong{Description}@* +Provides a printable name for the supplied relocation code. +Useful mainly for printing error messages. + +@findex bfd_generic_relax_section +@subsubsection @code{bfd_generic_relax_section} +@strong{Synopsis} +@example +bfd_boolean bfd_generic_relax_section + (bfd *abfd, + asection *section, + struct bfd_link_info *, + bfd_boolean *); +@end example +@strong{Description}@* +Provides default handling for relaxing for back ends which +don't do relaxing. + +@findex bfd_generic_gc_sections +@subsubsection @code{bfd_generic_gc_sections} +@strong{Synopsis} +@example +bfd_boolean bfd_generic_gc_sections + (bfd *, struct bfd_link_info *); +@end example +@strong{Description}@* +Provides default handling for relaxing for back ends which +don't do section gc -- i.e., does nothing. + +@findex bfd_generic_merge_sections +@subsubsection @code{bfd_generic_merge_sections} +@strong{Synopsis} +@example +bfd_boolean bfd_generic_merge_sections + (bfd *, struct bfd_link_info *); +@end example +@strong{Description}@* +Provides default handling for SEC_MERGE section merging for back ends +which don't have SEC_MERGE support -- i.e., does nothing. + +@findex bfd_generic_get_relocated_section_contents +@subsubsection @code{bfd_generic_get_relocated_section_contents} +@strong{Synopsis} +@example +bfd_byte *bfd_generic_get_relocated_section_contents + (bfd *abfd, + struct bfd_link_info *link_info, + struct bfd_link_order *link_order, + bfd_byte *data, + bfd_boolean relocatable, + asymbol **symbols); +@end example +@strong{Description}@* +Provides default handling of relocation effort for back ends +which can't be bothered to do it efficiently. + diff --git a/bfd/doc/section.texi b/bfd/doc/section.texi new file mode 100644 index 00000000000..cfc02649f29 --- /dev/null +++ b/bfd/doc/section.texi @@ -0,0 +1,982 @@ +@section Sections +The raw data contained within a BFD is maintained through the +section abstraction. A single BFD may have any number of +sections. It keeps hold of them by pointing to the first; +each one points to the next in the list. + +Sections are supported in BFD in @code{section.c}. + +@menu +* Section Input:: +* Section Output:: +* typedef asection:: +* section prototypes:: +@end menu + +@node Section Input, Section Output, Sections, Sections +@subsection Section input +When a BFD is opened for reading, the section structures are +created and attached to the BFD. + +Each section has a name which describes the section in the +outside world---for example, @code{a.out} would contain at least +three sections, called @code{.text}, @code{.data} and @code{.bss}. + +Names need not be unique; for example a COFF file may have several +sections named @code{.data}. + +Sometimes a BFD will contain more than the ``natural'' number of +sections. A back end may attach other sections containing +constructor data, or an application may add a section (using +@code{bfd_make_section}) to the sections attached to an already open +BFD. For example, the linker creates an extra section +@code{COMMON} for each input file's BFD to hold information about +common storage. + +The raw data is not necessarily read in when +the section descriptor is created. Some targets may leave the +data in place until a @code{bfd_get_section_contents} call is +made. Other back ends may read in all the data at once. For +example, an S-record file has to be read once to determine the +size of the data. An IEEE-695 file doesn't contain raw data in +sections, but data and relocation expressions intermixed, so +the data area has to be parsed to get out the data and +relocations. + +@node Section Output, typedef asection, Section Input, Sections +@subsection Section output +To write a new object style BFD, the various sections to be +written have to be created. They are attached to the BFD in +the same way as input sections; data is written to the +sections using @code{bfd_set_section_contents}. + +Any program that creates or combines sections (e.g., the assembler +and linker) must use the @code{asection} fields @code{output_section} and +@code{output_offset} to indicate the file sections to which each +section must be written. (If the section is being created from +scratch, @code{output_section} should probably point to the section +itself and @code{output_offset} should probably be zero.) + +The data to be written comes from input sections attached +(via @code{output_section} pointers) to +the output sections. The output section structure can be +considered a filter for the input section: the output section +determines the vma of the output data and the name, but the +input section determines the offset into the output section of +the data to be written. + +E.g., to create a section "O", starting at 0x100, 0x123 long, +containing two subsections, "A" at offset 0x0 (i.e., at vma +0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the @code{asection} +structures would look like: + +@example + section name "A" + output_offset 0x00 + size 0x20 + output_section -----------> section name "O" + | vma 0x100 + section name "B" | size 0x123 + output_offset 0x20 | + size 0x103 | + output_section --------| +@end example + +@subsection Link orders +The data within a section is stored in a @dfn{link_order}. +These are much like the fixups in @code{gas}. The link_order +abstraction allows a section to grow and shrink within itself. + +A link_order knows how big it is, and which is the next +link_order and where the raw data for it is; it also points to +a list of relocations which apply to it. + +The link_order is used by the linker to perform relaxing on +final code. The compiler creates code which is as big as +necessary to make it work without relaxing, and the user can +select whether to relax. Sometimes relaxing takes a lot of +time. The linker runs around the relocations to see if any +are attached to data which can be shrunk, if so it does it on +a link_order by link_order basis. + + +@node typedef asection, section prototypes, Section Output, Sections +@subsection typedef asection +Here is the section structure: + + +@example + +typedef struct bfd_section +@{ + /* The name of the section; the name isn't a copy, the pointer is + the same as that passed to bfd_make_section. */ + const char *name; + + /* A unique sequence number. */ + int id; + + /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */ + int index; + + /* The next section in the list belonging to the BFD, or NULL. */ + struct bfd_section *next; + + /* The previous section in the list belonging to the BFD, or NULL. */ + struct bfd_section *prev; + + /* The field flags contains attributes of the section. Some + flags are read in from the object file, and some are + synthesized from other information. */ + flagword flags; + +#define SEC_NO_FLAGS 0x000 + + /* Tells the OS to allocate space for this section when loading. + This is clear for a section containing debug information only. */ +#define SEC_ALLOC 0x001 + + /* Tells the OS to load the section from the file when loading. + This is clear for a .bss section. */ +#define SEC_LOAD 0x002 + + /* The section contains data still to be relocated, so there is + some relocation information too. */ +#define SEC_RELOC 0x004 + + /* A signal to the OS that the section contains read only data. */ +#define SEC_READONLY 0x008 + + /* The section contains code only. */ +#define SEC_CODE 0x010 + + /* The section contains data only. */ +#define SEC_DATA 0x020 + + /* The section will reside in ROM. */ +#define SEC_ROM 0x040 + + /* The section contains constructor information. This section + type is used by the linker to create lists of constructors and + destructors used by @code{g++}. When a back end sees a symbol + which should be used in a constructor list, it creates a new + section for the type of name (e.g., @code{__CTOR_LIST__}), attaches + the symbol to it, and builds a relocation. To build the lists + of constructors, all the linker has to do is catenate all the + sections called @code{__CTOR_LIST__} and relocate the data + contained within - exactly the operations it would peform on + standard data. */ +#define SEC_CONSTRUCTOR 0x080 + + /* The section has contents - a data section could be + @code{SEC_ALLOC} | @code{SEC_HAS_CONTENTS}; a debug section could be + @code{SEC_HAS_CONTENTS} */ +#define SEC_HAS_CONTENTS 0x100 + + /* An instruction to the linker to not output the section + even if it has information which would normally be written. */ +#define SEC_NEVER_LOAD 0x200 + + /* The section contains thread local data. */ +#define SEC_THREAD_LOCAL 0x400 + + /* The section has GOT references. This flag is only for the + linker, and is currently only used by the elf32-hppa back end. + It will be set if global offset table references were detected + in this section, which indicate to the linker that the section + contains PIC code, and must be handled specially when doing a + static link. */ +#define SEC_HAS_GOT_REF 0x800 + + /* The section contains common symbols (symbols may be defined + multiple times, the value of a symbol is the amount of + space it requires, and the largest symbol value is the one + used). Most targets have exactly one of these (which we + translate to bfd_com_section_ptr), but ECOFF has two. */ +#define SEC_IS_COMMON 0x1000 + + /* The section contains only debugging information. For + example, this is set for ELF .debug and .stab sections. + strip tests this flag to see if a section can be + discarded. */ +#define SEC_DEBUGGING 0x2000 + + /* The contents of this section are held in memory pointed to + by the contents field. This is checked by bfd_get_section_contents, + and the data is retrieved from memory if appropriate. */ +#define SEC_IN_MEMORY 0x4000 + + /* The contents of this section are to be excluded by the + linker for executable and shared objects unless those + objects are to be further relocated. */ +#define SEC_EXCLUDE 0x8000 + + /* The contents of this section are to be sorted based on the sum of + the symbol and addend values specified by the associated relocation + entries. Entries without associated relocation entries will be + appended to the end of the section in an unspecified order. */ +#define SEC_SORT_ENTRIES 0x10000 + + /* When linking, duplicate sections of the same name should be + discarded, rather than being combined into a single section as + is usually done. This is similar to how common symbols are + handled. See SEC_LINK_DUPLICATES below. */ +#define SEC_LINK_ONCE 0x20000 + + /* If SEC_LINK_ONCE is set, this bitfield describes how the linker + should handle duplicate sections. */ +#define SEC_LINK_DUPLICATES 0xc0000 + + /* This value for SEC_LINK_DUPLICATES means that duplicate + sections with the same name should simply be discarded. */ +#define SEC_LINK_DUPLICATES_DISCARD 0x0 + + /* This value for SEC_LINK_DUPLICATES means that the linker + should warn if there are any duplicate sections, although + it should still only link one copy. */ +#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 + + /* This value for SEC_LINK_DUPLICATES means that the linker + should warn if any duplicate sections are a different size. */ +#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 + + /* This value for SEC_LINK_DUPLICATES means that the linker + should warn if any duplicate sections contain different + contents. */ +#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ + (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) + + /* This section was created by the linker as part of dynamic + relocation or other arcane processing. It is skipped when + going through the first-pass output, trusting that someone + else up the line will take care of it later. */ +#define SEC_LINKER_CREATED 0x100000 + + /* This section should not be subject to garbage collection. + Also set to inform the linker that this section should not be + listed in the link map as discarded. */ +#define SEC_KEEP 0x200000 + + /* This section contains "short" data, and should be placed + "near" the GP. */ +#define SEC_SMALL_DATA 0x400000 + + /* Attempt to merge identical entities in the section. + Entity size is given in the entsize field. */ +#define SEC_MERGE 0x800000 + + /* If given with SEC_MERGE, entities to merge are zero terminated + strings where entsize specifies character size instead of fixed + size entries. */ +#define SEC_STRINGS 0x1000000 + + /* This section contains data about section groups. */ +#define SEC_GROUP 0x2000000 + + /* The section is a COFF shared library section. This flag is + only for the linker. If this type of section appears in + the input file, the linker must copy it to the output file + without changing the vma or size. FIXME: Although this + was originally intended to be general, it really is COFF + specific (and the flag was renamed to indicate this). It + might be cleaner to have some more general mechanism to + allow the back end to control what the linker does with + sections. */ +#define SEC_COFF_SHARED_LIBRARY 0x4000000 + + /* This section contains data which may be shared with other + executables or shared objects. This is for COFF only. */ +#define SEC_COFF_SHARED 0x8000000 + + /* When a section with this flag is being linked, then if the size of + the input section is less than a page, it should not cross a page + boundary. If the size of the input section is one page or more, + it should be aligned on a page boundary. This is for TI + TMS320C54X only. */ +#define SEC_TIC54X_BLOCK 0x10000000 + + /* Conditionally link this section; do not link if there are no + references found to any symbol in the section. This is for TI + TMS320C54X only. */ +#define SEC_TIC54X_CLINK 0x20000000 + + /* End of section flags. */ + + /* Some internal packed boolean fields. */ + + /* See the vma field. */ + unsigned int user_set_vma : 1; + + /* A mark flag used by some of the linker backends. */ + unsigned int linker_mark : 1; + + /* Another mark flag used by some of the linker backends. Set for + output sections that have an input section. */ + unsigned int linker_has_input : 1; + + /* Mark flag used by some linker backends for garbage collection. */ + unsigned int gc_mark : 1; + + /* The following flags are used by the ELF linker. */ + + /* Mark sections which have been allocated to segments. */ + unsigned int segment_mark : 1; + + /* Type of sec_info information. */ + unsigned int sec_info_type:3; +#define ELF_INFO_TYPE_NONE 0 +#define ELF_INFO_TYPE_STABS 1 +#define ELF_INFO_TYPE_MERGE 2 +#define ELF_INFO_TYPE_EH_FRAME 3 +#define ELF_INFO_TYPE_JUST_SYMS 4 + + /* Nonzero if this section uses RELA relocations, rather than REL. */ + unsigned int use_rela_p:1; + + /* Bits used by various backends. The generic code doesn't touch + these fields. */ + + /* Nonzero if this section has TLS related relocations. */ + unsigned int has_tls_reloc:1; + + /* Nonzero if this section has a gp reloc. */ + unsigned int has_gp_reloc:1; + + /* Nonzero if this section needs the relax finalize pass. */ + unsigned int need_finalize_relax:1; + + /* Whether relocations have been processed. */ + unsigned int reloc_done : 1; + + /* End of internal packed boolean fields. */ + + /* The virtual memory address of the section - where it will be + at run time. The symbols are relocated against this. The + user_set_vma flag is maintained by bfd; if it's not set, the + backend can assign addresses (for example, in @code{a.out}, where + the default address for @code{.data} is dependent on the specific + target and various flags). */ + bfd_vma vma; + + /* The load address of the section - where it would be in a + rom image; really only used for writing section header + information. */ + bfd_vma lma; + + /* The size of the section in octets, as it will be output. + Contains a value even if the section has no contents (e.g., the + size of @code{.bss}). */ + bfd_size_type size; + + /* For input sections, the original size on disk of the section, in + octets. This field should be set for any section whose size is + changed by linker relaxation. It is required for sections where + the linker relaxation scheme doesn't cache altered section and + reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing + targets), and thus the original size needs to be kept to read the + section multiple times. For output sections, rawsize holds the + section size calculated on a previous linker relaxation pass. */ + bfd_size_type rawsize; + + /* If this section is going to be output, then this value is the + offset in *bytes* into the output section of the first byte in the + input section (byte ==> smallest addressable unit on the + target). In most cases, if this was going to start at the + 100th octet (8-bit quantity) in the output section, this value + would be 100. However, if the target byte size is 16 bits + (bfd_octets_per_byte is "2"), this value would be 50. */ + bfd_vma output_offset; + + /* The output section through which to map on output. */ + struct bfd_section *output_section; + + /* The alignment requirement of the section, as an exponent of 2 - + e.g., 3 aligns to 2^3 (or 8). */ + unsigned int alignment_power; + + /* If an input section, a pointer to a vector of relocation + records for the data in this section. */ + struct reloc_cache_entry *relocation; + + /* If an output section, a pointer to a vector of pointers to + relocation records for the data in this section. */ + struct reloc_cache_entry **orelocation; + + /* The number of relocation records in one of the above. */ + unsigned reloc_count; + + /* Information below is back end specific - and not always used + or updated. */ + + /* File position of section data. */ + file_ptr filepos; + + /* File position of relocation info. */ + file_ptr rel_filepos; + + /* File position of line data. */ + file_ptr line_filepos; + + /* Pointer to data for applications. */ + void *userdata; + + /* If the SEC_IN_MEMORY flag is set, this points to the actual + contents. */ + unsigned char *contents; + + /* Attached line number information. */ + alent *lineno; + + /* Number of line number records. */ + unsigned int lineno_count; + + /* Entity size for merging purposes. */ + unsigned int entsize; + + /* Points to the kept section if this section is a link-once section, + and is discarded. */ + struct bfd_section *kept_section; + + /* When a section is being output, this value changes as more + linenumbers are written out. */ + file_ptr moving_line_filepos; + + /* What the section number is in the target world. */ + int target_index; + + void *used_by_bfd; + + /* If this is a constructor section then here is a list of the + relocations created to relocate items within it. */ + struct relent_chain *constructor_chain; + + /* The BFD which owns the section. */ + bfd *owner; + + /* A symbol which points at this section only. */ + struct bfd_symbol *symbol; + struct bfd_symbol **symbol_ptr_ptr; + + /* Early in the link process, map_head and map_tail are used to build + a list of input sections attached to an output section. Later, + output sections use these fields for a list of bfd_link_order + structs. */ + union @{ + struct bfd_link_order *link_order; + struct bfd_section *s; + @} map_head, map_tail; +@} asection; + +/* These sections are global, and are managed by BFD. The application + and target back end are not permitted to change the values in + these sections. New code should use the section_ptr macros rather + than referring directly to the const sections. The const sections + may eventually vanish. */ +#define BFD_ABS_SECTION_NAME "*ABS*" +#define BFD_UND_SECTION_NAME "*UND*" +#define BFD_COM_SECTION_NAME "*COM*" +#define BFD_IND_SECTION_NAME "*IND*" + +/* The absolute section. */ +extern asection bfd_abs_section; +#define bfd_abs_section_ptr ((asection *) &bfd_abs_section) +#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) +/* Pointer to the undefined section. */ +extern asection bfd_und_section; +#define bfd_und_section_ptr ((asection *) &bfd_und_section) +#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) +/* Pointer to the common section. */ +extern asection bfd_com_section; +#define bfd_com_section_ptr ((asection *) &bfd_com_section) +/* Pointer to the indirect section. */ +extern asection bfd_ind_section; +#define bfd_ind_section_ptr ((asection *) &bfd_ind_section) +#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) + +#define bfd_is_const_section(SEC) \ + ( ((SEC) == bfd_abs_section_ptr) \ + || ((SEC) == bfd_und_section_ptr) \ + || ((SEC) == bfd_com_section_ptr) \ + || ((SEC) == bfd_ind_section_ptr)) + +/* Macros to handle insertion and deletion of a bfd's sections. These + only handle the list pointers, ie. do not adjust section_count, + target_index etc. */ +#define bfd_section_list_remove(ABFD, S) \ + do \ + @{ \ + asection *_s = S; \ + asection *_next = _s->next; \ + asection *_prev = _s->prev; \ + if (_prev) \ + _prev->next = _next; \ + else \ + (ABFD)->sections = _next; \ + if (_next) \ + _next->prev = _prev; \ + else \ + (ABFD)->section_last = _prev; \ + @} \ + while (0) +#define bfd_section_list_append(ABFD, S) \ + do \ + @{ \ + asection *_s = S; \ + bfd *_abfd = ABFD; \ + _s->next = NULL; \ + if (_abfd->section_last) \ + @{ \ + _s->prev = _abfd->section_last; \ + _abfd->section_last->next = _s; \ + @} \ + else \ + @{ \ + _s->prev = NULL; \ + _abfd->sections = _s; \ + @} \ + _abfd->section_last = _s; \ + @} \ + while (0) +#define bfd_section_list_prepend(ABFD, S) \ + do \ + @{ \ + asection *_s = S; \ + bfd *_abfd = ABFD; \ + _s->prev = NULL; \ + if (_abfd->sections) \ + @{ \ + _s->next = _abfd->sections; \ + _abfd->sections->prev = _s; \ + @} \ + else \ + @{ \ + _s->next = NULL; \ + _abfd->section_last = _s; \ + @} \ + _abfd->sections = _s; \ + @} \ + while (0) +#define bfd_section_list_insert_after(ABFD, A, S) \ + do \ + @{ \ + asection *_a = A; \ + asection *_s = S; \ + asection *_next = _a->next; \ + _s->next = _next; \ + _s->prev = _a; \ + _a->next = _s; \ + if (_next) \ + _next->prev = _s; \ + else \ + (ABFD)->section_last = _s; \ + @} \ + while (0) +#define bfd_section_list_insert_before(ABFD, B, S) \ + do \ + @{ \ + asection *_b = B; \ + asection *_s = S; \ + asection *_prev = _b->prev; \ + _s->prev = _prev; \ + _s->next = _b; \ + _b->prev = _s; \ + if (_prev) \ + _prev->next = _s; \ + else \ + (ABFD)->sections = _s; \ + @} \ + while (0) +#define bfd_section_removed_from_list(ABFD, S) \ + ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) + +#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ + /* name, id, index, next, prev, flags, user_set_vma, */ \ + @{ NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ + \ + /* linker_mark, linker_has_input, gc_mark, */ \ + 0, 0, 1, \ + \ + /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \ + 0, 0, 0, 0, \ + \ + /* has_gp_reloc, need_finalize_relax, reloc_done, */ \ + 0, 0, 0, \ + \ + /* vma, lma, size, rawsize */ \ + 0, 0, 0, 0, \ + \ + /* output_offset, output_section, alignment_power, */ \ + 0, (struct bfd_section *) &SEC, 0, \ + \ + /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \ + NULL, NULL, 0, 0, 0, \ + \ + /* line_filepos, userdata, contents, lineno, lineno_count, */ \ + 0, NULL, NULL, NULL, 0, \ + \ + /* entsize, kept_section, moving_line_filepos, */ \ + 0, NULL, 0, \ + \ + /* target_index, used_by_bfd, constructor_chain, owner, */ \ + 0, NULL, NULL, NULL, \ + \ + /* symbol, symbol_ptr_ptr, */ \ + (struct bfd_symbol *) SYM, &SEC.symbol, \ + \ + /* map_head, map_tail */ \ + @{ NULL @}, @{ NULL @} \ + @} + +@end example + +@node section prototypes, , typedef asection, Sections +@subsection Section prototypes +These are the functions exported by the section handling part of BFD. + +@findex bfd_section_list_clear +@subsubsection @code{bfd_section_list_clear} +@strong{Synopsis} +@example +void bfd_section_list_clear (bfd *); +@end example +@strong{Description}@* +Clears the section list, and also resets the section count and +hash table entries. + +@findex bfd_get_section_by_name +@subsubsection @code{bfd_get_section_by_name} +@strong{Synopsis} +@example +asection *bfd_get_section_by_name (bfd *abfd, const char *name); +@end example +@strong{Description}@* +Run through @var{abfd} and return the one of the +@code{asection}s whose name matches @var{name}, otherwise @code{NULL}. +@xref{Sections}, for more information. + +This should only be used in special cases; the normal way to process +all sections of a given name is to use @code{bfd_map_over_sections} and +@code{strcmp} on the name (or better yet, base it on the section flags +or something else) for each section. + +@findex bfd_get_section_by_name_if +@subsubsection @code{bfd_get_section_by_name_if} +@strong{Synopsis} +@example +asection *bfd_get_section_by_name_if + (bfd *abfd, + const char *name, + bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), + void *obj); +@end example +@strong{Description}@* +Call the provided function @var{func} for each section +attached to the BFD @var{abfd} whose name matches @var{name}, +passing @var{obj} as an argument. The function will be called +as if by + +@example + func (abfd, the_section, obj); +@end example + +It returns the first section for which @var{func} returns true, +otherwise @code{NULL}. + +@findex bfd_get_unique_section_name +@subsubsection @code{bfd_get_unique_section_name} +@strong{Synopsis} +@example +char *bfd_get_unique_section_name + (bfd *abfd, const char *templat, int *count); +@end example +@strong{Description}@* +Invent a section name that is unique in @var{abfd} by tacking +a dot and a digit suffix onto the original @var{templat}. If +@var{count} is non-NULL, then it specifies the first number +tried as a suffix to generate a unique name. The value +pointed to by @var{count} will be incremented in this case. + +@findex bfd_make_section_old_way +@subsubsection @code{bfd_make_section_old_way} +@strong{Synopsis} +@example +asection *bfd_make_section_old_way (bfd *abfd, const char *name); +@end example +@strong{Description}@* +Create a new empty section called @var{name} +and attach it to the end of the chain of sections for the +BFD @var{abfd}. An attempt to create a section with a name which +is already in use returns its pointer without changing the +section chain. + +It has the funny name since this is the way it used to be +before it was rewritten.... + +Possible errors are: +@itemize @bullet + +@item +@code{bfd_error_invalid_operation} - +If output has already started for this BFD. +@item +@code{bfd_error_no_memory} - +If memory allocation fails. +@end itemize + +@findex bfd_make_section_anyway_with_flags +@subsubsection @code{bfd_make_section_anyway_with_flags} +@strong{Synopsis} +@example +asection *bfd_make_section_anyway_with_flags + (bfd *abfd, const char *name, flagword flags); +@end example +@strong{Description}@* +Create a new empty section called @var{name} and attach it to the end of +the chain of sections for @var{abfd}. Create a new section even if there +is already a section with that name. Also set the attributes of the +new section to the value @var{flags}. + +Return @code{NULL} and set @code{bfd_error} on error; possible errors are: +@itemize @bullet + +@item +@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}. +@item +@code{bfd_error_no_memory} - If memory allocation fails. +@end itemize + +@findex bfd_make_section_anyway +@subsubsection @code{bfd_make_section_anyway} +@strong{Synopsis} +@example +asection *bfd_make_section_anyway (bfd *abfd, const char *name); +@end example +@strong{Description}@* +Create a new empty section called @var{name} and attach it to the end of +the chain of sections for @var{abfd}. Create a new section even if there +is already a section with that name. + +Return @code{NULL} and set @code{bfd_error} on error; possible errors are: +@itemize @bullet + +@item +@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}. +@item +@code{bfd_error_no_memory} - If memory allocation fails. +@end itemize + +@findex bfd_make_section_with_flags +@subsubsection @code{bfd_make_section_with_flags} +@strong{Synopsis} +@example +asection *bfd_make_section_with_flags + (bfd *, const char *name, flagword flags); +@end example +@strong{Description}@* +Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling +bfd_set_error ()) without changing the section chain if there is already a +section named @var{name}. Also set the attributes of the new section to +the value @var{flags}. If there is an error, return @code{NULL} and set +@code{bfd_error}. + +@findex bfd_make_section +@subsubsection @code{bfd_make_section} +@strong{Synopsis} +@example +asection *bfd_make_section (bfd *, const char *name); +@end example +@strong{Description}@* +Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling +bfd_set_error ()) without changing the section chain if there is already a +section named @var{name}. If there is an error, return @code{NULL} and set +@code{bfd_error}. + +@findex bfd_set_section_flags +@subsubsection @code{bfd_set_section_flags} +@strong{Synopsis} +@example +bfd_boolean bfd_set_section_flags + (bfd *abfd, asection *sec, flagword flags); +@end example +@strong{Description}@* +Set the attributes of the section @var{sec} in the BFD +@var{abfd} to the value @var{flags}. Return @code{TRUE} on success, +@code{FALSE} on error. Possible error returns are: + +@itemize @bullet + +@item +@code{bfd_error_invalid_operation} - +The section cannot have one or more of the attributes +requested. For example, a .bss section in @code{a.out} may not +have the @code{SEC_HAS_CONTENTS} field set. +@end itemize + +@findex bfd_map_over_sections +@subsubsection @code{bfd_map_over_sections} +@strong{Synopsis} +@example +void bfd_map_over_sections + (bfd *abfd, + void (*func) (bfd *abfd, asection *sect, void *obj), + void *obj); +@end example +@strong{Description}@* +Call the provided function @var{func} for each section +attached to the BFD @var{abfd}, passing @var{obj} as an +argument. The function will be called as if by + +@example + func (abfd, the_section, obj); +@end example + +This is the preferred method for iterating over sections; an +alternative would be to use a loop: + +@example + section *p; + for (p = abfd->sections; p != NULL; p = p->next) + func (abfd, p, ...) +@end example + +@findex bfd_sections_find_if +@subsubsection @code{bfd_sections_find_if} +@strong{Synopsis} +@example +asection *bfd_sections_find_if + (bfd *abfd, + bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), + void *obj); +@end example +@strong{Description}@* +Call the provided function @var{operation} for each section +attached to the BFD @var{abfd}, passing @var{obj} as an +argument. The function will be called as if by + +@example + operation (abfd, the_section, obj); +@end example + +It returns the first section for which @var{operation} returns true. + +@findex bfd_set_section_size +@subsubsection @code{bfd_set_section_size} +@strong{Synopsis} +@example +bfd_boolean bfd_set_section_size + (bfd *abfd, asection *sec, bfd_size_type val); +@end example +@strong{Description}@* +Set @var{sec} to the size @var{val}. If the operation is +ok, then @code{TRUE} is returned, else @code{FALSE}. + +Possible error returns: +@itemize @bullet + +@item +@code{bfd_error_invalid_operation} - +Writing has started to the BFD, so setting the size is invalid. +@end itemize + +@findex bfd_set_section_contents +@subsubsection @code{bfd_set_section_contents} +@strong{Synopsis} +@example +bfd_boolean bfd_set_section_contents + (bfd *abfd, asection *section, const void *data, + file_ptr offset, bfd_size_type count); +@end example +@strong{Description}@* +Sets the contents of the section @var{section} in BFD +@var{abfd} to the data starting in memory at @var{data}. The +data is written to the output section starting at offset +@var{offset} for @var{count} octets. + +Normally @code{TRUE} is returned, else @code{FALSE}. Possible error +returns are: +@itemize @bullet + +@item +@code{bfd_error_no_contents} - +The output section does not have the @code{SEC_HAS_CONTENTS} +attribute, so nothing can be written to it. +@item +and some more too +@end itemize +This routine is front end to the back end function +@code{_bfd_set_section_contents}. + +@findex bfd_get_section_contents +@subsubsection @code{bfd_get_section_contents} +@strong{Synopsis} +@example +bfd_boolean bfd_get_section_contents + (bfd *abfd, asection *section, void *location, file_ptr offset, + bfd_size_type count); +@end example +@strong{Description}@* +Read data from @var{section} in BFD @var{abfd} +into memory starting at @var{location}. The data is read at an +offset of @var{offset} from the start of the input section, +and is read for @var{count} bytes. + +If the contents of a constructor with the @code{SEC_CONSTRUCTOR} +flag set are requested or if the section does not have the +@code{SEC_HAS_CONTENTS} flag set, then the @var{location} is filled +with zeroes. If no errors occur, @code{TRUE} is returned, else +@code{FALSE}. + +@findex bfd_malloc_and_get_section +@subsubsection @code{bfd_malloc_and_get_section} +@strong{Synopsis} +@example +bfd_boolean bfd_malloc_and_get_section + (bfd *abfd, asection *section, bfd_byte **buf); +@end example +@strong{Description}@* +Read all data from @var{section} in BFD @var{abfd} +into a buffer, *@var{buf}, malloc'd by this function. + +@findex bfd_copy_private_section_data +@subsubsection @code{bfd_copy_private_section_data} +@strong{Synopsis} +@example +bfd_boolean bfd_copy_private_section_data + (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); +@end example +@strong{Description}@* +Copy private section information from @var{isec} in the BFD +@var{ibfd} to the section @var{osec} in the BFD @var{obfd}. +Return @code{TRUE} on success, @code{FALSE} on error. Possible error +returns are: + +@itemize @bullet + +@item +@code{bfd_error_no_memory} - +Not enough memory exists to create private data for @var{osec}. +@end itemize +@example +#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ + BFD_SEND (obfd, _bfd_copy_private_section_data, \ + (ibfd, isection, obfd, osection)) +@end example + +@findex bfd_generic_is_group_section +@subsubsection @code{bfd_generic_is_group_section} +@strong{Synopsis} +@example +bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); +@end example +@strong{Description}@* +Returns TRUE if @var{sec} is a member of a group. + +@findex bfd_generic_discard_group +@subsubsection @code{bfd_generic_discard_group} +@strong{Synopsis} +@example +bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); +@end example +@strong{Description}@* +Remove all members of @var{group} from the output. + diff --git a/bfd/doc/syms.texi b/bfd/doc/syms.texi new file mode 100644 index 00000000000..1bc92e34c04 --- /dev/null +++ b/bfd/doc/syms.texi @@ -0,0 +1,472 @@ +@section Symbols +BFD tries to maintain as much symbol information as it can when +it moves information from file to file. BFD passes information +to applications though the @code{asymbol} structure. When the +application requests the symbol table, BFD reads the table in +the native form and translates parts of it into the internal +format. To maintain more than the information passed to +applications, some targets keep some information ``behind the +scenes'' in a structure only the particular back end knows +about. For example, the coff back end keeps the original +symbol table structure as well as the canonical structure when +a BFD is read in. On output, the coff back end can reconstruct +the output symbol table so that no information is lost, even +information unique to coff which BFD doesn't know or +understand. If a coff symbol table were read, but were written +through an a.out back end, all the coff specific information +would be lost. The symbol table of a BFD +is not necessarily read in until a canonicalize request is +made. Then the BFD back end fills in a table provided by the +application with pointers to the canonical information. To +output symbols, the application provides BFD with a table of +pointers to pointers to @code{asymbol}s. This allows applications +like the linker to output a symbol as it was read, since the ``behind +the scenes'' information will be still available. +@menu +* Reading Symbols:: +* Writing Symbols:: +* Mini Symbols:: +* typedef asymbol:: +* symbol handling functions:: +@end menu + +@node Reading Symbols, Writing Symbols, Symbols, Symbols +@subsection Reading symbols +There are two stages to reading a symbol table from a BFD: +allocating storage, and the actual reading process. This is an +excerpt from an application which reads the symbol table: + +@example + long storage_needed; + asymbol **symbol_table; + long number_of_symbols; + long i; + + storage_needed = bfd_get_symtab_upper_bound (abfd); + + if (storage_needed < 0) + FAIL + + if (storage_needed == 0) + return; + + symbol_table = xmalloc (storage_needed); + ... + number_of_symbols = + bfd_canonicalize_symtab (abfd, symbol_table); + + if (number_of_symbols < 0) + FAIL + + for (i = 0; i < number_of_symbols; i++) + process_symbol (symbol_table[i]); +@end example + +All storage for the symbols themselves is in an objalloc +connected to the BFD; it is freed when the BFD is closed. + +@node Writing Symbols, Mini Symbols, Reading Symbols, Symbols +@subsection Writing symbols +Writing of a symbol table is automatic when a BFD open for +writing is closed. The application attaches a vector of +pointers to pointers to symbols to the BFD being written, and +fills in the symbol count. The close and cleanup code reads +through the table provided and performs all the necessary +operations. The BFD output code must always be provided with an +``owned'' symbol: one which has come from another BFD, or one +which has been created using @code{bfd_make_empty_symbol}. Here is an +example showing the creation of a symbol table with only one element: + +@example + #include "bfd.h" + int main (void) + @{ + bfd *abfd; + asymbol *ptrs[2]; + asymbol *new; + + abfd = bfd_openw ("foo","a.out-sunos-big"); + bfd_set_format (abfd, bfd_object); + new = bfd_make_empty_symbol (abfd); + new->name = "dummy_symbol"; + new->section = bfd_make_section_old_way (abfd, ".text"); + new->flags = BSF_GLOBAL; + new->value = 0x12345; + + ptrs[0] = new; + ptrs[1] = 0; + + bfd_set_symtab (abfd, ptrs, 1); + bfd_close (abfd); + return 0; + @} + + ./makesym + nm foo + 00012345 A dummy_symbol +@end example + +Many formats cannot represent arbitrary symbol information; for +instance, the @code{a.out} object format does not allow an +arbitrary number of sections. A symbol pointing to a section +which is not one of @code{.text}, @code{.data} or @code{.bss} cannot +be described. + +@node Mini Symbols, typedef asymbol, Writing Symbols, Symbols +@subsection Mini Symbols +Mini symbols provide read-only access to the symbol table. +They use less memory space, but require more time to access. +They can be useful for tools like nm or objdump, which may +have to handle symbol tables of extremely large executables. + +The @code{bfd_read_minisymbols} function will read the symbols +into memory in an internal form. It will return a @code{void *} +pointer to a block of memory, a symbol count, and the size of +each symbol. The pointer is allocated using @code{malloc}, and +should be freed by the caller when it is no longer needed. + +The function @code{bfd_minisymbol_to_symbol} will take a pointer +to a minisymbol, and a pointer to a structure returned by +@code{bfd_make_empty_symbol}, and return a @code{asymbol} structure. +The return value may or may not be the same as the value from +@code{bfd_make_empty_symbol} which was passed in. + + +@node typedef asymbol, symbol handling functions, Mini Symbols, Symbols +@subsection typedef asymbol +An @code{asymbol} has the form: + + +@example + +typedef struct bfd_symbol +@{ + /* A pointer to the BFD which owns the symbol. This information + is necessary so that a back end can work out what additional + information (invisible to the application writer) is carried + with the symbol. + + This field is *almost* redundant, since you can use section->owner + instead, except that some symbols point to the global sections + bfd_@{abs,com,und@}_section. This could be fixed by making + these globals be per-bfd (or per-target-flavor). FIXME. */ + struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */ + + /* The text of the symbol. The name is left alone, and not copied; the + application may not alter it. */ + const char *name; + + /* The value of the symbol. This really should be a union of a + numeric value with a pointer, since some flags indicate that + a pointer to another symbol is stored here. */ + symvalue value; + + /* Attributes of a symbol. */ +#define BSF_NO_FLAGS 0x00 + + /* The symbol has local scope; @code{static} in @code{C}. The value + is the offset into the section of the data. */ +#define BSF_LOCAL 0x01 + + /* The symbol has global scope; initialized data in @code{C}. The + value is the offset into the section of the data. */ +#define BSF_GLOBAL 0x02 + + /* The symbol has global scope and is exported. The value is + the offset into the section of the data. */ +#define BSF_EXPORT BSF_GLOBAL /* No real difference. */ + + /* A normal C symbol would be one of: + @code{BSF_LOCAL}, @code{BSF_FORT_COMM}, @code{BSF_UNDEFINED} or + @code{BSF_GLOBAL}. */ + + /* The symbol is a debugging record. The value has an arbitrary + meaning, unless BSF_DEBUGGING_RELOC is also set. */ +#define BSF_DEBUGGING 0x08 + + /* The symbol denotes a function entry point. Used in ELF, + perhaps others someday. */ +#define BSF_FUNCTION 0x10 + + /* Used by the linker. */ +#define BSF_KEEP 0x20 +#define BSF_KEEP_G 0x40 + + /* A weak global symbol, overridable without warnings by + a regular global symbol of the same name. */ +#define BSF_WEAK 0x80 + + /* This symbol was created to point to a section, e.g. ELF's + STT_SECTION symbols. */ +#define BSF_SECTION_SYM 0x100 + + /* The symbol used to be a common symbol, but now it is + allocated. */ +#define BSF_OLD_COMMON 0x200 + + /* The default value for common data. */ +#define BFD_FORT_COMM_DEFAULT_VALUE 0 + + /* In some files the type of a symbol sometimes alters its + location in an output file - ie in coff a @code{ISFCN} symbol + which is also @code{C_EXT} symbol appears where it was + declared and not at the end of a section. This bit is set + by the target BFD part to convey this information. */ +#define BSF_NOT_AT_END 0x400 + + /* Signal that the symbol is the label of constructor section. */ +#define BSF_CONSTRUCTOR 0x800 + + /* Signal that the symbol is a warning symbol. The name is a + warning. The name of the next symbol is the one to warn about; + if a reference is made to a symbol with the same name as the next + symbol, a warning is issued by the linker. */ +#define BSF_WARNING 0x1000 + + /* Signal that the symbol is indirect. This symbol is an indirect + pointer to the symbol with the same name as the next symbol. */ +#define BSF_INDIRECT 0x2000 + + /* BSF_FILE marks symbols that contain a file name. This is used + for ELF STT_FILE symbols. */ +#define BSF_FILE 0x4000 + + /* Symbol is from dynamic linking information. */ +#define BSF_DYNAMIC 0x8000 + + /* The symbol denotes a data object. Used in ELF, and perhaps + others someday. */ +#define BSF_OBJECT 0x10000 + + /* This symbol is a debugging symbol. The value is the offset + into the section of the data. BSF_DEBUGGING should be set + as well. */ +#define BSF_DEBUGGING_RELOC 0x20000 + + /* This symbol is thread local. Used in ELF. */ +#define BSF_THREAD_LOCAL 0x40000 + + /* This symbol represents a complex relocation expression, + with the expression tree serialized in the symbol name. */ +#define BSF_RELC 0x80000 + + /* This symbol represents a signed complex relocation expression, + with the expression tree serialized in the symbol name. */ +#define BSF_SRELC 0x100000 + + /* This symbol was created by bfd_get_synthetic_symtab. */ +#define BSF_SYNTHETIC 0x200000 + + flagword flags; + + /* A pointer to the section to which this symbol is + relative. This will always be non NULL, there are special + sections for undefined and absolute symbols. */ + struct bfd_section *section; + + /* Back end special data. */ + union + @{ + void *p; + bfd_vma i; + @} + udata; +@} +asymbol; + +@end example + +@node symbol handling functions, , typedef asymbol, Symbols +@subsection Symbol handling functions + + +@findex bfd_get_symtab_upper_bound +@subsubsection @code{bfd_get_symtab_upper_bound} +@strong{Description}@* +Return the number of bytes required to store a vector of pointers +to @code{asymbols} for all the symbols in the BFD @var{abfd}, +including a terminal NULL pointer. If there are no symbols in +the BFD, then return 0. If an error occurs, return -1. +@example +#define bfd_get_symtab_upper_bound(abfd) \ + BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) + +@end example + +@findex bfd_is_local_label +@subsubsection @code{bfd_is_local_label} +@strong{Synopsis} +@example +bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym); +@end example +@strong{Description}@* +Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is +a compiler generated local label, else return FALSE. + +@findex bfd_is_local_label_name +@subsubsection @code{bfd_is_local_label_name} +@strong{Synopsis} +@example +bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name); +@end example +@strong{Description}@* +Return TRUE if a symbol with the name @var{name} in the BFD +@var{abfd} is a compiler generated local label, else return +FALSE. This just checks whether the name has the form of a +local label. +@example +#define bfd_is_local_label_name(abfd, name) \ + BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) + +@end example + +@findex bfd_is_target_special_symbol +@subsubsection @code{bfd_is_target_special_symbol} +@strong{Synopsis} +@example +bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); +@end example +@strong{Description}@* +Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something +special to the particular target represented by the BFD. Such symbols +should normally not be mentioned to the user. +@example +#define bfd_is_target_special_symbol(abfd, sym) \ + BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) + +@end example + +@findex bfd_canonicalize_symtab +@subsubsection @code{bfd_canonicalize_symtab} +@strong{Description}@* +Read the symbols from the BFD @var{abfd}, and fills in +the vector @var{location} with pointers to the symbols and +a trailing NULL. +Return the actual number of symbol pointers, not +including the NULL. +@example +#define bfd_canonicalize_symtab(abfd, location) \ + BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) + +@end example + +@findex bfd_set_symtab +@subsubsection @code{bfd_set_symtab} +@strong{Synopsis} +@example +bfd_boolean bfd_set_symtab + (bfd *abfd, asymbol **location, unsigned int count); +@end example +@strong{Description}@* +Arrange that when the output BFD @var{abfd} is closed, +the table @var{location} of @var{count} pointers to symbols +will be written. + +@findex bfd_print_symbol_vandf +@subsubsection @code{bfd_print_symbol_vandf} +@strong{Synopsis} +@example +void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); +@end example +@strong{Description}@* +Print the value and flags of the @var{symbol} supplied to the +stream @var{file}. + +@findex bfd_make_empty_symbol +@subsubsection @code{bfd_make_empty_symbol} +@strong{Description}@* +Create a new @code{asymbol} structure for the BFD @var{abfd} +and return a pointer to it. + +This routine is necessary because each back end has private +information surrounding the @code{asymbol}. Building your own +@code{asymbol} and pointing to it will not create the private +information, and will cause problems later on. +@example +#define bfd_make_empty_symbol(abfd) \ + BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) + +@end example + +@findex _bfd_generic_make_empty_symbol +@subsubsection @code{_bfd_generic_make_empty_symbol} +@strong{Synopsis} +@example +asymbol *_bfd_generic_make_empty_symbol (bfd *); +@end example +@strong{Description}@* +Create a new @code{asymbol} structure for the BFD @var{abfd} +and return a pointer to it. Used by core file routines, +binary back-end and anywhere else where no private info +is needed. + +@findex bfd_make_debug_symbol +@subsubsection @code{bfd_make_debug_symbol} +@strong{Description}@* +Create a new @code{asymbol} structure for the BFD @var{abfd}, +to be used as a debugging symbol. Further details of its use have +yet to be worked out. +@example +#define bfd_make_debug_symbol(abfd,ptr,size) \ + BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) + +@end example + +@findex bfd_decode_symclass +@subsubsection @code{bfd_decode_symclass} +@strong{Description}@* +Return a character corresponding to the symbol +class of @var{symbol}, or '?' for an unknown class. + +@strong{Synopsis} +@example +int bfd_decode_symclass (asymbol *symbol); +@end example +@findex bfd_is_undefined_symclass +@subsubsection @code{bfd_is_undefined_symclass} +@strong{Description}@* +Returns non-zero if the class symbol returned by +bfd_decode_symclass represents an undefined symbol. +Returns zero otherwise. + +@strong{Synopsis} +@example +bfd_boolean bfd_is_undefined_symclass (int symclass); +@end example +@findex bfd_symbol_info +@subsubsection @code{bfd_symbol_info} +@strong{Description}@* +Fill in the basic info about symbol that nm needs. +Additional info may be added by the back-ends after +calling this function. + +@strong{Synopsis} +@example +void bfd_symbol_info (asymbol *symbol, symbol_info *ret); +@end example +@findex bfd_copy_private_symbol_data +@subsubsection @code{bfd_copy_private_symbol_data} +@strong{Synopsis} +@example +bfd_boolean bfd_copy_private_symbol_data + (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); +@end example +@strong{Description}@* +Copy private symbol information from @var{isym} in the BFD +@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}. +Return @code{TRUE} on success, @code{FALSE} on error. Possible error +returns are: + +@itemize @bullet + +@item +@code{bfd_error_no_memory} - +Not enough memory exists to create private data for @var{osec}. +@end itemize +@example +#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ + BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ + (ibfd, isymbol, obfd, osymbol)) + +@end example + diff --git a/bfd/doc/targets.texi b/bfd/doc/targets.texi new file mode 100644 index 00000000000..2b10ccbcb06 --- /dev/null +++ b/bfd/doc/targets.texi @@ -0,0 +1,557 @@ +@section Targets + + +@strong{Description}@* +Each port of BFD to a different machine requires the creation +of a target back end. All the back end provides to the root +part of BFD is a structure containing pointers to functions +which perform certain low level operations on files. BFD +translates the applications's requests through a pointer into +calls to the back end routines. + +When a file is opened with @code{bfd_openr}, its format and +target are unknown. BFD uses various mechanisms to determine +how to interpret the file. The operations performed are: + +@itemize @bullet + +@item +Create a BFD by calling the internal routine +@code{_bfd_new_bfd}, then call @code{bfd_find_target} with the +target string supplied to @code{bfd_openr} and the new BFD pointer. + +@item +If a null target string was provided to @code{bfd_find_target}, +look up the environment variable @code{GNUTARGET} and use +that as the target string. + +@item +If the target string is still @code{NULL}, or the target string is +@code{default}, then use the first item in the target vector +as the target type, and set @code{target_defaulted} in the BFD to +cause @code{bfd_check_format} to loop through all the targets. +@xref{bfd_target}. @xref{Formats}. + +@item +Otherwise, inspect the elements in the target vector +one by one, until a match on target name is found. When found, +use it. + +@item +Otherwise return the error @code{bfd_error_invalid_target} to +@code{bfd_openr}. + +@item +@code{bfd_openr} attempts to open the file using +@code{bfd_open_file}, and returns the BFD. +@end itemize +Once the BFD has been opened and the target selected, the file +format may be determined. This is done by calling +@code{bfd_check_format} on the BFD with a suggested format. +If @code{target_defaulted} has been set, each possible target +type is tried to see if it recognizes the specified format. +@code{bfd_check_format} returns @code{TRUE} when the caller guesses right. +@menu +* bfd_target:: +@end menu + +@node bfd_target, , Targets, Targets + +@subsection bfd_target + + +@strong{Description}@* +This structure contains everything that BFD knows about a +target. It includes things like its byte order, name, and which +routines to call to do various operations. + +Every BFD points to a target structure with its @code{xvec} +member. + +The macros below are used to dispatch to functions through the +@code{bfd_target} vector. They are used in a number of macros further +down in @file{bfd.h}, and are also used when calling various +routines by hand inside the BFD implementation. The @var{arglist} +argument must be parenthesized; it contains all the arguments +to the called function. + +They make the documentation (more) unpleasant to read, so if +someone wants to fix this and not break the above, please do. +@example +#define BFD_SEND(bfd, message, arglist) \ + ((*((bfd)->xvec->message)) arglist) + +#ifdef DEBUG_BFD_SEND +#undef BFD_SEND +#define BFD_SEND(bfd, message, arglist) \ + (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ + ((*((bfd)->xvec->message)) arglist) : \ + (bfd_assert (__FILE__,__LINE__), NULL)) +#endif +@end example +For operations which index on the BFD format: +@example +#define BFD_SEND_FMT(bfd, message, arglist) \ + (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) + +#ifdef DEBUG_BFD_SEND +#undef BFD_SEND_FMT +#define BFD_SEND_FMT(bfd, message, arglist) \ + (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ + (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \ + (bfd_assert (__FILE__,__LINE__), NULL)) +#endif + +@end example +This is the structure which defines the type of BFD this is. The +@code{xvec} member of the struct @code{bfd} itself points here. Each +module that implements access to a different target under BFD, +defines one of these. + +FIXME, these names should be rationalised with the names of +the entry points which call them. Too bad we can't have one +macro to define them both! +@example +enum bfd_flavour +@{ + bfd_target_unknown_flavour, + bfd_target_aout_flavour, + bfd_target_coff_flavour, + bfd_target_ecoff_flavour, + bfd_target_xcoff_flavour, + bfd_target_elf_flavour, + bfd_target_ieee_flavour, + bfd_target_nlm_flavour, + bfd_target_oasys_flavour, + bfd_target_tekhex_flavour, + bfd_target_srec_flavour, + bfd_target_ihex_flavour, + bfd_target_som_flavour, + bfd_target_os9k_flavour, + bfd_target_versados_flavour, + bfd_target_msdos_flavour, + bfd_target_ovax_flavour, + bfd_target_evax_flavour, + bfd_target_mmo_flavour, + bfd_target_mach_o_flavour, + bfd_target_pef_flavour, + bfd_target_pef_xlib_flavour, + bfd_target_sym_flavour +@}; + +enum bfd_endian @{ BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN @}; + +/* Forward declaration. */ +typedef struct bfd_link_info _bfd_link_info; + +typedef struct bfd_target +@{ + /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */ + char *name; + + /* The "flavour" of a back end is a general indication about + the contents of a file. */ + enum bfd_flavour flavour; + + /* The order of bytes within the data area of a file. */ + enum bfd_endian byteorder; + + /* The order of bytes within the header parts of a file. */ + enum bfd_endian header_byteorder; + + /* A mask of all the flags which an executable may have set - + from the set @code{BFD_NO_FLAGS}, @code{HAS_RELOC}, ...@code{D_PAGED}. */ + flagword object_flags; + + /* A mask of all the flags which a section may have set - from + the set @code{SEC_NO_FLAGS}, @code{SEC_ALLOC}, ...@code{SET_NEVER_LOAD}. */ + flagword section_flags; + + /* The character normally found at the front of a symbol. + (if any), perhaps `_'. */ + char symbol_leading_char; + + /* The pad character for file names within an archive header. */ + char ar_pad_char; + + /* The maximum number of characters in an archive header. */ + unsigned short ar_max_namelen; + + /* Entries for byte swapping for data. These are different from the + other entry points, since they don't take a BFD as the first argument. + Certain other handlers could do the same. */ + bfd_uint64_t (*bfd_getx64) (const void *); + bfd_int64_t (*bfd_getx_signed_64) (const void *); + void (*bfd_putx64) (bfd_uint64_t, void *); + bfd_vma (*bfd_getx32) (const void *); + bfd_signed_vma (*bfd_getx_signed_32) (const void *); + void (*bfd_putx32) (bfd_vma, void *); + bfd_vma (*bfd_getx16) (const void *); + bfd_signed_vma (*bfd_getx_signed_16) (const void *); + void (*bfd_putx16) (bfd_vma, void *); + + /* Byte swapping for the headers. */ + bfd_uint64_t (*bfd_h_getx64) (const void *); + bfd_int64_t (*bfd_h_getx_signed_64) (const void *); + void (*bfd_h_putx64) (bfd_uint64_t, void *); + bfd_vma (*bfd_h_getx32) (const void *); + bfd_signed_vma (*bfd_h_getx_signed_32) (const void *); + void (*bfd_h_putx32) (bfd_vma, void *); + bfd_vma (*bfd_h_getx16) (const void *); + bfd_signed_vma (*bfd_h_getx_signed_16) (const void *); + void (*bfd_h_putx16) (bfd_vma, void *); + + /* Format dependent routines: these are vectors of entry points + within the target vector structure, one for each format to check. */ + + /* Check the format of a file being read. Return a @code{bfd_target *} or zero. */ + const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *); + + /* Set the format of a file being written. */ + bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *); + + /* Write cached information into a file being written, at @code{bfd_close}. */ + bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *); + +@end example +The general target vector. These vectors are initialized using the +BFD_JUMP_TABLE macros. +@example + + /* Generic entry points. */ +#define BFD_JUMP_TABLE_GENERIC(NAME) \ + NAME##_close_and_cleanup, \ + NAME##_bfd_free_cached_info, \ + NAME##_new_section_hook, \ + NAME##_get_section_contents, \ + NAME##_get_section_contents_in_window + + /* Called when the BFD is being closed to do any necessary cleanup. */ + bfd_boolean (*_close_and_cleanup) (bfd *); + /* Ask the BFD to free all cached information. */ + bfd_boolean (*_bfd_free_cached_info) (bfd *); + /* Called when a new section is created. */ + bfd_boolean (*_new_section_hook) (bfd *, sec_ptr); + /* Read the contents of a section. */ + bfd_boolean (*_bfd_get_section_contents) + (bfd *, sec_ptr, void *, file_ptr, bfd_size_type); + bfd_boolean (*_bfd_get_section_contents_in_window) + (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type); + + /* Entry points to copy private data. */ +#define BFD_JUMP_TABLE_COPY(NAME) \ + NAME##_bfd_copy_private_bfd_data, \ + NAME##_bfd_merge_private_bfd_data, \ + _bfd_generic_init_private_section_data, \ + NAME##_bfd_copy_private_section_data, \ + NAME##_bfd_copy_private_symbol_data, \ + NAME##_bfd_copy_private_header_data, \ + NAME##_bfd_set_private_flags, \ + NAME##_bfd_print_private_bfd_data + + /* Called to copy BFD general private data from one object file + to another. */ + bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *); + /* Called to merge BFD general private data from one object file + to a common output file when linking. */ + bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *); + /* Called to initialize BFD private section data from one object file + to another. */ +#define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \ + BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info)) + bfd_boolean (*_bfd_init_private_section_data) + (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *); + /* Called to copy BFD private section data from one object file + to another. */ + bfd_boolean (*_bfd_copy_private_section_data) + (bfd *, sec_ptr, bfd *, sec_ptr); + /* Called to copy BFD private symbol data from one symbol + to another. */ + bfd_boolean (*_bfd_copy_private_symbol_data) + (bfd *, asymbol *, bfd *, asymbol *); + /* Called to copy BFD private header data from one object file + to another. */ + bfd_boolean (*_bfd_copy_private_header_data) + (bfd *, bfd *); + /* Called to set private backend flags. */ + bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword); + + /* Called to print private BFD data. */ + bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *); + + /* Core file entry points. */ +#define BFD_JUMP_TABLE_CORE(NAME) \ + NAME##_core_file_failing_command, \ + NAME##_core_file_failing_signal, \ + NAME##_core_file_matches_executable_p + + char * (*_core_file_failing_command) (bfd *); + int (*_core_file_failing_signal) (bfd *); + bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *); + + /* Archive entry points. */ +#define BFD_JUMP_TABLE_ARCHIVE(NAME) \ + NAME##_slurp_armap, \ + NAME##_slurp_extended_name_table, \ + NAME##_construct_extended_name_table, \ + NAME##_truncate_arname, \ + NAME##_write_armap, \ + NAME##_read_ar_hdr, \ + NAME##_openr_next_archived_file, \ + NAME##_get_elt_at_index, \ + NAME##_generic_stat_arch_elt, \ + NAME##_update_armap_timestamp + + bfd_boolean (*_bfd_slurp_armap) (bfd *); + bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *); + bfd_boolean (*_bfd_construct_extended_name_table) + (bfd *, char **, bfd_size_type *, const char **); + void (*_bfd_truncate_arname) (bfd *, const char *, char *); + bfd_boolean (*write_armap) + (bfd *, unsigned int, struct orl *, unsigned int, int); + void * (*_bfd_read_ar_hdr_fn) (bfd *); + bfd * (*openr_next_archived_file) (bfd *, bfd *); +#define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i)) + bfd * (*_bfd_get_elt_at_index) (bfd *, symindex); + int (*_bfd_stat_arch_elt) (bfd *, struct stat *); + bfd_boolean (*_bfd_update_armap_timestamp) (bfd *); + + /* Entry points used for symbols. */ +#define BFD_JUMP_TABLE_SYMBOLS(NAME) \ + NAME##_get_symtab_upper_bound, \ + NAME##_canonicalize_symtab, \ + NAME##_make_empty_symbol, \ + NAME##_print_symbol, \ + NAME##_get_symbol_info, \ + NAME##_bfd_is_local_label_name, \ + NAME##_bfd_is_target_special_symbol, \ + NAME##_get_lineno, \ + NAME##_find_nearest_line, \ + _bfd_generic_find_line, \ + NAME##_find_inliner_info, \ + NAME##_bfd_make_debug_symbol, \ + NAME##_read_minisymbols, \ + NAME##_minisymbol_to_symbol + + long (*_bfd_get_symtab_upper_bound) (bfd *); + long (*_bfd_canonicalize_symtab) + (bfd *, struct bfd_symbol **); + struct bfd_symbol * + (*_bfd_make_empty_symbol) (bfd *); + void (*_bfd_print_symbol) + (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type); +#define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e)) + void (*_bfd_get_symbol_info) + (bfd *, struct bfd_symbol *, symbol_info *); +#define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e)) + bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *); + bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *); + alent * (*_get_lineno) (bfd *, struct bfd_symbol *); + bfd_boolean (*_bfd_find_nearest_line) + (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma, + const char **, const char **, unsigned int *); + bfd_boolean (*_bfd_find_line) + (bfd *, struct bfd_symbol **, struct bfd_symbol *, + const char **, unsigned int *); + bfd_boolean (*_bfd_find_inliner_info) + (bfd *, const char **, const char **, unsigned int *); + /* Back-door to allow format-aware applications to create debug symbols + while using BFD for everything else. Currently used by the assembler + when creating COFF files. */ + asymbol * (*_bfd_make_debug_symbol) + (bfd *, void *, unsigned long size); +#define bfd_read_minisymbols(b, d, m, s) \ + BFD_SEND (b, _read_minisymbols, (b, d, m, s)) + long (*_read_minisymbols) + (bfd *, bfd_boolean, void **, unsigned int *); +#define bfd_minisymbol_to_symbol(b, d, m, f) \ + BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f)) + asymbol * (*_minisymbol_to_symbol) + (bfd *, bfd_boolean, const void *, asymbol *); + + /* Routines for relocs. */ +#define BFD_JUMP_TABLE_RELOCS(NAME) \ + NAME##_get_reloc_upper_bound, \ + NAME##_canonicalize_reloc, \ + NAME##_bfd_reloc_type_lookup, \ + NAME##_bfd_reloc_name_lookup + + long (*_get_reloc_upper_bound) (bfd *, sec_ptr); + long (*_bfd_canonicalize_reloc) + (bfd *, sec_ptr, arelent **, struct bfd_symbol **); + /* See documentation on reloc types. */ + reloc_howto_type * + (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type); + reloc_howto_type * + (*reloc_name_lookup) (bfd *, const char *); + + + /* Routines used when writing an object file. */ +#define BFD_JUMP_TABLE_WRITE(NAME) \ + NAME##_set_arch_mach, \ + NAME##_set_section_contents + + bfd_boolean (*_bfd_set_arch_mach) + (bfd *, enum bfd_architecture, unsigned long); + bfd_boolean (*_bfd_set_section_contents) + (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type); + + /* Routines used by the linker. */ +#define BFD_JUMP_TABLE_LINK(NAME) \ + NAME##_sizeof_headers, \ + NAME##_bfd_get_relocated_section_contents, \ + NAME##_bfd_relax_section, \ + NAME##_bfd_link_hash_table_create, \ + NAME##_bfd_link_hash_table_free, \ + NAME##_bfd_link_add_symbols, \ + NAME##_bfd_link_just_syms, \ + NAME##_bfd_final_link, \ + NAME##_bfd_link_split_section, \ + NAME##_bfd_gc_sections, \ + NAME##_bfd_merge_sections, \ + NAME##_bfd_is_group_section, \ + NAME##_bfd_discard_group, \ + NAME##_section_already_linked \ + + int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *); + bfd_byte * (*_bfd_get_relocated_section_contents) + (bfd *, struct bfd_link_info *, struct bfd_link_order *, + bfd_byte *, bfd_boolean, struct bfd_symbol **); + + bfd_boolean (*_bfd_relax_section) + (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *); + + /* Create a hash table for the linker. Different backends store + different information in this table. */ + struct bfd_link_hash_table * + (*_bfd_link_hash_table_create) (bfd *); + + /* Release the memory associated with the linker hash table. */ + void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *); + + /* Add symbols from this object file into the hash table. */ + bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *); + + /* Indicate that we are only retrieving symbol values from this section. */ + void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *); + + /* Do a link based on the link_order structures attached to each + section of the BFD. */ + bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *); + + /* Should this section be split up into smaller pieces during linking. */ + bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *); + + /* Remove sections that are not referenced from the output. */ + bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *); + + /* Attempt to merge SEC_MERGE sections. */ + bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *); + + /* Is this section a member of a group? */ + bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *); + + /* Discard members of a group. */ + bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *); + + /* Check if SEC has been already linked during a reloceatable or + final link. */ + void (*_section_already_linked) (bfd *, struct bfd_section *, + struct bfd_link_info *); + + /* Routines to handle dynamic symbols and relocs. */ +#define BFD_JUMP_TABLE_DYNAMIC(NAME) \ + NAME##_get_dynamic_symtab_upper_bound, \ + NAME##_canonicalize_dynamic_symtab, \ + NAME##_get_synthetic_symtab, \ + NAME##_get_dynamic_reloc_upper_bound, \ + NAME##_canonicalize_dynamic_reloc + + /* Get the amount of memory required to hold the dynamic symbols. */ + long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *); + /* Read in the dynamic symbols. */ + long (*_bfd_canonicalize_dynamic_symtab) + (bfd *, struct bfd_symbol **); + /* Create synthetized symbols. */ + long (*_bfd_get_synthetic_symtab) + (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **, + struct bfd_symbol **); + /* Get the amount of memory required to hold the dynamic relocs. */ + long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *); + /* Read in the dynamic relocs. */ + long (*_bfd_canonicalize_dynamic_reloc) + (bfd *, arelent **, struct bfd_symbol **); + +@end example +A pointer to an alternative bfd_target in case the current one is not +satisfactory. This can happen when the target cpu supports both big +and little endian code, and target chosen by the linker has the wrong +endianness. The function open_output() in ld/ldlang.c uses this field +to find an alternative output format that is suitable. +@example + /* Opposite endian version of this target. */ + const struct bfd_target * alternative_target; + + /* Data for use by back-end routines, which isn't + generic enough to belong in this structure. */ + const void *backend_data; + +@} bfd_target; + +@end example + +@findex bfd_set_default_target +@subsubsection @code{bfd_set_default_target} +@strong{Synopsis} +@example +bfd_boolean bfd_set_default_target (const char *name); +@end example +@strong{Description}@* +Set the default target vector to use when recognizing a BFD. +This takes the name of the target, which may be a BFD target +name or a configuration triplet. + +@findex bfd_find_target +@subsubsection @code{bfd_find_target} +@strong{Synopsis} +@example +const bfd_target *bfd_find_target (const char *target_name, bfd *abfd); +@end example +@strong{Description}@* +Return a pointer to the transfer vector for the object target +named @var{target_name}. If @var{target_name} is @code{NULL}, +choose the one in the environment variable @code{GNUTARGET}; if +that is null or not defined, then choose the first entry in the +target list. Passing in the string "default" or setting the +environment variable to "default" will cause the first entry in +the target list to be returned, and "target_defaulted" will be +set in the BFD if @var{abfd} isn't @code{NULL}. This causes +@code{bfd_check_format} to loop over all the targets to find the +one that matches the file being read. + +@findex bfd_target_list +@subsubsection @code{bfd_target_list} +@strong{Synopsis} +@example +const char ** bfd_target_list (void); +@end example +@strong{Description}@* +Return a freshly malloced NULL-terminated +vector of the names of all the valid BFD targets. Do not +modify the names. + +@findex bfd_seach_for_target +@subsubsection @code{bfd_seach_for_target} +@strong{Synopsis} +@example +const bfd_target *bfd_search_for_target + (int (*search_func) (const bfd_target *, void *), + void *); +@end example +@strong{Description}@* +Return a pointer to the first transfer vector in the list of +transfer vectors maintained by BFD that produces a non-zero +result when passed to the function @var{search_func}. The +parameter @var{data} is passed, unexamined, to the search +function. + diff --git a/etc/configure.info b/etc/configure.info new file mode 100644 index 00000000000..78cc7eba30c --- /dev/null +++ b/etc/configure.info @@ -0,0 +1,2773 @@ +This is configure.info, produced by makeinfo version 4.8 from +.././etc/configure.texi. + +INFO-DIR-SECTION GNU admin +START-INFO-DIR-ENTRY +* configure: (configure). The GNU configure and build system +END-INFO-DIR-ENTRY + + This file documents the GNU configure and build system. + + Copyright (C) 1998 Cygnus Solutions. + + Permission is granted to make and distribute verbatim copies of this +manual provided the copyright notice and this permission notice are +preserved on all copies. + + Permission is granted to copy and distribute modified versions of +this manual under the conditions for verbatim copying, provided that +the entire resulting derived work is distributed under the terms of a +permission notice identical to this one. + + Permission is granted to copy and distribute translations of this +manual into another language, under the above conditions for modified +versions, except that this permission notice may be stated in a +translation approved by the Foundation. + + +File: configure.info, Node: Top, Next: Introduction, Up: (dir) + +GNU configure and build system +****************************** + +The GNU configure and build system. + +* Menu: + +* Introduction:: Introduction. +* Getting Started:: Getting Started. +* Files:: Files. +* Configuration Names:: Configuration Names. +* Cross Compilation Tools:: Cross Compilation Tools. +* Canadian Cross:: Canadian Cross. +* Cygnus Configure:: Cygnus Configure. +* Multilibs:: Multilibs. +* FAQ:: Frequently Asked Questions. +* Index:: Index. + + +File: configure.info, Node: Introduction, Next: Getting Started, Prev: Top, Up: Top + +1 Introduction +************** + +This document describes the GNU configure and build systems. It +describes how autoconf, automake, libtool, and make fit together. It +also includes a discussion of the older Cygnus configure system. + + This document does not describe in detail how to use each of the +tools; see the respective manuals for that. Instead, it describes +which files the developer must write, which files are machine generated +and how they are generated, and where certain common problems should be +addressed. + + This document draws on several sources, including the autoconf +manual by David MacKenzie (*note autoconf overview: (autoconf)Top.), +the automake manual by David MacKenzie and Tom Tromey (*note automake +overview: (automake)Top.), the libtool manual by Gordon Matzigkeit +(*note libtool overview: (libtool)Top.), and the Cygnus configure +manual by K. Richard Pixley. + +* Menu: + +* Goals:: Goals. +* Tools:: The tools. +* History:: History. +* Building:: Building. + + +File: configure.info, Node: Goals, Next: Tools, Up: Introduction + +1.1 Goals +========= + +The GNU configure and build system has two main goals. + + The first is to simplify the development of portable programs. The +system permits the developer to concentrate on writing the program, +simplifying many details of portability across Unix and even Windows +systems, and permitting the developer to describe how to build the +program using simple rules rather than complex Makefiles. + + The second is to simplify the building of programs distributed as +source code. All programs are built using a simple, standardized, two +step process. The program builder need not install any special tools in +order to build the program. + + +File: configure.info, Node: Tools, Next: History, Prev: Goals, Up: Introduction + +1.2 Tools +========= + +The GNU configure and build system is comprised of several different +tools. Program developers must build and install all of these tools. + + People who just want to build programs from distributed sources +normally do not need any special tools beyond a Unix shell, a make +program, and a C compiler. + +autoconf + provides a general portability framework, based on testing the + features of the host system at build time. + +automake + a system for describing how to build a program, permitting the + developer to write a simplified `Makefile'. + +libtool + a standardized approach to building shared libraries. + +gettext + provides a framework for translation of text messages into other + languages; not really discussed in this document. + +m4 + autoconf requires the GNU version of m4; the standard Unix m4 does + not suffice. + +perl + automake requires perl. + + +File: configure.info, Node: History, Next: Building, Prev: Tools, Up: Introduction + +1.3 History +=========== + +This is a very brief and probably inaccurate history. + + As the number of Unix variants increased during the 1980s, it became +harder to write programs which could run on all variants. While it was +often possible to use `#ifdef' to identify particular systems, +developers frequently did not have access to every system, and the +characteristics of some systems changed from version to version. + + By 1992, at least three different approaches had been developed: + * The Metaconfig program, by Larry Wall, Harlan Stenn, and Raphael + Manfredi. + + * The Cygnus configure script, by K. Richard Pixley, and the gcc + configure script, by Richard Stallman. These use essentially the + same approach, and the developers communicated regularly. + + * The autoconf program, by David MacKenzie. + + The Metaconfig program is still used for Perl and a few other +programs. It is part of the Dist package. I do not know if it is +being developed. + + In 1994, David MacKenzie and others modified autoconf to incorporate +all the features of Cygnus configure. Since then, there has been a +slow but steady conversion of GNU programs from Cygnus configure to +autoconf. gcc has been converted, eliminating the gcc configure script. + + GNU autoconf was regularly maintained until late 1996. As of this +writing in June, 1998, it has no public maintainer. + + Most programs are built using the make program, which requires the +developer to write Makefiles describing how to build the programs. +Since most programs are built in pretty much the same way, this led to a +lot of duplication. + + The X Window system is built using the imake tool, which uses a +database of rules to eliminate the duplication. However, building a +tool which was developed using imake requires that the builder have +imake installed, violating one of the goals of the GNU system. + + The new BSD make provides a standard library of Makefile fragments, +which permits developers to write very simple Makefiles. However, this +requires that the builder install the new BSD make program. + + In 1994, David MacKenzie wrote the first version of automake, which +permitted writing a simple build description which was converted into a +Makefile which could be used by the standard make program. In 1995, Tom +Tromey completely rewrote automake in Perl, and he continues to enhance +it. + + Various free packages built libraries, and by around 1995 several +included support to build shared libraries on various platforms. +However, there was no consistent approach. In early 1996, Gordon +Matzigkeit began working on libtool, which provided a standardized +approach to building shared libraries. This was integrated into +automake from the start. + + The development of automake and libtool was driven by the GNITS +project, a group of GNU maintainers who designed standardized tools to +help meet the GNU coding standards. + + +File: configure.info, Node: Building, Prev: History, Up: Introduction + +1.4 Building +============ + +Most readers of this document should already know how to build a tool by +running `configure' and `make'. This section may serve as a quick +introduction or reminder. + + Building a tool is normally as simple as running `configure' +followed by `make'. You should normally run `configure' from an empty +directory, using some path to refer to the `configure' script in the +source directory. The directory in which you run `configure' is called +the "object directory". + + In order to use a object directory which is different from the source +directory, you must be using the GNU version of `make', which has the +required `VPATH' support. Despite this restriction, using a different +object directory is highly recommended: + * It keeps the files generated during the build from cluttering up + your sources. + + * It permits you to remove the built files by simply removing the + entire build directory. + + * It permits you to build from the same sources with several sets of + configure options simultaneously. + + If you don't have GNU `make', you will have to run `configure' in +the source directory. All GNU packages should support this; in +particular, GNU packages should not assume the presence of GNU `make'. + + After running `configure', you can build the tools by running `make'. + + To install the tools, run `make install'. Installing the tools will +copy the programs and any required support files to the "installation +directory". The location of the installation directory is controlled +by `configure' options, as described below. + + In the Cygnus tree at present, the info files are built and +installed as a separate step. To build them, run `make info'. To +install them, run `make install-info'. The equivalent html files are +also built and installed in a separate step. To build the html files, +run `make html'. To install the html files run `make install-html'. + + All `configure' scripts support a wide variety of options. The most +interesting ones are `--with' and `--enable' options which are +generally specific to particular tools. You can usually use the +`--help' option to get a list of interesting options for a particular +configure script. + + The only generic options you are likely to use are the `--prefix' +and `--exec-prefix' options. These options are used to specify the +installation directory. + + The directory named by the `--prefix' option will hold machine +independent files such as info files. + + The directory named by the `--exec-prefix' option, which is normally +a subdirectory of the `--prefix' directory, will hold machine dependent +files such as executables. + + The default for `--prefix' is `/usr/local'. The default for +`--exec-prefix' is the value used for `--prefix'. + + The convention used in Cygnus releases is to use a `--prefix' option +of `/usr/cygnus/RELEASE', where RELEASE is the name of the release, and +to use a `--exec-prefix' option of `/usr/cygnus/RELEASE/H-HOST', where +HOST is the configuration name of the host system (*note Configuration +Names::). + + Do not use either the source or the object directory as the +installation directory. That will just lead to confusion. + + +File: configure.info, Node: Getting Started, Next: Files, Prev: Introduction, Up: Top + +2 Getting Started +***************** + +To start using the GNU configure and build system with your software +package, you must write three files, and you must run some tools to +manually generate additional files. + +* Menu: + +* Write configure.in:: Write configure.in. +* Write Makefile.am:: Write Makefile.am. +* Write acconfig.h:: Write acconfig.h. +* Generate files:: Generate files. +* Getting Started Example:: Example. + + +File: configure.info, Node: Write configure.in, Next: Write Makefile.am, Up: Getting Started + +2.1 Write configure.in +====================== + +You must first write the file `configure.in'. This is an autoconf +input file, and the autoconf manual describes in detail what this file +should look like. + + You will write tests in your `configure.in' file to check for +conditions that may change from one system to another, such as the +presence of particular header files or functions. + + For example, not all systems support the `gettimeofday' function. +If you want to use the `gettimeofday' function when it is available, +and to use some other function when it is not, you would check for this +by putting `AC_CHECK_FUNCS(gettimeofday)' in `configure.in'. + + When the configure script is run at build time, this will arrange to +define the preprocessor macro `HAVE_GETTIMEOFDAY' to the value 1 if the +`gettimeofday' function is available, and to not define the macro at +all if the function is not available. Your code can then use `#ifdef' +to test whether it is safe to call `gettimeofday'. + + If you have an existing body of code, the `autoscan' program may +help identify potential portability problems, and hence configure tests +that you will want to use. *Note Invoking autoscan: (autoconf)Invoking +autoscan. + + Another handy tool for an existing body of code is `ifnames'. This +will show you all the preprocessor conditionals that the code already +uses. *Note Invoking ifnames: (autoconf)Invoking ifnames. + + Besides the portability tests which are specific to your particular +package, every `configure.in' file should contain the following macros. + +`AC_INIT' + This macro takes a single argument, which is the name of a file in + your package. For example, `AC_INIT(foo.c)'. + +`AC_PREREQ(VERSION)' + This macro is optional. It may be used to indicate the version of + `autoconf' that you are using. This will prevent users from + running an earlier version of `autoconf' and perhaps getting an + invalid `configure' script. For example, `AC_PREREQ(2.12)'. + +`AM_INIT_AUTOMAKE' + This macro takes two arguments: the name of the package, and a + version number. For example, `AM_INIT_AUTOMAKE(foo, 1.0)'. (This + macro is not needed if you are not using automake). + +`AM_CONFIG_HEADER' + This macro names the header file which will hold the preprocessor + macro definitions at run time. Normally this should be + `config.h'. Your sources would then use `#include "config.h"' to + include it. + + This macro may optionally name the input file for that header + file; by default, this is `config.h.in', but that file name works + poorly on DOS filesystems. Therefore, it is often better to name + it explicitly as `config.in'. + + This is what you should normally put in `configure.in': + AM_CONFIG_HEADER(config.h:config.in) + + (If you are not using automake, use `AC_CONFIG_HEADER' rather than + `AM_CONFIG_HEADER'). + +`AM_MAINTAINER_MODE' + This macro always appears in Cygnus configure scripts. Other + programs may or may not use it. + + If this macro is used, the `--enable-maintainer-mode' option is + required to enable automatic rebuilding of generated files used by + the configure system. This of course requires that developers be + aware of, and use, that option. + + If this macro is not used, then the generated files will always be + rebuilt automatically. This will cause problems if the wrong + versions of autoconf, automake, or others are in the builder's + `PATH'. + + (If you are not using automake, you do not need to use this macro). + +`AC_EXEEXT' + Either this macro or `AM_EXEEXT' always appears in Cygnus configure + files. Other programs may or may not use one of them. + + This macro looks for the executable suffix used on the host + system. On Unix systems, this is the empty string. On Windows + systems, this is `.exe'. This macro directs automake to use the + executable suffix as appropriate when creating programs. This + macro does not take any arguments. + + The `AC_EXEEXT' form is new, and is part of a Cygnus patch to + autoconf to support compiling with Visual C++. Older programs use + `AM_EXEEXT' instead. + + (Programs which do not use automake use neither `AC_EXEEXT' nor + `AM_EXEEXT'). + +`AC_PROG_CC' + If you are writing C code, you will normally want to use this + macro. It locates the C compiler to use. It does not take any + arguments. + + However, if this `configure.in' file is for a library which is to + be compiled by a cross compiler which may not fully work, then you + will not want to use `AC_PROG_CC'. Instead, you will want to use a + variant which does not call the macro `AC_PROG_CC_WORKS'. Examples + can be found in various `configure.in' files for libraries that are + compiled with cross compilers, such as libiberty or libgloss. + This is essentially a bug in autoconf, and there will probably be + a better workaround at some point. + +`AC_PROG_CXX' + If you are writing C++ code, you will want to use this macro. It + locates the C++ compiler to use. It does not take any arguments. + The same cross compiler comments apply as for `AC_PROG_CC'. + +`AM_PROG_LIBTOOL' + If you want to build libraries, and you want to permit them to be + shared, or you want to link against libraries which were built + using libtool, then you will need this macro. This macro is + required in order to use libtool. + + By default, this will cause all libraries to be built as shared + libraries. To prevent this-to change the default-use + `AM_DISABLE_SHARED' before `AM_PROG_LIBTOOL'. The configure + options `--enable-shared' and `--disable-shared' may be used to + override the default at build time. + +`AC_DEFINE(_GNU_SOURCE)' + GNU packages should normally include this line before any other + feature tests. This defines the macro `_GNU_SOURCE' when + compiling, which directs the libc header files to provide the + standard GNU system interfaces including all GNU extensions. If + this macro is not defined, certain GNU extensions may not be + available. + +`AC_OUTPUT' + This macro takes a list of file names which the configure process + should produce. This is normally a list of one or more `Makefile' + files in different directories. If your package lives entirely in + a single directory, you would use simply `AC_OUTPUT(Makefile)'. + If you also have, for example, a `lib' subdirectory, you would use + `AC_OUTPUT(Makefile lib/Makefile)'. + + If you want to use locally defined macros in your `configure.in' +file, then you will need to write a `acinclude.m4' file which defines +them (if not using automake, this file is called `aclocal.m4'). +Alternatively, you can put separate macros in an `m4' subdirectory, and +put `ACLOCAL_AMFLAGS = -I m4' in your `Makefile.am' file so that the +`aclocal' program will be able to find them. + + The different macro prefixes indicate which tool defines the macro. +Macros which start with `AC_' are part of autoconf. Macros which start +with `AM_' are provided by automake or libtool. + + +File: configure.info, Node: Write Makefile.am, Next: Write acconfig.h, Prev: Write configure.in, Up: Getting Started + +2.2 Write Makefile.am +===================== + +You must write the file `Makefile.am'. This is an automake input file, +and the automake manual describes in detail what this file should look +like. + + The automake commands in `Makefile.am' mostly look like variable +assignments in a `Makefile'. automake recognizes special variable +names, and automatically add make rules to the output as needed. + + There will be one `Makefile.am' file for each directory in your +package. For each directory with subdirectories, the `Makefile.am' +file should contain the line + SUBDIRS = DIR DIR ... + where each DIR is the name of a subdirectory. + + For each `Makefile.am', there should be a corresponding `Makefile' +in the `AC_OUTPUT' macro in `configure.in'. + + Every `Makefile.am' written at Cygnus should contain the line + AUTOMAKE_OPTIONS = cygnus + This puts automake into Cygnus mode. See the automake manual for +details. + + You may to include the version number of `automake' that you are +using on the `AUTOMAKE_OPTIONS' line. For example, + AUTOMAKE_OPTIONS = cygnus 1.3 + This will prevent users from running an earlier version of +`automake' and perhaps getting an invalid `Makefile.in'. + + If your package builds a program, then in the directory where that +program is built you will normally want a line like + bin_PROGRAMS = PROGRAM + where PROGRAM is the name of the program. You will then want a line +like + PROGRAM_SOURCES = FILE FILE ... + where each FILE is the name of a source file to link into the +program (e.g., `foo.c'). + + If your package builds a library, and you do not want the library to +ever be built as a shared library, then in the directory where that +library is built you will normally want a line like + lib_LIBRARIES = libNAME.a + where `libNAME.a' is the name of the library. You will then want a +line like + libNAME_a_SOURCES = FILE FILE ... + where each FILE is the name of a source file to add to the library. + + If your package builds a library, and you want to permit building the +library as a shared library, then in the directory where that library is +built you will normally want a line like + lib_LTLIBRARIES = libNAME.la + The use of `LTLIBRARIES', and the `.la' extension, indicate a +library to be built using libtool. As usual, you will then want a line +like + libNAME_la_SOURCES = FILE FILE ... + + The strings `bin' and `lib' that appear above in `bin_PROGRAMS' and +`lib_LIBRARIES' are not arbitrary. They refer to particular +directories, which may be set by the `--bindir' and `--libdir' options +to `configure'. If those options are not used, the default values are +based on the `--prefix' or `--exec-prefix' options to `configure'. It +is possible to use other names if the program or library should be +installed in some other directory. + + The `Makefile.am' file may also contain almost anything that may +appear in a normal `Makefile'. automake also supports many other +special variables, as well as conditionals. + + See the automake manual for more information. + + +File: configure.info, Node: Write acconfig.h, Next: Generate files, Prev: Write Makefile.am, Up: Getting Started + +2.3 Write acconfig.h +==================== + +If you are generating a portability header file, (i.e., you are using +`AM_CONFIG_HEADER' in `configure.in'), then you will have to write a +`acconfig.h' file. It will have to contain the following lines. + + /* Name of package. */ + #undef PACKAGE + + /* Version of package. */ + #undef VERSION + + This requirement is really a bug in the system, and the requirement +may be eliminated at some later date. + + The `acconfig.h' file will also similar comment and `#undef' lines +for any unusual macros in the `configure.in' file, including any macro +which appears in a `AC_DEFINE' macro. + + In particular, if you are writing a GNU package and therefore include +`AC_DEFINE(_GNU_SOURCE)' in `configure.in' as suggested above, you will +need lines like this in `acconfig.h': + /* Enable GNU extensions. */ + #undef _GNU_SOURCE + + Normally the `autoheader' program will inform you of any such +requirements by printing an error message when it is run. However, if +you do anything particular odd in your `configure.in' file, you will +have to make sure that the right entries appear in `acconfig.h', since +otherwise the results of the tests may not be available in the +`config.h' file which your code will use. + + (Thee `PACKAGE' and `VERSION' lines are not required if you are not +using automake, and in that case you may not need a `acconfig.h' file +at all). + + +File: configure.info, Node: Generate files, Next: Getting Started Example, Prev: Write acconfig.h, Up: Getting Started + +2.4 Generate files +================== + +Once you have written `configure.in', `Makefile.am', `acconfig.h', and +possibly `acinclude.m4', you must use autoconf and automake programs to +produce the first versions of the generated files. This is done by +executing the following sequence of commands. + + aclocal + autoconf + autoheader + automake + + The `aclocal' and `automake' commands are part of the automake +package, and the `autoconf' and `autoheader' commands are part of the +autoconf package. + + If you are using a `m4' subdirectory for your macros, you will need +to use the `-I m4' option when you run `aclocal'. + + If you are not using the Cygnus tree, use the `-a' option when +running `automake' command in order to copy the required support files +into your source directory. + + If you are using libtool, you must build and install the libtool +package with the same `--prefix' and `--exec-prefix' options as you +used with the autoconf and automake packages. You must do this before +running any of the above commands. If you are not using the Cygnus +tree, you will need to run the `libtoolize' program to copy the libtool +support files into your directory. + + Once you have managed to run these commands without getting any +errors, you should create a new empty directory, and run the `configure' +script which will have been created by `autoconf' with the +`--enable-maintainer-mode' option. This will give you a set of +Makefiles which will include rules to automatically rebuild all the +generated files. + + After doing that, whenever you have changed some of the input files +and want to regenerated the other files, go to your object directory +and run `make'. Doing this is more reliable than trying to rebuild the +files manually, because there are complex order dependencies and it is +easy to forget something. + + +File: configure.info, Node: Getting Started Example, Prev: Generate files, Up: Getting Started + +2.5 Example +=========== + +Let's consider a trivial example. + + Suppose we want to write a simple version of `touch'. Our program, +which we will call `poke', will take a single file name argument, and +use the `utime' system call to set the modification and access times of +the file to the current time. We want this program to be highly +portable. + + We'll first see what this looks like without using autoconf and +automake, and then see what it looks like with them. + +* Menu: + +* Getting Started Example 1:: First Try. +* Getting Started Example 2:: Second Try. +* Getting Started Example 3:: Third Try. +* Generate Files in Example:: Generate Files. + + +File: configure.info, Node: Getting Started Example 1, Next: Getting Started Example 2, Up: Getting Started Example + +2.5.1 First Try +--------------- + +Here is our first try at `poke.c'. Note that we've written it without +ANSI/ISO C prototypes, since we want it to be highly portable. + + #include <stdio.h> + #include <stdlib.h> + #include <sys/types.h> + #include <utime.h> + + int + main (argc, argv) + int argc; + char **argv; + { + if (argc != 2) + { + fprintf (stderr, "Usage: poke file\n"); + exit (1); + } + + if (utime (argv[1], NULL) < 0) + { + perror ("utime"); + exit (1); + } + + exit (0); + } + + We also write a simple `Makefile'. + + CC = gcc + CFLAGS = -g -O2 + + all: poke + + poke: poke.o + $(CC) -o poke $(CFLAGS) $(LDFLAGS) poke.o + + So far, so good. + + Unfortunately, there are a few problems. + + On older Unix systems derived from BSD 4.3, the `utime' system call +does not accept a second argument of `NULL'. On those systems, we need +to pass a pointer to `struct utimbuf' structure. Unfortunately, even +older systems don't define that structure; on those systems, we need to +pass an array of two `long' values. + + The header file `stdlib.h' was invented by ANSI C, and older systems +don't have a copy. We included it above to get a declaration of `exit'. + + We can find some of these portability problems by running +`autoscan', which will create a `configure.scan' file which we can use +as a prototype for our `configure.in' file. I won't show the output, +but it will notice the potential problems with `utime' and `stdlib.h'. + + In our `Makefile', we don't provide any way to install the program. +This doesn't matter much for such a simple example, but a real program +will need an `install' target. For that matter, we will also want a +`clean' target. + + +File: configure.info, Node: Getting Started Example 2, Next: Getting Started Example 3, Prev: Getting Started Example 1, Up: Getting Started Example + +2.5.2 Second Try +---------------- + +Here is our second try at this program. + + We modify `poke.c' to use preprocessor macros to control what +features are available. (I've cheated a bit by using the same macro +names which autoconf will use). + + #include <stdio.h> + + #ifdef STDC_HEADERS + #include <stdlib.h> + #endif + + #include <sys/types.h> + + #ifdef HAVE_UTIME_H + #include <utime.h> + #endif + + #ifndef HAVE_UTIME_NULL + + #include <time.h> + + #ifndef HAVE_STRUCT_UTIMBUF + + struct utimbuf + { + long actime; + long modtime; + }; + + #endif + + static int + utime_now (file) + char *file; + { + struct utimbuf now; + + now.actime = now.modtime = time (NULL); + return utime (file, &now); + } + + #define utime(f, p) utime_now (f) + + #endif /* HAVE_UTIME_NULL */ + + int + main (argc, argv) + int argc; + char **argv; + { + if (argc != 2) + { + fprintf (stderr, "Usage: poke file\n"); + exit (1); + } + + if (utime (argv[1], NULL) < 0) + { + perror ("utime"); + exit (1); + } + + exit (0); + } + + Here is the associated `Makefile'. We've added support for the +preprocessor flags we use. We've also added `install' and `clean' +targets. + + # Set this to your installation directory. + bindir = /usr/local/bin + + # Uncomment this if you have the standard ANSI/ISO C header files. + # STDC_HDRS = -DSTDC_HEADERS + + # Uncomment this if you have utime.h. + # UTIME_H = -DHAVE_UTIME_H + + # Uncomment this if utime (FILE, NULL) works on your system. + # UTIME_NULL = -DHAVE_UTIME_NULL + + # Uncomment this if struct utimbuf is defined in utime.h. + # UTIMBUF = -DHAVE_STRUCT_UTIMBUF + + CC = gcc + CFLAGS = -g -O2 + + ALL_CFLAGS = $(STDC_HDRS) $(UTIME_H) $(UTIME_NULL) $(UTIMBUF) $(CFLAGS) + + all: poke + + poke: poke.o + $(CC) -o poke $(ALL_CFLAGS) $(LDFLAGS) poke.o + + .c.o: + $(CC) -c $(ALL_CFLAGS) poke.c + + install: poke + cp poke $(bindir)/poke + + clean: + rm poke poke.o + + Some problems with this approach should be clear. + + Users who want to compile poke will have to know how `utime' works +on their systems, so that they can uncomment the `Makefile' correctly. + + The installation is done using `cp', but many systems have an +`install' program which may be used, and which supports optional +features such as stripping debugging information out of the installed +binary. + + The use of `Makefile' variables like `CC', `CFLAGS' and `LDFLAGS' +follows the requirements of the GNU standards. This is convenient for +all packages, since it reduces surprises for users. However, it is +easy to get the details wrong, and wind up with a slightly nonstandard +distribution. + + +File: configure.info, Node: Getting Started Example 3, Next: Generate Files in Example, Prev: Getting Started Example 2, Up: Getting Started Example + +2.5.3 Third Try +--------------- + +For our third try at this program, we will write a `configure.in' +script to discover the configuration features on the host system, rather +than requiring the user to edit the `Makefile'. We will also write a +`Makefile.am' rather than a `Makefile'. + + The only change to `poke.c' is to add a line at the start of the +file: + #include "config.h" + + The new `configure.in' file is as follows. + + AC_INIT(poke.c) + AM_INIT_AUTOMAKE(poke, 1.0) + AM_CONFIG_HEADER(config.h:config.in) + AC_PROG_CC + AC_HEADER_STDC + AC_CHECK_HEADERS(utime.h) + AC_EGREP_HEADER(utimbuf, utime.h, AC_DEFINE(HAVE_STRUCT_UTIMBUF)) + AC_FUNC_UTIME_NULL + AC_OUTPUT(Makefile) + + The first four macros in this file, and the last one, were described +above; see *Note Write configure.in::. If we omit these macros, then +when we run `automake' we will get a reminder that we need them. + + The other macros are standard autoconf macros. + +`AC_HEADER_STDC' + Check for standard C headers. + +`AC_CHECK_HEADERS' + Check whether a particular header file exists. + +`AC_EGREP_HEADER' + Check for a particular string in a particular header file, in this + case checking for `utimbuf' in `utime.h'. + +`AC_FUNC_UTIME_NULL' + Check whether `utime' accepts a NULL second argument to set the + file change time to the current time. + + See the autoconf manual for a more complete description. + + The new `Makefile.am' file is as follows. Note how simple this is +compared to our earlier `Makefile'. + + bin_PROGRAMS = poke + + poke_SOURCES = poke.c + + This means that we should build a single program name `poke'. It +should be installed in the binary directory, which we called `bindir' +earlier. The program `poke' is built from the source file `poke.c'. + + We must also write a `acconfig.h' file. Besides `PACKAGE' and +`VERSION', which must be mentioned for all packages which use automake, +we must include `HAVE_STRUCT_UTIMBUF', since we mentioned it in an +`AC_DEFINE'. + + /* Name of package. */ + #undef PACKAGE + + /* Version of package. */ + #undef VERSION + + /* Whether utime.h defines struct utimbuf. */ + #undef HAVE_STRUCT_UTIMBUF + + +File: configure.info, Node: Generate Files in Example, Prev: Getting Started Example 3, Up: Getting Started Example + +2.5.4 Generate Files +-------------------- + +We must now generate the other files, using the following commands. + + aclocal + autoconf + autoheader + automake + + When we run `autoheader', it will remind us of any macros we forgot +to add to `acconfig.h'. + + When we run `automake', it will want to add some files to our +distribution. It will add them automatically if we use the +`--add-missing' option. + + By default, `automake' will run in GNU mode, which means that it +will want us to create certain additional files; as of this writing, it +will want `NEWS', `README', `AUTHORS', and `ChangeLog', all of which +are files which should appear in a standard GNU distribution. We can +either add those files, or run `automake' with the `--foreign' option. + + Running these tools will generate the following files, all of which +are described in the next chapter. + + * `aclocal.m4' + + * `configure' + + * `config.in' + + * `Makefile.in' + + * `stamp-h.in' + + +File: configure.info, Node: Files, Next: Configuration Names, Prev: Getting Started, Up: Top + +3 Files +******* + +As was seen in the previous chapter, the GNU configure and build system +uses a number of different files. The developer must write a few files. +The others are generated by various tools. + + The system is rather flexible, and can be used in many different +ways. In describing the files that it uses, I will describe the common +case, and mention some other cases that may arise. + +* Menu: + +* Developer Files:: Developer Files. +* Build Files:: Build Files. +* Support Files:: Support Files. + + +File: configure.info, Node: Developer Files, Next: Build Files, Up: Files + +3.1 Developer Files +=================== + +This section describes the files written or generated by the developer +of a package. + +* Menu: + +* Developer Files Picture:: Developer Files Picture. +* Written Developer Files:: Written Developer Files. +* Generated Developer Files:: Generated Developer Files. + + +File: configure.info, Node: Developer Files Picture, Next: Written Developer Files, Up: Developer Files + +3.1.1 Developer Files Picture +----------------------------- + +Here is a picture of the files which are written by the developer, the +generated files which would be included with a complete source +distribution, and the tools which create those files. The file names +are plain text and the tool names are enclosed by `*' characters (e.g., +`autoheader' is the name of a tool, not the name of a file). + + acconfig.h configure.in Makefile.am + | | | + | --------------+---------------------- | + | | | | | + v v | acinclude.m4 | | + *autoheader* | | v v + | | v --->*automake* + v |--->*aclocal* | | + config.in | | | v + | v | Makefile.in + | aclocal.m4--- + | | + v v + *autoconf* + | + v + configure + + +File: configure.info, Node: Written Developer Files, Next: Generated Developer Files, Prev: Developer Files Picture, Up: Developer Files + +3.1.2 Written Developer Files +----------------------------- + +The following files would be written by the developer. + +`configure.in' + This is the configuration script. This script contains + invocations of autoconf macros. It may also contain ordinary + shell script code. This file will contain feature tests for + portability issues. The last thing in the file will normally be + an `AC_OUTPUT' macro listing which files to create when the + builder runs the configure script. This file is always required + when using the GNU configure system. *Note Write configure.in::. + +`Makefile.am' + This is the automake input file. It describes how the code should + be built. It consists of definitions of automake variables. It + may also contain ordinary Makefile targets. This file is only + needed when using automake (newer tools normally use automake, but + there are still older tools which have not been converted, in + which the developer writes `Makefile.in' directly). *Note Write + Makefile.am::. + +`acconfig.h' + When the configure script creates a portability header file, by + using `AM_CONFIG_HEADER' (or, if not using automake, + `AC_CONFIG_HEADER'), this file is used to describe macros which are + not recognized by the `autoheader' command. This is normally a + fairly uninteresting file, consisting of a collection of `#undef' + lines with comments. Normally any call to `AC_DEFINE' in + `configure.in' will require a line in this file. *Note Write + acconfig.h::. + +`acinclude.m4' + This file is not always required. It defines local autoconf + macros. These macros may then be used in `configure.in'. If you + don't need any local autoconf macros, then you don't need this + file at all. In fact, in general, you never need local autoconf + macros, since you can put everything in `configure.in', but + sometimes a local macro is convenient. + + Newer tools may omit `acinclude.m4', and instead use a + subdirectory, typically named `m4', and define `ACLOCAL_AMFLAGS = + -I m4' in `Makefile.am' to force `aclocal' to look there for macro + definitions. The macro definitions are then placed in separate + files in that directory. + + The `acinclude.m4' file is only used when using automake; in older + tools, the developer writes `aclocal.m4' directly, if it is needed. + + +File: configure.info, Node: Generated Developer Files, Prev: Written Developer Files, Up: Developer Files + +3.1.3 Generated Developer Files +------------------------------- + +The following files would be generated by the developer. + + When using automake, these files are normally not generated manually +after the first time. Instead, the generated `Makefile' contains rules +to automatically rebuild the files as required. When +`AM_MAINTAINER_MODE' is used in `configure.in' (the normal case in +Cygnus code), the automatic rebuilding rules will only be defined if +you configure using the `--enable-maintainer-mode' option. + + When using automatic rebuilding, it is important to ensure that all +the various tools have been built and installed on your `PATH'. Using +automatic rebuilding is highly recommended, so much so that I'm not +going to explain what you have to do if you don't use it. + +`configure' + This is the configure script which will be run when building the + package. This is generated by `autoconf' from `configure.in' and + `aclocal.m4'. This is a shell script. + +`Makefile.in' + This is the file which the configure script will turn into the + `Makefile' at build time. This file is generated by `automake' + from `Makefile.am'. If you aren't using automake, you must write + this file yourself. This file is pretty much a normal `Makefile', + with some configure substitutions for certain variables. + +`aclocal.m4' + This file is created by the `aclocal' program, based on the + contents of `configure.in' and `acinclude.m4' (or, as noted in the + description of `acinclude.m4' above, on the contents of an `m4' + subdirectory). This file contains definitions of autoconf macros + which `autoconf' will use when generating the file `configure'. + These autoconf macros may be defined by you in `acinclude.m4' or + they may be defined by other packages such as automake, libtool or + gettext. If you aren't using automake, you will normally write + this file yourself; in that case, if `configure.in' uses only + standard autoconf macros, this file will not be needed at all. + +`config.in' + This file is created by `autoheader' based on `acconfig.h' and + `configure.in'. At build time, the configure script will define + some of the macros in it to create `config.h', which may then be + included by your program. This permits your C code to use + preprocessor conditionals to change its behaviour based on the + characteristics of the host system. This file may also be called + `config.h.in'. + +`stamp.h-in' + This rather uninteresting file, which I omitted from the picture, + is generated by `automake'. It always contains the string + `timestamp'. It is used as a timestamp file indicating whether + `config.in' is up to date. Using a timestamp file means that + `config.in' can be marked as up to date without actually changing + its modification time. This is useful since `config.in' depends + upon `configure.in', but it is easy to change `configure.in' in a + way which does not affect `config.in'. + + +File: configure.info, Node: Build Files, Next: Support Files, Prev: Developer Files, Up: Files + +3.2 Build Files +=============== + +This section describes the files which are created at configure and +build time. These are the files which somebody who builds the package +will see. + + Of course, the developer will also build the package. The +distinction between developer files and build files is not that the +developer does not see the build files, but that somebody who only +builds the package does not have to worry about the developer files. + +* Menu: + +* Build Files Picture:: Build Files Picture. +* Build Files Description:: Build Files Description. + + +File: configure.info, Node: Build Files Picture, Next: Build Files Description, Up: Build Files + +3.2.1 Build Files Picture +------------------------- + +Here is a picture of the files which will be created at build time. +`config.status' is both a created file and a shell script which is run +to create other files, and the picture attempts to show that. + + config.in *configure* Makefile.in + | | | + | v | + | config.status | + | | | + *config.status*<======+==========>*config.status* + | | + v v + config.h Makefile + + +File: configure.info, Node: Build Files Description, Prev: Build Files Picture, Up: Build Files + +3.2.2 Build Files Description +----------------------------- + +This is a description of the files which are created at build time. + +`config.status' + The first step in building a package is to run the `configure' + script. The `configure' script will create the file + `config.status', which is itself a shell script. When you first + run `configure', it will automatically run `config.status'. An + `Makefile' derived from an automake generated `Makefile.in' will + contain rules to automatically run `config.status' again when + necessary to recreate certain files if their inputs change. + +`Makefile' + This is the file which make will read to build the program. The + `config.status' script will transform `Makefile.in' into + `Makefile'. + +`config.h' + This file defines C preprocessor macros which C code can use to + adjust its behaviour on different systems. The `config.status' + script will transform `config.in' into `config.h'. + +`config.cache' + This file did not fit neatly into the picture, and I omitted it. + It is used by the `configure' script to cache results between + runs. This can be an important speedup. If you modify + `configure.in' in such a way that the results of old tests should + change (perhaps you have added a new library to `LDFLAGS'), then + you will have to remove `config.cache' to force the tests to be + rerun. + + The autoconf manual explains how to set up a site specific cache + file. This can speed up running `configure' scripts on your + system. + +`stamp.h' + This file, which I omitted from the picture, is similar to + `stamp-h.in'. It is used as a timestamp file indicating whether + `config.h' is up to date. This is useful since `config.h' depends + upon `config.status', but it is easy for `config.status' to change + in a way which does not affect `config.h'. + + +File: configure.info, Node: Support Files, Prev: Build Files, Up: Files + +3.3 Support Files +================= + +The GNU configure and build system requires several support files to be +included with your distribution. You do not normally need to concern +yourself with these. If you are using the Cygnus tree, most are already +present. Otherwise, they will be installed with your source by +`automake' (with the `--add-missing' option) and `libtoolize'. + + You don't have to put the support files in the top level directory. +You can put them in a subdirectory, and use the `AC_CONFIG_AUX_DIR' +macro in `configure.in' to tell `automake' and the `configure' script +where they are. + + In this section, I describe the support files, so that you can know +what they are and why they are there. + +`ABOUT-NLS' + Added by automake if you are using gettext. This is a + documentation file about the gettext project. + +`ansi2knr.c' + Used by an automake generated `Makefile' if you put `ansi2knr' in + `AUTOMAKE_OPTIONS' in `Makefile.am'. This permits compiling ANSI + C code with a K&R C compiler. + +`ansi2knr.1' + The man page which goes with `ansi2knr.c'. + +`config.guess' + A shell script which determines the configuration name for the + system on which it is run. + +`config.sub' + A shell script which canonicalizes a configuration name entered by + a user. + +`elisp-comp' + Used to compile Emacs LISP files. + +`install-sh' + A shell script which installs a program. This is used if the + configure script can not find an install binary. + +`ltconfig' + Used by libtool. This is a shell script which configures libtool + for the particular system on which it is used. + +`ltmain.sh' + Used by libtool. This is the actual libtool script which is used, + after it is configured by `ltconfig' to build a library. + +`mdate-sh' + A shell script used by an automake generated `Makefile' to pretty + print the modification time of a file. This is used to maintain + version numbers for texinfo files. + +`missing' + A shell script used if some tool is missing entirely. This is + used by an automake generated `Makefile' to avoid certain sorts of + timestamp problems. + +`mkinstalldirs' + A shell script which creates a directory, including all parent + directories. This is used by an automake generated `Makefile' + during installation. + +`texinfo.tex' + Required if you have any texinfo files. This is used when + converting Texinfo files into DVI using `texi2dvi' and TeX. + +`ylwrap' + A shell script used by an automake generated `Makefile' to run + programs like `bison', `yacc', `flex', and `lex'. These programs + default to producing output files with a fixed name, and the + `ylwrap' script runs them in a subdirectory to avoid file name + conflicts when using a parallel make program. + + +File: configure.info, Node: Configuration Names, Next: Cross Compilation Tools, Prev: Files, Up: Top + +4 Configuration Names +********************* + +The GNU configure system names all systems using a "configuration +name". All such names used to be triplets (they may now contain four +parts in certain cases), and the term "configuration triplet" is still +seen. + +* Menu: + +* Configuration Name Definition:: Configuration Name Definition. +* Using Configuration Names:: Using Configuration Names. + + +File: configure.info, Node: Configuration Name Definition, Next: Using Configuration Names, Up: Configuration Names + +4.1 Configuration Name Definition +================================= + +This is a string of the form CPU-MANUFACTURER-OPERATING_SYSTEM. In +some cases, this is extended to a four part form: +CPU-MANUFACTURER-KERNEL-OPERATING_SYSTEM. + + When using a configuration name in a configure option, it is normally +not necessary to specify an entire name. In particular, the +MANUFACTURER field is often omitted, leading to strings such as +`i386-linux' or `sparc-sunos'. The shell script `config.sub' will +translate these shortened strings into the canonical form. autoconf +will arrange for `config.sub' to be run automatically when it is needed. + + The fields of a configuration name are as follows: + +CPU + The type of processor. This is typically something like `i386' or + `sparc'. More specific variants are used as well, such as + `mipsel' to indicate a little endian MIPS processor. + +MANUFACTURER + A somewhat freeform field which indicates the manufacturer of the + system. This is often simply `unknown'. Other common strings are + `pc' for an IBM PC compatible system, or the name of a workstation + vendor, such as `sun'. + +OPERATING_SYSTEM + The name of the operating system which is run on the system. This + will be something like `solaris2.5' or `irix6.3'. There is no + particular restriction on the version number, and strings like + `aix4.1.4.0' are seen. For an embedded system, which has no + operating system, this field normally indicates the type of object + file format, such as `elf' or `coff'. + +KERNEL + This is used mainly for GNU/Linux. A typical GNU/Linux + configuration name is `i586-pc-linux-gnulibc1'. In this case the + kernel, `linux', is separated from the operating system, + `gnulibc1'. + + The shell script `config.guess' will normally print the correct +configuration name for the system on which it is run. It does by +running `uname' and by examining other characteristics of the system. + + Because `config.guess' can normally determine the configuration name +for a machine, it is normally only necessary to specify a configuration +name when building a cross-compiler or when building using a +cross-compiler. + + +File: configure.info, Node: Using Configuration Names, Prev: Configuration Name Definition, Up: Configuration Names + +4.2 Using Configuration Names +============================= + +A configure script will sometimes have to make a decision based on a +configuration name. You will need to do this if you have to compile +code differently based on something which can not be tested using a +standard autoconf feature test. + + It is normally better to test for particular features, rather than to +test for a particular system. This is because as Unix evolves, +different systems copy features from one another. Even if you need to +determine whether the feature is supported based on a configuration +name, you should define a macro which describes the feature, rather than +defining a macro which describes the particular system you are on. + + Testing for a particular system is normally done using a case +statement in `configure.in'. The case statement might look something +like the following, assuming that `host' is a shell variable holding a +canonical configuration name (which will be the case if `configure.in' +uses the `AC_CANONICAL_HOST' or `AC_CANONICAL_SYSTEM' macro). + + case "${host}" in + i[3-7]86-*-linux-gnu*) do something ;; + sparc*-sun-solaris2.[56789]*) do something ;; + sparc*-sun-solaris*) do something ;; + mips*-*-elf*) do something ;; + esac + + It is particularly important to use `*' after the operating system +field, in order to match the version number which will be generated by +`config.guess'. + + In most cases you must be careful to match a range of processor +types. For most processor families, a trailing `*' suffices, as in +`mips*' above. For the i386 family, something along the lines of +`i[3-7]86' suffices at present. For the m68k family, you will need +something like `m68*'. Of course, if you do not need to match on the +processor, it is simpler to just replace the entire field by a `*', as +in `*-*-irix*'. + + +File: configure.info, Node: Cross Compilation Tools, Next: Canadian Cross, Prev: Configuration Names, Up: Top + +5 Cross Compilation Tools +************************* + +The GNU configure and build system can be used to build "cross +compilation" tools. A cross compilation tool is a tool which runs on +one system and produces code which runs on another system. + +* Menu: + +* Cross Compilation Concepts:: Cross Compilation Concepts. +* Host and Target:: Host and Target. +* Using the Host Type:: Using the Host Type. +* Specifying the Target:: Specifying the Target. +* Using the Target Type:: Using the Target Type. +* Cross Tools in the Cygnus Tree:: Cross Tools in the Cygnus Tree + + +File: configure.info, Node: Cross Compilation Concepts, Next: Host and Target, Up: Cross Compilation Tools + +5.1 Cross Compilation Concepts +============================== + +A compiler which produces programs which run on a different system is a +cross compilation compiler, or simply a "cross compiler". Similarly, +we speak of cross assemblers, cross linkers, etc. + + In the normal case, a compiler produces code which runs on the same +system as the one on which the compiler runs. When it is necessary to +distinguish this case from the cross compilation case, such a compiler +is called a "native compiler". Similarly, we speak of native +assemblers, etc. + + Although the debugger is not strictly speaking a compilation tool, +it is nevertheless meaningful to speak of a cross debugger: a debugger +which is used to debug code which runs on another system. Everything +that is said below about configuring cross compilation tools applies to +the debugger as well. + + +File: configure.info, Node: Host and Target, Next: Using the Host Type, Prev: Cross Compilation Concepts, Up: Cross Compilation Tools + +5.2 Host and Target +=================== + +When building cross compilation tools, there are two different systems +involved: the system on which the tools will run, and the system for +which the tools generate code. + + The system on which the tools will run is called the "host" system. + + The system for which the tools generate code is called the "target" +system. + + For example, suppose you have a compiler which runs on a GNU/Linux +system and generates ELF programs for a MIPS embedded system. In this +case the GNU/Linux system is the host, and the MIPS ELF system is the +target. Such a compiler could be called a GNU/Linux cross MIPS ELF +compiler, or, equivalently, a `i386-linux-gnu' cross `mips-elf' +compiler. + + Naturally, most programs are not cross compilation tools. For those +programs, it does not make sense to speak of a target. It only makes +sense to speak of a target for tools like `gcc' or the `binutils' which +actually produce running code. For example, it does not make sense to +speak of the target of a tool like `bison' or `make'. + + Most cross compilation tools can also serve as native tools. For a +native compilation tool, it is still meaningful to speak of a target. +For a native tool, the target is the same as the host. For example, for +a GNU/Linux native compiler, the host is GNU/Linux, and the target is +also GNU/Linux. + + +File: configure.info, Node: Using the Host Type, Next: Specifying the Target, Prev: Host and Target, Up: Cross Compilation Tools + +5.3 Using the Host Type +======================= + +In almost all cases the host system is the system on which you run the +`configure' script, and on which you build the tools (for the case when +they differ, *note Canadian Cross::). + + If your configure script needs to know the configuration name of the +host system, and the package is not a cross compilation tool and +therefore does not have a target, put `AC_CANONICAL_HOST' in +`configure.in'. This macro will arrange to define a few shell +variables when the `configure' script is run. + +`host' + The canonical configuration name of the host. This will normally + be determined by running the `config.guess' shell script, although + the user is permitted to override this by using an explicit + `--host' option. + +`host_alias' + In the unusual case that the user used an explicit `--host' option, + this will be the argument to `--host'. In the normal case, this + will be the same as the `host' variable. + +`host_cpu' +`host_vendor' +`host_os' + The first three parts of the canonical configuration name. + + The shell variables may be used by putting shell code in +`configure.in'. For an example, see *Note Using Configuration Names::. + + +File: configure.info, Node: Specifying the Target, Next: Using the Target Type, Prev: Using the Host Type, Up: Cross Compilation Tools + +5.4 Specifying the Target +========================= + +By default, the `configure' script will assume that the target is the +same as the host. This is the more common case; for example, it leads +to a native compiler rather than a cross compiler. + + If you want to build a cross compilation tool, you must specify the +target explicitly by using the `--target' option when you run +`configure'. The argument to `--target' is the configuration name of +the system for which you wish to generate code. *Note Configuration +Names::. + + For example, to build tools which generate code for a MIPS ELF +embedded system, you would use `--target mips-elf'. + + +File: configure.info, Node: Using the Target Type, Next: Cross Tools in the Cygnus Tree, Prev: Specifying the Target, Up: Cross Compilation Tools + +5.5 Using the Target Type +========================= + +When writing `configure.in' for a cross compilation tool, you will need +to use information about the target. To do this, put +`AC_CANONICAL_SYSTEM' in `configure.in'. + + `AC_CANONICAL_SYSTEM' will look for a `--target' option and +canonicalize it using the `config.sub' shell script. It will also run +`AC_CANONICAL_HOST' (*note Using the Host Type::). + + The target type will be recorded in the following shell variables. +Note that the host versions of these variables will also be defined by +`AC_CANONICAL_HOST'. + +`target' + The canonical configuration name of the target. + +`target_alias' + The argument to the `--target' option. If the user did not specify + a `--target' option, this will be the same as `host_alias'. + +`target_cpu' +`target_vendor' +`target_os' + The first three parts of the canonical target configuration name. + + Note that if `host' and `target' are the same string, you can assume +a native configuration. If they are different, you can assume a cross +configuration. + + It is arguably possible for `host' and `target' to represent the +same system, but for the strings to not be identical. For example, if +`config.guess' returns `sparc-sun-sunos4.1.4', and somebody configures +with `--target sparc-sun-sunos4.1', then the slight differences between +the two versions of SunOS may be unimportant for your tool. However, +in the general case it can be quite difficult to determine whether the +differences between two configuration names are significant or not. +Therefore, by convention, if the user specifies a `--target' option +without specifying a `--host' option, it is assumed that the user wants +to configure a cross compilation tool. + + The variables `target' and `target_alias' should be handled +differently. + + In general, whenever the user may actually see a string, +`target_alias' should be used. This includes anything which may appear +in the file system, such as a directory name or part of a tool name. +It also includes any tool output, unless it is clearly labelled as the +canonical target configuration name. This permits the user to use the +`--target' option to specify how the tool will appear to the outside +world. + + On the other hand, when checking for characteristics of the target +system, `target' should be used. This is because a wide variety of +`--target' options may map into the same canonical configuration name. +You should not attempt to duplicate the canonicalization done by +`config.sub' in your own code. + + By convention, cross tools are installed with a prefix of the +argument used with the `--target' option, also known as `target_alias' +(*note Using the Target Type::). If the user does not use the +`--target' option, and thus is building a native tool, no prefix is +used. + + For example, if gcc is configured with `--target mips-elf', then the +installed binary will be named `mips-elf-gcc'. If gcc is configured +without a `--target' option, then the installed binary will be named +`gcc'. + + The autoconf macro `AC_ARG_PROGRAM' will handle this for you. If +you are using automake, no more need be done; the programs will +automatically be installed with the correct prefixes. Otherwise, see +the autoconf documentation for `AC_ARG_PROGRAM'. + + +File: configure.info, Node: Cross Tools in the Cygnus Tree, Prev: Using the Target Type, Up: Cross Compilation Tools + +5.6 Cross Tools in the Cygnus Tree +================================== + +The Cygnus tree is used for various packages including gdb, the GNU +binutils, and egcs. It is also, of course, used for Cygnus releases. + + In the Cygnus tree, the top level `configure' script uses the old +Cygnus configure system, not autoconf. The top level `Makefile.in' is +written to build packages based on what is in the source tree, and +supports building a large number of tools in a single +`configure'/`make' step. + + The Cygnus tree may be configured with a `--target' option. The +`--target' option applies recursively to every subdirectory, and +permits building an entire set of cross tools at once. + +* Menu: + +* Host and Target Libraries:: Host and Target Libraries. +* Target Library Configure Scripts:: Target Library Configure Scripts. +* Make Targets in Cygnus Tree:: Make Targets in Cygnus Tree. +* Target libiberty:: Target libiberty + + +File: configure.info, Node: Host and Target Libraries, Next: Target Library Configure Scripts, Up: Cross Tools in the Cygnus Tree + +5.6.1 Host and Target Libraries +------------------------------- + +The Cygnus tree distinguishes host libraries from target libraries. + + Host libraries are built with the compiler used to build the programs +which run on the host, which is called the host compiler. This includes +libraries such as `bfd' and `tcl'. These libraries are built with the +host compiler, and are linked into programs like the binutils or gcc +which run on the host. + + Target libraries are built with the target compiler. If gcc is +present in the source tree, then the target compiler is the gcc that is +built using the host compiler. Target libraries are libraries such as +`newlib' and `libstdc++'. These libraries are not linked into the host +programs, but are instead made available for use with programs built +with the target compiler. + + For the rest of this section, assume that gcc is present in the +source tree, so that it will be used to build the target libraries. + + There is a complication here. The configure process needs to know +which compiler you are going to use to build a tool; otherwise, the +feature tests will not work correctly. The Cygnus tree handles this by +not configuring the target libraries until the target compiler is +built. In order to permit everything to build using a single +`configure'/`make', the configuration of the target libraries is +actually triggered during the make step. + + When the target libraries are configured, the `--target' option is +not used. Instead, the `--host' option is used with the argument of +the `--target' option for the overall configuration. If no `--target' +option was used for the overall configuration, the `--host' option will +be passed with the output of the `config.guess' shell script. Any +`--build' option is passed down unchanged. + + This translation of configuration options is done because since the +target libraries are compiled with the target compiler, they are being +built in order to run on the target of the overall configuration. By +the definition of host, this means that their host system is the same as +the target system of the overall configuration. + + The same process is used for both a native configuration and a cross +configuration. Even when using a native configuration, the target +libraries will be configured and built using the newly built compiler. +This is particularly important for the C++ libraries, since there is no +reason to assume that the C++ compiler used to build the host tools (if +there even is one) uses the same ABI as the g++ compiler which will be +used to build the target libraries. + + There is one difference between a native configuration and a cross +configuration. In a native configuration, the target libraries are +normally configured and built as siblings of the host tools. In a cross +configuration, the target libraries are normally built in a subdirectory +whose name is the argument to `--target'. This is mainly for +historical reasons. + + To summarize, running `configure' in the Cygnus tree configures all +the host libraries and tools, but does not configure any of the target +libraries. Running `make' then does the following steps: + + * Build the host libraries. + + * Build the host programs, including gcc. Note that we call gcc + both a host program (since it runs on the host) and a target + compiler (since it generates code for the target). + + * Using the newly built target compiler, configure the target + libraries. + + * Build the target libraries. + + The steps need not be done in precisely this order, since they are +actually controlled by `Makefile' targets. + + +File: configure.info, Node: Target Library Configure Scripts, Next: Make Targets in Cygnus Tree, Prev: Host and Target Libraries, Up: Cross Tools in the Cygnus Tree + +5.6.2 Target Library Configure Scripts +-------------------------------------- + +There are a few things you must know in order to write a configure +script for a target library. This is just a quick sketch, and beginners +shouldn't worry if they don't follow everything here. + + The target libraries are configured and built using a newly built +target compiler. There may not be any startup files or libraries for +this target compiler. In fact, those files will probably be built as +part of some target library, which naturally means that they will not +exist when your target library is configured. + + This means that the configure script for a target library may not use +any test which requires doing a link. This unfortunately includes many +useful autoconf macros, such as `AC_CHECK_FUNCS'. autoconf macros +which do a compile but not a link, such as `AC_CHECK_HEADERS', may be +used. + + This is a severe restriction, but normally not a fatal one, as target +libraries can often assume the presence of other target libraries, and +thus know which functions will be available. + + As of this writing, the autoconf macro `AC_PROG_CC' does a link to +make sure that the compiler works. This may fail in a target library, +so target libraries must use a different set of macros to locate the +compiler. See the `configure.in' file in a directory like `libiberty' +or `libgloss' for an example. + + As noted in the previous section, target libraries are sometimes +built in directories which are siblings to the host tools, and are +sometimes built in a subdirectory. The `--with-target-subdir' configure +option will be passed when the library is configured. Its value will be +an empty string if the target library is a sibling. Its value will be +the name of the subdirectory if the target library is in a subdirectory. + + If the overall build is not a native build (i.e., the overall +configure used the `--target' option), then the library will be +configured with the `--with-cross-host' option. The value of this +option will be the host system of the overall build. Recall that the +host system of the library will be the target of the overall build. If +the overall build is a native build, the `--with-cross-host' option +will not be used. + + A library which can be built both standalone and as a target library +may want to install itself into different directories depending upon the +case. When built standalone, or when built native, the library should +be installed in `$(libdir)'. When built as a target library which is +not native, the library should be installed in `$(tooldir)/lib'. The +`--with-cross-host' option may be used to distinguish these cases. + + This same test of `--with-cross-host' may be used to see whether it +is OK to use link tests in the configure script. If the +`--with-cross-host' option is not used, then the library is being built +either standalone or native, and a link should work. + + +File: configure.info, Node: Make Targets in Cygnus Tree, Next: Target libiberty, Prev: Target Library Configure Scripts, Up: Cross Tools in the Cygnus Tree + +5.6.3 Make Targets in Cygnus Tree +--------------------------------- + +The top level `Makefile' in the Cygnus tree defines targets for every +known subdirectory. + + For every subdirectory DIR which holds a host library or program, +the `Makefile' target `all-DIR' will build that library or program. + + There are dependencies among host tools. For example, building gcc +requires first building gas, because the gcc build process invokes the +target assembler. These dependencies are reflected in the top level +`Makefile'. + + For every subdirectory DIR which holds a target library, the +`Makefile' target `configure-target-DIR' will configure that library. +The `Makefile' target `all-target-DIR' will build that library. + + Every `configure-target-DIR' target depends upon `all-gcc', since +gcc, the target compiler, is required to configure the tool. Every +`all-target-DIR' target depends upon the corresponding +`configure-target-DIR' target. + + There are several other targets which may be of interest for each +directory: `install-DIR', `clean-DIR', and `check-DIR'. There are also +corresponding `target' versions of these for the target libraries , +such as `install-target-DIR'. + + +File: configure.info, Node: Target libiberty, Prev: Make Targets in Cygnus Tree, Up: Cross Tools in the Cygnus Tree + +5.6.4 Target libiberty +---------------------- + +The `libiberty' subdirectory is currently a special case, in that it is +the only directory which is built both using the host compiler and +using the target compiler. + + This is because the files in `libiberty' are used when building the +host tools, and they are also incorporated into the `libstdc++' target +library as support code. + + This duality does not pose any particular difficulties. It means +that there are targets for both `all-libiberty' and +`all-target-libiberty'. + + In a native configuration, when target libraries are not built in a +subdirectory, the same objects are normally used as both the host build +and the target build. This is normally OK, since libiberty contains +only C code, and in a native configuration the results of the host +compiler and the target compiler are normally interoperable. + + Irix 6 is again an exception here, since the SGI native compiler +defaults to using the `O32' ABI, and gcc defaults to using the `N32' +ABI. On Irix 6, the target libraries are built in a subdirectory even +for a native configuration, avoiding this problem. + + There are currently no other libraries built for both the host and +the target, but there is no conceptual problem with adding more. + + +File: configure.info, Node: Canadian Cross, Next: Cygnus Configure, Prev: Cross Compilation Tools, Up: Top + +6 Canadian Cross +**************** + +It is possible to use the GNU configure and build system to build a +program which will run on a system which is different from the system on +which the tools are built. In other words, it is possible to build +programs using a cross compiler. + + This is referred to as a "Canadian Cross". + +* Menu: + +* Canadian Cross Example:: Canadian Cross Example. +* Canadian Cross Concepts:: Canadian Cross Concepts. +* Build Cross Host Tools:: Build Cross Host Tools. +* Build and Host Options:: Build and Host Options. +* CCross not in Cygnus Tree:: Canadian Cross not in Cygnus Tree. +* CCross in Cygnus Tree:: Canadian Cross in Cygnus Tree. +* Supporting Canadian Cross:: Supporting Canadian Cross. + + +File: configure.info, Node: Canadian Cross Example, Next: Canadian Cross Concepts, Up: Canadian Cross + +6.1 Canadian Cross Example +========================== + +Here is an example of a Canadian Cross. + + While running on a GNU/Linux, you can build a program which will run +on a Solaris system. You would use a GNU/Linux cross Solaris compiler +to build the program. + + Of course, you could not run the resulting program on your GNU/Linux +system. You would have to copy it over to a Solaris system before you +would run it. + + Of course, you could also simply build the programs on the Solaris +system in the first place. However, perhaps the Solaris system is not +available for some reason; perhaps you actually don't have one, but you +want to build the tools for somebody else to use. Or perhaps your +GNU/Linux system is much faster than your Solaris system. + + A Canadian Cross build is most frequently used when building +programs to run on a non-Unix system, such as DOS or Windows. It may +be simpler to configure and build on a Unix system than to support the +configuration machinery on a non-Unix system. + + +File: configure.info, Node: Canadian Cross Concepts, Next: Build Cross Host Tools, Prev: Canadian Cross Example, Up: Canadian Cross + +6.2 Canadian Cross Concepts +=========================== + +When building a Canadian Cross, there are at least two different systems +involved: the system on which the tools are being built, and the system +on which the tools will run. + + The system on which the tools are being built is called the "build" +system. + + The system on which the tools will run is called the host system. + + For example, if you are building a Solaris program on a GNU/Linux +system, as in the previous section, the build system would be GNU/Linux, +and the host system would be Solaris. + + It is, of course, possible to build a cross compiler using a Canadian +Cross (i.e., build a cross compiler using a cross compiler). In this +case, the system for which the resulting cross compiler generates code +is called the target system. (For a more complete discussion of host +and target systems, *note Host and Target::). + + An example of building a cross compiler using a Canadian Cross would +be building a Windows cross MIPS ELF compiler on a GNU/Linux system. In +this case the build system would be GNU/Linux, the host system would be +Windows, and the target system would be MIPS ELF. + + The name Canadian Cross comes from the case when the build, host, and +target systems are all different. At the time that these issues were +all being hashed out, Canada had three national political parties. + + +File: configure.info, Node: Build Cross Host Tools, Next: Build and Host Options, Prev: Canadian Cross Concepts, Up: Canadian Cross + +6.3 Build Cross Host Tools +========================== + +In order to configure a program for a Canadian Cross build, you must +first build and install the set of cross tools you will use to build the +program. + + These tools will be build cross host tools. That is, they will run +on the build system, and will produce code that runs on the host system. + + It is easy to confuse the meaning of build and host here. Always +remember that the build system is where you are doing the build, and the +host system is where the resulting program will run. Therefore, you +need a build cross host compiler. + + In general, you must have a complete cross environment in order to do +the build. This normally means a cross compiler, cross assembler, and +so forth, as well as libraries and include files for the host system. + + +File: configure.info, Node: Build and Host Options, Next: CCross not in Cygnus Tree, Prev: Build Cross Host Tools, Up: Canadian Cross + +6.4 Build and Host Options +========================== + +When you run `configure', you must use both the `--build' and `--host' +options. + + The `--build' option is used to specify the configuration name of +the build system. This can normally be the result of running the +`config.guess' shell script, and it is reasonable to use +`--build=`config.guess`'. + + The `--host' option is used to specify the configuration name of the +host system. + + As we explained earlier, `config.guess' is used to set the default +value for the `--host' option (*note Using the Host Type::). We can +now see that since `config.guess' returns the type of system on which +it is run, it really identifies the build system. Since the host +system is normally the same as the build system (i.e., people do not +normally build using a cross compiler), it is reasonable to use the +result of `config.guess' as the default for the host system when the +`--host' option is not used. + + It might seem that if the `--host' option were used without the +`--build' option that the configure script could run `config.guess' to +determine the build system, and presume a Canadian Cross if the result +of `config.guess' differed from the `--host' option. However, for +historical reasons, some configure scripts are routinely run using an +explicit `--host' option, rather than using the default from +`config.guess'. As noted earlier, it is difficult or impossible to +reliably compare configuration names (*note Using the Target Type::). +Therefore, by convention, if the `--host' option is used, but the +`--build' option is not used, then the build system defaults to the +host system. + + +File: configure.info, Node: CCross not in Cygnus Tree, Next: CCross in Cygnus Tree, Prev: Build and Host Options, Up: Canadian Cross + +6.5 Canadian Cross not in Cygnus Tree. +====================================== + +If you are not using the Cygnus tree, you must explicitly specify the +cross tools which you want to use to build the program. This is done by +setting environment variables before running the `configure' script. + + You must normally set at least the environment variables `CC', `AR', +and `RANLIB' to the cross tools which you want to use to build. + + For some programs, you must set additional cross tools as well, such +as `AS', `LD', or `NM'. + + You would set these environment variables to the build cross tools +which you are going to use. + + For example, if you are building a Solaris program on a GNU/Linux +system, and your GNU/Linux cross Solaris compiler were named +`solaris-gcc', then you would set the environment variable `CC' to +`solaris-gcc'. + + +File: configure.info, Node: CCross in Cygnus Tree, Next: Supporting Canadian Cross, Prev: CCross not in Cygnus Tree, Up: Canadian Cross + +6.6 Canadian Cross in Cygnus Tree +================================= + +This section describes configuring and building a Canadian Cross when +using the Cygnus tree. + +* Menu: + +* Standard Cygnus CCross:: Building a Normal Program. +* Cross Cygnus CCross:: Building a Cross Program. + + +File: configure.info, Node: Standard Cygnus CCross, Next: Cross Cygnus CCross, Up: CCross in Cygnus Tree + +6.6.1 Building a Normal Program +------------------------------- + +When configuring a Canadian Cross in the Cygnus tree, all the +appropriate environment variables are automatically set to `HOST-TOOL', +where HOST is the value used for the `--host' option, and TOOL is the +name of the tool (e.g., `gcc', `as', etc.). These tools must be on +your `PATH'. + + Adding a prefix of HOST will give the usual name for the build cross +host tools. To see this, consider that when these cross tools were +built, they were configured to run on the build system and to produce +code for the host system. That is, they were configured with a +`--target' option that is the same as the system which we are now +calling the host. Recall that the default name for installed cross +tools uses the target system as a prefix (*note Using the Target +Type::). Since that is the system which we are now calling the host, +HOST is the right prefix to use. + + For example, if you configure with `--build=i386-linux-gnu' and +`--host=solaris', then the Cygnus tree will automatically default to +using the compiler `solaris-gcc'. You must have previously built and +installed this compiler, probably by doing a build with no `--host' +option and with a `--target' option of `solaris'. + + +File: configure.info, Node: Cross Cygnus CCross, Prev: Standard Cygnus CCross, Up: CCross in Cygnus Tree + +6.6.2 Building a Cross Program +------------------------------ + +There are additional considerations if you want to build a cross +compiler, rather than a native compiler, in the Cygnus tree using a +Canadian Cross. + + When you build a cross compiler using the Cygnus tree, then the +target libraries will normally be built with the newly built target +compiler (*note Host and Target Libraries::). However, this will not +work when building with a Canadian Cross. This is because the newly +built target compiler will be a program which runs on the host system, +and therefore will not be able to run on the build system. + + Therefore, when building a cross compiler with the Cygnus tree, you +must first install a set of build cross target tools. These tools will +be used when building the target libraries. + + Note that this is not a requirement of a Canadian Cross in general. +For example, it would be possible to build just the host cross target +tools on the build system, to copy the tools to the host system, and to +build the target libraries on the host system. The requirement for +build cross target tools is imposed by the Cygnus tree, which expects +to be able to build both host programs and target libraries in a single +`configure'/`make' step. Because it builds these in a single step, it +expects to be able to build the target libraries on the build system, +which means that it must use a build cross target toolchain. + + For example, suppose you want to build a Windows cross MIPS ELF +compiler on a GNU/Linux system. You must have previously installed +both a GNU/Linux cross Windows compiler and a GNU/Linux cross MIPS ELF +compiler. + + In order to build the Windows (configuration name `i386-cygwin32') +cross MIPS ELF (configure name `mips-elf') compiler, you might execute +the following commands (long command lines are broken across lines with +a trailing backslash as a continuation character). + + mkdir linux-x-cygwin32 + cd linux-x-cygwin32 + SRCDIR/configure --target i386-cygwin32 --prefix=INSTALLDIR \ + --exec-prefix=INSTALLDIR/H-i386-linux + make + make install + cd .. + mkdir linux-x-mips-elf + cd linux-x-mips-elf + SRCDIR/configure --target mips-elf --prefix=INSTALLDIR \ + --exec-prefix=INSTALLDIR/H-i386-linux + make + make install + cd .. + mkdir cygwin32-x-mips-elf + cd cygwin32-x-mips-elf + SRCDIR/configure --build=i386-linux-gnu --host=i386-cygwin32 \ + --target=mips-elf --prefix=WININSTALLDIR \ + --exec-prefix=WININSTALLDIR/H-i386-cygwin32 + make + make install + + You would then copy the contents of WININSTALLDIR over to the +Windows machine, and run the resulting programs. + + +File: configure.info, Node: Supporting Canadian Cross, Prev: CCross in Cygnus Tree, Up: Canadian Cross + +6.7 Supporting Canadian Cross +============================= + +If you want to make it possible to build a program you are developing +using a Canadian Cross, you must take some care when writing your +configure and make rules. Simple cases will normally work correctly. +However, it is not hard to write configure and make tests which will +fail in a Canadian Cross. + +* Menu: + +* CCross in Configure:: Supporting Canadian Cross in Configure Scripts. +* CCross in Make:: Supporting Canadian Cross in Makefiles. + + +File: configure.info, Node: CCross in Configure, Next: CCross in Make, Up: Supporting Canadian Cross + +6.7.1 Supporting Canadian Cross in Configure Scripts +---------------------------------------------------- + +In a `configure.in' file, after calling `AC_PROG_CC', you can find out +whether this is a Canadian Cross configure by examining the shell +variable `cross_compiling'. In a Canadian Cross, which means that the +compiler is a cross compiler, `cross_compiling' will be `yes'. In a +normal configuration, `cross_compiling' will be `no'. + + You ordinarily do not need to know the type of the build system in a +configure script. However, if you do need that information, you can get +it by using the macro `AC_CANONICAL_SYSTEM', the same macro that is +used to determine the target system. This macro will set the variables +`build', `build_alias', `build_cpu', `build_vendor', and `build_os', +which correspond to the similar `target' and `host' variables, except +that they describe the build system. + + When writing tests in `configure.in', you must remember that you +want to test the host environment, not the build environment. + + Macros like `AC_CHECK_FUNCS' which use the compiler will test the +host environment. That is because the tests will be done by running the +compiler, which is actually a build cross host compiler. If the +compiler can find the function, that means that the function is present +in the host environment. + + Tests like `test -f /dev/ptyp0', on the other hand, will test the +build environment. Remember that the configure script is running on the +build system, not the host system. If your configure scripts examines +files, those files will be on the build system. Whatever you determine +based on those files may or may not be the case on the host system. + + Most autoconf macros will work correctly for a Canadian Cross. The +main exception is `AC_TRY_RUN'. This macro tries to compile and run a +test program. This will fail in a Canadian Cross, because the program +will be compiled for the host system, which means that it will not run +on the build system. + + The `AC_TRY_RUN' macro provides an optional argument to tell the +configure script what to do in a Canadian Cross. If that argument is +not present, you will get a warning when you run `autoconf': + warning: AC_TRY_RUN called without default to allow cross compiling + This tells you that the resulting `configure' script will not work +with a Canadian Cross. + + In some cases while it may better to perform a test at configure +time, it is also possible to perform the test at run time. In such a +case you can use the cross compiling argument to `AC_TRY_RUN' to tell +your program that the test could not be performed at configure time. + + There are a few other autoconf macros which will not work correctly +with a Canadian Cross: a partial list is `AC_FUNC_GETPGRP', +`AC_FUNC_SETPGRP', `AC_FUNC_SETVBUF_REVERSED', and +`AC_SYS_RESTARTABLE_SYSCALLS'. The `AC_CHECK_SIZEOF' macro is +generally not very useful with a Canadian Cross; it permits an optional +argument indicating the default size, but there is no way to know what +the correct default should be. + + +File: configure.info, Node: CCross in Make, Prev: CCross in Configure, Up: Supporting Canadian Cross + +6.7.2 Supporting Canadian Cross in Makefiles. +--------------------------------------------- + +The main Canadian Cross issue in a `Makefile' arises when you want to +use a subsidiary program to generate code or data which you will then +include in your real program. + + If you compile this subsidiary program using `$(CC)' in the usual +way, you will not be able to run it. This is because `$(CC)' will +build a program for the host system, but the program is being built on +the build system. + + You must instead use a compiler for the build system, rather than the +host system. In the Cygnus tree, this make variable `$(CC_FOR_BUILD)' +will hold a compiler for the build system. + + Note that you should not include `config.h' in a file you are +compiling with `$(CC_FOR_BUILD)'. The `configure' script will build +`config.h' with information for the host system. However, you are +compiling the file using a compiler for the build system (a native +compiler). Subsidiary programs are normally simple filters which do no +user interaction, and it is normally possible to write them in a highly +portable fashion so that the absence of `config.h' is not crucial. + + The gcc `Makefile.in' shows a complex situation in which certain +files, such as `rtl.c', must be compiled into both subsidiary programs +run on the build system and into the final program. This approach may +be of interest for advanced build system hackers. Note that the build +system compiler is rather confusingly called `HOST_CC'. + + +File: configure.info, Node: Cygnus Configure, Next: Multilibs, Prev: Canadian Cross, Up: Top + +7 Cygnus Configure +****************** + +The Cygnus configure script predates autoconf. All of its interesting +features have been incorporated into autoconf. No new programs should +be written to use the Cygnus configure script. + + However, the Cygnus configure script is still used in a few places: +at the top of the Cygnus tree and in a few target libraries in the +Cygnus tree. Until those uses have been replaced with autoconf, some +brief notes are appropriate here. This is not complete documentation, +but it should be possible to use this as a guide while examining the +scripts themselves. + +* Menu: + +* Cygnus Configure Basics:: Cygnus Configure Basics. +* Cygnus Configure in C++ Libraries:: Cygnus Configure in C++ Libraries. + + +File: configure.info, Node: Cygnus Configure Basics, Next: Cygnus Configure in C++ Libraries, Up: Cygnus Configure + +7.1 Cygnus Configure Basics +=========================== + +Cygnus configure does not use any generated files; there is no program +corresponding to `autoconf'. Instead, there is a single shell script +named `configure' which may be found at the top of the Cygnus tree. +This shell script was written by hand; it was not generated by +autoconf, and it is incorrect, and indeed harmful, to run `autoconf' in +the top level of a Cygnus tree. + + Cygnus configure works in a particular directory by examining the +file `configure.in' in that directory. That file is broken into four +separate shell scripts. + + The first is the contents of `configure.in' up to a line that starts +with `# per-host:'. This is the common part. + + The second is the rest of `configure.in' up to a line that starts +with `# per-target:'. This is the per host part. + + The third is the rest of `configure.in' up to a line that starts +with `# post-target:'. This is the per target part. + + The fourth is the remainder of `configure.in'. This is the post +target part. + + If any of these comment lines are missing, the corresponding shell +script is empty. + + Cygnus configure will first execute the common part. This must set +the shell variable `srctrigger' to the name of a source file, to +confirm that Cygnus configure is looking at the right directory. This +may set the shell variables `package_makefile_frag' and +`package_makefile_rules_frag'. + + Cygnus configure will next set the `build' and `host' shell +variables, and execute the per host part. This may set the shell +variable `host_makefile_frag'. + + Cygnus configure will next set the `target' variable, and execute +the per target part. This may set the shell variable +`target_makefile_frag'. + + Any of these scripts may set the `subdirs' shell variable. This +variable is a list of subdirectories where a `Makefile.in' file may be +found. Cygnus configure will automatically look for a `Makefile.in' +file in the current directory. The `subdirs' shell variable is not +normally used, and I believe that the only directory which uses it at +present is `newlib'. + + For each `Makefile.in', Cygnus configure will automatically create a +`Makefile' by adding definitions for `make' variables such as `host' +and `target', and automatically editing the values of `make' variables +such as `prefix' if they are present. + + Also, if any of the `makefile_frag' shell variables are set, Cygnus +configure will interpret them as file names relative to either the +working directory or the source directory, and will read the contents of +the file into the generated `Makefile'. The file contents will be read +in after the first line in `Makefile.in' which starts with `####'. + + These `Makefile' fragments are used to customize behaviour for a +particular host or target. They serve to select particular files to +compile, and to define particular preprocessor macros by providing +values for `make' variables which are then used during compilation. +Cygnus configure, unlike autoconf, normally does not do feature tests, +and normally requires support to be added manually for each new host. + + The `Makefile' fragment support is similar to the autoconf +`AC_SUBST_FILE' macro. + + After creating each `Makefile', the post target script will be run +(i.e., it may be run several times). This script may further customize +the `Makefile'. When it is run, the shell variable `Makefile' will +hold the name of the `Makefile', including the appropriate directory +component. + + Like an autoconf generated `configure' script, Cygnus configure will +create a file named `config.status' which, when run, will automatically +recreate the configuration. The `config.status' file will simply +execute the Cygnus configure script again with the appropriate +arguments. + + Any of the parts of `configure.in' may set the shell variables +`files' and `links'. Cygnus configure will set up symlinks from the +names in `links' to the files named in `files'. This is similar to the +autoconf `AC_LINK_FILES' macro. + + Finally, any of the parts of `configure.in' may set the shell +variable `configdirs' to a set of subdirectories. If it is set, Cygnus +configure will recursively run the configure process in each +subdirectory. If the subdirectory uses Cygnus configure, it will +contain a `configure.in' file but no `configure' file, in which case +Cygnus configure will invoke itself recursively. If the subdirectory +has a `configure' file, Cygnus configure assumes that it is an autoconf +generated `configure' script, and simply invokes it directly. + + +File: configure.info, Node: Cygnus Configure in C++ Libraries, Prev: Cygnus Configure Basics, Up: Cygnus Configure + +7.2 Cygnus Configure in C++ Libraries +===================================== + +The C++ library configure system, written by Per Bothner, deserves +special mention. It uses Cygnus configure, but it does feature testing +like that done by autoconf generated `configure' scripts. This +approach is used in the libraries `libio', `libstdc++', and `libg++'. + + Most of the `Makefile' information is written out by the shell +script `libio/config.shared'. Each `configure.in' file sets certain +shell variables, and then invokes `config.shared' to create two package +`Makefile' fragments. These fragments are then incorporated into the +resulting `Makefile' by the Cygnus configure script. + + The file `_G_config.h' is created in the `libio' object directory by +running the shell script `libio/gen-params'. This shell script uses +feature tests to define macros and typedefs in `_G_config.h'. + + +File: configure.info, Node: Multilibs, Next: FAQ, Prev: Cygnus Configure, Up: Top + +8 Multilibs +*********** + +For some targets gcc may have different processor requirements depending +upon command line options. An obvious example is the `-msoft-float' +option supported on several processors. This option means that the +floating point registers are not available, which means that floating +point operations must be done by calling an emulation subroutine rather +than by using machine instructions. + + For such options, gcc is often configured to compile target libraries +twice: once with `-msoft-float' and once without. When gcc compiles +target libraries more than once, the resulting libraries are called +"multilibs". + + Multilibs are not really part of the GNU configure and build system, +but we discuss them here since they require support in the `configure' +scripts and `Makefile's used for target libraries. + +* Menu: + +* Multilibs in gcc:: Multilibs in gcc. +* Multilibs in Target Libraries:: Multilibs in Target Libraries. + + +File: configure.info, Node: Multilibs in gcc, Next: Multilibs in Target Libraries, Up: Multilibs + +8.1 Multilibs in gcc +==================== + +In gcc, multilibs are defined by setting the variable +`MULTILIB_OPTIONS' in the target `Makefile' fragment. Several other +`MULTILIB' variables may also be defined there. *Note The Target +Makefile Fragment: (gcc)Target Fragment. + + If you have built gcc, you can see what multilibs it uses by running +it with the `-print-multi-lib' option. The output `.;' means that no +multilibs are used. In general, the output is a sequence of lines, one +per multilib. The first part of each line, up to the `;', is the name +of the multilib directory. The second part is a list of compiler +options separated by `@' characters. + + Multilibs are built in a tree of directories. The top of the tree, +represented by `.' in the list of multilib directories, is the default +library to use when no special compiler options are used. The +subdirectories of the tree hold versions of the library to use when +particular compiler options are used. + + +File: configure.info, Node: Multilibs in Target Libraries, Prev: Multilibs in gcc, Up: Multilibs + +8.2 Multilibs in Target Libraries +================================= + +The target libraries in the Cygnus tree are automatically built with +multilibs. That means that each library is built multiple times. + + This default is set in the top level `configure.in' file, by adding +`--enable-multilib' to the list of arguments passed to configure when +it is run for the target libraries (*note Host and Target Libraries::). + + Each target library uses the shell script `config-ml.in', written by +Doug Evans, to prepare to build target libraries. This shell script is +invoked after the `Makefile' has been created by the `configure' +script. If multilibs are not enabled, it does nothing, otherwise it +modifies the `Makefile' to support multilibs. + + The `config-ml.in' script makes one copy of the `Makefile' for each +multilib in the appropriate subdirectory. When configuring in the +source directory (which is not recommended), it will build a symlink +tree of the sources in each subdirectory. + + The `config-ml.in' script sets several variables in the various +`Makefile's. The `Makefile.in' must have definitions for these +variables already; `config-ml.in' simply changes the existing values. +The `Makefile' should use default values for these variables which will +do the right thing in the subdirectories. + +`MULTISRCTOP' + `config-ml.in' will set this to a sequence of `../' strings, where + the number of strings is the number of multilib levels in the + source tree. The default value should be the empty string. + +`MULTIBUILDTOP' + `config-ml.in' will set this to a sequence of `../' strings, where + the number of strings is number of multilib levels in the object + directory. The default value should be the empty string. This + will differ from `MULTISRCTOP' when configuring in the source tree + (which is not recommended). + +`MULTIDIRS' + In the top level `Makefile' only, `config-ml.in' will set this to + the list of multilib subdirectories. The default value should be + the empty string. + +`MULTISUBDIR' + `config-ml.in' will set this to the installed subdirectory name to + use for this subdirectory, with a leading `/'. The default value + shold be the empty string. + +`MULTIDO' +`MULTICLEAN' + In the top level `Makefile' only, `config-ml.in' will set these + variables to commands to use when doing a recursive make. These + variables should both default to the string `true', so that by + default nothing happens. + + All references to the parent of the source directory should use the +variable `MULTISRCTOP'. Instead of writing `$(srcdir)/..', you must +write `$(srcdir)/$(MULTISRCTOP)..'. + + Similarly, references to the parent of the object directory should +use the variable `MULTIBUILDTOP'. + + In the installation target, the libraries should be installed in the +subdirectory `MULTISUBDIR'. Instead of installing +`$(libdir)/libfoo.a', install `$(libdir)$(MULTISUBDIR)/libfoo.a'. + + The `config-ml.in' script also modifies the top level `Makefile' to +add `multi-do' and `multi-clean' targets which are used when building +multilibs. + + The default target of the `Makefile' should include the following +command: + @$(MULTIDO) $(FLAGS_TO_PASS) DO=all multi-do + This assumes that `$(FLAGS_TO_PASS)' is defined as a set of +variables to pass to a recursive invocation of `make'. This will build +all the multilibs. Note that the default value of `MULTIDO' is `true', +so by default this command will do nothing. It will only do something +in the top level `Makefile' if multilibs were enabled. + + The `install' target of the `Makefile' should include the following +command: + @$(MULTIDO) $(FLAGS_TO_PASS) DO=install multi-do + + In general, any operation, other than clean, which should be +performed on all the multilibs should use a `$(MULTIDO)' line, setting +the variable `DO' to the target of each recursive call to `make'. + + The `clean' targets (`clean', `mostlyclean', etc.) should use +`$(MULTICLEAN)'. For example, the `clean' target should do this: + @$(MULTICLEAN) DO=clean multi-clean + + +File: configure.info, Node: FAQ, Next: Index, Prev: Multilibs, Up: Top + +9 Frequently Asked Questions +**************************** + +Which do I run first, `autoconf' or `automake'? + Except when you first add autoconf or automake support to a + package, you shouldn't run either by hand. Instead, configure + with the `--enable-maintainer-mode' option, and let `make' take + care of it. + +`autoconf' says something about undefined macros. + This means that you have macros in your `configure.in' which are + not defined by `autoconf'. You may be using an old version of + `autoconf'; try building and installing a newer one. Make sure the + newly installled `autoconf' is first on your `PATH'. Also, see + the next question. + +My `configure' script has stuff like `CY_GNU_GETTEXT' in it. + This means that you have macros in your `configure.in' which should + be defined in your `aclocal.m4' file, but aren't. This usually + means that `aclocal' was not able to appropriate definitions of the + macros. Make sure that you have installed all the packages you + need. In particular, make sure that you have installed libtool + (this is where `AM_PROG_LIBTOOL' is defined) and gettext (this is + where `CY_GNU_GETTEXT' is defined, at least in the Cygnus version + of gettext). + +My `Makefile' has `@' characters in it. + This may mean that you tried to use an autoconf substitution in + your `Makefile.in' without adding the appropriate `AC_SUBST' call + to your `configure' script. Or it may just mean that you need to + rebuild `Makefile' in your build directory. To rebuild `Makefile' + from `Makefile.in', run the shell script `config.status' with no + arguments. If you need to force `configure' to run again, first + run `config.status --recheck'. These runs are normally done + automatically by `Makefile' targets, but if your `Makefile' has + gotten messed up you'll need to help them along. + +Why do I have to run both `config.status --recheck' and `config.status'? + Normally, you don't; they will be run automatically by `Makefile' + targets. If you do need to run them, use `config.status --recheck' + to run the `configure' script again with the same arguments as the + first time you ran it. Use `config.status' (with no arguments) to + regenerate all files (`Makefile', `config.h', etc.) based on the + results of the configure script. The two cases are separate + because it isn't always necessary to regenerate all the files + after running `config.status --recheck'. The `Makefile' targets + generated by automake will use the environment variables + `CONFIG_FILES' and `CONFIG_HEADERS' to only regenerate files as + they are needed. + +What is the Cygnus tree? + The Cygnus tree is used for various packages including gdb, the GNU + binutils, and egcs. It is also, of course, used for Cygnus + releases. It is the build system which was developed at Cygnus, + using the Cygnus configure script. It permits building many + different packages with a single configure and make. The + configure scripts in the tree are being converted to autoconf, but + the general build structure remains intact. + +Why do I have to keep rebuilding and reinstalling the tools? + I know, it's a pain. Unfortunately, there are bugs in the tools + themselves which need to be fixed, and each time that happens + everybody who uses the tools need to reinstall new versions of + them. I don't know if there is going to be a clever fix until the + tools stabilize. + +Why not just have a Cygnus tree `make' target to update the tools? + The tools unfortunately need to be installed before they can be + used. That means that they must be built using an appropriate + prefix, and it seems unwise to assume that every configuration + uses an appropriate prefix. It might be possible to make them + work in place, or it might be possible to install them in some + subdirectory; so far these approaches have not been implemented. + + +File: configure.info, Node: Index, Prev: FAQ, Up: Top + +Index +***** + + +* Menu: + +* --build option: Build and Host Options. + (line 9) +* --host option: Build and Host Options. + (line 14) +* --target option: Specifying the Target. + (line 10) +* _GNU_SOURCE: Write configure.in. (line 134) +* AC_CANONICAL_HOST: Using the Host Type. (line 10) +* AC_CANONICAL_SYSTEM: Using the Target Type. + (line 6) +* AC_CONFIG_HEADER: Write configure.in. (line 66) +* AC_EXEEXT: Write configure.in. (line 86) +* AC_INIT: Write configure.in. (line 38) +* AC_OUTPUT: Write configure.in. (line 142) +* AC_PREREQ: Write configure.in. (line 42) +* AC_PROG_CC: Write configure.in. (line 103) +* AC_PROG_CXX: Write configure.in. (line 117) +* acconfig.h: Written Developer Files. + (line 27) +* acconfig.h, writing: Write acconfig.h. (line 6) +* acinclude.m4: Written Developer Files. + (line 37) +* aclocal.m4: Generated Developer Files. + (line 33) +* AM_CONFIG_HEADER: Write configure.in. (line 53) +* AM_DISABLE_SHARED: Write configure.in. (line 127) +* AM_EXEEXT: Write configure.in. (line 86) +* AM_INIT_AUTOMAKE: Write configure.in. (line 48) +* AM_MAINTAINER_MODE: Write configure.in. (line 70) +* AM_PROG_LIBTOOL: Write configure.in. (line 122) +* AM_PROG_LIBTOOL in configure: FAQ. (line 19) +* build option: Build and Host Options. + (line 9) +* building with a cross compiler: Canadian Cross. (line 6) +* canadian cross: Canadian Cross. (line 6) +* canadian cross in configure: CCross in Configure. (line 6) +* canadian cross in cygnus tree: CCross in Cygnus Tree. + (line 6) +* canadian cross in makefile: CCross in Make. (line 6) +* canadian cross, configuring: Build and Host Options. + (line 6) +* canonical system names: Configuration Names. (line 6) +* config.cache: Build Files Description. + (line 28) +* config.h: Build Files Description. + (line 23) +* config.h.in: Generated Developer Files. + (line 45) +* config.in: Generated Developer Files. + (line 45) +* config.status: Build Files Description. + (line 9) +* config.status --recheck: FAQ. (line 40) +* configuration names: Configuration Names. (line 6) +* configuration triplets: Configuration Names. (line 6) +* configure: Generated Developer Files. + (line 21) +* configure build system: Build and Host Options. + (line 9) +* configure host: Build and Host Options. + (line 14) +* configure target: Specifying the Target. + (line 10) +* configure.in: Written Developer Files. + (line 9) +* configure.in, writing: Write configure.in. (line 6) +* configuring a canadian cross: Build and Host Options. + (line 6) +* cross compiler: Cross Compilation Concepts. + (line 6) +* cross compiler, building with: Canadian Cross. (line 6) +* cross tools: Cross Compilation Tools. + (line 6) +* CY_GNU_GETTEXT in configure: FAQ. (line 19) +* cygnus configure: Cygnus Configure. (line 6) +* goals: Goals. (line 6) +* history: History. (line 6) +* host names: Configuration Names. (line 6) +* host option: Build and Host Options. + (line 14) +* host system: Host and Target. (line 6) +* host triplets: Configuration Names. (line 6) +* HOST_CC: CCross in Make. (line 27) +* libg++ configure: Cygnus Configure in C++ Libraries. + (line 6) +* libio configure: Cygnus Configure in C++ Libraries. + (line 6) +* libstdc++ configure: Cygnus Configure in C++ Libraries. + (line 6) +* Makefile: Build Files Description. + (line 18) +* Makefile, garbage characters: FAQ. (line 29) +* Makefile.am: Written Developer Files. + (line 18) +* Makefile.am, writing: Write Makefile.am. (line 6) +* Makefile.in: Generated Developer Files. + (line 26) +* multilibs: Multilibs. (line 6) +* stamp-h: Build Files Description. + (line 41) +* stamp-h.in: Generated Developer Files. + (line 54) +* system names: Configuration Names. (line 6) +* system types: Configuration Names. (line 6) +* target option: Specifying the Target. + (line 10) +* target system: Host and Target. (line 6) +* triplets: Configuration Names. (line 6) +* undefined macros: FAQ. (line 12) + + + +Tag Table: +Node: Top978 +Node: Introduction1506 +Node: Goals2588 +Node: Tools3312 +Node: History4306 +Node: Building7304 +Node: Getting Started10567 +Node: Write configure.in11080 +Node: Write Makefile.am18331 +Node: Write acconfig.h21508 +Node: Generate files23045 +Node: Getting Started Example25011 +Node: Getting Started Example 125766 +Node: Getting Started Example 227687 +Node: Getting Started Example 330682 +Node: Generate Files in Example33046 +Node: Files34136 +Node: Developer Files34747 +Node: Developer Files Picture35127 +Node: Written Developer Files36415 +Node: Generated Developer Files38967 +Node: Build Files42111 +Node: Build Files Picture42772 +Node: Build Files Description43536 +Node: Support Files45542 +Node: Configuration Names48424 +Node: Configuration Name Definition48924 +Node: Using Configuration Names51247 +Node: Cross Compilation Tools53217 +Node: Cross Compilation Concepts53908 +Node: Host and Target54876 +Node: Using the Host Type56377 +Node: Specifying the Target57726 +Node: Using the Target Type58515 +Node: Cross Tools in the Cygnus Tree61946 +Node: Host and Target Libraries63003 +Node: Target Library Configure Scripts66752 +Node: Make Targets in Cygnus Tree69844 +Node: Target libiberty71192 +Node: Canadian Cross72579 +Node: Canadian Cross Example73420 +Node: Canadian Cross Concepts74539 +Node: Build Cross Host Tools76051 +Node: Build and Host Options77003 +Node: CCross not in Cygnus Tree78789 +Node: CCross in Cygnus Tree79767 +Node: Standard Cygnus CCross80188 +Node: Cross Cygnus CCross81552 +Node: Supporting Canadian Cross84352 +Node: CCross in Configure84967 +Node: CCross in Make88135 +Node: Cygnus Configure89738 +Node: Cygnus Configure Basics90573 +Node: Cygnus Configure in C++ Libraries95251 +Node: Multilibs96258 +Node: Multilibs in gcc97303 +Node: Multilibs in Target Libraries98381 +Node: FAQ102572 +Node: Index106672 + +End Tag Table diff --git a/etc/standards.info b/etc/standards.info new file mode 100644 index 00000000000..1ea99c9ae35 --- /dev/null +++ b/etc/standards.info @@ -0,0 +1,5576 @@ +This is standards.info, produced by makeinfo version 4.8 from +.././etc/standards.texi. + +INFO-DIR-SECTION GNU organization +START-INFO-DIR-ENTRY +* Standards: (standards). GNU coding standards. +END-INFO-DIR-ENTRY + + The GNU coding standards, last updated July 22, 2007. + + Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, +2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this document +under the terms of the GNU Free Documentation License, Version 1.2 or +any later version published by the Free Software Foundation; with no +Invariant Sections, with no Front-Cover Texts, and with no Back-Cover +Texts. A copy of the license is included in the section entitled "GNU +Free Documentation License". + + +File: standards.info, Node: Top, Next: Preface, Prev: (dir), Up: (dir) + +Version +******* + +The GNU coding standards, last updated July 22, 2007. + + Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, +2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. + + Permission is granted to copy, distribute and/or modify this document +under the terms of the GNU Free Documentation License, Version 1.2 or +any later version published by the Free Software Foundation; with no +Invariant Sections, with no Front-Cover Texts, and with no Back-Cover +Texts. A copy of the license is included in the section entitled "GNU +Free Documentation License". + +* Menu: + +* Preface:: About the GNU Coding Standards. +* Legal Issues:: Keeping free software free. +* Design Advice:: General program design. +* Program Behavior:: Program behavior for all programs +* Writing C:: Making the best use of C. +* Documentation:: Documenting programs. +* Managing Releases:: The release process. +* References:: Mentioning non-free software or documentation. +* GNU Free Documentation License:: Copying and sharing this manual. +* Index:: + + +File: standards.info, Node: Preface, Next: Legal Issues, Prev: Top, Up: Top + +1 About the GNU Coding Standards +******************************** + +The GNU Coding Standards were written by Richard Stallman and other GNU +Project volunteers. Their purpose is to make the GNU system clean, +consistent, and easy to install. This document can also be read as a +guide to writing portable, robust and reliable programs. It focuses on +programs written in C, but many of the rules and principles are useful +even if you write in another programming language. The rules often +state reasons for writing in a certain way. + + This release of the GNU Coding Standards was last updated July 22, +2007. + + If you did not obtain this file directly from the GNU project and +recently, please check for a newer version. You can get the GNU Coding +Standards from the GNU web server in many different formats, including +the Texinfo source, PDF, HTML, DVI, plain text, and more, at: +`http://www.gnu.org/prep/standards/'. + + Corrections or suggestions for this document should be sent to +<bug-standards@gnu.org>. If you make a suggestion, please include a +suggested new wording for it; our time is limited. We prefer a context +diff to the `standards.texi' or `make-stds.texi' files, but if you +don't have those files, please mail your suggestion anyway. + + These standards cover the minimum of what is important when writing a +GNU package. Likely, the need for additional standards will come up. +Sometimes, you might suggest that such standards be added to this +document. If you think your standards would be generally useful, please +do suggest them. + + You should also set standards for your package on many questions not +addressed or not firmly specified here. The most important point is to +be self-consistent--try to stick to the conventions you pick, and try +to document them as much as possible. That way, your program will be +more maintainable by others. + + The GNU Hello program serves as an example of how to follow the GNU +coding standards for a trivial program. +`http://www.gnu.org/software/hello/hello.html'. + + +File: standards.info, Node: Legal Issues, Next: Design Advice, Prev: Preface, Up: Top + +2 Keeping Free Software Free +**************************** + +This chapter discusses how you can make sure that GNU software avoids +legal difficulties, and other related issues. + +* Menu: + +* Reading Non-Free Code:: Referring to proprietary programs. +* Contributions:: Accepting contributions. +* Trademarks:: How we deal with trademark issues. + + +File: standards.info, Node: Reading Non-Free Code, Next: Contributions, Up: Legal Issues + +2.1 Referring to Proprietary Programs +===================================== + +Don't in any circumstances refer to Unix source code for or during your +work on GNU! (Or to any other proprietary programs.) + + If you have a vague recollection of the internals of a Unix program, +this does not absolutely mean you can't write an imitation of it, but +do try to organize the imitation internally along different lines, +because this is likely to make the details of the Unix version +irrelevant and dissimilar to your results. + + For example, Unix utilities were generally optimized to minimize +memory use; if you go for speed instead, your program will be very +different. You could keep the entire input file in memory and scan it +there instead of using stdio. Use a smarter algorithm discovered more +recently than the Unix program. Eliminate use of temporary files. Do +it in one pass instead of two (we did this in the assembler). + + Or, on the contrary, emphasize simplicity instead of speed. For some +applications, the speed of today's computers makes simpler algorithms +adequate. + + Or go for generality. For example, Unix programs often have static +tables or fixed-size strings, which make for arbitrary limits; use +dynamic allocation instead. Make sure your program handles NULs and +other funny characters in the input files. Add a programming language +for extensibility and write part of the program in that language. + + Or turn some parts of the program into independently usable +libraries. Or use a simple garbage collector instead of tracking +precisely when to free memory, or use a new GNU facility such as +obstacks. + + +File: standards.info, Node: Contributions, Next: Trademarks, Prev: Reading Non-Free Code, Up: Legal Issues + +2.2 Accepting Contributions +=========================== + +If the program you are working on is copyrighted by the Free Software +Foundation, then when someone else sends you a piece of code to add to +the program, we need legal papers to use it--just as we asked you to +sign papers initially. _Each_ person who makes a nontrivial +contribution to a program must sign some sort of legal papers in order +for us to have clear title to the program; the main author alone is not +enough. + + So, before adding in any contributions from other people, please tell +us, so we can arrange to get the papers. Then wait until we tell you +that we have received the signed papers, before you actually use the +contribution. + + This applies both before you release the program and afterward. If +you receive diffs to fix a bug, and they make significant changes, we +need legal papers for that change. + + This also applies to comments and documentation files. For copyright +law, comments and code are just text. Copyright applies to all kinds of +text, so we need legal papers for all kinds. + + We know it is frustrating to ask for legal papers; it's frustrating +for us as well. But if you don't wait, you are going out on a limb--for +example, what if the contributor's employer won't sign a disclaimer? +You might have to take that code out again! + + You don't need papers for changes of a few lines here or there, since +they are not significant for copyright purposes. Also, you don't need +papers if all you get from the suggestion is some ideas, not actual code +which you use. For example, if someone sent you one implementation, but +you write a different implementation of the same idea, you don't need to +get papers. + + The very worst thing is if you forget to tell us about the other +contributor. We could be very embarrassed in court some day as a +result. + + We have more detailed advice for maintainers of programs; if you have +reached the stage of actually maintaining a program for GNU (whether +released or not), please ask us for a copy. It is also available +online for your perusal: `http://www.gnu.org/prep/maintain/'. + + +File: standards.info, Node: Trademarks, Prev: Contributions, Up: Legal Issues + +2.3 Trademarks +============== + +Please do not include any trademark acknowledgements in GNU software +packages or documentation. + + Trademark acknowledgements are the statements that such-and-such is a +trademark of so-and-so. The GNU Project has no objection to the basic +idea of trademarks, but these acknowledgements feel like kowtowing, and +there is no legal requirement for them, so we don't use them. + + What is legally required, as regards other people's trademarks, is to +avoid using them in ways which a reader might reasonably understand as +naming or labeling our own programs or activities. For example, since +"Objective C" is (or at least was) a trademark, we made sure to say +that we provide a "compiler for the Objective C language" rather than +an "Objective C compiler". The latter would have been meant as a +shorter way of saying the former, but it does not explicitly state the +relationship, so it could be misinterpreted as using "Objective C" as a +label for the compiler rather than for the language. + + Please don't use "win" as an abbreviation for Microsoft Windows in +GNU software or documentation. In hacker terminology, calling +something a "win" is a form of praise. If you wish to praise Microsoft +Windows when speaking on your own, by all means do so, but not in GNU +software. Usually we write the name "Windows" in full, but when +brevity is very important (as in file names and sometimes symbol +names), we abbreviate it to "w". For instance, the files and functions +in Emacs that deal with Windows start with `w32'. + + +File: standards.info, Node: Design Advice, Next: Program Behavior, Prev: Legal Issues, Up: Top + +3 General Program Design +************************ + +This chapter discusses some of the issues you should take into account +when designing your program. + +* Menu: + +* Source Language:: Which languages to use. +* Compatibility:: Compatibility with other implementations. +* Using Extensions:: Using non-standard features. +* Standard C:: Using standard C features. +* Conditional Compilation:: Compiling code only if a conditional is true. + + +File: standards.info, Node: Source Language, Next: Compatibility, Up: Design Advice + +3.1 Which Languages to Use +========================== + +When you want to use a language that gets compiled and runs at high +speed, the best language to use is C. Using another language is like +using a non-standard feature: it will cause trouble for users. Even if +GCC supports the other language, users may find it inconvenient to have +to install the compiler for that other language in order to build your +program. For example, if you write your program in C++, people will +have to install the GNU C++ compiler in order to compile your program. + + C has one other advantage over C++ and other compiled languages: more +people know C, so more people will find it easy to read and modify the +program if it is written in C. + + So in general it is much better to use C, rather than the comparable +alternatives. + + But there are two exceptions to that conclusion: + + * It is no problem to use another language to write a tool + specifically intended for use with that language. That is because + the only people who want to build the tool will be those who have + installed the other language anyway. + + * If an application is of interest only to a narrow part of the + community, then the question of which language it is written in + has less effect on other people, so you may as well please + yourself. + + Many programs are designed to be extensible: they include an +interpreter for a language that is higher level than C. Often much of +the program is written in that language, too. The Emacs editor +pioneered this technique. + + The standard extensibility interpreter for GNU software is GUILE +(`http://www.gnu.org/software/guile/'), which implements the language +Scheme (an especially clean and simple dialect of Lisp). We don't +reject programs written in other "scripting languages" such as Perl and +Python, but using GUILE is very important for the overall consistency +of the GNU system. + + +File: standards.info, Node: Compatibility, Next: Using Extensions, Prev: Source Language, Up: Design Advice + +3.2 Compatibility with Other Implementations +============================================ + +With occasional exceptions, utility programs and libraries for GNU +should be upward compatible with those in Berkeley Unix, and upward +compatible with Standard C if Standard C specifies their behavior, and +upward compatible with POSIX if POSIX specifies their behavior. + + When these standards conflict, it is useful to offer compatibility +modes for each of them. + + Standard C and POSIX prohibit many kinds of extensions. Feel free +to make the extensions anyway, and include a `--ansi', `--posix', or +`--compatible' option to turn them off. However, if the extension has +a significant chance of breaking any real programs or scripts, then it +is not really upward compatible. So you should try to redesign its +interface to make it upward compatible. + + Many GNU programs suppress extensions that conflict with POSIX if the +environment variable `POSIXLY_CORRECT' is defined (even if it is +defined with a null value). Please make your program recognize this +variable if appropriate. + + When a feature is used only by users (not by programs or command +files), and it is done poorly in Unix, feel free to replace it +completely with something totally different and better. (For example, +`vi' is replaced with Emacs.) But it is nice to offer a compatible +feature as well. (There is a free `vi' clone, so we offer it.) + + Additional useful features are welcome regardless of whether there +is any precedent for them. + + +File: standards.info, Node: Using Extensions, Next: Standard C, Prev: Compatibility, Up: Design Advice + +3.3 Using Non-standard Features +=============================== + +Many GNU facilities that already exist support a number of convenient +extensions over the comparable Unix facilities. Whether to use these +extensions in implementing your program is a difficult question. + + On the one hand, using the extensions can make a cleaner program. +On the other hand, people will not be able to build the program unless +the other GNU tools are available. This might cause the program to +work on fewer kinds of machines. + + With some extensions, it might be easy to provide both alternatives. +For example, you can define functions with a "keyword" `INLINE' and +define that as a macro to expand into either `inline' or nothing, +depending on the compiler. + + In general, perhaps it is best not to use the extensions if you can +straightforwardly do without them, but to use the extensions if they +are a big improvement. + + An exception to this rule are the large, established programs (such +as Emacs) which run on a great variety of systems. Using GNU +extensions in such programs would make many users unhappy, so we don't +do that. + + Another exception is for programs that are used as part of +compilation: anything that must be compiled with other compilers in +order to bootstrap the GNU compilation facilities. If these require +the GNU compiler, then no one can compile them without having them +installed already. That would be extremely troublesome in certain +cases. + + +File: standards.info, Node: Standard C, Next: Conditional Compilation, Prev: Using Extensions, Up: Design Advice + +3.4 Standard C and Pre-Standard C +================================= + +1989 Standard C is widespread enough now that it is ok to use its +features in new programs. There is one exception: do not ever use the +"trigraph" feature of Standard C. + + 1999 Standard C is not widespread yet, so please do not require its +features in programs. It is ok to use its features if they are present. + + However, it is easy to support pre-standard compilers in most +programs, so if you know how to do that, feel free. If a program you +are maintaining has such support, you should try to keep it working. + + To support pre-standard C, instead of writing function definitions in +standard prototype form, + + int + foo (int x, int y) + ... + +write the definition in pre-standard style like this, + + int + foo (x, y) + int x, y; + ... + +and use a separate declaration to specify the argument prototype: + + int foo (int, int); + + You need such a declaration anyway, in a header file, to get the +benefit of prototypes in all the files where the function is called. +And once you have the declaration, you normally lose nothing by writing +the function definition in the pre-standard style. + + This technique does not work for integer types narrower than `int'. +If you think of an argument as being of a type narrower than `int', +declare it as `int' instead. + + There are a few special cases where this technique is hard to use. +For example, if a function argument needs to hold the system type +`dev_t', you run into trouble, because `dev_t' is shorter than `int' on +some machines; but you cannot use `int' instead, because `dev_t' is +wider than `int' on some machines. There is no type you can safely use +on all machines in a non-standard definition. The only way to support +non-standard C and pass such an argument is to check the width of +`dev_t' using Autoconf and choose the argument type accordingly. This +may not be worth the trouble. + + In order to support pre-standard compilers that do not recognize +prototypes, you may want to use a preprocessor macro like this: + + /* Declare the prototype for a general external function. */ + #if defined (__STDC__) || defined (WINDOWSNT) + #define P_(proto) proto + #else + #define P_(proto) () + #endif + + +File: standards.info, Node: Conditional Compilation, Prev: Standard C, Up: Design Advice + +3.5 Conditional Compilation +=========================== + +When supporting configuration options already known when building your +program we prefer using `if (... )' over conditional compilation, as in +the former case the compiler is able to perform more extensive checking +of all possible code paths. + + For example, please write + + if (HAS_FOO) + ... + else + ... + +instead of: + + #ifdef HAS_FOO + ... + #else + ... + #endif + + A modern compiler such as GCC will generate exactly the same code in +both cases, and we have been using similar techniques with good success +in several projects. Of course, the former method assumes that +`HAS_FOO' is defined as either 0 or 1. + + While this is not a silver bullet solving all portability problems, +and is not always appropriate, following this policy would have saved +GCC developers many hours, or even days, per year. + + In the case of function-like macros like `REVERSIBLE_CC_MODE' in GCC +which cannot be simply used in `if( ...)' statements, there is an easy +workaround. Simply introduce another macro `HAS_REVERSIBLE_CC_MODE' as +in the following example: + + #ifdef REVERSIBLE_CC_MODE + #define HAS_REVERSIBLE_CC_MODE 1 + #else + #define HAS_REVERSIBLE_CC_MODE 0 + #endif + + +File: standards.info, Node: Program Behavior, Next: Writing C, Prev: Design Advice, Up: Top + +4 Program Behavior for All Programs +*********************************** + +This chapter describes conventions for writing robust software. It +also describes general standards for error messages, the command line +interface, and how libraries should behave. + +* Menu: + +* Non-GNU Standards:: We consider standards such as POSIX; + we don't "obey" them. +* Semantics:: Writing robust programs. +* Libraries:: Library behavior. +* Errors:: Formatting error messages. +* User Interfaces:: Standards about interfaces generally. +* Graphical Interfaces:: Standards for graphical interfaces. +* Command-Line Interfaces:: Standards for command line interfaces. +* Option Table:: Table of long options. +* Memory Usage:: When and how to care about memory needs. +* File Usage:: Which files to use, and where. + + +File: standards.info, Node: Non-GNU Standards, Next: Semantics, Up: Program Behavior + +4.1 Non-GNU Standards +===================== + +The GNU Project regards standards published by other organizations as +suggestions, not orders. We consider those standards, but we do not +"obey" them. In developing a GNU program, you should implement an +outside standard's specifications when that makes the GNU system better +overall in an objective sense. When it doesn't, you shouldn't. + + In most cases, following published standards is convenient for +users--it means that their programs or scripts will work more portably. +For instance, GCC implements nearly all the features of Standard C as +specified by that standard. C program developers would be unhappy if +it did not. And GNU utilities mostly follow specifications of POSIX.2; +shell script writers and users would be unhappy if our programs were +incompatible. + + But we do not follow either of these specifications rigidly, and +there are specific points on which we decided not to follow them, so as +to make the GNU system better for users. + + For instance, Standard C says that nearly all extensions to C are +prohibited. How silly! GCC implements many extensions, some of which +were later adopted as part of the standard. If you want these +constructs to give an error message as "required" by the standard, you +must specify `--pedantic', which was implemented only so that we can +say "GCC is a 100% implementation of the standard," not because there +is any reason to actually use it. + + POSIX.2 specifies that `df' and `du' must output sizes by default in +units of 512 bytes. What users want is units of 1k, so that is what we +do by default. If you want the ridiculous behavior "required" by +POSIX, you must set the environment variable `POSIXLY_CORRECT' (which +was originally going to be named `POSIX_ME_HARDER'). + + GNU utilities also depart from the letter of the POSIX.2 +specification when they support long-named command-line options, and +intermixing options with ordinary arguments. This minor +incompatibility with POSIX is never a problem in practice, and it is +very useful. + + In particular, don't reject a new feature, or remove an old one, +merely because a standard says it is "forbidden" or "deprecated." + + +File: standards.info, Node: Semantics, Next: Libraries, Prev: Non-GNU Standards, Up: Program Behavior + +4.2 Writing Robust Programs +=========================== + +Avoid arbitrary limits on the length or number of _any_ data structure, +including file names, lines, files, and symbols, by allocating all data +structures dynamically. In most Unix utilities, "long lines are +silently truncated". This is not acceptable in a GNU utility. + + Utilities reading files should not drop NUL characters, or any other +nonprinting characters _including those with codes above 0177_. The +only sensible exceptions would be utilities specifically intended for +interface to certain types of terminals or printers that can't handle +those characters. Whenever possible, try to make programs work +properly with sequences of bytes that represent multibyte characters, +using encodings such as UTF-8 and others. + + Check every system call for an error return, unless you know you +wish to ignore errors. Include the system error text (from `perror' or +equivalent) in _every_ error message resulting from a failing system +call, as well as the name of the file if any and the name of the +utility. Just "cannot open foo.c" or "stat failed" is not sufficient. + + Check every call to `malloc' or `realloc' to see if it returned +zero. Check `realloc' even if you are making the block smaller; in a +system that rounds block sizes to a power of 2, `realloc' may get a +different block if you ask for less space. + + In Unix, `realloc' can destroy the storage block if it returns zero. +GNU `realloc' does not have this bug: if it fails, the original block +is unchanged. Feel free to assume the bug is fixed. If you wish to +run your program on Unix, and wish to avoid lossage in this case, you +can use the GNU `malloc'. + + You must expect `free' to alter the contents of the block that was +freed. Anything you want to fetch from the block, you must fetch before +calling `free'. + + If `malloc' fails in a noninteractive program, make that a fatal +error. In an interactive program (one that reads commands from the +user), it is better to abort the command and return to the command +reader loop. This allows the user to kill other processes to free up +virtual memory, and then try the command again. + + Use `getopt_long' to decode arguments, unless the argument syntax +makes this unreasonable. + + When static storage is to be written in during program execution, use +explicit C code to initialize it. Reserve C initialized declarations +for data that will not be changed. + + Try to avoid low-level interfaces to obscure Unix data structures +(such as file directories, utmp, or the layout of kernel memory), since +these are less likely to work compatibly. If you need to find all the +files in a directory, use `readdir' or some other high-level interface. +These are supported compatibly by GNU. + + The preferred signal handling facilities are the BSD variant of +`signal', and the POSIX `sigaction' function; the alternative USG +`signal' interface is an inferior design. + + Nowadays, using the POSIX signal functions may be the easiest way to +make a program portable. If you use `signal', then on GNU/Linux +systems running GNU libc version 1, you should include `bsd/signal.h' +instead of `signal.h', so as to get BSD behavior. It is up to you +whether to support systems where `signal' has only the USG behavior, or +give up on them. + + In error checks that detect "impossible" conditions, just abort. +There is usually no point in printing any message. These checks +indicate the existence of bugs. Whoever wants to fix the bugs will have +to read the source code and run a debugger. So explain the problem with +comments in the source. The relevant data will be in variables, which +are easy to examine with the debugger, so there is no point moving them +elsewhere. + + Do not use a count of errors as the exit status for a program. +_That does not work_, because exit status values are limited to 8 bits +(0 through 255). A single run of the program might have 256 errors; if +you try to return 256 as the exit status, the parent process will see 0 +as the status, and it will appear that the program succeeded. + + If you make temporary files, check the `TMPDIR' environment +variable; if that variable is defined, use the specified directory +instead of `/tmp'. + + In addition, be aware that there is a possible security problem when +creating temporary files in world-writable directories. In C, you can +avoid this problem by creating temporary files in this manner: + + fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0600); + +or by using the `mkstemps' function from libiberty. + + In bash, use `set -C' to avoid this problem. + + +File: standards.info, Node: Libraries, Next: Errors, Prev: Semantics, Up: Program Behavior + +4.3 Library Behavior +==================== + +Try to make library functions reentrant. If they need to do dynamic +storage allocation, at least try to avoid any nonreentrancy aside from +that of `malloc' itself. + + Here are certain name conventions for libraries, to avoid name +conflicts. + + Choose a name prefix for the library, more than two characters long. +All external function and variable names should start with this prefix. +In addition, there should only be one of these in any given library +member. This usually means putting each one in a separate source file. + + An exception can be made when two external symbols are always used +together, so that no reasonable program could use one without the +other; then they can both go in the same file. + + External symbols that are not documented entry points for the user +should have names beginning with `_'. The `_' should be followed by +the chosen name prefix for the library, to prevent collisions with +other libraries. These can go in the same files with user entry points +if you like. + + Static functions and variables can be used as you like and need not +fit any naming convention. + + +File: standards.info, Node: Errors, Next: User Interfaces, Prev: Libraries, Up: Program Behavior + +4.4 Formatting Error Messages +============================= + +Error messages from compilers should look like this: + + SOURCE-FILE-NAME:LINENO: MESSAGE + +If you want to mention the column number, use one of these formats: + + SOURCE-FILE-NAME:LINENO:COLUMN: MESSAGE + SOURCE-FILE-NAME:LINENO.COLUMN: MESSAGE + +Line numbers should start from 1 at the beginning of the file, and +column numbers should start from 1 at the beginning of the line. (Both +of these conventions are chosen for compatibility.) Calculate column +numbers assuming that space and all ASCII printing characters have +equal width, and assuming tab stops every 8 columns. + + The error message can also give both the starting and ending +positions of the erroneous text. There are several formats so that you +can avoid redundant information such as a duplicate line number. Here +are the possible formats: + + SOURCE-FILE-NAME:LINENO-1.COLUMN-1-LINENO-2.COLUMN-2: MESSAGE + SOURCE-FILE-NAME:LINENO-1.COLUMN-1-COLUMN-2: MESSAGE + SOURCE-FILE-NAME:LINENO-1-LINENO-2: MESSAGE + +When an error is spread over several files, you can use this format: + + FILE-1:LINENO-1.COLUMN-1-FILE-2:LINENO-2.COLUMN-2: MESSAGE + + Error messages from other noninteractive programs should look like +this: + + PROGRAM:SOURCE-FILE-NAME:LINENO: MESSAGE + +when there is an appropriate source file, or like this: + + PROGRAM: MESSAGE + +when there is no relevant source file. + + If you want to mention the column number, use this format: + + PROGRAM:SOURCE-FILE-NAME:LINENO:COLUMN: MESSAGE + + In an interactive program (one that is reading commands from a +terminal), it is better not to include the program name in an error +message. The place to indicate which program is running is in the +prompt or with the screen layout. (When the same program runs with +input from a source other than a terminal, it is not interactive and +would do best to print error messages using the noninteractive style.) + + The string MESSAGE should not begin with a capital letter when it +follows a program name and/or file name, because that isn't the +beginning of a sentence. (The sentence conceptually starts at the +beginning of the line.) Also, it should not end with a period. + + Error messages from interactive programs, and other messages such as +usage messages, should start with a capital letter. But they should not +end with a period. + + +File: standards.info, Node: User Interfaces, Next: Graphical Interfaces, Prev: Errors, Up: Program Behavior + +4.5 Standards for Interfaces Generally +====================================== + +Please don't make the behavior of a utility depend on the name used to +invoke it. It is useful sometimes to make a link to a utility with a +different name, and that should not change what it does. + + Instead, use a run time option or a compilation switch or both to +select among the alternate behaviors. + + Likewise, please don't make the behavior of the program depend on the +type of output device it is used with. Device independence is an +important principle of the system's design; do not compromise it merely +to save someone from typing an option now and then. (Variation in error +message syntax when using a terminal is ok, because that is a side issue +that people do not depend on.) + + If you think one behavior is most useful when the output is to a +terminal, and another is most useful when the output is a file or a +pipe, then it is usually best to make the default behavior the one that +is useful with output to a terminal, and have an option for the other +behavior. + + Compatibility requires certain programs to depend on the type of +output device. It would be disastrous if `ls' or `sh' did not do so in +the way all users expect. In some of these cases, we supplement the +program with a preferred alternate version that does not depend on the +output device type. For example, we provide a `dir' program much like +`ls' except that its default output format is always multi-column +format. + + +File: standards.info, Node: Graphical Interfaces, Next: Command-Line Interfaces, Prev: User Interfaces, Up: Program Behavior + +4.6 Standards for Graphical Interfaces +====================================== + +When you write a program that provides a graphical user interface, +please make it work with X Windows and the GTK+ toolkit unless the +functionality specifically requires some alternative (for example, +"displaying jpeg images while in console mode"). + + In addition, please provide a command-line interface to control the +functionality. (In many cases, the graphical user interface can be a +separate program which invokes the command-line program.) This is so +that the same jobs can be done from scripts. + + Please also consider providing a CORBA interface (for use from +GNOME), a library interface (for use from C), and perhaps a +keyboard-driven console interface (for use by users from console mode). +Once you are doing the work to provide the functionality and the +graphical interface, these won't be much extra work. + + +File: standards.info, Node: Command-Line Interfaces, Next: Option Table, Prev: Graphical Interfaces, Up: Program Behavior + +4.7 Standards for Command Line Interfaces +========================================= + +It is a good idea to follow the POSIX guidelines for the command-line +options of a program. The easiest way to do this is to use `getopt' to +parse them. Note that the GNU version of `getopt' will normally permit +options anywhere among the arguments unless the special argument `--' +is used. This is not what POSIX specifies; it is a GNU extension. + + Please define long-named options that are equivalent to the +single-letter Unix-style options. We hope to make GNU more user +friendly this way. This is easy to do with the GNU function +`getopt_long'. + + One of the advantages of long-named options is that they can be +consistent from program to program. For example, users should be able +to expect the "verbose" option of any GNU program which has one, to be +spelled precisely `--verbose'. To achieve this uniformity, look at the +table of common long-option names when you choose the option names for +your program (*note Option Table::). + + It is usually a good idea for file names given as ordinary arguments +to be input files only; any output files would be specified using +options (preferably `-o' or `--output'). Even if you allow an output +file name as an ordinary argument for compatibility, try to provide an +option as another way to specify it. This will lead to more consistency +among GNU utilities, and fewer idiosyncrasies for users to remember. + + All programs should support two standard options: `--version' and +`--help'. CGI programs should accept these as command-line options, +and also if given as the `PATH_INFO'; for instance, visiting +`http://example.org/p.cgi/--help' in a browser should output the same +information as invoking `p.cgi --help' from the command line. + +* Menu: + +* --version:: The standard output for --version. +* --help:: The standard output for --help. + + +File: standards.info, Node: --version, Next: --help, Up: Command-Line Interfaces + +4.7.1 `--version' +----------------- + +The standard `--version' option should direct the program to print +information about its name, version, origin and legal status, all on +standard output, and then exit successfully. Other options and +arguments should be ignored once this is seen, and the program should +not perform its normal function. + + The first line is meant to be easy for a program to parse; the +version number proper starts after the last space. In addition, it +contains the canonical name for this program, in this format: + + GNU Emacs 19.30 + +The program's name should be a constant string; _don't_ compute it from +`argv[0]'. The idea is to state the standard or canonical name for the +program, not its file name. There are other ways to find out the +precise file name where a command is found in `PATH'. + + If the program is a subsidiary part of a larger package, mention the +package name in parentheses, like this: + + emacsserver (GNU Emacs) 19.30 + +If the package has a version number which is different from this +program's version number, you can mention the package version number +just before the close-parenthesis. + + If you _need_ to mention the version numbers of libraries which are +distributed separately from the package which contains this program, +you can do so by printing an additional line of version info for each +library you want to mention. Use the same format for these lines as for +the first line. + + Please do not mention all of the libraries that the program uses +"just for completeness"--that would produce a lot of unhelpful clutter. +Please mention library version numbers only if you find in practice that +they are very important to you in debugging. + + The following line, after the version number line or lines, should +be a copyright notice. If more than one copyright notice is called +for, put each on a separate line. + + Next should follow a line stating the license, preferably using one +of abbrevations below, and a brief statement that the program is free +software, and that users are free to copy and change it. Also mention +that there is no warranty, to the extent permitted by law. See +recommended wording below. + + It is ok to finish the output with a list of the major authors of the +program, as a way of giving credit. + + Here's an example of output that follows these rules: + + GNU hello 2.3 + Copyright (C) 2007 Free Software Foundation, Inc. + License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> + This is free software: you are free to change and redistribute it. + There is NO WARRANTY, to the extent permitted by law. + + You should adapt this to your program, of course, filling in the +proper year, copyright holder, name of program, and the references to +distribution terms, and changing the rest of the wording as necessary. + + This copyright notice only needs to mention the most recent year in +which changes were made--there's no need to list the years for previous +versions' changes. You don't have to mention the name of the program in +these notices, if that is inconvenient, since it appeared in the first +line. (The rules are different for copyright notices in source files; +*note Copyright Notices: (maintain)Copyright Notices.) + + Translations of the above lines must preserve the validity of the +copyright notices (*note Internationalization::). If the translation's +character set supports it, the `(C)' should be replaced with the +copyright symbol, as follows: + + (the official copyright symbol, which is the letter C in a circle); + + Write the word "Copyright" exactly like that, in English. Do not +translate it into another language. International treaties recognize +the English word "Copyright"; translations into other languages do not +have legal significance. + + Finally, here is the table of our suggested license abbreviations. +Any abbreviation can be followed by `vVERSION[+]', meaning that +particular version, or later versions with the `+', as shown above. + + In the case of exceptions for extra permissions with the GPL, we use +`/' for a separator; the version number can follow the license +abbreviation as usual, as in the examples below. + +GPL + GNU General Public License, `http://www.gnu.org/licenses/gpl.html'. + +LGPL + GNU Lesser General Public License, + `http://www.gnu.org/licenses/lgpl.html'. + +GPL/Guile + GNU GPL with the exception for Guile; for example, GPLv3+/Guile + means the GNU GPL version 3 or later, with the extra exception for + Guile. + + GNU GPL with the exception for Ada. + +Apache + The Apache Software Foundation license, + `http://www.apache.org/licenses'. + +Artistic + The Artistic license used for Perl, + `http://www.perlfoundation.org/legal'. + +Expat + The Expat license, `http://www.jclark.com/xml/copying.txt'. + +MPL + The Mozilla Public License, `http://www.mozilla.org/MPL/'. + +OBSD + The original (4-clause) BSD license, incompatible with the GNU GPL + `http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6'. + +PHP + The license used for PHP, `http://www.php.net/license/'. + +public domain + The non-license that is being in the public domain, + `http://www.gnu.org/licenses/license-list.html#PublicDomain'. + +Python + The license for Python, `http://www.python.org/2.0.1/license.html'. + +RBSD + The revised (3-clause) BSD, compatible with the GNU GPL, + `http://www.xfree86.org/3.3.6/COPYRIGHT2.html#5'. + +X11 + The simple non-copyleft license used for most versions of the X + Window system, `http://www.xfree86.org/3.3.6/COPYRIGHT2.html#3'. + +Zlib + The license for Zlib, `http://www.gzip.org/zlib/zlib_license.html'. + + + More information about these licenses and many more are on the GNU +licensing web pages, `http://www.gnu.org/licenses/license-list.html'. + + +File: standards.info, Node: --help, Prev: --version, Up: Command-Line Interfaces + +4.7.2 `--help' +-------------- + +The standard `--help' option should output brief documentation for how +to invoke the program, on standard output, then exit successfully. +Other options and arguments should be ignored once this is seen, and +the program should not perform its normal function. + + Near the end of the `--help' option's output there should be a line +that says where to mail bug reports. It should have this format: + + Report bugs to MAILING-ADDRESS. + + +File: standards.info, Node: Option Table, Next: Memory Usage, Prev: Command-Line Interfaces, Up: Program Behavior + +4.8 Table of Long Options +========================= + +Here is a table of long options used by GNU programs. It is surely +incomplete, but we aim to list all the options that a new program might +want to be compatible with. If you use names not already in the table, +please send <bug-standards@gnu.org> a list of them, with their +meanings, so we can update the table. + +`after-date' + `-N' in `tar'. + +`all' + `-a' in `du', `ls', `nm', `stty', `uname', and `unexpand'. + +`all-text' + `-a' in `diff'. + +`almost-all' + `-A' in `ls'. + +`append' + `-a' in `etags', `tee', `time'; `-r' in `tar'. + +`archive' + `-a' in `cp'. + +`archive-name' + `-n' in `shar'. + +`arglength' + `-l' in `m4'. + +`ascii' + `-a' in `diff'. + +`assign' + `-v' in `gawk'. + +`assume-new' + `-W' in Make. + +`assume-old' + `-o' in Make. + +`auto-check' + `-a' in `recode'. + +`auto-pager' + `-a' in `wdiff'. + +`auto-reference' + `-A' in `ptx'. + +`avoid-wraps' + `-n' in `wdiff'. + +`background' + For server programs, run in the background. + +`backward-search' + `-B' in `ctags'. + +`basename' + `-f' in `shar'. + +`batch' + Used in GDB. + +`baud' + Used in GDB. + +`before' + `-b' in `tac'. + +`binary' + `-b' in `cpio' and `diff'. + +`bits-per-code' + `-b' in `shar'. + +`block-size' + Used in `cpio' and `tar'. + +`blocks' + `-b' in `head' and `tail'. + +`break-file' + `-b' in `ptx'. + +`brief' + Used in various programs to make output shorter. + +`bytes' + `-c' in `head', `split', and `tail'. + +`c++' + `-C' in `etags'. + +`catenate' + `-A' in `tar'. + +`cd' + Used in various programs to specify the directory to use. + +`changes' + `-c' in `chgrp' and `chown'. + +`classify' + `-F' in `ls'. + +`colons' + `-c' in `recode'. + +`command' + `-c' in `su'; `-x' in GDB. + +`compare' + `-d' in `tar'. + +`compat' + Used in `gawk'. + +`compress' + `-Z' in `tar' and `shar'. + +`concatenate' + `-A' in `tar'. + +`confirmation' + `-w' in `tar'. + +`context' + Used in `diff'. + +`copyleft' + `-W copyleft' in `gawk'. + +`copyright' + `-C' in `ptx', `recode', and `wdiff'; `-W copyright' in `gawk'. + +`core' + Used in GDB. + +`count' + `-q' in `who'. + +`count-links' + `-l' in `du'. + +`create' + Used in `tar' and `cpio'. + +`cut-mark' + `-c' in `shar'. + +`cxref' + `-x' in `ctags'. + +`date' + `-d' in `touch'. + +`debug' + `-d' in Make and `m4'; `-t' in Bison. + +`define' + `-D' in `m4'. + +`defines' + `-d' in Bison and `ctags'. + +`delete' + `-D' in `tar'. + +`dereference' + `-L' in `chgrp', `chown', `cpio', `du', `ls', and `tar'. + +`dereference-args' + `-D' in `du'. + +`device' + Specify an I/O device (special file name). + +`diacritics' + `-d' in `recode'. + +`dictionary-order' + `-d' in `look'. + +`diff' + `-d' in `tar'. + +`digits' + `-n' in `csplit'. + +`directory' + Specify the directory to use, in various programs. In `ls', it + means to show directories themselves rather than their contents. + In `rm' and `ln', it means to not treat links to directories + specially. + +`discard-all' + `-x' in `strip'. + +`discard-locals' + `-X' in `strip'. + +`dry-run' + `-n' in Make. + +`ed' + `-e' in `diff'. + +`elide-empty-files' + `-z' in `csplit'. + +`end-delete' + `-x' in `wdiff'. + +`end-insert' + `-z' in `wdiff'. + +`entire-new-file' + `-N' in `diff'. + +`environment-overrides' + `-e' in Make. + +`eof' + `-e' in `xargs'. + +`epoch' + Used in GDB. + +`error-limit' + Used in `makeinfo'. + +`error-output' + `-o' in `m4'. + +`escape' + `-b' in `ls'. + +`exclude-from' + `-X' in `tar'. + +`exec' + Used in GDB. + +`exit' + `-x' in `xargs'. + +`exit-0' + `-e' in `unshar'. + +`expand-tabs' + `-t' in `diff'. + +`expression' + `-e' in `sed'. + +`extern-only' + `-g' in `nm'. + +`extract' + `-i' in `cpio'; `-x' in `tar'. + +`faces' + `-f' in `finger'. + +`fast' + `-f' in `su'. + +`fatal-warnings' + `-E' in `m4'. + +`file' + `-f' in `info', `gawk', Make, `mt', and `tar'; `-n' in `sed'; `-r' + in `touch'. + +`field-separator' + `-F' in `gawk'. + +`file-prefix' + `-b' in Bison. + +`file-type' + `-F' in `ls'. + +`files-from' + `-T' in `tar'. + +`fill-column' + Used in `makeinfo'. + +`flag-truncation' + `-F' in `ptx'. + +`fixed-output-files' + `-y' in Bison. + +`follow' + `-f' in `tail'. + +`footnote-style' + Used in `makeinfo'. + +`force' + `-f' in `cp', `ln', `mv', and `rm'. + +`force-prefix' + `-F' in `shar'. + +`foreground' + For server programs, run in the foreground; in other words, don't + do anything special to run the server in the background. + +`format' + Used in `ls', `time', and `ptx'. + +`freeze-state' + `-F' in `m4'. + +`fullname' + Used in GDB. + +`gap-size' + `-g' in `ptx'. + +`get' + `-x' in `tar'. + +`graphic' + `-i' in `ul'. + +`graphics' + `-g' in `recode'. + +`group' + `-g' in `install'. + +`gzip' + `-z' in `tar' and `shar'. + +`hashsize' + `-H' in `m4'. + +`header' + `-h' in `objdump' and `recode' + +`heading' + `-H' in `who'. + +`help' + Used to ask for brief usage information. + +`here-delimiter' + `-d' in `shar'. + +`hide-control-chars' + `-q' in `ls'. + +`html' + In `makeinfo', output HTML. + +`idle' + `-u' in `who'. + +`ifdef' + `-D' in `diff'. + +`ignore' + `-I' in `ls'; `-x' in `recode'. + +`ignore-all-space' + `-w' in `diff'. + +`ignore-backups' + `-B' in `ls'. + +`ignore-blank-lines' + `-B' in `diff'. + +`ignore-case' + `-f' in `look' and `ptx'; `-i' in `diff' and `wdiff'. + +`ignore-errors' + `-i' in Make. + +`ignore-file' + `-i' in `ptx'. + +`ignore-indentation' + `-I' in `etags'. + +`ignore-init-file' + `-f' in Oleo. + +`ignore-interrupts' + `-i' in `tee'. + +`ignore-matching-lines' + `-I' in `diff'. + +`ignore-space-change' + `-b' in `diff'. + +`ignore-zeros' + `-i' in `tar'. + +`include' + `-i' in `etags'; `-I' in `m4'. + +`include-dir' + `-I' in Make. + +`incremental' + `-G' in `tar'. + +`info' + `-i', `-l', and `-m' in Finger. + +`init-file' + In some programs, specify the name of the file to read as the + user's init file. + +`initial' + `-i' in `expand'. + +`initial-tab' + `-T' in `diff'. + +`inode' + `-i' in `ls'. + +`interactive' + `-i' in `cp', `ln', `mv', `rm'; `-e' in `m4'; `-p' in `xargs'; + `-w' in `tar'. + +`intermix-type' + `-p' in `shar'. + +`iso-8601' + Used in `date' + +`jobs' + `-j' in Make. + +`just-print' + `-n' in Make. + +`keep-going' + `-k' in Make. + +`keep-files' + `-k' in `csplit'. + +`kilobytes' + `-k' in `du' and `ls'. + +`language' + `-l' in `etags'. + +`less-mode' + `-l' in `wdiff'. + +`level-for-gzip' + `-g' in `shar'. + +`line-bytes' + `-C' in `split'. + +`lines' + Used in `split', `head', and `tail'. + +`link' + `-l' in `cpio'. + +`lint' +`lint-old' + Used in `gawk'. + +`list' + `-t' in `cpio'; `-l' in `recode'. + +`list' + `-t' in `tar'. + +`literal' + `-N' in `ls'. + +`load-average' + `-l' in Make. + +`login' + Used in `su'. + +`machine' + Used in `uname'. + +`macro-name' + `-M' in `ptx'. + +`mail' + `-m' in `hello' and `uname'. + +`make-directories' + `-d' in `cpio'. + +`makefile' + `-f' in Make. + +`mapped' + Used in GDB. + +`max-args' + `-n' in `xargs'. + +`max-chars' + `-n' in `xargs'. + +`max-lines' + `-l' in `xargs'. + +`max-load' + `-l' in Make. + +`max-procs' + `-P' in `xargs'. + +`mesg' + `-T' in `who'. + +`message' + `-T' in `who'. + +`minimal' + `-d' in `diff'. + +`mixed-uuencode' + `-M' in `shar'. + +`mode' + `-m' in `install', `mkdir', and `mkfifo'. + +`modification-time' + `-m' in `tar'. + +`multi-volume' + `-M' in `tar'. + +`name-prefix' + `-a' in Bison. + +`nesting-limit' + `-L' in `m4'. + +`net-headers' + `-a' in `shar'. + +`new-file' + `-W' in Make. + +`no-builtin-rules' + `-r' in Make. + +`no-character-count' + `-w' in `shar'. + +`no-check-existing' + `-x' in `shar'. + +`no-common' + `-3' in `wdiff'. + +`no-create' + `-c' in `touch'. + +`no-defines' + `-D' in `etags'. + +`no-deleted' + `-1' in `wdiff'. + +`no-dereference' + `-d' in `cp'. + +`no-inserted' + `-2' in `wdiff'. + +`no-keep-going' + `-S' in Make. + +`no-lines' + `-l' in Bison. + +`no-piping' + `-P' in `shar'. + +`no-prof' + `-e' in `gprof'. + +`no-regex' + `-R' in `etags'. + +`no-sort' + `-p' in `nm'. + +`no-splash' + Don't print a startup splash screen. + +`no-split' + Used in `makeinfo'. + +`no-static' + `-a' in `gprof'. + +`no-time' + `-E' in `gprof'. + +`no-timestamp' + `-m' in `shar'. + +`no-validate' + Used in `makeinfo'. + +`no-wait' + Used in `emacsclient'. + +`no-warn' + Used in various programs to inhibit warnings. + +`node' + `-n' in `info'. + +`nodename' + `-n' in `uname'. + +`nonmatching' + `-f' in `cpio'. + +`nstuff' + `-n' in `objdump'. + +`null' + `-0' in `xargs'. + +`number' + `-n' in `cat'. + +`number-nonblank' + `-b' in `cat'. + +`numeric-sort' + `-n' in `nm'. + +`numeric-uid-gid' + `-n' in `cpio' and `ls'. + +`nx' + Used in GDB. + +`old-archive' + `-o' in `tar'. + +`old-file' + `-o' in Make. + +`one-file-system' + `-l' in `tar', `cp', and `du'. + +`only-file' + `-o' in `ptx'. + +`only-prof' + `-f' in `gprof'. + +`only-time' + `-F' in `gprof'. + +`options' + `-o' in `getopt', `fdlist', `fdmount', `fdmountd', and `fdumount'. + +`output' + In various programs, specify the output file name. + +`output-prefix' + `-o' in `shar'. + +`override' + `-o' in `rm'. + +`overwrite' + `-c' in `unshar'. + +`owner' + `-o' in `install'. + +`paginate' + `-l' in `diff'. + +`paragraph-indent' + Used in `makeinfo'. + +`parents' + `-p' in `mkdir' and `rmdir'. + +`pass-all' + `-p' in `ul'. + +`pass-through' + `-p' in `cpio'. + +`port' + `-P' in `finger'. + +`portability' + `-c' in `cpio' and `tar'. + +`posix' + Used in `gawk'. + +`prefix-builtins' + `-P' in `m4'. + +`prefix' + `-f' in `csplit'. + +`preserve' + Used in `tar' and `cp'. + +`preserve-environment' + `-p' in `su'. + +`preserve-modification-time' + `-m' in `cpio'. + +`preserve-order' + `-s' in `tar'. + +`preserve-permissions' + `-p' in `tar'. + +`print' + `-l' in `diff'. + +`print-chars' + `-L' in `cmp'. + +`print-data-base' + `-p' in Make. + +`print-directory' + `-w' in Make. + +`print-file-name' + `-o' in `nm'. + +`print-symdefs' + `-s' in `nm'. + +`printer' + `-p' in `wdiff'. + +`prompt' + `-p' in `ed'. + +`proxy' + Specify an HTTP proxy. + +`query-user' + `-X' in `shar'. + +`question' + `-q' in Make. + +`quiet' + Used in many programs to inhibit the usual output. Every program + accepting `--quiet' should accept `--silent' as a synonym. + +`quiet-unshar' + `-Q' in `shar' + +`quote-name' + `-Q' in `ls'. + +`rcs' + `-n' in `diff'. + +`re-interval' + Used in `gawk'. + +`read-full-blocks' + `-B' in `tar'. + +`readnow' + Used in GDB. + +`recon' + `-n' in Make. + +`record-number' + `-R' in `tar'. + +`recursive' + Used in `chgrp', `chown', `cp', `ls', `diff', and `rm'. + +`reference-limit' + Used in `makeinfo'. + +`references' + `-r' in `ptx'. + +`regex' + `-r' in `tac' and `etags'. + +`release' + `-r' in `uname'. + +`reload-state' + `-R' in `m4'. + +`relocation' + `-r' in `objdump'. + +`rename' + `-r' in `cpio'. + +`replace' + `-i' in `xargs'. + +`report-identical-files' + `-s' in `diff'. + +`reset-access-time' + `-a' in `cpio'. + +`reverse' + `-r' in `ls' and `nm'. + +`reversed-ed' + `-f' in `diff'. + +`right-side-defs' + `-R' in `ptx'. + +`same-order' + `-s' in `tar'. + +`same-permissions' + `-p' in `tar'. + +`save' + `-g' in `stty'. + +`se' + Used in GDB. + +`sentence-regexp' + `-S' in `ptx'. + +`separate-dirs' + `-S' in `du'. + +`separator' + `-s' in `tac'. + +`sequence' + Used by `recode' to chose files or pipes for sequencing passes. + +`shell' + `-s' in `su'. + +`show-all' + `-A' in `cat'. + +`show-c-function' + `-p' in `diff'. + +`show-ends' + `-E' in `cat'. + +`show-function-line' + `-F' in `diff'. + +`show-tabs' + `-T' in `cat'. + +`silent' + Used in many programs to inhibit the usual output. Every program + accepting `--silent' should accept `--quiet' as a synonym. + +`size' + `-s' in `ls'. + +`socket' + Specify a file descriptor for a network server to use for its + socket, instead of opening and binding a new socket. This + provides a way to run, in a non-privileged process, a server that + normally needs a reserved port number. + +`sort' + Used in `ls'. + +`source' + `-W source' in `gawk'. + +`sparse' + `-S' in `tar'. + +`speed-large-files' + `-H' in `diff'. + +`split-at' + `-E' in `unshar'. + +`split-size-limit' + `-L' in `shar'. + +`squeeze-blank' + `-s' in `cat'. + +`start-delete' + `-w' in `wdiff'. + +`start-insert' + `-y' in `wdiff'. + +`starting-file' + Used in `tar' and `diff' to specify which file within a directory + to start processing with. + +`statistics' + `-s' in `wdiff'. + +`stdin-file-list' + `-S' in `shar'. + +`stop' + `-S' in Make. + +`strict' + `-s' in `recode'. + +`strip' + `-s' in `install'. + +`strip-all' + `-s' in `strip'. + +`strip-debug' + `-S' in `strip'. + +`submitter' + `-s' in `shar'. + +`suffix' + `-S' in `cp', `ln', `mv'. + +`suffix-format' + `-b' in `csplit'. + +`sum' + `-s' in `gprof'. + +`summarize' + `-s' in `du'. + +`symbolic' + `-s' in `ln'. + +`symbols' + Used in GDB and `objdump'. + +`synclines' + `-s' in `m4'. + +`sysname' + `-s' in `uname'. + +`tabs' + `-t' in `expand' and `unexpand'. + +`tabsize' + `-T' in `ls'. + +`terminal' + `-T' in `tput' and `ul'. `-t' in `wdiff'. + +`text' + `-a' in `diff'. + +`text-files' + `-T' in `shar'. + +`time' + Used in `ls' and `touch'. + +`timeout' + Specify how long to wait before giving up on some operation. + +`to-stdout' + `-O' in `tar'. + +`total' + `-c' in `du'. + +`touch' + `-t' in Make, `ranlib', and `recode'. + +`trace' + `-t' in `m4'. + +`traditional' + `-t' in `hello'; `-W traditional' in `gawk'; `-G' in `ed', `m4', + and `ptx'. + +`tty' + Used in GDB. + +`typedefs' + `-t' in `ctags'. + +`typedefs-and-c++' + `-T' in `ctags'. + +`typeset-mode' + `-t' in `ptx'. + +`uncompress' + `-z' in `tar'. + +`unconditional' + `-u' in `cpio'. + +`undefine' + `-U' in `m4'. + +`undefined-only' + `-u' in `nm'. + +`update' + `-u' in `cp', `ctags', `mv', `tar'. + +`usage' + Used in `gawk'; same as `--help'. + +`uuencode' + `-B' in `shar'. + +`vanilla-operation' + `-V' in `shar'. + +`verbose' + Print more information about progress. Many programs support this. + +`verify' + `-W' in `tar'. + +`version' + Print the version number. + +`version-control' + `-V' in `cp', `ln', `mv'. + +`vgrind' + `-v' in `ctags'. + +`volume' + `-V' in `tar'. + +`what-if' + `-W' in Make. + +`whole-size-limit' + `-l' in `shar'. + +`width' + `-w' in `ls' and `ptx'. + +`word-regexp' + `-W' in `ptx'. + +`writable' + `-T' in `who'. + +`zeros' + `-z' in `gprof'. + + +File: standards.info, Node: Memory Usage, Next: File Usage, Prev: Option Table, Up: Program Behavior + +4.9 Memory Usage +================ + +If a program typically uses just a few meg of memory, don't bother +making any effort to reduce memory usage. For example, if it is +impractical for other reasons to operate on files more than a few meg +long, it is reasonable to read entire input files into memory to +operate on them. + + However, for programs such as `cat' or `tail', that can usefully +operate on very large files, it is important to avoid using a technique +that would artificially limit the size of files it can handle. If a +program works by lines and could be applied to arbitrary user-supplied +input files, it should keep only a line in memory, because this is not +very hard and users will want to be able to operate on input files that +are bigger than will fit in memory all at once. + + If your program creates complicated data structures, just make them +in memory and give a fatal error if `malloc' returns zero. + + +File: standards.info, Node: File Usage, Prev: Memory Usage, Up: Program Behavior + +4.10 File Usage +=============== + +Programs should be prepared to operate when `/usr' and `/etc' are +read-only file systems. Thus, if the program manages log files, lock +files, backup files, score files, or any other files which are modified +for internal purposes, these files should not be stored in `/usr' or +`/etc'. + + There are two exceptions. `/etc' is used to store system +configuration information; it is reasonable for a program to modify +files in `/etc' when its job is to update the system configuration. +Also, if the user explicitly asks to modify one file in a directory, it +is reasonable for the program to store other files in the same +directory. + + +File: standards.info, Node: Writing C, Next: Documentation, Prev: Program Behavior, Up: Top + +5 Making The Best Use of C +************************** + +This chapter provides advice on how best to use the C language when +writing GNU software. + +* Menu: + +* Formatting:: Formatting your source code. +* Comments:: Commenting your work. +* Syntactic Conventions:: Clean use of C constructs. +* Names:: Naming variables, functions, and files. +* System Portability:: Portability among different operating systems. +* CPU Portability:: Supporting the range of CPU types. +* System Functions:: Portability and ``standard'' library functions. +* Internationalization:: Techniques for internationalization. +* Character Set:: Use ASCII by default. +* Quote Characters:: Use `...' in the C locale. +* Mmap:: How you can safely use `mmap'. + + +File: standards.info, Node: Formatting, Next: Comments, Up: Writing C + +5.1 Formatting Your Source Code +=============================== + +It is important to put the open-brace that starts the body of a C +function in column one, so that they will start a defun. Several tools +look for open-braces in column one to find the beginnings of C +functions. These tools will not work on code not formatted that way. + + Avoid putting open-brace, open-parenthesis or open-bracket in column +one when they are inside a function, so that they won't start a defun. +The open-brace that starts a `struct' body can go in column one if you +find it useful to treat that definition as a defun. + + It is also important for function definitions to start the name of +the function in column one. This helps people to search for function +definitions, and may also help certain tools recognize them. Thus, +using Standard C syntax, the format is this: + + static char * + concat (char *s1, char *s2) + { + ... + } + +or, if you want to use traditional C syntax, format the definition like +this: + + static char * + concat (s1, s2) /* Name starts in column one here */ + char *s1, *s2; + { /* Open brace in column one here */ + ... + } + + In Standard C, if the arguments don't fit nicely on one line, split +it like this: + + int + lots_of_args (int an_integer, long a_long, short a_short, + double a_double, float a_float) + ... + + The rest of this section gives our recommendations for other aspects +of C formatting style, which is also the default style of the `indent' +program in version 1.2 and newer. It corresponds to the options + + -nbad -bap -nbc -bbo -bl -bli2 -bls -ncdb -nce -cp1 -cs -di2 + -ndj -nfc1 -nfca -hnl -i2 -ip5 -lp -pcs -psl -nsc -nsob + + We don't think of these recommendations as requirements, because it +causes no problems for users if two different programs have different +formatting styles. + + But whatever style you use, please use it consistently, since a +mixture of styles within one program tends to look ugly. If you are +contributing changes to an existing program, please follow the style of +that program. + + For the body of the function, our recommended style looks like this: + + if (x < foo (y, z)) + haha = bar[4] + 5; + else + { + while (z) + { + haha += foo (z, z); + z--; + } + return ++x + bar (); + } + + We find it easier to read a program when it has spaces before the +open-parentheses and after the commas. Especially after the commas. + + When you split an expression into multiple lines, split it before an +operator, not after one. Here is the right way: + + if (foo_this_is_long && bar > win (x, y, z) + && remaining_condition) + + Try to avoid having two operators of different precedence at the same +level of indentation. For example, don't write this: + + mode = (inmode[j] == VOIDmode + || GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j]) + ? outmode[j] : inmode[j]); + + Instead, use extra parentheses so that the indentation shows the +nesting: + + mode = ((inmode[j] == VOIDmode + || (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j]))) + ? outmode[j] : inmode[j]); + + Insert extra parentheses so that Emacs will indent the code properly. +For example, the following indentation looks nice if you do it by hand, + + v = rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000 + + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000; + +but Emacs would alter it. Adding a set of parentheses produces +something that looks equally nice, and which Emacs will preserve: + + v = (rup->ru_utime.tv_sec*1000 + rup->ru_utime.tv_usec/1000 + + rup->ru_stime.tv_sec*1000 + rup->ru_stime.tv_usec/1000); + + Format do-while statements like this: + + do + { + a = foo (a); + } + while (a > 0); + + Please use formfeed characters (control-L) to divide the program into +pages at logical places (but not within a function). It does not matter +just how long the pages are, since they do not have to fit on a printed +page. The formfeeds should appear alone on lines by themselves. + + +File: standards.info, Node: Comments, Next: Syntactic Conventions, Prev: Formatting, Up: Writing C + +5.2 Commenting Your Work +======================== + +Every program should start with a comment saying briefly what it is for. +Example: `fmt - filter for simple filling of text'. This comment +should be at the top of the source file containing the `main' function +of the program. + + Also, please write a brief comment at the start of each source file, +with the file name and a line or two about the overall purpose of the +file. + + Please write the comments in a GNU program in English, because +English is the one language that nearly all programmers in all +countries can read. If you do not write English well, please write +comments in English as well as you can, then ask other people to help +rewrite them. If you can't write comments in English, please find +someone to work with you and translate your comments into English. + + Please put a comment on each function saying what the function does, +what sorts of arguments it gets, and what the possible values of +arguments mean and are used for. It is not necessary to duplicate in +words the meaning of the C argument declarations, if a C type is being +used in its customary fashion. If there is anything nonstandard about +its use (such as an argument of type `char *' which is really the +address of the second character of a string, not the first), or any +possible values that would not work the way one would expect (such as, +that strings containing newlines are not guaranteed to work), be sure +to say so. + + Also explain the significance of the return value, if there is one. + + Please put two spaces after the end of a sentence in your comments, +so that the Emacs sentence commands will work. Also, please write +complete sentences and capitalize the first word. If a lower-case +identifier comes at the beginning of a sentence, don't capitalize it! +Changing the spelling makes it a different identifier. If you don't +like starting a sentence with a lower case letter, write the sentence +differently (e.g., "The identifier lower-case is ..."). + + The comment on a function is much clearer if you use the argument +names to speak about the argument values. The variable name itself +should be lower case, but write it in upper case when you are speaking +about the value rather than the variable itself. Thus, "the inode +number NODE_NUM" rather than "an inode". + + There is usually no purpose in restating the name of the function in +the comment before it, because the reader can see that for himself. +There might be an exception when the comment is so long that the +function itself would be off the bottom of the screen. + + There should be a comment on each static variable as well, like this: + + /* Nonzero means truncate lines in the display; + zero means continue them. */ + int truncate_lines; + + Every `#endif' should have a comment, except in the case of short +conditionals (just a few lines) that are not nested. The comment should +state the condition of the conditional that is ending, _including its +sense_. `#else' should have a comment describing the condition _and +sense_ of the code that follows. For example: + + #ifdef foo + ... + #else /* not foo */ + ... + #endif /* not foo */ + #ifdef foo + ... + #endif /* foo */ + +but, by contrast, write the comments this way for a `#ifndef': + + #ifndef foo + ... + #else /* foo */ + ... + #endif /* foo */ + #ifndef foo + ... + #endif /* not foo */ + + +File: standards.info, Node: Syntactic Conventions, Next: Names, Prev: Comments, Up: Writing C + +5.3 Clean Use of C Constructs +============================= + +Please explicitly declare the types of all objects. For example, you +should explicitly declare all arguments to functions, and you should +declare functions to return `int' rather than omitting the `int'. + + Some programmers like to use the GCC `-Wall' option, and change the +code whenever it issues a warning. If you want to do this, then do. +Other programmers prefer not to use `-Wall', because it gives warnings +for valid and legitimate code which they do not want to change. If you +want to do this, then do. The compiler should be your servant, not +your master. + + Declarations of external functions and functions to appear later in +the source file should all go in one place near the beginning of the +file (somewhere before the first function definition in the file), or +else should go in a header file. Don't put `extern' declarations inside +functions. + + It used to be common practice to use the same local variables (with +names like `tem') over and over for different values within one +function. Instead of doing this, it is better to declare a separate +local variable for each distinct purpose, and give it a name which is +meaningful. This not only makes programs easier to understand, it also +facilitates optimization by good compilers. You can also move the +declaration of each local variable into the smallest scope that includes +all its uses. This makes the program even cleaner. + + Don't use local variables or parameters that shadow global +identifiers. + + Don't declare multiple variables in one declaration that spans lines. +Start a new declaration on each line, instead. For example, instead of +this: + + int foo, + bar; + +write either this: + + int foo, bar; + +or this: + + int foo; + int bar; + +(If they are global variables, each should have a comment preceding it +anyway.) + + When you have an `if'-`else' statement nested in another `if' +statement, always put braces around the `if'-`else'. Thus, never write +like this: + + if (foo) + if (bar) + win (); + else + lose (); + +always like this: + + if (foo) + { + if (bar) + win (); + else + lose (); + } + + If you have an `if' statement nested inside of an `else' statement, +either write `else if' on one line, like this, + + if (foo) + ... + else if (bar) + ... + +with its `then'-part indented like the preceding `then'-part, or write +the nested `if' within braces like this: + + if (foo) + ... + else + { + if (bar) + ... + } + + Don't declare both a structure tag and variables or typedefs in the +same declaration. Instead, declare the structure tag separately and +then use it to declare the variables or typedefs. + + Try to avoid assignments inside `if'-conditions (assignments inside +`while'-conditions are ok). For example, don't write this: + + if ((foo = (char *) malloc (sizeof *foo)) == 0) + fatal ("virtual memory exhausted"); + +instead, write this: + + foo = (char *) malloc (sizeof *foo); + if (foo == 0) + fatal ("virtual memory exhausted"); + + Don't make the program ugly to placate `lint'. Please don't insert +any casts to `void'. Zero without a cast is perfectly fine as a null +pointer constant, except when calling a varargs function. + + +File: standards.info, Node: Names, Next: System Portability, Prev: Syntactic Conventions, Up: Writing C + +5.4 Naming Variables, Functions, and Files +========================================== + +The names of global variables and functions in a program serve as +comments of a sort. So don't choose terse names--instead, look for +names that give useful information about the meaning of the variable or +function. In a GNU program, names should be English, like other +comments. + + Local variable names can be shorter, because they are used only +within one context, where (presumably) comments explain their purpose. + + Try to limit your use of abbreviations in symbol names. It is ok to +make a few abbreviations, explain what they mean, and then use them +frequently, but don't use lots of obscure abbreviations. + + Please use underscores to separate words in a name, so that the Emacs +word commands can be useful within them. Stick to lower case; reserve +upper case for macros and `enum' constants, and for name-prefixes that +follow a uniform convention. + + For example, you should use names like `ignore_space_change_flag'; +don't use names like `iCantReadThis'. + + Variables that indicate whether command-line options have been +specified should be named after the meaning of the option, not after +the option-letter. A comment should state both the exact meaning of +the option and its letter. For example, + + /* Ignore changes in horizontal whitespace (-b). */ + int ignore_space_change_flag; + + When you want to define names with constant integer values, use +`enum' rather than `#define'. GDB knows about enumeration constants. + + You might want to make sure that none of the file names would +conflict if the files were loaded onto an MS-DOS file system which +shortens the names. You can use the program `doschk' to test for this. + + Some GNU programs were designed to limit themselves to file names of +14 characters or less, to avoid file name conflicts if they are read +into older System V systems. Please preserve this feature in the +existing GNU programs that have it, but there is no need to do this in +new GNU programs. `doschk' also reports file names longer than 14 +characters. + + +File: standards.info, Node: System Portability, Next: CPU Portability, Prev: Names, Up: Writing C + +5.5 Portability between System Types +==================================== + +In the Unix world, "portability" refers to porting to different Unix +versions. For a GNU program, this kind of portability is desirable, but +not paramount. + + The primary purpose of GNU software is to run on top of the GNU +kernel, compiled with the GNU C compiler, on various types of CPU. So +the kinds of portability that are absolutely necessary are quite +limited. But it is important to support Linux-based GNU systems, since +they are the form of GNU that is popular. + + Beyond that, it is good to support the other free operating systems +(*BSD), and it is nice to support other Unix-like systems if you want +to. Supporting a variety of Unix-like systems is desirable, although +not paramount. It is usually not too hard, so you may as well do it. +But you don't have to consider it an obligation, if it does turn out to +be hard. + + The easiest way to achieve portability to most Unix-like systems is +to use Autoconf. It's unlikely that your program needs to know more +information about the host platform than Autoconf can provide, simply +because most of the programs that need such knowledge have already been +written. + + Avoid using the format of semi-internal data bases (e.g., +directories) when there is a higher-level alternative (`readdir'). + + As for systems that are not like Unix, such as MSDOS, Windows, VMS, +MVS, and older Macintosh systems, supporting them is often a lot of +work. When that is the case, it is better to spend your time adding +features that will be useful on GNU and GNU/Linux, rather than on +supporting other incompatible systems. + + If you do support Windows, please do not abbreviate it as "win". In +hacker terminology, calling something a "win" is a form of praise. +You're free to praise Microsoft Windows on your own if you want, but +please don't do this in GNU packages. Instead of abbreviating +"Windows" to "un", you can write it in full or abbreviate it to "woe" +or "w". In GNU Emacs, for instance, we use `w32' in file names of +Windows-specific files, but the macro for Windows conditionals is +called `WINDOWSNT'. + + It is a good idea to define the "feature test macro" `_GNU_SOURCE' +when compiling your C files. When you compile on GNU or GNU/Linux, +this will enable the declarations of GNU library extension functions, +and that will usually give you a compiler error message if you define +the same function names in some other way in your program. (You don't +have to actually _use_ these functions, if you prefer to make the +program more portable to other systems.) + + But whether or not you use these GNU extensions, you should avoid +using their names for any other meanings. Doing so would make it hard +to move your code into other GNU programs. + + +File: standards.info, Node: CPU Portability, Next: System Functions, Prev: System Portability, Up: Writing C + +5.6 Portability between CPUs +============================ + +Even GNU systems will differ because of differences among CPU +types--for example, difference in byte ordering and alignment +requirements. It is absolutely essential to handle these differences. +However, don't make any effort to cater to the possibility that an +`int' will be less than 32 bits. We don't support 16-bit machines in +GNU. + + Similarly, don't make any effort to cater to the possibility that +`long' will be smaller than predefined types like `size_t'. For +example, the following code is ok: + + printf ("size = %lu\n", (unsigned long) sizeof array); + printf ("diff = %ld\n", (long) (pointer2 - pointer1)); + + 1989 Standard C requires this to work, and we know of only one +counterexample: 64-bit programs on Microsoft Windows. We will leave it +to those who want to port GNU programs to that environment to figure +out how to do it. + + Predefined file-size types like `off_t' are an exception: they are +longer than `long' on many platforms, so code like the above won't work +with them. One way to print an `off_t' value portably is to print its +digits yourself, one by one. + + Don't assume that the address of an `int' object is also the address +of its least-significant byte. This is false on big-endian machines. +Thus, don't make the following mistake: + + int c; + ... + while ((c = getchar ()) != EOF) + write (file_descriptor, &c, 1); + +Instead, use `unsigned char' as follows. (The `unsigned' is for +portability to unusual systems where `char' is signed and where there +is integer overflow checking.) + + int c; + while ((c = getchar ()) != EOF) + { + unsigned char u = c; + write (file_descriptor, &u, 1); + } + + It used to be ok to not worry about the difference between pointers +and integers when passing arguments to functions. However, on most +modern 64-bit machines pointers are wider than `int'. Conversely, +integer types like `long long int' and `off_t' are wider than pointers +on most modern 32-bit machines. Hence it's often better nowadays to +use prototypes to define functions whose argument types are not trivial. + + In particular, if functions accept varying argument counts or types +they should be declared using prototypes containing `...' and defined +using `stdarg.h'. For an example of this, please see the Gnulib +(http://www.gnu.org/software/gnulib/) error module, which declares and +defines the following function: + + /* Print a message with `fprintf (stderr, FORMAT, ...)'; + if ERRNUM is nonzero, follow it with ": " and strerror (ERRNUM). + If STATUS is nonzero, terminate the program with `exit (STATUS)'. */ + + void error (int status, int errnum, const char *format, ...); + + A simple way to use the Gnulib error module is to obtain the two +source files `error.c' and `error.h' from the Gnulib library source +code repository at +`http://savannah.gnu.org/cgi-bin/viewcvs/gnulib/gnulib/lib/'. Here's a +sample use: + + #include "error.h" + #include <errno.h> + #include <stdio.h> + + char *program_name = "myprogram"; + + FILE * + xfopen (char const *name) + { + FILE *fp = fopen (name, "r"); + if (! fp) + error (1, errno, "cannot read %s", name); + return fp; + } + + Avoid casting pointers to integers if you can. Such casts greatly +reduce portability, and in most programs they are easy to avoid. In the +cases where casting pointers to integers is essential--such as, a Lisp +interpreter which stores type information as well as an address in one +word--you'll have to make explicit provisions to handle different word +sizes. You will also need to make provision for systems in which the +normal range of addresses you can get from `malloc' starts far away +from zero. + + +File: standards.info, Node: System Functions, Next: Internationalization, Prev: CPU Portability, Up: Writing C + +5.7 Calling System Functions +============================ + +C implementations differ substantially. Standard C reduces but does +not eliminate the incompatibilities; meanwhile, many GNU packages still +support pre-standard compilers because this is not hard to do. This +chapter gives recommendations for how to use the more-or-less standard C +library functions to avoid unnecessary loss of portability. + + * Don't use the return value of `sprintf'. It returns the number of + characters written on some systems, but not on all systems. + + * Be aware that `vfprintf' is not always available. + + * `main' should be declared to return type `int'. It should + terminate either by calling `exit' or by returning the integer + status code; make sure it cannot ever return an undefined value. + + * Don't declare system functions explicitly. + + Almost any declaration for a system function is wrong on some + system. To minimize conflicts, leave it to the system header + files to declare system functions. If the headers don't declare a + function, let it remain undeclared. + + While it may seem unclean to use a function without declaring it, + in practice this works fine for most system library functions on + the systems where this really happens; thus, the disadvantage is + only theoretical. By contrast, actual declarations have + frequently caused actual conflicts. + + * If you must declare a system function, don't specify the argument + types. Use an old-style declaration, not a Standard C prototype. + The more you specify about the function, the more likely a + conflict. + + * In particular, don't unconditionally declare `malloc' or `realloc'. + + Most GNU programs use those functions just once, in functions + conventionally named `xmalloc' and `xrealloc'. These functions + call `malloc' and `realloc', respectively, and check the results. + + Because `xmalloc' and `xrealloc' are defined in your program, you + can declare them in other files without any risk of type conflict. + + On most systems, `int' is the same length as a pointer; thus, the + calls to `malloc' and `realloc' work fine. For the few + exceptional systems (mostly 64-bit machines), you can use + *conditionalized* declarations of `malloc' and `realloc'--or put + these declarations in configuration files specific to those + systems. + + * The string functions require special treatment. Some Unix systems + have a header file `string.h'; others have `strings.h'. Neither + file name is portable. There are two things you can do: use + Autoconf to figure out which file to include, or don't include + either file. + + * If you don't include either strings file, you can't get + declarations for the string functions from the header file in the + usual way. + + That causes less of a problem than you might think. The newer + standard string functions should be avoided anyway because many + systems still don't support them. The string functions you can + use are these: + + strcpy strncpy strcat strncat + strlen strcmp strncmp + strchr strrchr + + The copy and concatenate functions work fine without a declaration + as long as you don't use their values. Using their values without + a declaration fails on systems where the width of a pointer + differs from the width of `int', and perhaps in other cases. It + is trivial to avoid using their values, so do that. + + The compare functions and `strlen' work fine without a declaration + on most systems, possibly all the ones that GNU software runs on. + You may find it necessary to declare them *conditionally* on a few + systems. + + The search functions must be declared to return `char *'. Luckily, + there is no variation in the data type they return. But there is + variation in their names. Some systems give these functions the + names `index' and `rindex'; other systems use the names `strchr' + and `strrchr'. Some systems support both pairs of names, but + neither pair works on all systems. + + You should pick a single pair of names and use it throughout your + program. (Nowadays, it is better to choose `strchr' and `strrchr' + for new programs, since those are the standard names.) Declare + both of those names as functions returning `char *'. On systems + which don't support those names, define them as macros in terms of + the other pair. For example, here is what to put at the beginning + of your file (or in a header) if you want to use the names + `strchr' and `strrchr' throughout: + + #ifndef HAVE_STRCHR + #define strchr index + #endif + #ifndef HAVE_STRRCHR + #define strrchr rindex + #endif + + char *strchr (); + char *strrchr (); + + Here we assume that `HAVE_STRCHR' and `HAVE_STRRCHR' are macros +defined in systems where the corresponding functions exist. One way to +get them properly defined is to use Autoconf. + + +File: standards.info, Node: Internationalization, Next: Character Set, Prev: System Functions, Up: Writing C + +5.8 Internationalization +======================== + +GNU has a library called GNU gettext that makes it easy to translate the +messages in a program into various languages. You should use this +library in every program. Use English for the messages as they appear +in the program, and let gettext provide the way to translate them into +other languages. + + Using GNU gettext involves putting a call to the `gettext' macro +around each string that might need translation--like this: + + printf (gettext ("Processing file `%s'...")); + +This permits GNU gettext to replace the string `"Processing file +`%s'..."' with a translated version. + + Once a program uses gettext, please make a point of writing calls to +`gettext' when you add new strings that call for translation. + + Using GNU gettext in a package involves specifying a "text domain +name" for the package. The text domain name is used to separate the +translations for this package from the translations for other packages. +Normally, the text domain name should be the same as the name of the +package--for example, `coreutils' for the GNU core utilities. + + To enable gettext to work well, avoid writing code that makes +assumptions about the structure of words or sentences. When you want +the precise text of a sentence to vary depending on the data, use two or +more alternative string constants each containing a complete sentences, +rather than inserting conditionalized words or phrases into a single +sentence framework. + + Here is an example of what not to do: + + printf ("%s is full", capacity > 5000000 ? "disk" : "floppy disk"); + + If you apply gettext to all strings, like this, + + printf (gettext ("%s is full"), + capacity > 5000000 ? gettext ("disk") : gettext ("floppy disk")); + +the translator will hardly know that "disk" and "floppy disk" are meant +to be substituted in the other string. Worse, in some languages (like +French) the construction will not work: the translation of the word +"full" depends on the gender of the first part of the sentence; it +happens to be not the same for "disk" as for "floppy disk". + + Complete sentences can be translated without problems: + + printf (capacity > 5000000 ? gettext ("disk is full") + : gettext ("floppy disk is full")); + + A similar problem appears at the level of sentence structure with +this code: + + printf ("# Implicit rule search has%s been done.\n", + f->tried_implicit ? "" : " not"); + +Adding `gettext' calls to this code cannot give correct results for all +languages, because negation in some languages requires adding words at +more than one place in the sentence. By contrast, adding `gettext' +calls does the job straightforwardly if the code starts out like this: + + printf (f->tried_implicit + ? "# Implicit rule search has been done.\n", + : "# Implicit rule search has not been done.\n"); + + Another example is this one: + + printf ("%d file%s processed", nfiles, + nfiles != 1 ? "s" : ""); + +The problem with this example is that it assumes that plurals are made +by adding `s'. If you apply gettext to the format string, like this, + + printf (gettext ("%d file%s processed"), nfiles, + nfiles != 1 ? "s" : ""); + +the message can use different words, but it will still be forced to use +`s' for the plural. Here is a better way, with gettext being applied to +the two strings independently: + + printf ((nfiles != 1 ? gettext ("%d files processed") + : gettext ("%d file processed")), + nfiles); + +But this still doesn't work for languages like Polish, which has three +plural forms: one for nfiles == 1, one for nfiles == 2, 3, 4, 22, 23, +24, ... and one for the rest. The GNU `ngettext' function solves this +problem: + + printf (ngettext ("%d files processed", "%d file processed", nfiles), + nfiles); + + +File: standards.info, Node: Character Set, Next: Quote Characters, Prev: Internationalization, Up: Writing C + +5.9 Character Set +================= + +Sticking to the ASCII character set (plain text, 7-bit characters) is +preferred in GNU source code comments, text documents, and other +contexts, unless there is good reason to do something else because of +the application domain. For example, if source code deals with the +French Revolutionary calendar, it is OK if its literal strings contain +accented characters in month names like "Flore'al". Also, it is OK to +use non-ASCII characters to represent proper names of contributors in +change logs (*note Change Logs::). + + If you need to use non-ASCII characters, you should normally stick +with one encoding, as one cannot in general mix encodings reliably. + + +File: standards.info, Node: Quote Characters, Next: Mmap, Prev: Character Set, Up: Writing C + +5.10 Quote Characters +===================== + +In the C locale, GNU programs should stick to plain ASCII for quotation +characters in messages to users: preferably 0x60 (``') for left quotes +and 0x27 (`'') for right quotes. It is ok, but not required, to use +locale-specific quotes in other locales. + + The Gnulib (http://www.gnu.org/software/gnulib/) `quote' and +`quotearg' modules provide a reasonably straightforward way to support +locale-specific quote characters, as well as taking care of other +issues, such as quoting a filename that itself contains a quote +character. See the Gnulib documentation for usage details. + + In any case, the documentation for your program should clearly +specify how it does quoting, if different than the preferred method of +``' and `''. This is especially important if the output of your +program is ever likely to be parsed by another program. + + Quotation characters are a difficult area in the computing world at +this time: there are no true left or right quote characters in Latin1; +the ``' character we use was standardized there as a grave accent. +Moreover, Latin1 is still not universally usable. + + Unicode contains the unambiguous quote characters required, and its +common encoding UTF-8 is upward compatible with Latin1. However, +Unicode and UTF-8 are not universally well-supported, either. + + This may change over the next few years, and then we will revisit +this. + + +File: standards.info, Node: Mmap, Prev: Quote Characters, Up: Writing C + +5.11 Mmap +========= + +Don't assume that `mmap' either works on all files or fails for all +files. It may work on some files and fail on others. + + The proper way to use `mmap' is to try it on the specific file for +which you want to use it--and if `mmap' doesn't work, fall back on +doing the job in another way using `read' and `write'. + + The reason this precaution is needed is that the GNU kernel (the +HURD) provides a user-extensible file system, in which there can be many +different kinds of "ordinary files." Many of them support `mmap', but +some do not. It is important to make programs handle all these kinds +of files. + + +File: standards.info, Node: Documentation, Next: Managing Releases, Prev: Writing C, Up: Top + +6 Documenting Programs +********************** + +A GNU program should ideally come with full free documentation, adequate +for both reference and tutorial purposes. If the package can be +programmed or extended, the documentation should cover programming or +extending it, as well as just using it. + +* Menu: + +* GNU Manuals:: Writing proper manuals. +* Doc Strings and Manuals:: Compiling doc strings doesn't make a manual. +* Manual Structure Details:: Specific structure conventions. +* License for Manuals:: Writing the distribution terms for a manual. +* Manual Credits:: Giving credit to documentation contributors. +* Printed Manuals:: Mentioning the printed manual. +* NEWS File:: NEWS files supplement manuals. +* Change Logs:: Recording changes. +* Man Pages:: Man pages are secondary. +* Reading other Manuals:: How far you can go in learning + from other manuals. + + +File: standards.info, Node: GNU Manuals, Next: Doc Strings and Manuals, Up: Documentation + +6.1 GNU Manuals +=============== + +The preferred document format for the GNU system is the Texinfo +formatting language. Every GNU package should (ideally) have +documentation in Texinfo both for reference and for learners. Texinfo +makes it possible to produce a good quality formatted book, using TeX, +and to generate an Info file. It is also possible to generate HTML +output from Texinfo source. See the Texinfo manual, either the +hardcopy, or the on-line version available through `info' or the Emacs +Info subsystem (`C-h i'). + + Nowadays some other formats such as Docbook and Sgmltexi can be +converted automatically into Texinfo. It is ok to produce the Texinfo +documentation by conversion this way, as long as it gives good results. + + Make sure your manual is clear to a reader who knows nothing about +the topic and reads it straight through. This means covering basic +topics at the beginning, and advanced topics only later. This also +means defining every specialized term when it is first used. + + Programmers tend to carry over the structure of the program as the +structure for its documentation. But this structure is not necessarily +good for explaining how to use the program; it may be irrelevant and +confusing for a user. + + Instead, the right way to structure documentation is according to the +concepts and questions that a user will have in mind when reading it. +This principle applies at every level, from the lowest (ordering +sentences in a paragraph) to the highest (ordering of chapter topics +within the manual). Sometimes this structure of ideas matches the +structure of the implementation of the software being documented--but +often they are different. An important part of learning to write good +documentation is to learn to notice when you have unthinkingly +structured the documentation like the implementation, stop yourself, +and look for better alternatives. + + For example, each program in the GNU system probably ought to be +documented in one manual; but this does not mean each program should +have its own manual. That would be following the structure of the +implementation, rather than the structure that helps the user +understand. + + Instead, each manual should cover a coherent _topic_. For example, +instead of a manual for `diff' and a manual for `diff3', we have one +manual for "comparison of files" which covers both of those programs, +as well as `cmp'. By documenting these programs together, we can make +the whole subject clearer. + + The manual which discusses a program should certainly document all of +the program's command-line options and all of its commands. It should +give examples of their use. But don't organize the manual as a list of +features. Instead, organize it logically, by subtopics. Address the +questions that a user will ask when thinking about the job that the +program does. Don't just tell the reader what each feature can do--say +what jobs it is good for, and show how to use it for those jobs. +Explain what is recommended usage, and what kinds of usage users should +avoid. + + In general, a GNU manual should serve both as tutorial and reference. +It should be set up for convenient access to each topic through Info, +and for reading straight through (appendixes aside). A GNU manual +should give a good introduction to a beginner reading through from the +start, and should also provide all the details that hackers want. The +Bison manual is a good example of this--please take a look at it to see +what we mean. + + That is not as hard as it first sounds. Arrange each chapter as a +logical breakdown of its topic, but order the sections, and write their +text, so that reading the chapter straight through makes sense. Do +likewise when structuring the book into chapters, and when structuring a +section into paragraphs. The watchword is, _at each point, address the +most fundamental and important issue raised by the preceding text._ + + If necessary, add extra chapters at the beginning of the manual which +are purely tutorial and cover the basics of the subject. These provide +the framework for a beginner to understand the rest of the manual. The +Bison manual provides a good example of how to do this. + + To serve as a reference, a manual should have an Index that list all +the functions, variables, options, and important concepts that are part +of the program. One combined Index should do for a short manual, but +sometimes for a complex package it is better to use multiple indices. +The Texinfo manual includes advice on preparing good index entries, see +*Note Making Index Entries: (texinfo)Index Entries, and see *Note +Defining the Entries of an Index: (texinfo)Indexing Commands. + + Don't use Unix man pages as a model for how to write GNU +documentation; most of them are terse, badly structured, and give +inadequate explanation of the underlying concepts. (There are, of +course, some exceptions.) Also, Unix man pages use a particular format +which is different from what we use in GNU manuals. + + Please include an email address in the manual for where to report +bugs _in the text of the manual_. + + Please do not use the term "pathname" that is used in Unix +documentation; use "file name" (two words) instead. We use the term +"path" only for search paths, which are lists of directory names. + + Please do not use the term "illegal" to refer to erroneous input to +a computer program. Please use "invalid" for this, and reserve the +term "illegal" for activities prohibited by law. + + Please do not write `()' after a function name just to indicate it +is a function. `foo ()' is not a function, it is a function call with +no arguments. + + +File: standards.info, Node: Doc Strings and Manuals, Next: Manual Structure Details, Prev: GNU Manuals, Up: Documentation + +6.2 Doc Strings and Manuals +=========================== + +Some programming systems, such as Emacs, provide a documentation string +for each function, command or variable. You may be tempted to write a +reference manual by compiling the documentation strings and writing a +little additional text to go around them--but you must not do it. That +approach is a fundamental mistake. The text of well-written +documentation strings will be entirely wrong for a manual. + + A documentation string needs to stand alone--when it appears on the +screen, there will be no other text to introduce or explain it. +Meanwhile, it can be rather informal in style. + + The text describing a function or variable in a manual must not stand +alone; it appears in the context of a section or subsection. Other text +at the beginning of the section should explain some of the concepts, and +should often make some general points that apply to several functions or +variables. The previous descriptions of functions and variables in the +section will also have given information about the topic. A description +written to stand alone would repeat some of that information; this +redundancy looks bad. Meanwhile, the informality that is acceptable in +a documentation string is totally unacceptable in a manual. + + The only good way to use documentation strings in writing a good +manual is to use them as a source of information for writing good text. + + +File: standards.info, Node: Manual Structure Details, Next: License for Manuals, Prev: Doc Strings and Manuals, Up: Documentation + +6.3 Manual Structure Details +============================ + +The title page of the manual should state the version of the programs or +packages documented in the manual. The Top node of the manual should +also contain this information. If the manual is changing more +frequently than or independent of the program, also state a version +number for the manual in both of these places. + + Each program documented in the manual should have a node named +`PROGRAM Invocation' or `Invoking PROGRAM'. This node (together with +its subnodes, if any) should describe the program's command line +arguments and how to run it (the sort of information people would look +for in a man page). Start with an `@example' containing a template for +all the options and arguments that the program uses. + + Alternatively, put a menu item in some menu whose item name fits one +of the above patterns. This identifies the node which that item points +to as the node for this purpose, regardless of the node's actual name. + + The `--usage' feature of the Info reader looks for such a node or +menu item in order to find the relevant text, so it is essential for +every Texinfo file to have one. + + If one manual describes several programs, it should have such a node +for each program described in the manual. + + +File: standards.info, Node: License for Manuals, Next: Manual Credits, Prev: Manual Structure Details, Up: Documentation + +6.4 License for Manuals +======================= + +Please use the GNU Free Documentation License for all GNU manuals that +are more than a few pages long. Likewise for a collection of short +documents--you only need one copy of the GNU FDL for the whole +collection. For a single short document, you can use a very permissive +non-copyleft license, to avoid taking up space with a long license. + + See `http://www.gnu.org/copyleft/fdl-howto.html' for more explanation +of how to employ the GFDL. + + Note that it is not obligatory to include a copy of the GNU GPL or +GNU LGPL in a manual whose license is neither the GPL nor the LGPL. It +can be a good idea to include the program's license in a large manual; +in a short manual, whose size would be increased considerably by +including the program's license, it is probably better not to include +it. + + +File: standards.info, Node: Manual Credits, Next: Printed Manuals, Prev: License for Manuals, Up: Documentation + +6.5 Manual Credits +================== + +Please credit the principal human writers of the manual as the authors, +on the title page of the manual. If a company sponsored the work, thank +the company in a suitable place in the manual, but do not cite the +company as an author. + + +File: standards.info, Node: Printed Manuals, Next: NEWS File, Prev: Manual Credits, Up: Documentation + +6.6 Printed Manuals +=================== + +The FSF publishes some GNU manuals in printed form. To encourage sales +of these manuals, the on-line versions of the manual should mention at +the very start that the printed manual is available and should point at +information for getting it--for instance, with a link to the page +`http://www.gnu.org/order/order.html'. This should not be included in +the printed manual, though, because there it is redundant. + + It is also useful to explain in the on-line forms of the manual how +the user can print out the manual from the sources. + + +File: standards.info, Node: NEWS File, Next: Change Logs, Prev: Printed Manuals, Up: Documentation + +6.7 The NEWS File +================= + +In addition to its manual, the package should have a file named `NEWS' +which contains a list of user-visible changes worth mentioning. In +each new release, add items to the front of the file and identify the +version they pertain to. Don't discard old items; leave them in the +file after the newer items. This way, a user upgrading from any +previous version can see what is new. + + If the `NEWS' file gets very long, move some of the older items into +a file named `ONEWS' and put a note at the end referring the user to +that file. + + +File: standards.info, Node: Change Logs, Next: Man Pages, Prev: NEWS File, Up: Documentation + +6.8 Change Logs +=============== + +Keep a change log to describe all the changes made to program source +files. The purpose of this is so that people investigating bugs in the +future will know about the changes that might have introduced the bug. +Often a new bug can be found by looking at what was recently changed. +More importantly, change logs can help you eliminate conceptual +inconsistencies between different parts of a program, by giving you a +history of how the conflicting concepts arose and who they came from. + +* Menu: + +* Change Log Concepts:: +* Style of Change Logs:: +* Simple Changes:: +* Conditional Changes:: +* Indicating the Part Changed:: + + +File: standards.info, Node: Change Log Concepts, Next: Style of Change Logs, Up: Change Logs + +6.8.1 Change Log Concepts +------------------------- + +You can think of the change log as a conceptual "undo list" which +explains how earlier versions were different from the current version. +People can see the current version; they don't need the change log to +tell them what is in it. What they want from a change log is a clear +explanation of how the earlier version differed. + + The change log file is normally called `ChangeLog' and covers an +entire directory. Each directory can have its own change log, or a +directory can use the change log of its parent directory-it's up to you. + + Another alternative is to record change log information with a +version control system such as RCS or CVS. This can be converted +automatically to a `ChangeLog' file using `rcs2log'; in Emacs, the +command `C-x v a' (`vc-update-change-log') does the job. + + There's no need to describe the full purpose of the changes or how +they work together. If you think that a change calls for explanation, +you're probably right. Please do explain it--but please put the +explanation in comments in the code, where people will see it whenever +they see the code. For example, "New function" is enough for the +change log when you add a function, because there should be a comment +before the function definition to explain what it does. + + In the past, we recommended not mentioning changes in non-software +files (manuals, help files, etc.) in change logs. However, we've been +advised that it is a good idea to include them, for the sake of +copyright records. + + However, sometimes it is useful to write one line to describe the +overall purpose of a batch of changes. + + The easiest way to add an entry to `ChangeLog' is with the Emacs +command `M-x add-change-log-entry'. An entry should have an asterisk, +the name of the changed file, and then in parentheses the name of the +changed functions, variables or whatever, followed by a colon. Then +describe the changes you made to that function or variable. + + +File: standards.info, Node: Style of Change Logs, Next: Simple Changes, Prev: Change Log Concepts, Up: Change Logs + +6.8.2 Style of Change Logs +-------------------------- + +Here are some simple examples of change log entries, starting with the +header line that says who made the change and when it was installed, +followed by descriptions of specific changes. (These examples are +drawn from Emacs and GCC.) + + 1998-08-17 Richard Stallman <rms@gnu.org> + + * register.el (insert-register): Return nil. + (jump-to-register): Likewise. + + * sort.el (sort-subr): Return nil. + + * tex-mode.el (tex-bibtex-file, tex-file, tex-region): + Restart the tex shell if process is gone or stopped. + (tex-shell-running): New function. + + * expr.c (store_one_arg): Round size up for move_block_to_reg. + (expand_call): Round up when emitting USE insns. + * stmt.c (assign_parms): Round size up for move_block_from_reg. + + It's important to name the changed function or variable in full. +Don't abbreviate function or variable names, and don't combine them. +Subsequent maintainers will often search for a function name to find all +the change log entries that pertain to it; if you abbreviate the name, +they won't find it when they search. + + For example, some people are tempted to abbreviate groups of function +names by writing `* register.el ({insert,jump-to}-register)'; this is +not a good idea, since searching for `jump-to-register' or +`insert-register' would not find that entry. + + Separate unrelated change log entries with blank lines. When two +entries represent parts of the same change, so that they work together, +then don't put blank lines between them. Then you can omit the file +name and the asterisk when successive entries are in the same file. + + Break long lists of function names by closing continued lines with +`)', rather than `,', and opening the continuation with `(' as in this +example: + + * keyboard.c (menu_bar_items, tool_bar_items) + (Fexecute_extended_command): Deal with `keymap' property. + + When you install someone else's changes, put the contributor's name +in the change log entry rather than in the text of the entry. In other +words, write this: + + 2002-07-14 John Doe <jdoe@gnu.org> + + * sewing.c: Make it sew. + +rather than this: + + 2002-07-14 Usual Maintainer <usual@gnu.org> + + * sewing.c: Make it sew. Patch by jdoe@gnu.org. + + As for the date, that should be the date you applied the change. + + +File: standards.info, Node: Simple Changes, Next: Conditional Changes, Prev: Style of Change Logs, Up: Change Logs + +6.8.3 Simple Changes +-------------------- + +Certain simple kinds of changes don't need much detail in the change +log. + + When you change the calling sequence of a function in a simple +fashion, and you change all the callers of the function to use the new +calling sequence, there is no need to make individual entries for all +the callers that you changed. Just write in the entry for the function +being called, "All callers changed"--like this: + + * keyboard.c (Fcommand_execute): New arg SPECIAL. + All callers changed. + + When you change just comments or doc strings, it is enough to write +an entry for the file, without mentioning the functions. Just "Doc +fixes" is enough for the change log. + + There's no technical need to make change log entries for +documentation files. This is because documentation is not susceptible +to bugs that are hard to fix. Documentation does not consist of parts +that must interact in a precisely engineered fashion. To correct an +error, you need not know the history of the erroneous passage; it is +enough to compare what the documentation says with the way the program +actually works. + + However, you should keep change logs for documentation files when the +project gets copyright assignments from its contributors, so as to make +the records of authorship more accurate. + + +File: standards.info, Node: Conditional Changes, Next: Indicating the Part Changed, Prev: Simple Changes, Up: Change Logs + +6.8.4 Conditional Changes +------------------------- + +C programs often contain compile-time `#if' conditionals. Many changes +are conditional; sometimes you add a new definition which is entirely +contained in a conditional. It is very useful to indicate in the +change log the conditions for which the change applies. + + Our convention for indicating conditional changes is to use square +brackets around the name of the condition. + + Here is a simple example, describing a change which is conditional +but does not have a function or entity name associated with it: + + * xterm.c [SOLARIS2]: Include string.h. + + Here is an entry describing a new definition which is entirely +conditional. This new definition for the macro `FRAME_WINDOW_P' is +used only when `HAVE_X_WINDOWS' is defined: + + * frame.h [HAVE_X_WINDOWS] (FRAME_WINDOW_P): Macro defined. + + Here is an entry for a change within the function `init_display', +whose definition as a whole is unconditional, but the changes themselves +are contained in a `#ifdef HAVE_LIBNCURSES' conditional: + + * dispnew.c (init_display) [HAVE_LIBNCURSES]: If X, call tgetent. + + Here is an entry for a change that takes affect only when a certain +macro is _not_ defined: + + (gethostname) [!HAVE_SOCKETS]: Replace with winsock version. + + +File: standards.info, Node: Indicating the Part Changed, Prev: Conditional Changes, Up: Change Logs + +6.8.5 Indicating the Part Changed +--------------------------------- + +Indicate the part of a function which changed by using angle brackets +enclosing an indication of what the changed part does. Here is an entry +for a change in the part of the function `sh-while-getopts' that deals +with `sh' commands: + + * progmodes/sh-script.el (sh-while-getopts) <sh>: Handle case that + user-specified option string is empty. + + +File: standards.info, Node: Man Pages, Next: Reading other Manuals, Prev: Change Logs, Up: Documentation + +6.9 Man Pages +============= + +In the GNU project, man pages are secondary. It is not necessary or +expected for every GNU program to have a man page, but some of them do. +It's your choice whether to include a man page in your program. + + When you make this decision, consider that supporting a man page +requires continual effort each time the program is changed. The time +you spend on the man page is time taken away from more useful work. + + For a simple program which changes little, updating the man page may +be a small job. Then there is little reason not to include a man page, +if you have one. + + For a large program that changes a great deal, updating a man page +may be a substantial burden. If a user offers to donate a man page, +you may find this gift costly to accept. It may be better to refuse +the man page unless the same person agrees to take full responsibility +for maintaining it--so that you can wash your hands of it entirely. If +this volunteer later ceases to do the job, then don't feel obliged to +pick it up yourself; it may be better to withdraw the man page from the +distribution until someone else agrees to update it. + + When a program changes only a little, you may feel that the +discrepancies are small enough that the man page remains useful without +updating. If so, put a prominent note near the beginning of the man +page explaining that you don't maintain it and that the Texinfo manual +is more authoritative. The note should say how to access the Texinfo +documentation. + + Be sure that man pages include a copyright statement and free +license. The simple all-permissive license is appropriate for simple +man pages: + + Copying and distribution of this file, with or without modification, + are permitted in any medium without royalty provided the copyright + notice and this notice are preserved. + + For long man pages, with enough explanation and documentation that +they can be considered true manuals, use the GFDL (*note License for +Manuals::). + + Finally, the GNU help2man program +(`http://www.gnu.org/software/help2man/') is one way to automate +generation of a man page, in this case from `--help' output. This is +sufficient in many cases. + + +File: standards.info, Node: Reading other Manuals, Prev: Man Pages, Up: Documentation + +6.10 Reading other Manuals +========================== + +There may be non-free books or documentation files that describe the +program you are documenting. + + It is ok to use these documents for reference, just as the author of +a new algebra textbook can read other books on algebra. A large portion +of any non-fiction book consists of facts, in this case facts about how +a certain program works, and these facts are necessarily the same for +everyone who writes about the subject. But be careful not to copy your +outline structure, wording, tables or examples from preexisting non-free +documentation. Copying from free documentation may be ok; please check +with the FSF about the individual case. + + +File: standards.info, Node: Managing Releases, Next: References, Prev: Documentation, Up: Top + +7 The Release Process +********************* + +Making a release is more than just bundling up your source files in a +tar file and putting it up for FTP. You should set up your software so +that it can be configured to run on a variety of systems. Your Makefile +should conform to the GNU standards described below, and your directory +layout should also conform to the standards discussed below. Doing so +makes it easy to include your package into the larger framework of all +GNU software. + +* Menu: + +* Configuration:: How configuration of GNU packages should work. +* Makefile Conventions:: Makefile conventions. +* Releases:: Making releases + + +File: standards.info, Node: Configuration, Next: Makefile Conventions, Up: Managing Releases + +7.1 How Configuration Should Work +================================= + +Each GNU distribution should come with a shell script named +`configure'. This script is given arguments which describe the kind of +machine and system you want to compile the program for. + + The `configure' script must record the configuration options so that +they affect compilation. + + One way to do this is to make a link from a standard name such as +`config.h' to the proper configuration file for the chosen system. If +you use this technique, the distribution should _not_ contain a file +named `config.h'. This is so that people won't be able to build the +program without configuring it first. + + Another thing that `configure' can do is to edit the Makefile. If +you do this, the distribution should _not_ contain a file named +`Makefile'. Instead, it should include a file `Makefile.in' which +contains the input used for editing. Once again, this is so that people +won't be able to build the program without configuring it first. + + If `configure' does write the `Makefile', then `Makefile' should +have a target named `Makefile' which causes `configure' to be rerun, +setting up the same configuration that was set up last time. The files +that `configure' reads should be listed as dependencies of `Makefile'. + + All the files which are output from the `configure' script should +have comments at the beginning explaining that they were generated +automatically using `configure'. This is so that users won't think of +trying to edit them by hand. + + The `configure' script should write a file named `config.status' +which describes which configuration options were specified when the +program was last configured. This file should be a shell script which, +if run, will recreate the same configuration. + + The `configure' script should accept an option of the form +`--srcdir=DIRNAME' to specify the directory where sources are found (if +it is not the current directory). This makes it possible to build the +program in a separate directory, so that the actual source directory is +not modified. + + If the user does not specify `--srcdir', then `configure' should +check both `.' and `..' to see if it can find the sources. If it finds +the sources in one of these places, it should use them from there. +Otherwise, it should report that it cannot find the sources, and should +exit with nonzero status. + + Usually the easy way to support `--srcdir' is by editing a +definition of `VPATH' into the Makefile. Some rules may need to refer +explicitly to the specified source directory. To make this possible, +`configure' can add to the Makefile a variable named `srcdir' whose +value is precisely the specified directory. + + The `configure' script should also take an argument which specifies +the type of system to build the program for. This argument should look +like this: + + CPU-COMPANY-SYSTEM + + For example, an Athlon-based GNU/Linux system might be +`i686-pc-linux-gnu'. + + The `configure' script needs to be able to decode all plausible +alternatives for how to describe a machine. Thus, +`athlon-pc-gnu/linux' would be a valid alias. There is a shell script +called `config.sub' +(http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.sub) +that you can use as a subroutine to validate system types and +canonicalize aliases. + + The `configure' script should also take the option +`--build=BUILDTYPE', which should be equivalent to a plain BUILDTYPE +argument. For example, `configure --build=i686-pc-linux-gnu' is +equivalent to `configure i686-pc-linux-gnu'. When the build type is +not specified by an option or argument, the `configure' script should +normally guess it using the shell script `config.guess' +(http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/config/config/config.guess). + + Other options are permitted to specify in more detail the software +or hardware present on the machine, to include or exclude optional parts +of the package, or to adjust the name of some tools or arguments to +them: + +`--enable-FEATURE[=PARAMETER]' + Configure the package to build and install an optional user-level + facility called FEATURE. This allows users to choose which + optional features to include. Giving an optional PARAMETER of + `no' should omit FEATURE, if it is built by default. + + No `--enable' option should *ever* cause one feature to replace + another. No `--enable' option should ever substitute one useful + behavior for another useful behavior. The only proper use for + `--enable' is for questions of whether to build part of the program + or exclude it. + +`--with-PACKAGE' + The package PACKAGE will be installed, so configure this package + to work with PACKAGE. + + Possible values of PACKAGE include `gnu-as' (or `gas'), `gnu-ld', + `gnu-libc', `gdb', `x', and `x-toolkit'. + + Do not use a `--with' option to specify the file name to use to + find certain files. That is outside the scope of what `--with' + options are for. + +`VARIABLE=VALUE' + Set the value of the variable VARIABLE to VALUE. This is used to + override the default values of commands or arguments in the build + process. For example, the user could issue `configure CFLAGS=-g + CXXFLAGS=-g' to build with debugging information and without the + default optimization. + + Specifying variables as arguments to `configure', like this: + ./configure CC=gcc + is preferable to setting them in environment variables: + CC=gcc ./configure + as it helps to recreate the same configuration later with + `config.status'. + + All `configure' scripts should accept all of the "detail" options +and the variable settings, whether or not they make any difference to +the particular package at hand. In particular, they should accept any +option that starts with `--with-' or `--enable-'. This is so users +will be able to configure an entire GNU source tree at once with a +single set of options. + + You will note that the categories `--with-' and `--enable-' are +narrow: they *do not* provide a place for any sort of option you might +think of. That is deliberate. We want to limit the possible +configuration options in GNU software. We do not want GNU programs to +have idiosyncratic configuration options. + + Packages that perform part of the compilation process may support +cross-compilation. In such a case, the host and target machines for the +program may be different. + + The `configure' script should normally treat the specified type of +system as both the host and the target, thus producing a program which +works for the same type of machine that it runs on. + + To compile a program to run on a host type that differs from the +build type, use the configure option `--host=HOSTTYPE', where HOSTTYPE +uses the same syntax as BUILDTYPE. The host type normally defaults to +the build type. + + To configure a cross-compiler, cross-assembler, or what have you, you +should specify a target different from the host, using the configure +option `--target=TARGETTYPE'. The syntax for TARGETTYPE is the same as +for the host type. So the command would look like this: + + ./configure --host=HOSTTYPE --target=TARGETTYPE + + The target type normally defaults to the host type. Programs for +which cross-operation is not meaningful need not accept the `--target' +option, because configuring an entire operating system for +cross-operation is not a meaningful operation. + + Some programs have ways of configuring themselves automatically. If +your program is set up to do this, your `configure' script can simply +ignore most of its arguments. + + +File: standards.info, Node: Makefile Conventions, Next: Releases, Prev: Configuration, Up: Managing Releases + +7.2 Makefile Conventions +======================== + +This node describes conventions for writing the Makefiles for GNU +programs. Using Automake will help you write a Makefile that follows +these conventions. + +* Menu: + +* Makefile Basics:: General conventions for Makefiles. +* Utilities in Makefiles:: Utilities to be used in Makefiles. +* Command Variables:: Variables for specifying commands. +* DESTDIR:: Supporting staged installs. +* Directory Variables:: Variables for installation directories. +* Standard Targets:: Standard targets for users. +* Install Command Categories:: Three categories of commands in the `install' + rule: normal, pre-install and post-install. + + +File: standards.info, Node: Makefile Basics, Next: Utilities in Makefiles, Up: Makefile Conventions + +7.2.1 General Conventions for Makefiles +--------------------------------------- + +Every Makefile should contain this line: + + SHELL = /bin/sh + +to avoid trouble on systems where the `SHELL' variable might be +inherited from the environment. (This is never a problem with GNU +`make'.) + + Different `make' programs have incompatible suffix lists and +implicit rules, and this sometimes creates confusion or misbehavior. So +it is a good idea to set the suffix list explicitly using only the +suffixes you need in the particular Makefile, like this: + + .SUFFIXES: + .SUFFIXES: .c .o + +The first line clears out the suffix list, the second introduces all +suffixes which may be subject to implicit rules in this Makefile. + + Don't assume that `.' is in the path for command execution. When +you need to run programs that are a part of your package during the +make, please make sure that it uses `./' if the program is built as +part of the make or `$(srcdir)/' if the file is an unchanging part of +the source code. Without one of these prefixes, the current search +path is used. + + The distinction between `./' (the "build directory") and +`$(srcdir)/' (the "source directory") is important because users can +build in a separate directory using the `--srcdir' option to +`configure'. A rule of the form: + + foo.1 : foo.man sedscript + sed -e sedscript foo.man > foo.1 + +will fail when the build directory is not the source directory, because +`foo.man' and `sedscript' are in the source directory. + + When using GNU `make', relying on `VPATH' to find the source file +will work in the case where there is a single dependency file, since +the `make' automatic variable `$<' will represent the source file +wherever it is. (Many versions of `make' set `$<' only in implicit +rules.) A Makefile target like + + foo.o : bar.c + $(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o + +should instead be written as + + foo.o : bar.c + $(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@ + +in order to allow `VPATH' to work correctly. When the target has +multiple dependencies, using an explicit `$(srcdir)' is the easiest way +to make the rule work well. For example, the target above for `foo.1' +is best written as: + + foo.1 : foo.man sedscript + sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@ + + GNU distributions usually contain some files which are not source +files--for example, Info files, and the output from Autoconf, Automake, +Bison or Flex. Since these files normally appear in the source +directory, they should always appear in the source directory, not in the +build directory. So Makefile rules to update them should put the +updated files in the source directory. + + However, if a file does not appear in the distribution, then the +Makefile should not put it in the source directory, because building a +program in ordinary circumstances should not modify the source directory +in any way. + + Try to make the build and installation targets, at least (and all +their subtargets) work correctly with a parallel `make'. + + +File: standards.info, Node: Utilities in Makefiles, Next: Command Variables, Prev: Makefile Basics, Up: Makefile Conventions + +7.2.2 Utilities in Makefiles +---------------------------- + +Write the Makefile commands (and any shell scripts, such as +`configure') to run in `sh', not in `csh'. Don't use any special +features of `ksh' or `bash'. + + The `configure' script and the Makefile rules for building and +installation should not use any utilities directly except these: + + cat cmp cp diff echo egrep expr false grep install-info + ln ls mkdir mv pwd rm rmdir sed sleep sort tar test touch true + + The compression program `gzip' can be used in the `dist' rule. + + Stick to the generally supported options for these programs. For +example, don't use `mkdir -p', convenient as it may be, because most +systems don't support it. + + It is a good idea to avoid creating symbolic links in makefiles, +since a few systems don't support them. + + The Makefile rules for building and installation can also use +compilers and related programs, but should do so via `make' variables +so that the user can substitute alternatives. Here are some of the +programs we mean: + + ar bison cc flex install ld ldconfig lex + make makeinfo ranlib texi2dvi yacc + + Use the following `make' variables to run those programs: + + $(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX) + $(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC) + + When you use `ranlib' or `ldconfig', you should make sure nothing +bad happens if the system does not have the program in question. +Arrange to ignore an error from that command, and print a message before +the command to tell the user that failure of this command does not mean +a problem. (The Autoconf `AC_PROG_RANLIB' macro can help with this.) + + If you use symbolic links, you should implement a fallback for +systems that don't have symbolic links. + + Additional utilities that can be used via Make variables are: + + chgrp chmod chown mknod + + It is ok to use other utilities in Makefile portions (or scripts) +intended only for particular systems where you know those utilities +exist. + + +File: standards.info, Node: Command Variables, Next: DESTDIR, Prev: Utilities in Makefiles, Up: Makefile Conventions + +7.2.3 Variables for Specifying Commands +--------------------------------------- + +Makefiles should provide variables for overriding certain commands, +options, and so on. + + In particular, you should run most utility programs via variables. +Thus, if you use Bison, have a variable named `BISON' whose default +value is set with `BISON = bison', and refer to it with `$(BISON)' +whenever you need to use Bison. + + File management utilities such as `ln', `rm', `mv', and so on, need +not be referred to through variables in this way, since users don't +need to replace them with other programs. + + Each program-name variable should come with an options variable that +is used to supply options to the program. Append `FLAGS' to the +program-name variable name to get the options variable name--for +example, `BISONFLAGS'. (The names `CFLAGS' for the C compiler, +`YFLAGS' for yacc, and `LFLAGS' for lex, are exceptions to this rule, +but we keep them because they are standard.) Use `CPPFLAGS' in any +compilation command that runs the preprocessor, and use `LDFLAGS' in +any compilation command that does linking as well as in any direct use +of `ld'. + + If there are C compiler options that _must_ be used for proper +compilation of certain files, do not include them in `CFLAGS'. Users +expect to be able to specify `CFLAGS' freely themselves. Instead, +arrange to pass the necessary options to the C compiler independently +of `CFLAGS', by writing them explicitly in the compilation commands or +by defining an implicit rule, like this: + + CFLAGS = -g + ALL_CFLAGS = -I. $(CFLAGS) + .c.o: + $(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $< + + Do include the `-g' option in `CFLAGS', because that is not +_required_ for proper compilation. You can consider it a default that +is only recommended. If the package is set up so that it is compiled +with GCC by default, then you might as well include `-O' in the default +value of `CFLAGS' as well. + + Put `CFLAGS' last in the compilation command, after other variables +containing compiler options, so the user can use `CFLAGS' to override +the others. + + `CFLAGS' should be used in every invocation of the C compiler, both +those which do compilation and those which do linking. + + Every Makefile should define the variable `INSTALL', which is the +basic command for installing a file into the system. + + Every Makefile should also define the variables `INSTALL_PROGRAM' +and `INSTALL_DATA'. (The default for `INSTALL_PROGRAM' should be +`$(INSTALL)'; the default for `INSTALL_DATA' should be `${INSTALL} -m +644'.) Then it should use those variables as the commands for actual +installation, for executables and non-executables respectively. +Minimal use of these variables is as follows: + + $(INSTALL_PROGRAM) foo $(bindir)/foo + $(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a + + However, it is preferable to support a `DESTDIR' prefix on the +target files, as explained in the next section. + +Always use a file name, not a directory name, as the second argument of +the installation commands. Use a separate command for each file to be +installed. + + +File: standards.info, Node: DESTDIR, Next: Directory Variables, Prev: Command Variables, Up: Makefile Conventions + +7.2.4 `DESTDIR': support for staged installs +-------------------------------------------- + +`DESTDIR' is a variable prepended to each installed target file, like +this: + + $(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo + $(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a + + The `DESTDIR' variable is specified by the user on the `make' +command line. For example: + + make DESTDIR=/tmp/stage install + +`DESTDIR' should be supported only in the `install*' and `uninstall*' +targets, as those are the only targets where it is useful. + + If your installation step would normally install +`/usr/local/bin/foo' and `/usr/local/lib/libfoo.a', then an +installation invoked as in the example above would install +`/tmp/stage/usr/local/bin/foo' and `/tmp/stage/usr/local/lib/libfoo.a' +instead. + + Prepending the variable `DESTDIR' to each target in this way +provides for "staged installs", where the installed files are not +placed directly into their expected location but are instead copied +into a temporary location (`DESTDIR'). However, installed files +maintain their relative directory structure and any embedded file names +will not be modified. + + You should not set the value of `DESTDIR' in your `Makefile' at all; +then the files are installed into their expected locations by default. +Also, specifying `DESTDIR' should not change the operation of the +software in any way, so its value should not be included in any file +contents. + + `DESTDIR' support is commonly used in package creation. It is also +helpful to users who want to understand what a given package will +install where, and to allow users who don't normally have permissions +to install into protected areas to build and install before gaining +those permissions. Finally, it can be useful with tools such as +`stow', where code is installed in one place but made to appear to be +installed somewhere else using symbolic links or special mount +operations. So, we strongly recommend GNU packages support `DESTDIR', +though it is not an absolute requirement. + + +File: standards.info, Node: Directory Variables, Next: Standard Targets, Prev: DESTDIR, Up: Makefile Conventions + +7.2.5 Variables for Installation Directories +-------------------------------------------- + +Installation directories should always be named by variables, so it is +easy to install in a nonstandard place. The standard names for these +variables and the values they should have in GNU packages are described +below. They are based on a standard file system layout; variants of it +are used in GNU/Linux and other modern operating systems. + + Installers are expected to override these values when calling `make' +(e.g., `make prefix=/usr install' or `configure' (e.g., `configure +--prefix=/usr'). GNU packages should not try to guess which value +should be appropriate for these variables on the system they are being +installed onto: use the default settings specified here so that all GNU +packages behave identically, allowing the installer to achieve any +desired layout. + + These first two variables set the root for the installation. All the +other installation directories should be subdirectories of one of these +two, and nothing should be directly installed into these two +directories. + +`prefix' + A prefix used in constructing the default values of the variables + listed below. The default value of `prefix' should be + `/usr/local'. When building the complete GNU system, the prefix + will be empty and `/usr' will be a symbolic link to `/'. (If you + are using Autoconf, write it as `@prefix@'.) + + Running `make install' with a different value of `prefix' from the + one used to build the program should _not_ recompile the program. + +`exec_prefix' + A prefix used in constructing the default values of some of the + variables listed below. The default value of `exec_prefix' should + be `$(prefix)'. (If you are using Autoconf, write it as + `@exec_prefix@'.) + + Generally, `$(exec_prefix)' is used for directories that contain + machine-specific files (such as executables and subroutine + libraries), while `$(prefix)' is used directly for other + directories. + + Running `make install' with a different value of `exec_prefix' + from the one used to build the program should _not_ recompile the + program. + + Executable programs are installed in one of the following +directories. + +`bindir' + The directory for installing executable programs that users can + run. This should normally be `/usr/local/bin', but write it as + `$(exec_prefix)/bin'. (If you are using Autoconf, write it as + `@bindir@'.) + +`sbindir' + The directory for installing executable programs that can be run + from the shell, but are only generally useful to system + administrators. This should normally be `/usr/local/sbin', but + write it as `$(exec_prefix)/sbin'. (If you are using Autoconf, + write it as `@sbindir@'.) + +`libexecdir' + The directory for installing executable programs to be run by other + programs rather than by users. This directory should normally be + `/usr/local/libexec', but write it as `$(exec_prefix)/libexec'. + (If you are using Autoconf, write it as `@libexecdir@'.) + + The definition of `libexecdir' is the same for all packages, so + you should install your data in a subdirectory thereof. Most + packages install their data under `$(libexecdir)/PACKAGE-NAME/', + possibly within additional subdirectories thereof, such as + `$(libexecdir)/PACKAGE-NAME/MACHINE/VERSION'. + + Data files used by the program during its execution are divided into +categories in two ways. + + * Some files are normally modified by programs; others are never + normally modified (though users may edit some of these). + + * Some files are architecture-independent and can be shared by all + machines at a site; some are architecture-dependent and can be + shared only by machines of the same kind and operating system; + others may never be shared between two machines. + + This makes for six different possibilities. However, we want to +discourage the use of architecture-dependent files, aside from object +files and libraries. It is much cleaner to make other data files +architecture-independent, and it is generally not hard. + + Here are the variables Makefiles should use to specify directories +to put these various kinds of files in: + +`datarootdir' + The root of the directory tree for read-only + architecture-independent data files. This should normally be + `/usr/local/share', but write it as `$(prefix)/share'. (If you + are using Autoconf, write it as `@datarootdir@'.) `datadir''s + default value is based on this variable; so are `infodir', + `mandir', and others. + +`datadir' + The directory for installing idiosyncratic read-only + architecture-independent data files for this program. This is + usually the same place as `datarootdir', but we use the two + separate variables so that you can move these program-specific + files without altering the location for Info files, man pages, etc. + + This should normally be `/usr/local/share', but write it as + `$(datarootdir)'. (If you are using Autoconf, write it as + `@datadir@'.) + + The definition of `datadir' is the same for all packages, so you + should install your data in a subdirectory thereof. Most packages + install their data under `$(datadir)/PACKAGE-NAME/'. + +`sysconfdir' + The directory for installing read-only data files that pertain to a + single machine-that is to say, files for configuring a host. + Mailer and network configuration files, `/etc/passwd', and so + forth belong here. All the files in this directory should be + ordinary ASCII text files. This directory should normally be + `/usr/local/etc', but write it as `$(prefix)/etc'. (If you are + using Autoconf, write it as `@sysconfdir@'.) + + Do not install executables here in this directory (they probably + belong in `$(libexecdir)' or `$(sbindir)'). Also do not install + files that are modified in the normal course of their use (programs + whose purpose is to change the configuration of the system + excluded). Those probably belong in `$(localstatedir)'. + +`sharedstatedir' + The directory for installing architecture-independent data files + which the programs modify while they run. This should normally be + `/usr/local/com', but write it as `$(prefix)/com'. (If you are + using Autoconf, write it as `@sharedstatedir@'.) + +`localstatedir' + The directory for installing data files which the programs modify + while they run, and that pertain to one specific machine. Users + should never need to modify files in this directory to configure + the package's operation; put such configuration information in + separate files that go in `$(datadir)' or `$(sysconfdir)'. + `$(localstatedir)' should normally be `/usr/local/var', but write + it as `$(prefix)/var'. (If you are using Autoconf, write it as + `@localstatedir@'.) + + These variables specify the directory for installing certain specific +types of files, if your program has them. Every GNU package should +have Info files, so every program needs `infodir', but not all need +`libdir' or `lispdir'. + +`includedir' + The directory for installing header files to be included by user + programs with the C `#include' preprocessor directive. This + should normally be `/usr/local/include', but write it as + `$(prefix)/include'. (If you are using Autoconf, write it as + `@includedir@'.) + + Most compilers other than GCC do not look for header files in + directory `/usr/local/include'. So installing the header files + this way is only useful with GCC. Sometimes this is not a problem + because some libraries are only really intended to work with GCC. + But some libraries are intended to work with other compilers. + They should install their header files in two places, one + specified by `includedir' and one specified by `oldincludedir'. + +`oldincludedir' + The directory for installing `#include' header files for use with + compilers other than GCC. This should normally be `/usr/include'. + (If you are using Autoconf, you can write it as `@oldincludedir@'.) + + The Makefile commands should check whether the value of + `oldincludedir' is empty. If it is, they should not try to use + it; they should cancel the second installation of the header files. + + A package should not replace an existing header in this directory + unless the header came from the same package. Thus, if your Foo + package provides a header file `foo.h', then it should install the + header file in the `oldincludedir' directory if either (1) there + is no `foo.h' there or (2) the `foo.h' that exists came from the + Foo package. + + To tell whether `foo.h' came from the Foo package, put a magic + string in the file--part of a comment--and `grep' for that string. + +`docdir' + The directory for installing documentation files (other than Info) + for this package. By default, it should be + `/usr/local/share/doc/YOURPKG', but it should be written as + `$(datarootdir)/doc/YOURPKG'. (If you are using Autoconf, write + it as `@docdir@'.) The YOURPKG subdirectory, which may include a + version number, prevents collisions among files with common names, + such as `README'. + +`infodir' + The directory for installing the Info files for this package. By + default, it should be `/usr/local/share/info', but it should be + written as `$(datarootdir)/info'. (If you are using Autoconf, + write it as `@infodir@'.) `infodir' is separate from `docdir' for + compatibility with existing practice. + +`htmldir' +`dvidir' +`pdfdir' +`psdir' + Directories for installing documentation files in the particular + format. They should all be set to `$(docdir)' by default. (If + you are using Autoconf, write them as `@htmldir@', `@dvidir@', + etc.) Packages which supply several translations of their + documentation should install them in `$(htmldir)/'LL, + `$(pdfdir)/'LL, etc. where LL is a locale abbreviation such as + `en' or `pt_BR'. + +`libdir' + The directory for object files and libraries of object code. Do + not install executables here, they probably ought to go in + `$(libexecdir)' instead. The value of `libdir' should normally be + `/usr/local/lib', but write it as `$(exec_prefix)/lib'. (If you + are using Autoconf, write it as `@libdir@'.) + +`lispdir' + The directory for installing any Emacs Lisp files in this package. + By default, it should be `/usr/local/share/emacs/site-lisp', but + it should be written as `$(datarootdir)/emacs/site-lisp'. + + If you are using Autoconf, write the default as `@lispdir@'. In + order to make `@lispdir@' work, you need the following lines in + your `configure.in' file: + + lispdir='${datarootdir}/emacs/site-lisp' + AC_SUBST(lispdir) + +`localedir' + The directory for installing locale-specific message catalogs for + this package. By default, it should be `/usr/local/share/locale', + but it should be written as `$(datarootdir)/locale'. (If you are + using Autoconf, write it as `@localedir@'.) This directory + usually has a subdirectory per locale. + + Unix-style man pages are installed in one of the following: + +`mandir' + The top-level directory for installing the man pages (if any) for + this package. It will normally be `/usr/local/share/man', but you + should write it as `$(datarootdir)/man'. (If you are using + Autoconf, write it as `@mandir@'.) + +`man1dir' + The directory for installing section 1 man pages. Write it as + `$(mandir)/man1'. + +`man2dir' + The directory for installing section 2 man pages. Write it as + `$(mandir)/man2' + +`...' + *Don't make the primary documentation for any GNU software be a + man page. Write a manual in Texinfo instead. Man pages are just + for the sake of people running GNU software on Unix, which is a + secondary application only.* + +`manext' + The file name extension for the installed man page. This should + contain a period followed by the appropriate digit; it should + normally be `.1'. + +`man1ext' + The file name extension for installed section 1 man pages. + +`man2ext' + The file name extension for installed section 2 man pages. + +`...' + Use these names instead of `manext' if the package needs to + install man pages in more than one section of the manual. + + And finally, you should set the following variable: + +`srcdir' + The directory for the sources being compiled. The value of this + variable is normally inserted by the `configure' shell script. + (If you are using Autoconf, use `srcdir = @srcdir@'.) + + For example: + + # Common prefix for installation directories. + # NOTE: This directory must exist when you start the install. + prefix = /usr/local + datarootdir = $(prefix)/share + datadir = $(datarootdir) + exec_prefix = $(prefix) + # Where to put the executable for the command `gcc'. + bindir = $(exec_prefix)/bin + # Where to put the directories used by the compiler. + libexecdir = $(exec_prefix)/libexec + # Where to put the Info files. + infodir = $(datarootdir)/info + + If your program installs a large number of files into one of the +standard user-specified directories, it might be useful to group them +into a subdirectory particular to that program. If you do this, you +should write the `install' rule to create these subdirectories. + + Do not expect the user to include the subdirectory name in the value +of any of the variables listed above. The idea of having a uniform set +of variable names for installation directories is to enable the user to +specify the exact same values for several different GNU packages. In +order for this to be useful, all the packages must be designed so that +they will work sensibly when the user does so. + + At times, not all of these variables may be implemented in the +current release of Autoconf and/or Automake; but as of Autoconf 2.60, we +believe all of them are. When any are missing, the descriptions here +serve as specifications for what Autoconf will implement. As a +programmer, you can either use a development version of Autoconf or +avoid using these variables until a stable release is made which +supports them. + + +File: standards.info, Node: Standard Targets, Next: Install Command Categories, Prev: Directory Variables, Up: Makefile Conventions + +7.2.6 Standard Targets for Users +-------------------------------- + +All GNU programs should have the following targets in their Makefiles: + +`all' + Compile the entire program. This should be the default target. + This target need not rebuild any documentation files; Info files + should normally be included in the distribution, and DVI (and other + documentation format) files should be made only when explicitly + asked for. + + By default, the Make rules should compile and link with `-g', so + that executable programs have debugging symbols. Users who don't + mind being helpless can strip the executables later if they wish. + +`install' + Compile the program and copy the executables, libraries, and so on + to the file names where they should reside for actual use. If + there is a simple test to verify that a program is properly + installed, this target should run that test. + + Do not strip executables when installing them. Devil-may-care + users can use the `install-strip' target to do that. + + If possible, write the `install' target rule so that it does not + modify anything in the directory where the program was built, + provided `make all' has just been done. This is convenient for + building the program under one user name and installing it under + another. + + The commands should create all the directories in which files are + to be installed, if they don't already exist. This includes the + directories specified as the values of the variables `prefix' and + `exec_prefix', as well as all subdirectories that are needed. One + way to do this is by means of an `installdirs' target as described + below. + + Use `-' before any command for installing a man page, so that + `make' will ignore any errors. This is in case there are systems + that don't have the Unix man page documentation system installed. + + The way to install Info files is to copy them into `$(infodir)' + with `$(INSTALL_DATA)' (*note Command Variables::), and then run + the `install-info' program if it is present. `install-info' is a + program that edits the Info `dir' file to add or update the menu + entry for the given Info file; it is part of the Texinfo package. + Here is a sample rule to install an Info file: + + $(DESTDIR)$(infodir)/foo.info: foo.info + $(POST_INSTALL) + # There may be a newer info file in . than in srcdir. + -if test -f foo.info; then d=.; \ + else d=$(srcdir); fi; \ + $(INSTALL_DATA) $$d/foo.info $(DESTDIR)$@; \ + # Run install-info only if it exists. + # Use `if' instead of just prepending `-' to the + # line so we notice real errors from install-info. + # We use `$(SHELL) -c' because some shells do not + # fail gracefully when there is an unknown command. + if $(SHELL) -c 'install-info --version' \ + >/dev/null 2>&1; then \ + install-info --dir-file=$(DESTDIR)$(infodir)/dir \ + $(DESTDIR)$(infodir)/foo.info; \ + else true; fi + + When writing the `install' target, you must classify all the + commands into three categories: normal ones, "pre-installation" + commands and "post-installation" commands. *Note Install Command + Categories::. + +`install-html' +`install-dvi' +`install-pdf' +`install-ps' + These targets install documentation in formats other than Info; + they're intended to be called explicitly by the person installing + the package, if that format is desired. GNU prefers Info files, + so these must be installed by the `install' target. + + When you have many documentation files to install, we recommend + that you avoid collisions and clutter by arranging for these + targets to install in subdirectories of the appropriate + installation directory, such as `htmldir'. As one example, if + your package has multiple manuals, and you wish to install HTML + documentation with many files (such as the "split" mode output by + `makeinfo --html'), you'll certainly want to use subdirectories, + or two nodes with the same name in different manuals will + overwrite each other. + + Please make these `install-FORMAT' targets invoke the commands for + the FORMAT target, for example, by making FORMAT a dependency. + +`uninstall' + Delete all the installed files--the copies that the `install' and + `install-*' targets create. + + This rule should not modify the directories where compilation is + done, only the directories where files are installed. + + The uninstallation commands are divided into three categories, + just like the installation commands. *Note Install Command + Categories::. + +`install-strip' + Like `install', but strip the executable files while installing + them. In simple cases, this target can use the `install' target in + a simple way: + + install-strip: + $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' \ + install + + But if the package installs scripts as well as real executables, + the `install-strip' target can't just refer to the `install' + target; it has to strip the executables but not the scripts. + + `install-strip' should not strip the executables in the build + directory which are being copied for installation. It should only + strip the copies that are installed. + + Normally we do not recommend stripping an executable unless you + are sure the program has no bugs. However, it can be reasonable + to install a stripped executable for actual execution while saving + the unstripped executable elsewhere in case there is a bug. + +`clean' + Delete all files in the current directory that are normally + created by building the program. Also delete files in other + directories if they are created by this makefile. However, don't + delete the files that record the configuration. Also preserve + files that could be made by building, but normally aren't because + the distribution comes with them. There is no need to delete + parent directories that were created with `mkdir -p', since they + could have existed anyway. + + Delete `.dvi' files here if they are not part of the distribution. + +`distclean' + Delete all files in the current directory (or created by this + makefile) that are created by configuring or building the program. + If you have unpacked the source and built the program without + creating any other files, `make distclean' should leave only the + files that were in the distribution. However, there is no need to + delete parent directories that were created with `mkdir -p', since + they could have existed anyway. + +`mostlyclean' + Like `clean', but may refrain from deleting a few files that people + normally don't want to recompile. For example, the `mostlyclean' + target for GCC does not delete `libgcc.a', because recompiling it + is rarely necessary and takes a lot of time. + +`maintainer-clean' + Delete almost everything that can be reconstructed with this + Makefile. This typically includes everything deleted by + `distclean', plus more: C source files produced by Bison, tags + tables, Info files, and so on. + + The reason we say "almost everything" is that running the command + `make maintainer-clean' should not delete `configure' even if + `configure' can be remade using a rule in the Makefile. More + generally, `make maintainer-clean' should not delete anything that + needs to exist in order to run `configure' and then begin to build + the program. Also, there is no need to delete parent directories + that were created with `mkdir -p', since they could have existed + anyway. These are the only exceptions; `maintainer-clean' should + delete everything else that can be rebuilt. + + The `maintainer-clean' target is intended to be used by a + maintainer of the package, not by ordinary users. You may need + special tools to reconstruct some of the files that `make + maintainer-clean' deletes. Since these files are normally + included in the distribution, we don't take care to make them easy + to reconstruct. If you find you need to unpack the full + distribution again, don't blame us. + + To help make users aware of this, the commands for the special + `maintainer-clean' target should start with these two: + + @echo 'This command is intended for maintainers to use; it' + @echo 'deletes files that may need special tools to rebuild.' + +`TAGS' + Update a tags table for this program. + +`info' + Generate any Info files needed. The best way to write the rules + is as follows: + + info: foo.info + + foo.info: foo.texi chap1.texi chap2.texi + $(MAKEINFO) $(srcdir)/foo.texi + + You must define the variable `MAKEINFO' in the Makefile. It should + run the `makeinfo' program, which is part of the Texinfo + distribution. + + Normally a GNU distribution comes with Info files, and that means + the Info files are present in the source directory. Therefore, + the Make rule for an info file should update it in the source + directory. When users build the package, ordinarily Make will not + update the Info files because they will already be up to date. + +`dvi' +`html' +`pdf' +`ps' + Generate documentation files in the given format. These targets + should always exist, but any or all can be a no-op if the given + output format cannot be generated. These targets should not be + dependencies of the `all' target; the user must manually invoke + them. + + Here's an example rule for generating DVI files from Texinfo: + + dvi: foo.dvi + + foo.dvi: foo.texi chap1.texi chap2.texi + $(TEXI2DVI) $(srcdir)/foo.texi + + You must define the variable `TEXI2DVI' in the Makefile. It should + run the program `texi2dvi', which is part of the Texinfo + distribution.(1) Alternatively, write just the dependencies, and + allow GNU `make' to provide the command. + + Here's another example, this one for generating HTML from Texinfo: + + html: foo.html + + foo.html: foo.texi chap1.texi chap2.texi + $(TEXI2HTML) $(srcdir)/foo.texi + + Again, you would define the variable `TEXI2HTML' in the Makefile; + for example, it might run `makeinfo --no-split --html' (`makeinfo' + is part of the Texinfo distribution). + +`dist' + Create a distribution tar file for this program. The tar file + should be set up so that the file names in the tar file start with + a subdirectory name which is the name of the package it is a + distribution for. This name can include the version number. + + For example, the distribution tar file of GCC version 1.40 unpacks + into a subdirectory named `gcc-1.40'. + + The easiest way to do this is to create a subdirectory + appropriately named, use `ln' or `cp' to install the proper files + in it, and then `tar' that subdirectory. + + Compress the tar file with `gzip'. For example, the actual + distribution file for GCC version 1.40 is called `gcc-1.40.tar.gz'. + + The `dist' target should explicitly depend on all non-source files + that are in the distribution, to make sure they are up to date in + the distribution. *Note Making Releases: Releases. + +`check' + Perform self-tests (if any). The user must build the program + before running the tests, but need not install the program; you + should write the self-tests so that they work when the program is + built but not installed. + + The following targets are suggested as conventional names, for +programs in which they are useful. + +`installcheck' + Perform installation tests (if any). The user must build and + install the program before running the tests. You should not + assume that `$(bindir)' is in the search path. + +`installdirs' + It's useful to add a target named `installdirs' to create the + directories where files are installed, and their parent + directories. There is a script called `mkinstalldirs' which is + convenient for this; you can find it in the Texinfo package. You + can use a rule like this: + + # Make sure all installation directories (e.g. $(bindir)) + # actually exist by making them if necessary. + installdirs: mkinstalldirs + $(srcdir)/mkinstalldirs $(bindir) $(datadir) \ + $(libdir) $(infodir) \ + $(mandir) + + or, if you wish to support `DESTDIR', + + # Make sure all installation directories (e.g. $(bindir)) + # actually exist by making them if necessary. + installdirs: mkinstalldirs + $(srcdir)/mkinstalldirs \ + $(DESTDIR)$(bindir) $(DESTDIR)$(datadir) \ + $(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \ + $(DESTDIR)$(mandir) + + This rule should not modify the directories where compilation is + done. It should do nothing but create installation directories. + + ---------- Footnotes ---------- + + (1) `texi2dvi' uses TeX to do the real work of formatting. TeX is +not distributed with Texinfo. + + +File: standards.info, Node: Install Command Categories, Prev: Standard Targets, Up: Makefile Conventions + +7.2.7 Install Command Categories +-------------------------------- + +When writing the `install' target, you must classify all the commands +into three categories: normal ones, "pre-installation" commands and +"post-installation" commands. + + Normal commands move files into their proper places, and set their +modes. They may not alter any files except the ones that come entirely +from the package they belong to. + + Pre-installation and post-installation commands may alter other +files; in particular, they can edit global configuration files or data +bases. + + Pre-installation commands are typically executed before the normal +commands, and post-installation commands are typically run after the +normal commands. + + The most common use for a post-installation command is to run +`install-info'. This cannot be done with a normal command, since it +alters a file (the Info directory) which does not come entirely and +solely from the package being installed. It is a post-installation +command because it needs to be done after the normal command which +installs the package's Info files. + + Most programs don't need any pre-installation commands, but we have +the feature just in case it is needed. + + To classify the commands in the `install' rule into these three +categories, insert "category lines" among them. A category line +specifies the category for the commands that follow. + + A category line consists of a tab and a reference to a special Make +variable, plus an optional comment at the end. There are three +variables you can use, one for each category; the variable name +specifies the category. Category lines are no-ops in ordinary execution +because these three Make variables are normally undefined (and you +_should not_ define them in the makefile). + + Here are the three possible category lines, each with a comment that +explains what it means: + + $(PRE_INSTALL) # Pre-install commands follow. + $(POST_INSTALL) # Post-install commands follow. + $(NORMAL_INSTALL) # Normal commands follow. + + If you don't use a category line at the beginning of the `install' +rule, all the commands are classified as normal until the first category +line. If you don't use any category lines, all the commands are +classified as normal. + + These are the category lines for `uninstall': + + $(PRE_UNINSTALL) # Pre-uninstall commands follow. + $(POST_UNINSTALL) # Post-uninstall commands follow. + $(NORMAL_UNINSTALL) # Normal commands follow. + + Typically, a pre-uninstall command would be used for deleting entries +from the Info directory. + + If the `install' or `uninstall' target has any dependencies which +act as subroutines of installation, then you should start _each_ +dependency's commands with a category line, and start the main target's +commands with a category line also. This way, you can ensure that each +command is placed in the right category regardless of which of the +dependencies actually run. + + Pre-installation and post-installation commands should not run any +programs except for these: + + [ basename bash cat chgrp chmod chown cmp cp dd diff echo + egrep expand expr false fgrep find getopt grep gunzip gzip + hostname install install-info kill ldconfig ln ls md5sum + mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee + test touch true uname xargs yes + + The reason for distinguishing the commands in this way is for the +sake of making binary packages. Typically a binary package contains +all the executables and other files that need to be installed, and has +its own method of installing them--so it does not need to run the normal +installation commands. But installing the binary package does need to +execute the pre-installation and post-installation commands. + + Programs to build binary packages work by extracting the +pre-installation and post-installation commands. Here is one way of +extracting the pre-installation commands (the `-s' option to `make' is +needed to silence messages about entering subdirectories): + + make -s -n install -o all \ + PRE_INSTALL=pre-install \ + POST_INSTALL=post-install \ + NORMAL_INSTALL=normal-install \ + | gawk -f pre-install.awk + +where the file `pre-install.awk' could contain this: + + $0 ~ /^(normal-install|post-install)[ \t]*$/ {on = 0} + on {print $0} + $0 ~ /^pre-install[ \t]*$/ {on = 1} + + +File: standards.info, Node: Releases, Prev: Makefile Conventions, Up: Managing Releases + +7.3 Making Releases +=================== + +You should identify each release with a pair of version numbers, a +major version and a minor. We have no objection to using more than two +numbers, but it is very unlikely that you really need them. + + Package the distribution of `Foo version 69.96' up in a gzipped tar +file with the name `foo-69.96.tar.gz'. It should unpack into a +subdirectory named `foo-69.96'. + + Building and installing the program should never modify any of the +files contained in the distribution. This means that all the files +that form part of the program in any way must be classified into "source +files" and "non-source files". Source files are written by humans and +never changed automatically; non-source files are produced from source +files by programs under the control of the Makefile. + + The distribution should contain a file named `README' which gives +the name of the package, and a general description of what it does. It +is also good to explain the purpose of each of the first-level +subdirectories in the package, if there are any. The `README' file +should either state the version number of the package, or refer to where +in the package it can be found. + + The `README' file should refer to the file `INSTALL', which should +contain an explanation of the installation procedure. + + The `README' file should also refer to the file which contains the +copying conditions. The GNU GPL, if used, should be in a file called +`COPYING'. If the GNU LGPL is used, it should be in a file called +`COPYING.LIB'. + + Naturally, all the source files must be in the distribution. It is +okay to include non-source files in the distribution, provided they are +up-to-date and machine-independent, so that building the distribution +normally will never modify them. We commonly include non-source files +produced by Bison, `lex', TeX, and `makeinfo'; this helps avoid +unnecessary dependencies between our distributions, so that users can +install whichever packages they want to install. + + Non-source files that might actually be modified by building and +installing the program should *never* be included in the distribution. +So if you do distribute non-source files, always make sure they are up +to date when you make a new distribution. + + Make sure that the directory into which the distribution unpacks (as +well as any subdirectories) are all world-writable (octal mode 777). +This is so that old versions of `tar' which preserve the ownership and +permissions of the files from the tar archive will be able to extract +all the files even if the user is unprivileged. + + Make sure that all the files in the distribution are world-readable. + + Don't include any symbolic links in the distribution itself. If the +tar file contains symbolic links, then people cannot even unpack it on +systems that don't support symbolic links. Also, don't use multiple +names for one file in different directories, because certain file +systems cannot handle this and that prevents unpacking the distribution. + + Try to make sure that all the file names will be unique on MS-DOS. A +name on MS-DOS consists of up to 8 characters, optionally followed by a +period and up to three characters. MS-DOS will truncate extra +characters both before and after the period. Thus, `foobarhacker.c' +and `foobarhacker.o' are not ambiguous; they are truncated to +`foobarha.c' and `foobarha.o', which are distinct. + + Include in your distribution a copy of the `texinfo.tex' you used to +test print any `*.texinfo' or `*.texi' files. + + Likewise, if your program uses small GNU software packages like +regex, getopt, obstack, or termcap, include them in the distribution +file. Leaving them out would make the distribution file a little +smaller at the expense of possible inconvenience to a user who doesn't +know what other files to get. + + +File: standards.info, Node: References, Next: GNU Free Documentation License, Prev: Managing Releases, Up: Top + +8 References to Non-Free Software and Documentation +*************************************************** + +A GNU program should not recommend use of any non-free program. We +can't stop some people from writing proprietary programs, or stop other +people from using them, but we can and should refuse to advertise them +to new potential customers. Proprietary software is a social and +ethical problem, and the point of GNU is to solve that problem. + + The GNU definition of free software is found on the GNU web site at +`http://www.gnu.org/philosophy/free-sw.html', and the definition of +free documentation is found at +`http://www.gnu.org/philosophy/free-doc.html'. A list of important +licenses and whether they qualify as free is in +`http://www.gnu.org/licenses/license-list.html'. The terms "free" and +"non-free", used in this document, refer to that definition. If it is +not clear whether a license qualifies as free under this definition, +please ask the GNU Project by writing to <licensing@gnu.org>. We will +answer, and if the license is an important one, we will add it to the +list. + + When a non-free program or system is well known, you can mention it +in passing--that is harmless, since users who might want to use it +probably already know about it. For instance, it is fine to explain +how to build your package on top of some widely used non-free operating +system, or how to use it together with some widely used non-free +program. + + However, you should give only the necessary information to help those +who already use the non-free program to use your program with it--don't +give, or refer to, any further information about the proprietary +program, and don't imply that the proprietary program enhances your +program, or that its existence is in any way a good thing. The goal +should be that people already using the proprietary program will get +the advice they need about how to use your free program with it, while +people who don't already use the proprietary program will not see +anything to lead them to take an interest in it. + + If a non-free program or system is obscure in your program's domain, +your program should not mention or support it at all, since doing so +would tend to popularize the non-free program more than it popularizes +your program. (You cannot hope to find many additional users among the +users of Foobar if the users of Foobar are few.) + + Sometimes a program is free software in itself but depends on a +non-free platform in order to run. For instance, many Java programs +depend on the parts of Sun's Java implementation which are not yet free +software, and won't run on the GNU Java Compiler (which does not yet +have all the features) or won't run with the GNU Java libraries. We +hope this particular problem will be gone in a few months, when Sun +makes the standard Java libraries free software, but of course the +general principle remains: you should not recommend programs that +depend on non-free software to run. + + Some free programs encourage the use of non-free software. A typical +example is `mplayer'. It is free software in itself, and the free code +can handle some kinds of files. However, `mplayer' recommends use of +non-free codecs for other kinds of files, and users that install +`mplayer' are very likely to install those codecs along with it. To +recommend `mplayer' is, in effect, to recommend the non-free codecs. +We must not do that, so we cannot recommend `mplayer' either. + + In general, you should also not recommend programs that themselves +strongly recommend the use of non-free software. + + A GNU package should not refer the user to any non-free documentation +for free software. Free documentation that can be included in free +operating systems is essential for completing the GNU system, or any +free operating system, so it is a major focus of the GNU Project; to +recommend use of documentation that we are not allowed to use in GNU +would weaken the impetus for the community to produce documentation +that we can include. So GNU packages should never recommend non-free +documentation. + + By contrast, it is ok to refer to journal articles and textbooks in +the comments of a program for explanation of how it functions, even +though they be non-free. This is because we don't include such things +in the GNU system even if we are allowed to--they are outside the scope +of an operating system project. + + Referring to a web site that describes or recommends a non-free +program is in effect promoting that software, so please do not make +links (or mention by name) web sites that contain such material. This +policy is relevant particularly for the web pages for a GNU package. + + Following links from nearly any web site can lead to non-free +software; this is an inescapable aspect of the nature of the web, and +in itself is no objection to linking to a site. As long as the site +does not itself recommend a non-free program, there is no need be +concerned about the sites it links to for other reasons. + + Thus, for example, you should not make a link to AT&T's web site, +because that recommends AT&T's non-free software packages; you should +not make a link to a site that links to AT&T's site saying it is a +place to get a non-free program; but if a site you want to link to +refers to AT&T's web site in some other context (such as long-distance +telephone service), that is not a problem. + + +File: standards.info, Node: GNU Free Documentation License, Next: Index, Prev: References, Up: Top + +Appendix A GNU Free Documentation License +***************************************** + + Version 1.2, November 2002 + + Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. + 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA + + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + 0. PREAMBLE + + The purpose of this License is to make a manual, textbook, or other + functional and useful document "free" in the sense of freedom: to + assure everyone the effective freedom to copy and redistribute it, + with or without modifying it, either commercially or + noncommercially. Secondarily, this License preserves for the + author and publisher a way to get credit for their work, while not + being considered responsible for modifications made by others. + + This License is a kind of "copyleft", which means that derivative + works of the document must themselves be free in the same sense. + It complements the GNU General Public License, which is a copyleft + license designed for free software. + + We have designed this License in order to use it for manuals for + free software, because free software needs free documentation: a + free program should come with manuals providing the same freedoms + that the software does. But this License is not limited to + software manuals; it can be used for any textual work, regardless + of subject matter or whether it is published as a printed book. + We recommend this License principally for works whose purpose is + instruction or reference. + + 1. APPLICABILITY AND DEFINITIONS + + This License applies to any manual or other work, in any medium, + that contains a notice placed by the copyright holder saying it + can be distributed under the terms of this License. Such a notice + grants a world-wide, royalty-free license, unlimited in duration, + to use that work under the conditions stated herein. The + "Document", below, refers to any such manual or work. Any member + of the public is a licensee, and is addressed as "you". You + accept the license if you copy, modify or distribute the work in a + way requiring permission under copyright law. + + A "Modified Version" of the Document means any work containing the + Document or a portion of it, either copied verbatim, or with + modifications and/or translated into another language. + + A "Secondary Section" is a named appendix or a front-matter section + of the Document that deals exclusively with the relationship of the + publishers or authors of the Document to the Document's overall + subject (or to related matters) and contains nothing that could + fall directly within that overall subject. (Thus, if the Document + is in part a textbook of mathematics, a Secondary Section may not + explain any mathematics.) The relationship could be a matter of + historical connection with the subject or with related matters, or + of legal, commercial, philosophical, ethical or political position + regarding them. + + The "Invariant Sections" are certain Secondary Sections whose + titles are designated, as being those of Invariant Sections, in + the notice that says that the Document is released under this + License. If a section does not fit the above definition of + Secondary then it is not allowed to be designated as Invariant. + The Document may contain zero Invariant Sections. If the Document + does not identify any Invariant Sections then there are none. + + The "Cover Texts" are certain short passages of text that are + listed, as Front-Cover Texts or Back-Cover Texts, in the notice + that says that the Document is released under this License. A + Front-Cover Text may be at most 5 words, and a Back-Cover Text may + be at most 25 words. + + A "Transparent" copy of the Document means a machine-readable copy, + represented in a format whose specification is available to the + general public, that is suitable for revising the document + straightforwardly with generic text editors or (for images + composed of pixels) generic paint programs or (for drawings) some + widely available drawing editor, and that is suitable for input to + text formatters or for automatic translation to a variety of + formats suitable for input to text formatters. A copy made in an + otherwise Transparent file format whose markup, or absence of + markup, has been arranged to thwart or discourage subsequent + modification by readers is not Transparent. An image format is + not Transparent if used for any substantial amount of text. A + copy that is not "Transparent" is called "Opaque". + + Examples of suitable formats for Transparent copies include plain + ASCII without markup, Texinfo input format, LaTeX input format, + SGML or XML using a publicly available DTD, and + standard-conforming simple HTML, PostScript or PDF designed for + human modification. Examples of transparent image formats include + PNG, XCF and JPG. Opaque formats include proprietary formats that + can be read and edited only by proprietary word processors, SGML or + XML for which the DTD and/or processing tools are not generally + available, and the machine-generated HTML, PostScript or PDF + produced by some word processors for output purposes only. + + The "Title Page" means, for a printed book, the title page itself, + plus such following pages as are needed to hold, legibly, the + material this License requires to appear in the title page. For + works in formats which do not have any title page as such, "Title + Page" means the text near the most prominent appearance of the + work's title, preceding the beginning of the body of the text. + + A section "Entitled XYZ" means a named subunit of the Document + whose title either is precisely XYZ or contains XYZ in parentheses + following text that translates XYZ in another language. (Here XYZ + stands for a specific section name mentioned below, such as + "Acknowledgements", "Dedications", "Endorsements", or "History".) + To "Preserve the Title" of such a section when you modify the + Document means that it remains a section "Entitled XYZ" according + to this definition. + + The Document may include Warranty Disclaimers next to the notice + which states that this License applies to the Document. These + Warranty Disclaimers are considered to be included by reference in + this License, but only as regards disclaiming warranties: any other + implication that these Warranty Disclaimers may have is void and + has no effect on the meaning of this License. + + 2. VERBATIM COPYING + + You may copy and distribute the Document in any medium, either + commercially or noncommercially, provided that this License, the + copyright notices, and the license notice saying this License + applies to the Document are reproduced in all copies, and that you + add no other conditions whatsoever to those of this License. You + may not use technical measures to obstruct or control the reading + or further copying of the copies you make or distribute. However, + you may accept compensation in exchange for copies. If you + distribute a large enough number of copies you must also follow + the conditions in section 3. + + You may also lend copies, under the same conditions stated above, + and you may publicly display copies. + + 3. COPYING IN QUANTITY + + If you publish printed copies (or copies in media that commonly + have printed covers) of the Document, numbering more than 100, and + the Document's license notice requires Cover Texts, you must + enclose the copies in covers that carry, clearly and legibly, all + these Cover Texts: Front-Cover Texts on the front cover, and + Back-Cover Texts on the back cover. Both covers must also clearly + and legibly identify you as the publisher of these copies. The + front cover must present the full title with all words of the + title equally prominent and visible. You may add other material + on the covers in addition. Copying with changes limited to the + covers, as long as they preserve the title of the Document and + satisfy these conditions, can be treated as verbatim copying in + other respects. + + If the required texts for either cover are too voluminous to fit + legibly, you should put the first ones listed (as many as fit + reasonably) on the actual cover, and continue the rest onto + adjacent pages. + + If you publish or distribute Opaque copies of the Document + numbering more than 100, you must either include a + machine-readable Transparent copy along with each Opaque copy, or + state in or with each Opaque copy a computer-network location from + which the general network-using public has access to download + using public-standard network protocols a complete Transparent + copy of the Document, free of added material. If you use the + latter option, you must take reasonably prudent steps, when you + begin distribution of Opaque copies in quantity, to ensure that + this Transparent copy will remain thus accessible at the stated + location until at least one year after the last time you + distribute an Opaque copy (directly or through your agents or + retailers) of that edition to the public. + + It is requested, but not required, that you contact the authors of + the Document well before redistributing any large number of + copies, to give them a chance to provide you with an updated + version of the Document. + + 4. MODIFICATIONS + + You may copy and distribute a Modified Version of the Document + under the conditions of sections 2 and 3 above, provided that you + release the Modified Version under precisely this License, with + the Modified Version filling the role of the Document, thus + licensing distribution and modification of the Modified Version to + whoever possesses a copy of it. In addition, you must do these + things in the Modified Version: + + A. Use in the Title Page (and on the covers, if any) a title + distinct from that of the Document, and from those of + previous versions (which should, if there were any, be listed + in the History section of the Document). You may use the + same title as a previous version if the original publisher of + that version gives permission. + + B. List on the Title Page, as authors, one or more persons or + entities responsible for authorship of the modifications in + the Modified Version, together with at least five of the + principal authors of the Document (all of its principal + authors, if it has fewer than five), unless they release you + from this requirement. + + C. State on the Title page the name of the publisher of the + Modified Version, as the publisher. + + D. Preserve all the copyright notices of the Document. + + E. Add an appropriate copyright notice for your modifications + adjacent to the other copyright notices. + + F. Include, immediately after the copyright notices, a license + notice giving the public permission to use the Modified + Version under the terms of this License, in the form shown in + the Addendum below. + + G. Preserve in that license notice the full lists of Invariant + Sections and required Cover Texts given in the Document's + license notice. + + H. Include an unaltered copy of this License. + + I. Preserve the section Entitled "History", Preserve its Title, + and add to it an item stating at least the title, year, new + authors, and publisher of the Modified Version as given on + the Title Page. If there is no section Entitled "History" in + the Document, create one stating the title, year, authors, + and publisher of the Document as given on its Title Page, + then add an item describing the Modified Version as stated in + the previous sentence. + + J. Preserve the network location, if any, given in the Document + for public access to a Transparent copy of the Document, and + likewise the network locations given in the Document for + previous versions it was based on. These may be placed in + the "History" section. You may omit a network location for a + work that was published at least four years before the + Document itself, or if the original publisher of the version + it refers to gives permission. + + K. For any section Entitled "Acknowledgements" or "Dedications", + Preserve the Title of the section, and preserve in the + section all the substance and tone of each of the contributor + acknowledgements and/or dedications given therein. + + L. Preserve all the Invariant Sections of the Document, + unaltered in their text and in their titles. Section numbers + or the equivalent are not considered part of the section + titles. + + M. Delete any section Entitled "Endorsements". Such a section + may not be included in the Modified Version. + + N. Do not retitle any existing section to be Entitled + "Endorsements" or to conflict in title with any Invariant + Section. + + O. Preserve any Warranty Disclaimers. + + If the Modified Version includes new front-matter sections or + appendices that qualify as Secondary Sections and contain no + material copied from the Document, you may at your option + designate some or all of these sections as invariant. To do this, + add their titles to the list of Invariant Sections in the Modified + Version's license notice. These titles must be distinct from any + other section titles. + + You may add a section Entitled "Endorsements", provided it contains + nothing but endorsements of your Modified Version by various + parties--for example, statements of peer review or that the text + has been approved by an organization as the authoritative + definition of a standard. + + You may add a passage of up to five words as a Front-Cover Text, + and a passage of up to 25 words as a Back-Cover Text, to the end + of the list of Cover Texts in the Modified Version. Only one + passage of Front-Cover Text and one of Back-Cover Text may be + added by (or through arrangements made by) any one entity. If the + Document already includes a cover text for the same cover, + previously added by you or by arrangement made by the same entity + you are acting on behalf of, you may not add another; but you may + replace the old one, on explicit permission from the previous + publisher that added the old one. + + The author(s) and publisher(s) of the Document do not by this + License give permission to use their names for publicity for or to + assert or imply endorsement of any Modified Version. + + 5. COMBINING DOCUMENTS + + You may combine the Document with other documents released under + this License, under the terms defined in section 4 above for + modified versions, provided that you include in the combination + all of the Invariant Sections of all of the original documents, + unmodified, and list them all as Invariant Sections of your + combined work in its license notice, and that you preserve all + their Warranty Disclaimers. + + The combined work need only contain one copy of this License, and + multiple identical Invariant Sections may be replaced with a single + copy. If there are multiple Invariant Sections with the same name + but different contents, make the title of each such section unique + by adding at the end of it, in parentheses, the name of the + original author or publisher of that section if known, or else a + unique number. Make the same adjustment to the section titles in + the list of Invariant Sections in the license notice of the + combined work. + + In the combination, you must combine any sections Entitled + "History" in the various original documents, forming one section + Entitled "History"; likewise combine any sections Entitled + "Acknowledgements", and any sections Entitled "Dedications". You + must delete all sections Entitled "Endorsements." + + 6. COLLECTIONS OF DOCUMENTS + + You may make a collection consisting of the Document and other + documents released under this License, and replace the individual + copies of this License in the various documents with a single copy + that is included in the collection, provided that you follow the + rules of this License for verbatim copying of each of the + documents in all other respects. + + You may extract a single document from such a collection, and + distribute it individually under this License, provided you insert + a copy of this License into the extracted document, and follow + this License in all other respects regarding verbatim copying of + that document. + + 7. AGGREGATION WITH INDEPENDENT WORKS + + A compilation of the Document or its derivatives with other + separate and independent documents or works, in or on a volume of + a storage or distribution medium, is called an "aggregate" if the + copyright resulting from the compilation is not used to limit the + legal rights of the compilation's users beyond what the individual + works permit. When the Document is included in an aggregate, this + License does not apply to the other works in the aggregate which + are not themselves derivative works of the Document. + + If the Cover Text requirement of section 3 is applicable to these + copies of the Document, then if the Document is less than one half + of the entire aggregate, the Document's Cover Texts may be placed + on covers that bracket the Document within the aggregate, or the + electronic equivalent of covers if the Document is in electronic + form. Otherwise they must appear on printed covers that bracket + the whole aggregate. + + 8. TRANSLATION + + Translation is considered a kind of modification, so you may + distribute translations of the Document under the terms of section + 4. Replacing Invariant Sections with translations requires special + permission from their copyright holders, but you may include + translations of some or all Invariant Sections in addition to the + original versions of these Invariant Sections. You may include a + translation of this License, and all the license notices in the + Document, and any Warranty Disclaimers, provided that you also + include the original English version of this License and the + original versions of those notices and disclaimers. In case of a + disagreement between the translation and the original version of + this License or a notice or disclaimer, the original version will + prevail. + + If a section in the Document is Entitled "Acknowledgements", + "Dedications", or "History", the requirement (section 4) to + Preserve its Title (section 1) will typically require changing the + actual title. + + 9. TERMINATION + + You may not copy, modify, sublicense, or distribute the Document + except as expressly provided for under this License. Any other + attempt to copy, modify, sublicense or distribute the Document is + void, and will automatically terminate your rights under this + License. However, parties who have received copies, or rights, + from you under this License will not have their licenses + terminated so long as such parties remain in full compliance. + + 10. FUTURE REVISIONS OF THIS LICENSE + + The Free Software Foundation may publish new, revised versions of + the GNU Free Documentation License from time to time. Such new + versions will be similar in spirit to the present version, but may + differ in detail to address new problems or concerns. See + `http://www.gnu.org/copyleft/'. + + Each version of the License is given a distinguishing version + number. If the Document specifies that a particular numbered + version of this License "or any later version" applies to it, you + have the option of following the terms and conditions either of + that specified version or of any later version that has been + published (not as a draft) by the Free Software Foundation. If + the Document does not specify a version number of this License, + you may choose any version ever published (not as a draft) by the + Free Software Foundation. + +ADDENDUM: How to use this License for your documents +==================================================== + +To use this License in a document you have written, include a copy of +the License in the document and put the following copyright and license +notices just after the title page: + + Copyright (C) YEAR YOUR NAME. + Permission is granted to copy, distribute and/or modify this document + under the terms of the GNU Free Documentation License, Version 1.2 + or any later version published by the Free Software Foundation; + with no Invariant Sections, no Front-Cover Texts, and no Back-Cover + Texts. A copy of the license is included in the section entitled ``GNU + Free Documentation License''. + + If you have Invariant Sections, Front-Cover Texts and Back-Cover +Texts, replace the "with...Texts." line with this: + + with the Invariant Sections being LIST THEIR TITLES, with + the Front-Cover Texts being LIST, and with the Back-Cover Texts + being LIST. + + If you have Invariant Sections without Cover Texts, or some other +combination of the three, merge those two alternatives to suit the +situation. + + If your document contains nontrivial examples of program code, we +recommend releasing these examples in parallel under your choice of +free software license, such as the GNU General Public License, to +permit their use in free software. + + +File: standards.info, Node: Index, Prev: GNU Free Documentation License, Up: Top + +Index +***** + + +* Menu: + +* #endif, commenting: Comments. (line 60) +* --help output: --help. (line 6) +* --version output: --version. (line 6) +* -Wall compiler option: Syntactic Conventions. + (line 10) +* accepting contributions: Contributions. (line 6) +* address for bug reports: --help. (line 11) +* ANSI C standard: Standard C. (line 6) +* arbitrary limits on data: Semantics. (line 6) +* ASCII characters: Character Set. (line 6) +* autoconf: System Portability. (line 23) +* avoiding proprietary code: Reading Non-Free Code. + (line 6) +* behavior, dependent on program's name: User Interfaces. (line 6) +* binary packages: Install Command Categories. + (line 80) +* bindir: Directory Variables. (line 54) +* braces, in C source: Formatting. (line 6) +* bug reports: --help. (line 11) +* canonical name of a program: --version. (line 12) +* casting pointers to integers: CPU Portability. (line 90) +* CGI programs, standard options for: Command-Line Interfaces. + (line 31) +* change logs: Change Logs. (line 6) +* change logs, conditional changes: Conditional Changes. (line 6) +* change logs, style: Style of Change Logs. + (line 6) +* character set: Character Set. (line 6) +* command-line arguments, decoding: Semantics. (line 46) +* command-line interface: Command-Line Interfaces. + (line 6) +* commenting: Comments. (line 6) +* compatibility with C and POSIX standards: Compatibility. (line 6) +* compiler warnings: Syntactic Conventions. + (line 10) +* conditional changes, and change logs: Conditional Changes. (line 6) +* conditionals, comments for: Comments. (line 60) +* configure: Configuration. (line 6) +* control-L: Formatting. (line 118) +* conventions for makefiles: Makefile Conventions. + (line 6) +* corba: Graphical Interfaces. + (line 16) +* credits for manuals: Manual Credits. (line 6) +* data types, and portability: CPU Portability. (line 6) +* declaration for system functions: System Functions. (line 21) +* DESTDIR: DESTDIR. (line 6) +* documentation: Documentation. (line 6) +* doschk: Names. (line 38) +* downloading this manual: Preface. (line 17) +* encodings: Character Set. (line 6) +* error messages: Semantics. (line 19) +* error messages, formatting: Errors. (line 6) +* exec_prefix: Directory Variables. (line 36) +* expressions, splitting: Formatting. (line 81) +* FDL, GNU Free Documentation License: GNU Free Documentation License. + (line 6) +* file usage: File Usage. (line 6) +* file-name limitations: Names. (line 38) +* formatting error messages: Errors. (line 6) +* formatting source code: Formatting. (line 6) +* formfeed: Formatting. (line 118) +* function argument, declaring: Syntactic Conventions. + (line 6) +* function prototypes: Standard C. (line 17) +* getopt: Command-Line Interfaces. + (line 6) +* gettext: Internationalization. + (line 6) +* gnome: Graphical Interfaces. + (line 16) +* graphical user interface: Graphical Interfaces. + (line 6) +* grave accent: Quote Characters. (line 6) +* gtk+: Graphical Interfaces. + (line 6) +* GUILE: Source Language. (line 38) +* implicit int: Syntactic Conventions. + (line 6) +* impossible conditions: Semantics. (line 70) +* installations, staged: DESTDIR. (line 6) +* internationalization: Internationalization. + (line 6) +* left quote: Quote Characters. (line 6) +* legal aspects: Legal Issues. (line 6) +* legal papers: Contributions. (line 6) +* libexecdir: Directory Variables. (line 67) +* libraries: Libraries. (line 6) +* library functions, and portability: System Functions. (line 6) +* license for manuals: License for Manuals. (line 6) +* lint: Syntactic Conventions. + (line 109) +* locale-specific quote characters: Quote Characters. (line 6) +* long option names: Option Table. (line 6) +* long-named options: Command-Line Interfaces. + (line 12) +* makefile, conventions for: Makefile Conventions. + (line 6) +* malloc return value: Semantics. (line 25) +* man pages: Man Pages. (line 6) +* manual structure: Manual Structure Details. + (line 6) +* memory allocation failure: Semantics. (line 25) +* memory usage: Memory Usage. (line 6) +* message text, and internationalization: Internationalization. + (line 29) +* mmap: Mmap. (line 6) +* multiple variables in a line: Syntactic Conventions. + (line 35) +* names of variables, functions, and files: Names. (line 6) +* NEWS file: NEWS File. (line 6) +* non-ASCII characters: Character Set. (line 6) +* non-POSIX systems, and portability: System Portability. (line 32) +* non-standard extensions: Using Extensions. (line 6) +* NUL characters: Semantics. (line 11) +* open brace: Formatting. (line 6) +* optional features, configure-time: Configuration. (line 83) +* options for compatibility: Compatibility. (line 14) +* options, standard command-line: Command-Line Interfaces. + (line 31) +* output device and program's behavior: User Interfaces. (line 13) +* packaging: Releases. (line 6) +* PATH_INFO, specifying standard options as: Command-Line Interfaces. + (line 31) +* portability, and data types: CPU Portability. (line 6) +* portability, and library functions: System Functions. (line 6) +* portability, between system types: System Portability. (line 6) +* POSIX compatibility: Compatibility. (line 6) +* POSIXLY_CORRECT, environment variable: Compatibility. (line 21) +* post-installation commands: Install Command Categories. + (line 6) +* pre-installation commands: Install Command Categories. + (line 6) +* prefix: Directory Variables. (line 26) +* program configuration: Configuration. (line 6) +* program design: Design Advice. (line 6) +* program name and its behavior: User Interfaces. (line 6) +* program's canonical name: --version. (line 12) +* programming languages: Source Language. (line 6) +* proprietary programs: Reading Non-Free Code. + (line 6) +* quote characters: Quote Characters. (line 6) +* README file: Releases. (line 21) +* references to non-free material: References. (line 6) +* releasing: Managing Releases. (line 6) +* sbindir: Directory Variables. (line 60) +* signal handling: Semantics. (line 59) +* spaces before open-paren: Formatting. (line 75) +* staged installs: DESTDIR. (line 6) +* standard command-line options: Command-Line Interfaces. + (line 31) +* standards for makefiles: Makefile Conventions. + (line 6) +* string library functions: System Functions. (line 55) +* syntactic conventions: Syntactic Conventions. + (line 6) +* table of long options: Option Table. (line 6) +* temporary files: Semantics. (line 84) +* temporary variables: Syntactic Conventions. + (line 23) +* texinfo.tex, in a distribution: Releases. (line 70) +* TMPDIR environment variable: Semantics. (line 84) +* trademarks: Trademarks. (line 6) +* where to obtain standards.texi: Preface. (line 17) + + + +Tag Table: +Node: Top804 +Node: Preface2060 +Node: Legal Issues4175 +Node: Reading Non-Free Code4645 +Node: Contributions6375 +Node: Trademarks8613 +Node: Design Advice10248 +Node: Source Language10840 +Node: Compatibility12852 +Node: Using Extensions14480 +Node: Standard C16056 +Node: Conditional Compilation18459 +Node: Program Behavior19857 +Node: Non-GNU Standards20913 +Node: Semantics23194 +Node: Libraries27913 +Node: Errors29158 +Node: User Interfaces31651 +Node: Graphical Interfaces33256 +Node: Command-Line Interfaces34292 +Node: --version36324 +Node: --help42217 +Node: Option Table42771 +Node: Memory Usage57712 +Node: File Usage58743 +Node: Writing C59493 +Node: Formatting60465 +Node: Comments64754 +Node: Syntactic Conventions68306 +Node: Names71768 +Node: System Portability73980 +Node: CPU Portability76870 +Node: System Functions80782 +Node: Internationalization85979 +Node: Character Set89973 +Node: Quote Characters90786 +Node: Mmap92306 +Node: Documentation93014 +Node: GNU Manuals94120 +Node: Doc Strings and Manuals99858 +Node: Manual Structure Details101411 +Node: License for Manuals102829 +Node: Manual Credits103803 +Node: Printed Manuals104196 +Node: NEWS File104882 +Node: Change Logs105560 +Node: Change Log Concepts106314 +Node: Style of Change Logs108403 +Node: Simple Changes110903 +Node: Conditional Changes112345 +Node: Indicating the Part Changed113767 +Node: Man Pages114294 +Node: Reading other Manuals116606 +Node: Managing Releases117397 +Node: Configuration118178 +Node: Makefile Conventions125898 +Node: Makefile Basics126780 +Node: Utilities in Makefiles129954 +Node: Command Variables132099 +Node: DESTDIR135321 +Node: Directory Variables137470 +Node: Standard Targets151963 +Ref: Standard Targets-Footnote-1165478 +Node: Install Command Categories165578 +Node: Releases170111 +Node: References174038 +Node: GNU Free Documentation License179533 +Node: Index201965 + +End Tag Table |