summaryrefslogtreecommitdiff
path: root/gdb/hppa-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/hppa-tdep.c')
-rw-r--r--gdb/hppa-tdep.c4445
1 files changed, 4445 insertions, 0 deletions
diff --git a/gdb/hppa-tdep.c b/gdb/hppa-tdep.c
new file mode 100644
index 00000000000..d9117508112
--- /dev/null
+++ b/gdb/hppa-tdep.c
@@ -0,0 +1,4445 @@
+/* Target-dependent code for the HP PA architecture, for GDB.
+ Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
+ Free Software Foundation, Inc.
+
+ Contributed by the Center for Software Science at the
+ University of Utah (pa-gdb-bugs@cs.utah.edu).
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "bfd.h"
+#include "inferior.h"
+#include "value.h"
+
+/* For argument passing to the inferior */
+#include "symtab.h"
+
+#ifdef USG
+#include <sys/types.h>
+#endif
+
+#include <dl.h>
+#include <sys/param.h>
+#include <signal.h>
+
+#include <sys/ptrace.h>
+#include <machine/save_state.h>
+
+#ifdef COFF_ENCAPSULATE
+#include "a.out.encap.h"
+#else
+#endif
+
+/*#include <sys/user.h> After a.out.h */
+#include <sys/file.h>
+#include "gdb_stat.h"
+#include "wait.h"
+
+#include "gdbcore.h"
+#include "gdbcmd.h"
+#include "target.h"
+#include "symfile.h"
+#include "objfiles.h"
+
+/* To support asking "What CPU is this?" */
+#include <unistd.h>
+
+/* To support detection of the pseudo-initial frame
+ that threads have. */
+#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
+#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
+
+static int extract_5_load PARAMS ((unsigned int));
+
+static unsigned extract_5R_store PARAMS ((unsigned int));
+
+static unsigned extract_5r_store PARAMS ((unsigned int));
+
+static void find_dummy_frame_regs PARAMS ((struct frame_info *,
+ struct frame_saved_regs *));
+
+static int find_proc_framesize PARAMS ((CORE_ADDR));
+
+static int find_return_regnum PARAMS ((CORE_ADDR));
+
+struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
+
+static int extract_17 PARAMS ((unsigned int));
+
+static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
+
+static int extract_21 PARAMS ((unsigned));
+
+static unsigned deposit_14 PARAMS ((int, unsigned int));
+
+static int extract_14 PARAMS ((unsigned));
+
+static void unwind_command PARAMS ((char *, int));
+
+static int low_sign_extend PARAMS ((unsigned int, unsigned int));
+
+static int sign_extend PARAMS ((unsigned int, unsigned int));
+
+static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
+
+static int hppa_alignof PARAMS ((struct type *));
+
+/* To support multi-threading and stepping. */
+int hppa_prepare_to_proceed PARAMS (());
+
+static int prologue_inst_adjust_sp PARAMS ((unsigned long));
+
+static int is_branch PARAMS ((unsigned long));
+
+static int inst_saves_gr PARAMS ((unsigned long));
+
+static int inst_saves_fr PARAMS ((unsigned long));
+
+static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
+
+static int pc_in_linker_stub PARAMS ((CORE_ADDR));
+
+static int compare_unwind_entries PARAMS ((const void *, const void *));
+
+static void read_unwind_info PARAMS ((struct objfile *));
+
+static void internalize_unwinds PARAMS ((struct objfile *,
+ struct unwind_table_entry *,
+ asection *, unsigned int,
+ unsigned int, CORE_ADDR));
+static void pa_print_registers PARAMS ((char *, int, int));
+static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
+static void pa_register_look_aside PARAMS ((char *, int, long *));
+static void pa_print_fp_reg PARAMS ((int));
+static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
+
+typedef struct {
+ struct minimal_symbol * msym;
+ CORE_ADDR solib_handle;
+} args_for_find_stub;
+
+static CORE_ADDR cover_find_stub_with_shl_get PARAMS ((args_for_find_stub *));
+
+static int is_pa_2 = 0; /* False */
+
+/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
+extern int hp_som_som_object_present;
+
+/* In breakpoint.c */
+extern int exception_catchpoints_are_fragile;
+
+/* This is defined in valops.c. */
+extern value_ptr
+find_function_in_inferior PARAMS((char *));
+
+/* Should call_function allocate stack space for a struct return? */
+int
+hppa_use_struct_convention (gcc_p, type)
+ int gcc_p;
+ struct type *type;
+{
+ return (TYPE_LENGTH (type) > 8);
+}
+
+
+/* Routines to extract various sized constants out of hppa
+ instructions. */
+
+/* This assumes that no garbage lies outside of the lower bits of
+ value. */
+
+static int
+sign_extend (val, bits)
+ unsigned val, bits;
+{
+ return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
+}
+
+/* For many immediate values the sign bit is the low bit! */
+
+static int
+low_sign_extend (val, bits)
+ unsigned val, bits;
+{
+ return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
+}
+
+/* extract the immediate field from a ld{bhw}s instruction */
+
+#if 0
+
+unsigned
+get_field (val, from, to)
+ unsigned val, from, to;
+{
+ val = val >> 31 - to;
+ return val & ((1 << 32 - from) - 1);
+}
+
+unsigned
+set_field (val, from, to, new_val)
+ unsigned *val, from, to;
+{
+ unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
+ return *val = *val & mask | (new_val << (31 - from));
+}
+
+/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
+
+int
+extract_3 (word)
+ unsigned word;
+{
+ return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
+}
+
+#endif
+
+static int
+extract_5_load (word)
+ unsigned word;
+{
+ return low_sign_extend (word >> 16 & MASK_5, 5);
+}
+
+#if 0
+
+/* extract the immediate field from a st{bhw}s instruction */
+
+int
+extract_5_store (word)
+ unsigned word;
+{
+ return low_sign_extend (word & MASK_5, 5);
+}
+
+#endif /* 0 */
+
+/* extract the immediate field from a break instruction */
+
+static unsigned
+extract_5r_store (word)
+ unsigned word;
+{
+ return (word & MASK_5);
+}
+
+/* extract the immediate field from a {sr}sm instruction */
+
+static unsigned
+extract_5R_store (word)
+ unsigned word;
+{
+ return (word >> 16 & MASK_5);
+}
+
+/* extract an 11 bit immediate field */
+
+#if 0
+
+int
+extract_11 (word)
+ unsigned word;
+{
+ return low_sign_extend (word & MASK_11, 11);
+}
+
+#endif
+
+/* extract a 14 bit immediate field */
+
+static int
+extract_14 (word)
+ unsigned word;
+{
+ return low_sign_extend (word & MASK_14, 14);
+}
+
+/* deposit a 14 bit constant in a word */
+
+static unsigned
+deposit_14 (opnd, word)
+ int opnd;
+ unsigned word;
+{
+ unsigned sign = (opnd < 0 ? 1 : 0);
+
+ return word | ((unsigned)opnd << 1 & MASK_14) | sign;
+}
+
+/* extract a 21 bit constant */
+
+static int
+extract_21 (word)
+ unsigned word;
+{
+ int val;
+
+ word &= MASK_21;
+ word <<= 11;
+ val = GET_FIELD (word, 20, 20);
+ val <<= 11;
+ val |= GET_FIELD (word, 9, 19);
+ val <<= 2;
+ val |= GET_FIELD (word, 5, 6);
+ val <<= 5;
+ val |= GET_FIELD (word, 0, 4);
+ val <<= 2;
+ val |= GET_FIELD (word, 7, 8);
+ return sign_extend (val, 21) << 11;
+}
+
+/* deposit a 21 bit constant in a word. Although 21 bit constants are
+ usually the top 21 bits of a 32 bit constant, we assume that only
+ the low 21 bits of opnd are relevant */
+
+static unsigned
+deposit_21 (opnd, word)
+ unsigned opnd, word;
+{
+ unsigned val = 0;
+
+ val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
+ val <<= 2;
+ val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
+ val <<= 2;
+ val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
+ val <<= 11;
+ val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
+ val <<= 1;
+ val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
+ return word | val;
+}
+
+/* extract a 12 bit constant from branch instructions */
+
+#if 0
+
+int
+extract_12 (word)
+ unsigned word;
+{
+ return sign_extend (GET_FIELD (word, 19, 28) |
+ GET_FIELD (word, 29, 29) << 10 |
+ (word & 0x1) << 11, 12) << 2;
+}
+
+/* Deposit a 17 bit constant in an instruction (like bl). */
+
+unsigned int
+deposit_17 (opnd, word)
+ unsigned opnd, word;
+{
+ word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
+ word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
+ word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
+ word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
+
+ return word;
+}
+
+#endif
+
+/* extract a 17 bit constant from branch instructions, returning the
+ 19 bit signed value. */
+
+static int
+extract_17 (word)
+ unsigned word;
+{
+ return sign_extend (GET_FIELD (word, 19, 28) |
+ GET_FIELD (word, 29, 29) << 10 |
+ GET_FIELD (word, 11, 15) << 11 |
+ (word & 0x1) << 16, 17) << 2;
+}
+
+
+/* Compare the start address for two unwind entries returning 1 if
+ the first address is larger than the second, -1 if the second is
+ larger than the first, and zero if they are equal. */
+
+static int
+compare_unwind_entries (arg1, arg2)
+ const void *arg1;
+ const void *arg2;
+{
+ const struct unwind_table_entry *a = arg1;
+ const struct unwind_table_entry *b = arg2;
+
+ if (a->region_start > b->region_start)
+ return 1;
+ else if (a->region_start < b->region_start)
+ return -1;
+ else
+ return 0;
+}
+
+static void
+internalize_unwinds (objfile, table, section, entries, size, text_offset)
+ struct objfile *objfile;
+ struct unwind_table_entry *table;
+ asection *section;
+ unsigned int entries, size;
+ CORE_ADDR text_offset;
+{
+ /* We will read the unwind entries into temporary memory, then
+ fill in the actual unwind table. */
+ if (size > 0)
+ {
+ unsigned long tmp;
+ unsigned i;
+ char *buf = alloca (size);
+
+ bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
+
+ /* Now internalize the information being careful to handle host/target
+ endian issues. */
+ for (i = 0; i < entries; i++)
+ {
+ table[i].region_start = bfd_get_32 (objfile->obfd,
+ (bfd_byte *)buf);
+ table[i].region_start += text_offset;
+ buf += 4;
+ table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
+ table[i].region_end += text_offset;
+ buf += 4;
+ tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
+ buf += 4;
+ table[i].Cannot_unwind = (tmp >> 31) & 0x1;
+ table[i].Millicode = (tmp >> 30) & 0x1;
+ table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
+ table[i].Region_description = (tmp >> 27) & 0x3;
+ table[i].reserved1 = (tmp >> 26) & 0x1;
+ table[i].Entry_SR = (tmp >> 25) & 0x1;
+ table[i].Entry_FR = (tmp >> 21) & 0xf;
+ table[i].Entry_GR = (tmp >> 16) & 0x1f;
+ table[i].Args_stored = (tmp >> 15) & 0x1;
+ table[i].Variable_Frame = (tmp >> 14) & 0x1;
+ table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
+ table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
+ table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
+ table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
+ table[i].Ada_Region = (tmp >> 9) & 0x1;
+ table[i].cxx_info = (tmp >> 8) & 0x1;
+ table[i].cxx_try_catch = (tmp >> 7) & 0x1;
+ table[i].sched_entry_seq = (tmp >> 6) & 0x1;
+ table[i].reserved2 = (tmp >> 5) & 0x1;
+ table[i].Save_SP = (tmp >> 4) & 0x1;
+ table[i].Save_RP = (tmp >> 3) & 0x1;
+ table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
+ table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
+ table[i].Cleanup_defined = tmp & 0x1;
+ tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
+ buf += 4;
+ table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
+ table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
+ table[i].Large_frame = (tmp >> 29) & 0x1;
+ table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
+ table[i].reserved4 = (tmp >> 27) & 0x1;
+ table[i].Total_frame_size = tmp & 0x7ffffff;
+
+ /* Stub unwinds are handled elsewhere. */
+ table[i].stub_unwind.stub_type = 0;
+ table[i].stub_unwind.padding = 0;
+ }
+ }
+}
+
+/* Read in the backtrace information stored in the `$UNWIND_START$' section of
+ the object file. This info is used mainly by find_unwind_entry() to find
+ out the stack frame size and frame pointer used by procedures. We put
+ everything on the psymbol obstack in the objfile so that it automatically
+ gets freed when the objfile is destroyed. */
+
+static void
+read_unwind_info (objfile)
+ struct objfile *objfile;
+{
+ asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
+ unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
+ unsigned index, unwind_entries, elf_unwind_entries;
+ unsigned stub_entries, total_entries;
+ CORE_ADDR text_offset;
+ struct obj_unwind_info *ui;
+ obj_private_data_t *obj_private;
+
+ text_offset = ANOFFSET (objfile->section_offsets, 0);
+ ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
+ sizeof (struct obj_unwind_info));
+
+ ui->table = NULL;
+ ui->cache = NULL;
+ ui->last = -1;
+
+ /* Get hooks to all unwind sections. Note there is no linker-stub unwind
+ section in ELF at the moment. */
+ unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
+ elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
+ stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
+
+ /* Get sizes and unwind counts for all sections. */
+ if (unwind_sec)
+ {
+ unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
+ unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
+ }
+ else
+ {
+ unwind_size = 0;
+ unwind_entries = 0;
+ }
+
+ if (elf_unwind_sec)
+ {
+ elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); /* purecov: deadcode */
+ elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; /* purecov: deadcode */
+ }
+ else
+ {
+ elf_unwind_size = 0;
+ elf_unwind_entries = 0;
+ }
+
+ if (stub_unwind_sec)
+ {
+ stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
+ stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
+ }
+ else
+ {
+ stub_unwind_size = 0;
+ stub_entries = 0;
+ }
+
+ /* Compute total number of unwind entries and their total size. */
+ total_entries = unwind_entries + elf_unwind_entries + stub_entries;
+ total_size = total_entries * sizeof (struct unwind_table_entry);
+
+ /* Allocate memory for the unwind table. */
+ ui->table = (struct unwind_table_entry *)
+ obstack_alloc (&objfile->psymbol_obstack, total_size);
+ ui->last = total_entries - 1;
+
+ /* Internalize the standard unwind entries. */
+ index = 0;
+ internalize_unwinds (objfile, &ui->table[index], unwind_sec,
+ unwind_entries, unwind_size, text_offset);
+ index += unwind_entries;
+ internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
+ elf_unwind_entries, elf_unwind_size, text_offset);
+ index += elf_unwind_entries;
+
+ /* Now internalize the stub unwind entries. */
+ if (stub_unwind_size > 0)
+ {
+ unsigned int i;
+ char *buf = alloca (stub_unwind_size);
+
+ /* Read in the stub unwind entries. */
+ bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
+ 0, stub_unwind_size);
+
+ /* Now convert them into regular unwind entries. */
+ for (i = 0; i < stub_entries; i++, index++)
+ {
+ /* Clear out the next unwind entry. */
+ memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
+
+ /* Convert offset & size into region_start and region_end.
+ Stuff away the stub type into "reserved" fields. */
+ ui->table[index].region_start = bfd_get_32 (objfile->obfd,
+ (bfd_byte *) buf);
+ ui->table[index].region_start += text_offset;
+ buf += 4;
+ ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
+ (bfd_byte *) buf);
+ buf += 2;
+ ui->table[index].region_end
+ = ui->table[index].region_start + 4 *
+ (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
+ buf += 2;
+ }
+
+ }
+
+ /* Unwind table needs to be kept sorted. */
+ qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
+ compare_unwind_entries);
+
+ /* Keep a pointer to the unwind information. */
+ if(objfile->obj_private == NULL)
+ {
+ obj_private = (obj_private_data_t *)
+ obstack_alloc(&objfile->psymbol_obstack,
+ sizeof(obj_private_data_t));
+ obj_private->unwind_info = NULL;
+ obj_private->so_info = NULL;
+
+ objfile->obj_private = (PTR) obj_private;
+ }
+ obj_private = (obj_private_data_t *)objfile->obj_private;
+ obj_private->unwind_info = ui;
+}
+
+/* Lookup the unwind (stack backtrace) info for the given PC. We search all
+ of the objfiles seeking the unwind table entry for this PC. Each objfile
+ contains a sorted list of struct unwind_table_entry. Since we do a binary
+ search of the unwind tables, we depend upon them to be sorted. */
+
+struct unwind_table_entry *
+find_unwind_entry(pc)
+ CORE_ADDR pc;
+{
+ int first, middle, last;
+ struct objfile *objfile;
+
+ /* A function at address 0? Not in HP-UX! */
+ if (pc == (CORE_ADDR) 0)
+ return NULL;
+
+ ALL_OBJFILES (objfile)
+ {
+ struct obj_unwind_info *ui;
+ ui = NULL;
+ if (objfile->obj_private)
+ ui = ((obj_private_data_t *)(objfile->obj_private))->unwind_info;
+
+ if (!ui)
+ {
+ read_unwind_info (objfile);
+ if (objfile->obj_private == NULL)
+ error ("Internal error reading unwind information."); /* purecov: deadcode */
+ ui = ((obj_private_data_t *)(objfile->obj_private))->unwind_info;
+ }
+
+ /* First, check the cache */
+
+ if (ui->cache
+ && pc >= ui->cache->region_start
+ && pc <= ui->cache->region_end)
+ return ui->cache;
+
+ /* Not in the cache, do a binary search */
+
+ first = 0;
+ last = ui->last;
+
+ while (first <= last)
+ {
+ middle = (first + last) / 2;
+ if (pc >= ui->table[middle].region_start
+ && pc <= ui->table[middle].region_end)
+ {
+ ui->cache = &ui->table[middle];
+ return &ui->table[middle];
+ }
+
+ if (pc < ui->table[middle].region_start)
+ last = middle - 1;
+ else
+ first = middle + 1;
+ }
+ } /* ALL_OBJFILES() */
+ return NULL;
+}
+
+/* Return the adjustment necessary to make for addresses on the stack
+ as presented by hpread.c.
+
+ This is necessary because of the stack direction on the PA and the
+ bizarre way in which someone (?) decided they wanted to handle
+ frame pointerless code in GDB. */
+int
+hpread_adjust_stack_address (func_addr)
+ CORE_ADDR func_addr;
+{
+ struct unwind_table_entry *u;
+
+ u = find_unwind_entry (func_addr);
+ if (!u)
+ return 0;
+ else
+ return u->Total_frame_size << 3;
+}
+
+/* Called to determine if PC is in an interrupt handler of some
+ kind. */
+
+static int
+pc_in_interrupt_handler (pc)
+ CORE_ADDR pc;
+{
+ struct unwind_table_entry *u;
+ struct minimal_symbol *msym_us;
+
+ u = find_unwind_entry (pc);
+ if (!u)
+ return 0;
+
+ /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
+ its frame isn't a pure interrupt frame. Deal with this. */
+ msym_us = lookup_minimal_symbol_by_pc (pc);
+
+ return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
+}
+
+/* Called when no unwind descriptor was found for PC. Returns 1 if it
+ appears that PC is in a linker stub. */
+
+static int
+pc_in_linker_stub (pc)
+ CORE_ADDR pc;
+{
+ int found_magic_instruction = 0;
+ int i;
+ char buf[4];
+
+ /* If unable to read memory, assume pc is not in a linker stub. */
+ if (target_read_memory (pc, buf, 4) != 0)
+ return 0;
+
+ /* We are looking for something like
+
+ ; $$dyncall jams RP into this special spot in the frame (RP')
+ ; before calling the "call stub"
+ ldw -18(sp),rp
+
+ ldsid (rp),r1 ; Get space associated with RP into r1
+ mtsp r1,sp ; Move it into space register 0
+ be,n 0(sr0),rp) ; back to your regularly scheduled program */
+
+ /* Maximum known linker stub size is 4 instructions. Search forward
+ from the given PC, then backward. */
+ for (i = 0; i < 4; i++)
+ {
+ /* If we hit something with an unwind, stop searching this direction. */
+
+ if (find_unwind_entry (pc + i * 4) != 0)
+ break;
+
+ /* Check for ldsid (rp),r1 which is the magic instruction for a
+ return from a cross-space function call. */
+ if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
+ {
+ found_magic_instruction = 1;
+ break;
+ }
+ /* Add code to handle long call/branch and argument relocation stubs
+ here. */
+ }
+
+ if (found_magic_instruction != 0)
+ return 1;
+
+ /* Now look backward. */
+ for (i = 0; i < 4; i++)
+ {
+ /* If we hit something with an unwind, stop searching this direction. */
+
+ if (find_unwind_entry (pc - i * 4) != 0)
+ break;
+
+ /* Check for ldsid (rp),r1 which is the magic instruction for a
+ return from a cross-space function call. */
+ if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
+ {
+ found_magic_instruction = 1;
+ break;
+ }
+ /* Add code to handle long call/branch and argument relocation stubs
+ here. */
+ }
+ return found_magic_instruction;
+}
+
+static int
+find_return_regnum(pc)
+ CORE_ADDR pc;
+{
+ struct unwind_table_entry *u;
+
+ u = find_unwind_entry (pc);
+
+ if (!u)
+ return RP_REGNUM;
+
+ if (u->Millicode)
+ return 31;
+
+ return RP_REGNUM;
+}
+
+/* Return size of frame, or -1 if we should use a frame pointer. */
+static int
+find_proc_framesize (pc)
+ CORE_ADDR pc;
+{
+ struct unwind_table_entry *u;
+ struct minimal_symbol *msym_us;
+
+ /* This may indicate a bug in our callers... */
+ if (pc == (CORE_ADDR)0)
+ return -1;
+
+ u = find_unwind_entry (pc);
+
+ if (!u)
+ {
+ if (pc_in_linker_stub (pc))
+ /* Linker stubs have a zero size frame. */
+ return 0;
+ else
+ return -1;
+ }
+
+ msym_us = lookup_minimal_symbol_by_pc (pc);
+
+ /* If Save_SP is set, and we're not in an interrupt or signal caller,
+ then we have a frame pointer. Use it. */
+ if (u->Save_SP && !pc_in_interrupt_handler (pc)
+ && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
+ return -1;
+
+ return u->Total_frame_size << 3;
+}
+
+/* Return offset from sp at which rp is saved, or 0 if not saved. */
+static int rp_saved PARAMS ((CORE_ADDR));
+
+static int
+rp_saved (pc)
+ CORE_ADDR pc;
+{
+ struct unwind_table_entry *u;
+
+ /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
+ if (pc == (CORE_ADDR) 0)
+ return 0;
+
+ u = find_unwind_entry (pc);
+
+ if (!u)
+ {
+ if (pc_in_linker_stub (pc))
+ /* This is the so-called RP'. */
+ return -24;
+ else
+ return 0;
+ }
+
+ if (u->Save_RP)
+ return -20;
+ else if (u->stub_unwind.stub_type != 0)
+ {
+ switch (u->stub_unwind.stub_type)
+ {
+ case EXPORT:
+ case IMPORT:
+ return -24;
+ case PARAMETER_RELOCATION:
+ return -8;
+ default:
+ return 0;
+ }
+ }
+ else
+ return 0;
+}
+
+int
+frameless_function_invocation (frame)
+ struct frame_info *frame;
+{
+ struct unwind_table_entry *u;
+
+ u = find_unwind_entry (frame->pc);
+
+ if (u == 0)
+ return 0;
+
+ return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
+}
+
+CORE_ADDR
+saved_pc_after_call (frame)
+ struct frame_info *frame;
+{
+ int ret_regnum;
+ CORE_ADDR pc;
+ struct unwind_table_entry *u;
+
+ ret_regnum = find_return_regnum (get_frame_pc (frame));
+ pc = read_register (ret_regnum) & ~0x3;
+
+ /* If PC is in a linker stub, then we need to dig the address
+ the stub will return to out of the stack. */
+ u = find_unwind_entry (pc);
+ if (u && u->stub_unwind.stub_type != 0)
+ return FRAME_SAVED_PC (frame);
+ else
+ return pc;
+}
+
+CORE_ADDR
+hppa_frame_saved_pc (frame)
+ struct frame_info *frame;
+{
+ CORE_ADDR pc = get_frame_pc (frame);
+ struct unwind_table_entry *u;
+ CORE_ADDR old_pc;
+ int spun_around_loop = 0;
+ int rp_offset = 0;
+
+ /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
+ at the base of the frame in an interrupt handler. Registers within
+ are saved in the exact same order as GDB numbers registers. How
+ convienent. */
+ if (pc_in_interrupt_handler (pc))
+ return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
+
+#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
+ /* Deal with signal handler caller frames too. */
+ if (frame->signal_handler_caller)
+ {
+ CORE_ADDR rp;
+ FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
+ return rp & ~0x3;
+ }
+#endif
+
+ if (frameless_function_invocation (frame))
+ {
+ int ret_regnum;
+
+ ret_regnum = find_return_regnum (pc);
+
+ /* If the next frame is an interrupt frame or a signal
+ handler caller, then we need to look in the saved
+ register area to get the return pointer (the values
+ in the registers may not correspond to anything useful). */
+ if (frame->next
+ && (frame->next->signal_handler_caller
+ || pc_in_interrupt_handler (frame->next->pc)))
+ {
+ struct frame_saved_regs saved_regs;
+
+ get_frame_saved_regs (frame->next, &saved_regs);
+ if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
+ {
+ pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
+
+ /* Syscalls are really two frames. The syscall stub itself
+ with a return pointer in %rp and the kernel call with
+ a return pointer in %r31. We return the %rp variant
+ if %r31 is the same as frame->pc. */
+ if (pc == frame->pc)
+ pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
+ }
+ else
+ pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
+ }
+ else
+ pc = read_register (ret_regnum) & ~0x3;
+ }
+ else
+ {
+ spun_around_loop = 0;
+ old_pc = pc;
+
+restart:
+ rp_offset = rp_saved (pc);
+
+ /* Similar to code in frameless function case. If the next
+ frame is a signal or interrupt handler, then dig the right
+ information out of the saved register info. */
+ if (rp_offset == 0
+ && frame->next
+ && (frame->next->signal_handler_caller
+ || pc_in_interrupt_handler (frame->next->pc)))
+ {
+ struct frame_saved_regs saved_regs;
+
+ get_frame_saved_regs (frame->next, &saved_regs);
+ if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
+ {
+ pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
+
+ /* Syscalls are really two frames. The syscall stub itself
+ with a return pointer in %rp and the kernel call with
+ a return pointer in %r31. We return the %rp variant
+ if %r31 is the same as frame->pc. */
+ if (pc == frame->pc)
+ pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
+ }
+ else
+ pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
+ }
+ else if (rp_offset == 0)
+ {
+ old_pc = pc;
+ pc = read_register (RP_REGNUM) & ~0x3;
+ }
+ else
+ {
+ old_pc = pc;
+ pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
+ }
+ }
+
+ /* If PC is inside a linker stub, then dig out the address the stub
+ will return to.
+
+ Don't do this for long branch stubs. Why? For some unknown reason
+ _start is marked as a long branch stub in hpux10. */
+ u = find_unwind_entry (pc);
+ if (u && u->stub_unwind.stub_type != 0
+ && u->stub_unwind.stub_type != LONG_BRANCH)
+ {
+ unsigned int insn;
+
+ /* If this is a dynamic executable, and we're in a signal handler,
+ then the call chain will eventually point us into the stub for
+ _sigreturn. Unlike most cases, we'll be pointed to the branch
+ to the real sigreturn rather than the code after the real branch!.
+
+ Else, try to dig the address the stub will return to in the normal
+ fashion. */
+ insn = read_memory_integer (pc, 4);
+ if ((insn & 0xfc00e000) == 0xe8000000)
+ return (pc + extract_17 (insn) + 8) & ~0x3;
+ else
+ {
+ if (old_pc == pc)
+ spun_around_loop++;
+
+ if (spun_around_loop > 1)
+ {
+ /* We're just about to go around the loop again with
+ no more hope of success. Die. */
+ error("Unable to find return pc for this frame");
+ }
+ else
+ goto restart;
+ }
+ }
+
+ return pc;
+}
+
+/* We need to correct the PC and the FP for the outermost frame when we are
+ in a system call. */
+
+void
+init_extra_frame_info (fromleaf, frame)
+ int fromleaf;
+ struct frame_info *frame;
+{
+ int flags;
+ int framesize;
+
+ if (frame->next && !fromleaf)
+ return;
+
+ /* If the next frame represents a frameless function invocation
+ then we have to do some adjustments that are normally done by
+ FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
+ if (fromleaf)
+ {
+ /* Find the framesize of *this* frame without peeking at the PC
+ in the current frame structure (it isn't set yet). */
+ framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
+
+ /* Now adjust our base frame accordingly. If we have a frame pointer
+ use it, else subtract the size of this frame from the current
+ frame. (we always want frame->frame to point at the lowest address
+ in the frame). */
+ if (framesize == -1)
+ frame->frame = TARGET_READ_FP ();
+ else
+ frame->frame -= framesize;
+ return;
+ }
+
+ flags = read_register (FLAGS_REGNUM);
+ if (flags & 2) /* In system call? */
+ frame->pc = read_register (31) & ~0x3;
+
+ /* The outermost frame is always derived from PC-framesize
+
+ One might think frameless innermost frames should have
+ a frame->frame that is the same as the parent's frame->frame.
+ That is wrong; frame->frame in that case should be the *high*
+ address of the parent's frame. It's complicated as hell to
+ explain, but the parent *always* creates some stack space for
+ the child. So the child actually does have a frame of some
+ sorts, and its base is the high address in its parent's frame. */
+ framesize = find_proc_framesize(frame->pc);
+ if (framesize == -1)
+ frame->frame = TARGET_READ_FP ();
+ else
+ frame->frame = read_register (SP_REGNUM) - framesize;
+}
+
+/* Given a GDB frame, determine the address of the calling function's frame.
+ This will be used to create a new GDB frame struct, and then
+ INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+
+ This may involve searching through prologues for several functions
+ at boundaries where GCC calls HP C code, or where code which has
+ a frame pointer calls code without a frame pointer. */
+
+CORE_ADDR
+frame_chain (frame)
+ struct frame_info *frame;
+{
+ int my_framesize, caller_framesize;
+ struct unwind_table_entry *u;
+ CORE_ADDR frame_base;
+ struct frame_info *tmp_frame;
+
+ CORE_ADDR caller_pc;
+
+ struct minimal_symbol *min_frame_symbol;
+ struct symbol *frame_symbol;
+ char *frame_symbol_name;
+
+ /* If this is a threaded application, and we see the
+ routine "__pthread_exit", treat it as the stack root
+ for this thread. */
+ min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
+ frame_symbol = find_pc_function(frame->pc);
+
+ if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */)
+ {
+ /* The test above for "no user function name" would defend
+ against the slim likelihood that a user might define a
+ routine named "__pthread_exit" and then try to debug it.
+
+ If it weren't commented out, and you tried to debug the
+ pthread library itself, you'd get errors.
+
+ So for today, we don't make that check. */
+ frame_symbol_name = SYMBOL_NAME(min_frame_symbol);
+ if (frame_symbol_name != 0) {
+ if (0 == strncmp(frame_symbol_name,
+ THREAD_INITIAL_FRAME_SYMBOL,
+ THREAD_INITIAL_FRAME_SYM_LEN)) {
+ /* Pretend we've reached the bottom of the stack. */
+ return (CORE_ADDR) 0;
+ }
+ }
+ } /* End of hacky code for threads. */
+
+ /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
+ are easy; at *sp we have a full save state strucutre which we can
+ pull the old stack pointer from. Also see frame_saved_pc for
+ code to dig a saved PC out of the save state structure. */
+ if (pc_in_interrupt_handler (frame->pc))
+ frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
+#ifdef FRAME_BASE_BEFORE_SIGTRAMP
+ else if (frame->signal_handler_caller)
+ {
+ FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
+ }
+#endif
+ else
+ frame_base = frame->frame;
+
+ /* Get frame sizes for the current frame and the frame of the
+ caller. */
+ my_framesize = find_proc_framesize (frame->pc);
+ caller_pc = FRAME_SAVED_PC(frame);
+
+ /* If we can't determine the caller's PC, then it's not likely we can
+ really determine anything meaningful about its frame. We'll consider
+ this to be stack bottom. */
+ if (caller_pc == (CORE_ADDR) 0)
+ return (CORE_ADDR) 0;
+
+ caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
+
+ /* If caller does not have a frame pointer, then its frame
+ can be found at current_frame - caller_framesize. */
+ if (caller_framesize != -1)
+ {
+ return frame_base - caller_framesize;
+ }
+ /* Both caller and callee have frame pointers and are GCC compiled
+ (SAVE_SP bit in unwind descriptor is on for both functions.
+ The previous frame pointer is found at the top of the current frame. */
+ if (caller_framesize == -1 && my_framesize == -1)
+ {
+ return read_memory_integer (frame_base, 4);
+ }
+ /* Caller has a frame pointer, but callee does not. This is a little
+ more difficult as GCC and HP C lay out locals and callee register save
+ areas very differently.
+
+ The previous frame pointer could be in a register, or in one of
+ several areas on the stack.
+
+ Walk from the current frame to the innermost frame examining
+ unwind descriptors to determine if %r3 ever gets saved into the
+ stack. If so return whatever value got saved into the stack.
+ If it was never saved in the stack, then the value in %r3 is still
+ valid, so use it.
+
+ We use information from unwind descriptors to determine if %r3
+ is saved into the stack (Entry_GR field has this information). */
+
+ tmp_frame = frame;
+ while (tmp_frame)
+ {
+ u = find_unwind_entry (tmp_frame->pc);
+
+ if (!u)
+ {
+ /* We could find this information by examining prologues. I don't
+ think anyone has actually written any tools (not even "strip")
+ which leave them out of an executable, so maybe this is a moot
+ point. */
+ /* ??rehrauer: Actually, it's quite possible to stepi your way into
+ code that doesn't have unwind entries. For example, stepping into
+ the dynamic linker will give you a PC that has none. Thus, I've
+ disabled this warning. */
+#if 0
+ warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
+#endif
+ return (CORE_ADDR) 0;
+ }
+
+ /* Entry_GR specifies the number of callee-saved general registers
+ saved in the stack. It starts at %r3, so %r3 would be 1. */
+ if (u->Entry_GR >= 1 || u->Save_SP
+ || tmp_frame->signal_handler_caller
+ || pc_in_interrupt_handler (tmp_frame->pc))
+ break;
+ else
+ tmp_frame = tmp_frame->next;
+ }
+
+ if (tmp_frame)
+ {
+ /* We may have walked down the chain into a function with a frame
+ pointer. */
+ if (u->Save_SP
+ && !tmp_frame->signal_handler_caller
+ && !pc_in_interrupt_handler (tmp_frame->pc))
+ {
+ return read_memory_integer (tmp_frame->frame, 4);
+ }
+ /* %r3 was saved somewhere in the stack. Dig it out. */
+ else
+ {
+ struct frame_saved_regs saved_regs;
+
+ /* Sick.
+
+ For optimization purposes many kernels don't have the
+ callee saved registers into the save_state structure upon
+ entry into the kernel for a syscall; the optimization
+ is usually turned off if the process is being traced so
+ that the debugger can get full register state for the
+ process.
+
+ This scheme works well except for two cases:
+
+ * Attaching to a process when the process is in the
+ kernel performing a system call (debugger can't get
+ full register state for the inferior process since
+ the process wasn't being traced when it entered the
+ system call).
+
+ * Register state is not complete if the system call
+ causes the process to core dump.
+
+
+ The following heinous code is an attempt to deal with
+ the lack of register state in a core dump. It will
+ fail miserably if the function which performs the
+ system call has a variable sized stack frame. */
+
+ get_frame_saved_regs (tmp_frame, &saved_regs);
+
+ /* Abominable hack. */
+ if (current_target.to_has_execution == 0
+ && ((saved_regs.regs[FLAGS_REGNUM]
+ && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
+ & 0x2))
+ || (saved_regs.regs[FLAGS_REGNUM] == 0
+ && read_register (FLAGS_REGNUM) & 0x2)))
+ {
+ u = find_unwind_entry (FRAME_SAVED_PC (frame));
+ if (!u)
+ {
+ return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
+ }
+ else
+ {
+ return frame_base - (u->Total_frame_size << 3);
+ }
+ }
+
+ return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
+ }
+ }
+ else
+ {
+ struct frame_saved_regs saved_regs;
+
+ /* Get the innermost frame. */
+ tmp_frame = frame;
+ while (tmp_frame->next != NULL)
+ tmp_frame = tmp_frame->next;
+
+ get_frame_saved_regs (tmp_frame, &saved_regs);
+ /* Abominable hack. See above. */
+ if (current_target.to_has_execution == 0
+ && ((saved_regs.regs[FLAGS_REGNUM]
+ && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
+ & 0x2))
+ || (saved_regs.regs[FLAGS_REGNUM] == 0
+ && read_register (FLAGS_REGNUM) & 0x2)))
+ {
+ u = find_unwind_entry (FRAME_SAVED_PC (frame));
+ if (!u)
+ {
+ return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
+ }
+ else
+ {
+ return frame_base - (u->Total_frame_size << 3);
+ }
+ }
+
+ /* The value in %r3 was never saved into the stack (thus %r3 still
+ holds the value of the previous frame pointer). */
+ return TARGET_READ_FP ();
+ }
+}
+
+
+/* To see if a frame chain is valid, see if the caller looks like it
+ was compiled with gcc. */
+
+int
+hppa_frame_chain_valid (chain, thisframe)
+ CORE_ADDR chain;
+ struct frame_info *thisframe;
+{
+ struct minimal_symbol *msym_us;
+ struct minimal_symbol *msym_start;
+ struct unwind_table_entry *u, *next_u = NULL;
+ struct frame_info *next;
+
+ if (!chain)
+ return 0;
+
+ u = find_unwind_entry (thisframe->pc);
+
+ if (u == NULL)
+ return 1;
+
+ /* We can't just check that the same of msym_us is "_start", because
+ someone idiotically decided that they were going to make a Ltext_end
+ symbol with the same address. This Ltext_end symbol is totally
+ indistinguishable (as nearly as I can tell) from the symbol for a function
+ which is (legitimately, since it is in the user's namespace)
+ named Ltext_end, so we can't just ignore it. */
+ msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
+ msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
+ if (msym_us
+ && msym_start
+ && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
+ return 0;
+
+ /* Grrrr. Some new idiot decided that they don't want _start for the
+ PRO configurations; $START$ calls main directly.... Deal with it. */
+ msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
+ if (msym_us
+ && msym_start
+ && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
+ return 0;
+
+ next = get_next_frame (thisframe);
+ if (next)
+ next_u = find_unwind_entry (next->pc);
+
+ /* If this frame does not save SP, has no stack, isn't a stub,
+ and doesn't "call" an interrupt routine or signal handler caller,
+ then its not valid. */
+ if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
+ || (thisframe->next && thisframe->next->signal_handler_caller)
+ || (next_u && next_u->HP_UX_interrupt_marker))
+ return 1;
+
+ if (pc_in_linker_stub (thisframe->pc))
+ return 1;
+
+ return 0;
+}
+
+/*
+ These functions deal with saving and restoring register state
+ around a function call in the inferior. They keep the stack
+ double-word aligned; eventually, on an hp700, the stack will have
+ to be aligned to a 64-byte boundary. */
+
+void
+push_dummy_frame (inf_status)
+ struct inferior_status *inf_status;
+{
+ CORE_ADDR sp, pc, pcspace;
+ register int regnum;
+ int int_buffer;
+ double freg_buffer;
+
+ /* Oh, what a hack. If we're trying to perform an inferior call
+ while the inferior is asleep, we have to make sure to clear
+ the "in system call" bit in the flag register (the call will
+ start after the syscall returns, so we're no longer in the system
+ call!) This state is kept in "inf_status", change it there.
+
+ We also need a number of horrid hacks to deal with lossage in the
+ PC queue registers (apparently they're not valid when the in syscall
+ bit is set). */
+ pc = target_read_pc (inferior_pid);
+ int_buffer = read_register (FLAGS_REGNUM);
+ if (int_buffer & 0x2)
+ {
+ unsigned int sid;
+ int_buffer &= ~0x2;
+ memcpy (inf_status->registers, &int_buffer, 4);
+ memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
+ pc += 4;
+ memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
+ pc -= 4;
+ sid = (pc >> 30) & 0x3;
+ if (sid == 0)
+ pcspace = read_register (SR4_REGNUM);
+ else
+ pcspace = read_register (SR4_REGNUM + 4 + sid);
+ memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
+ &pcspace, 4);
+ memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
+ &pcspace, 4);
+ }
+ else
+ pcspace = read_register (PCSQ_HEAD_REGNUM);
+
+ /* Space for "arguments"; the RP goes in here. */
+ sp = read_register (SP_REGNUM) + 48;
+ int_buffer = read_register (RP_REGNUM) | 0x3;
+ write_memory (sp - 20, (char *)&int_buffer, 4);
+
+ int_buffer = TARGET_READ_FP ();
+ write_memory (sp, (char *)&int_buffer, 4);
+
+ write_register (FP_REGNUM, sp);
+
+ sp += 8;
+
+ for (regnum = 1; regnum < 32; regnum++)
+ if (regnum != RP_REGNUM && regnum != FP_REGNUM)
+ sp = push_word (sp, read_register (regnum));
+
+ sp += 4;
+
+ for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
+ {
+ read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
+ sp = push_bytes (sp, (char *)&freg_buffer, 8);
+ }
+ sp = push_word (sp, read_register (IPSW_REGNUM));
+ sp = push_word (sp, read_register (SAR_REGNUM));
+ sp = push_word (sp, pc);
+ sp = push_word (sp, pcspace);
+ sp = push_word (sp, pc + 4);
+ sp = push_word (sp, pcspace);
+ write_register (SP_REGNUM, sp);
+}
+
+static void
+find_dummy_frame_regs (frame, frame_saved_regs)
+ struct frame_info *frame;
+ struct frame_saved_regs *frame_saved_regs;
+{
+ CORE_ADDR fp = frame->frame;
+ int i;
+
+ frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
+ frame_saved_regs->regs[FP_REGNUM] = fp;
+ frame_saved_regs->regs[1] = fp + 8;
+
+ for (fp += 12, i = 3; i < 32; i++)
+ {
+ if (i != FP_REGNUM)
+ {
+ frame_saved_regs->regs[i] = fp;
+ fp += 4;
+ }
+ }
+
+ fp += 4;
+ for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
+ frame_saved_regs->regs[i] = fp;
+
+ frame_saved_regs->regs[IPSW_REGNUM] = fp;
+ frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
+ frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
+ frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
+ frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
+ frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
+}
+
+void
+hppa_pop_frame ()
+{
+ register struct frame_info *frame = get_current_frame ();
+ register CORE_ADDR fp, npc, target_pc;
+ register int regnum;
+ struct frame_saved_regs fsr;
+ double freg_buffer;
+
+ fp = FRAME_FP (frame);
+ get_frame_saved_regs (frame, &fsr);
+
+#ifndef NO_PC_SPACE_QUEUE_RESTORE
+ if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
+ restore_pc_queue (&fsr);
+#endif
+
+ for (regnum = 31; regnum > 0; regnum--)
+ if (fsr.regs[regnum])
+ write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
+
+ for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
+ if (fsr.regs[regnum])
+ {
+ read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
+ write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
+ }
+
+ if (fsr.regs[IPSW_REGNUM])
+ write_register (IPSW_REGNUM,
+ read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
+
+ if (fsr.regs[SAR_REGNUM])
+ write_register (SAR_REGNUM,
+ read_memory_integer (fsr.regs[SAR_REGNUM], 4));
+
+ /* If the PC was explicitly saved, then just restore it. */
+ if (fsr.regs[PCOQ_TAIL_REGNUM])
+ {
+ npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
+ write_register (PCOQ_TAIL_REGNUM, npc);
+ }
+ /* Else use the value in %rp to set the new PC. */
+ else
+ {
+ npc = read_register (RP_REGNUM);
+ write_pc (npc);
+ }
+
+ write_register (FP_REGNUM, read_memory_integer (fp, 4));
+
+ if (fsr.regs[IPSW_REGNUM]) /* call dummy */
+ write_register (SP_REGNUM, fp - 48);
+ else
+ write_register (SP_REGNUM, fp);
+
+ /* The PC we just restored may be inside a return trampoline. If so
+ we want to restart the inferior and run it through the trampoline.
+
+ Do this by setting a momentary breakpoint at the location the
+ trampoline returns to.
+
+ Don't skip through the trampoline if we're popping a dummy frame. */
+ target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
+ if (target_pc && !fsr.regs[IPSW_REGNUM])
+ {
+ struct symtab_and_line sal;
+ struct breakpoint *breakpoint;
+ struct cleanup *old_chain;
+
+ /* Set up our breakpoint. Set it to be silent as the MI code
+ for "return_command" will print the frame we returned to. */
+ sal = find_pc_line (target_pc, 0);
+ sal.pc = target_pc;
+ breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
+ breakpoint->silent = 1;
+
+ /* So we can clean things up. */
+ old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
+
+ /* Start up the inferior. */
+ clear_proceed_status ();
+ proceed_to_finish = 1;
+ proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
+
+ /* Perform our cleanups. */
+ do_cleanups (old_chain);
+ }
+ flush_cached_frames ();
+}
+
+/* After returning to a dummy on the stack, restore the instruction
+ queue space registers. */
+
+static int
+restore_pc_queue (fsr)
+ struct frame_saved_regs *fsr;
+{
+ CORE_ADDR pc = read_pc ();
+ CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
+ struct target_waitstatus w;
+ int insn_count;
+
+ /* Advance past break instruction in the call dummy. */
+ write_register (PCOQ_HEAD_REGNUM, pc + 4);
+ write_register (PCOQ_TAIL_REGNUM, pc + 8);
+
+ /* HPUX doesn't let us set the space registers or the space
+ registers of the PC queue through ptrace. Boo, hiss.
+ Conveniently, the call dummy has this sequence of instructions
+ after the break:
+ mtsp r21, sr0
+ ble,n 0(sr0, r22)
+
+ So, load up the registers and single step until we are in the
+ right place. */
+
+ write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
+ write_register (22, new_pc);
+
+ for (insn_count = 0; insn_count < 3; insn_count++)
+ {
+ /* FIXME: What if the inferior gets a signal right now? Want to
+ merge this into wait_for_inferior (as a special kind of
+ watchpoint? By setting a breakpoint at the end? Is there
+ any other choice? Is there *any* way to do this stuff with
+ ptrace() or some equivalent?). */
+ resume (1, 0);
+ target_wait (inferior_pid, &w);
+
+ if (w.kind == TARGET_WAITKIND_SIGNALLED)
+ {
+ stop_signal = w.value.sig;
+ terminal_ours_for_output ();
+ printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
+ target_signal_to_name (stop_signal),
+ target_signal_to_string (stop_signal));
+ gdb_flush (gdb_stdout);
+ return 0;
+ }
+ }
+ target_terminal_ours ();
+ target_fetch_registers (-1);
+ return 1;
+}
+
+#if 0
+CORE_ADDR
+hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ /* array of arguments' offsets */
+ int *offset = (int *)alloca(nargs * sizeof (int));
+ int cum = 0;
+ int i, alignment;
+
+ for (i = 0; i < nargs; i++)
+ {
+ int x = 0;
+ /* cum is the sum of the lengths in bytes of
+ the arguments seen so far */
+ cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
+
+ /* value must go at proper alignment. Assume alignment is a
+ power of two. */
+ alignment = hppa_alignof (VALUE_TYPE (args[i]));
+
+ if (cum % alignment)
+ cum = (cum + alignment) & -alignment;
+ offset[i] = -cum;
+
+ }
+ sp += max ((cum + 7) & -8, 16);
+
+ for (i = 0; i < nargs; i++)
+ write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
+ TYPE_LENGTH (VALUE_TYPE (args[i])));
+
+ if (struct_return)
+ write_register (28, struct_addr);
+ return sp + 32;
+}
+#endif
+
+/* elz: I am rewriting this function, because the one above is a very
+ obscure piece of code.
+ This function pushes the arguments on the stack. The stack grows up
+ on the PA.
+ Each argument goes in one (or more) word (4 bytes) on the stack.
+ The first four words for the args must be allocated, even if they
+ are not used.
+ The 'topmost' arg is arg0, the 'bottom-most' is arg3. (if you think of
+ them as 1 word long).
+ Below these there can be any number of arguments, as needed by the function.
+ If an arg is bigger than one word, it will be written on the stack
+ occupying as many words as needed. Args that are bigger than 64bits
+ are not copied on the stack, a pointer is passed instead.
+
+ On top of the arg0 word there are other 8 words (32bytes) which are used
+ for other purposes */
+
+CORE_ADDR
+hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ /* array of arguments' offsets */
+ int *offset = (int *)alloca(nargs * sizeof (int));
+ /* array of arguments' lengths: real lengths in bytes, not aligned to word size */
+ int *lengths = (int *)alloca(nargs * sizeof (int));
+
+ int bytes_reserved; /* this is the number of bytes on the stack occupied by an
+ argument. This will be always a multiple of 4 */
+
+ int cum_bytes_reserved = 0; /* this is the total number of bytes reserved by the args
+ seen so far. It is a multiple of 4 always */
+ int cum_bytes_aligned = 0; /* same as above, but aligned on 8 bytes */
+ int i;
+
+ /* When an arg does not occupy a whole word, for instance in bitfields:
+ if the arg is x bits (0<x<32), it must be written
+ starting from the (x-1)-th position down until the 0-th position.
+ It is enough to align it to the word. */
+ /* if an arg occupies 8 bytes, it must be aligned on the 64-bits
+ high order word in odd arg word. */
+ /* if an arg is larger than 64 bits, we need to pass a pointer to it, and
+ copy the actual value on the stack, so that the callee can play with it.
+ This is taken care of in valops.c in the call_function_by_hand function.
+ The argument that is received in this function here has already be converted
+ to a pointer to whatever is needed, so that it just can be pushed
+ as a word argument */
+
+ for (i = 0; i < nargs; i++)
+ {
+
+ lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
+
+ if (lengths[i] % 4)
+ bytes_reserved = (lengths[i] / 4) * 4 + 4;
+ else
+ bytes_reserved = lengths[i];
+
+ offset[i] = cum_bytes_reserved + lengths[i];
+
+ if ((bytes_reserved == 8) && (offset[i] % 8)) /* if 64-bit arg is not 64 bit aligned */
+ {
+ int new_offset=0;
+ /* bytes_reserved is already aligned to the word, so we put it at one word
+ more down the stack. This will leave one empty word on the
+ stack, and one unused register. This is OK, see the calling
+ convention doc */
+ /* the offset may have to be moved to the corresponding position
+ one word down the stack, to maintain
+ alignment. */
+ new_offset = (offset[i] / 8) * 8 + 8;
+ if ((new_offset - offset[i]) >=4)
+ {
+ bytes_reserved += 4;
+ offset[i] += 4;
+ }
+ }
+
+ cum_bytes_reserved += bytes_reserved;
+
+ }
+
+ /* now move up the sp to reserve at least 4 words required for the args,
+ or more than this if needed */
+ /* wee also need to keep the sp aligned to 8 bytes */
+ cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
+ sp += max (cum_bytes_aligned, 16);
+
+ /* now write each of the args at the proper offset down the stack */
+ for (i = 0; i < nargs; i++)
+ write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
+
+
+ /* if a structure has to be returned, set up register 28 to hold its address */
+ if (struct_return)
+ write_register (28, struct_addr);
+
+ /* the stack will have other 8 words on top of the args */
+ return sp + 32;
+}
+
+
+/* elz: this function returns a value which is built looking at the given address.
+ It is called from call_function_by_hand, in case we need to return a
+ value which is larger than 64 bits, and it is stored in the stack rather than
+ in the registers r28 and r29 or fr4.
+ This function does the same stuff as value_being_returned in values.c, but
+ gets the value from the stack rather than from the buffer where all the
+ registers were saved when the function called completed. */
+value_ptr
+hppa_value_returned_from_stack (valtype , addr)
+ register struct type *valtype;
+ CORE_ADDR addr;
+{
+ register value_ptr val;
+
+ val = allocate_value (valtype);
+ CHECK_TYPEDEF (valtype);
+ target_read_memory(addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
+
+ return val;
+}
+
+
+
+/* elz: Used to lookup a symbol in the shared libraries.
+ This function calls shl_findsym, indirectly through a
+ call to __d_shl_get. __d_shl_get is in end.c, which is always
+ linked in by the hp compilers/linkers.
+ The call to shl_findsym cannot be made directly because it needs
+ to be active in target address space.
+ inputs: - minimal symbol pointer for the function we want to look up
+ - address in target space of the descriptor for the library
+ where we want to look the symbol up.
+ This address is retrieved using the
+ som_solib_get_solib_by_pc function (somsolib.c).
+ output: - real address in the library of the function.
+ note: the handle can be null, in which case shl_findsym will look for
+ the symbol in all the loaded shared libraries.
+ files to look at if you need reference on this stuff:
+ dld.c, dld_shl_findsym.c
+ end.c
+ man entry for shl_findsym */
+
+CORE_ADDR
+find_stub_with_shl_get(function, handle)
+ struct minimal_symbol *function;
+ CORE_ADDR handle;
+{
+ struct symbol *get_sym, *symbol2;
+ struct minimal_symbol *buff_minsym, *msymbol;
+ struct type *ftype;
+ value_ptr *args;
+ value_ptr funcval, val;
+
+ int x, namelen, err_value, tmp = -1;
+ CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
+ CORE_ADDR stub_addr;
+
+
+ args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
+ funcval = find_function_in_inferior("__d_shl_get");
+ get_sym = lookup_symbol("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
+ buff_minsym = lookup_minimal_symbol("__buffer", NULL, NULL);
+ msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
+ symbol2 = lookup_symbol("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
+ endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
+ namelen = strlen(SYMBOL_NAME(function));
+ value_return_addr = endo_buff_addr + namelen;
+ ftype = check_typedef(SYMBOL_TYPE(get_sym));
+
+ /* do alignment */
+ if ((x=value_return_addr % 64) !=0)
+ value_return_addr = value_return_addr + 64 - x;
+
+ errno_return_addr = value_return_addr + 64;
+
+
+ /* set up stuff needed by __d_shl_get in buffer in end.o */
+
+ target_write_memory(endo_buff_addr, SYMBOL_NAME(function), namelen);
+
+ target_write_memory(value_return_addr, (char *) &tmp, 4);
+
+ target_write_memory(errno_return_addr, (char *) &tmp, 4);
+
+ target_write_memory(SYMBOL_VALUE_ADDRESS(msymbol),
+ (char *)&handle, 4);
+
+ /* now prepare the arguments for the call */
+
+ args[0] = value_from_longest (TYPE_FIELD_TYPE(ftype, 0), 12);
+ args[1] = value_from_longest (TYPE_FIELD_TYPE(ftype, 1), SYMBOL_VALUE_ADDRESS(msymbol));
+ args[2] = value_from_longest (TYPE_FIELD_TYPE(ftype, 2), endo_buff_addr);
+ args[3] = value_from_longest (TYPE_FIELD_TYPE(ftype, 3), TYPE_PROCEDURE);
+ args[4] = value_from_longest (TYPE_FIELD_TYPE(ftype, 4), value_return_addr);
+ args[5] = value_from_longest (TYPE_FIELD_TYPE(ftype, 5), errno_return_addr);
+
+ /* now call the function */
+
+ val = call_function_by_hand(funcval, 6, args);
+
+ /* now get the results */
+
+ target_read_memory(errno_return_addr, (char *) &err_value, sizeof(err_value));
+
+ target_read_memory(value_return_addr, (char *) &stub_addr, sizeof(stub_addr));
+ if (stub_addr <= 0)
+ error("call to __d_shl_get failed, error code is %d", err_value); /* purecov: deadcode */
+
+ return(stub_addr);
+}
+
+/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
+static CORE_ADDR
+cover_find_stub_with_shl_get (args)
+ args_for_find_stub * args;
+{
+ return find_stub_with_shl_get (args->msym, args->solib_handle);
+}
+
+
+/* Insert the specified number of args and function address
+ into a call sequence of the above form stored at DUMMYNAME.
+
+ On the hppa we need to call the stack dummy through $$dyncall.
+ Therefore our version of FIX_CALL_DUMMY takes an extra argument,
+ real_pc, which is the location where gdb should start up the
+ inferior to do the function call. */
+
+CORE_ADDR
+hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
+ char *dummy;
+ CORE_ADDR pc;
+ CORE_ADDR fun;
+ int nargs;
+ value_ptr *args;
+ struct type *type;
+ int gcc_p;
+{
+ CORE_ADDR dyncall_addr;
+ struct minimal_symbol *msymbol;
+ struct minimal_symbol *trampoline;
+ int flags = read_register (FLAGS_REGNUM);
+ struct unwind_table_entry *u;
+ CORE_ADDR new_stub=0;
+ CORE_ADDR solib_handle=0;
+
+ trampoline = NULL;
+ msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
+ if (msymbol == NULL)
+ error ("Can't find an address for $$dyncall trampoline"); /* purecov: deadcode */
+
+ dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
+
+ /* FUN could be a procedure label, in which case we have to get
+ its real address and the value of its GOT/DP. */
+ if (fun & 0x2)
+ {
+ /* Get the GOT/DP value for the target function. It's
+ at *(fun+4). Note the call dummy is *NOT* allowed to
+ trash %r19 before calling the target function. */
+ write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
+
+ /* Now get the real address for the function we are calling, it's
+ at *fun. */
+ fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
+ }
+ else
+ {
+
+#ifndef GDB_TARGET_IS_PA_ELF
+ /* FUN could be either an export stub, or the real address of a
+ function in a shared library. We must call an import stub
+ rather than the export stub or real function for lazy binding
+ to work correctly. */
+
+ /* elz: let's see if fun is in a shared library */
+ solib_handle = som_solib_get_solib_by_pc(fun);
+
+ /* elz: for 10.30 and 11.00 the calls via __d_plt_call cannot be made
+ via import stubs, only via plables, so this code here becomes useless.
+ On 10.20, the plables mechanism works too, so we just ignore this import
+ stub stuff */
+#if 0
+ if (solib_handle)
+ {
+ struct objfile *objfile;
+ struct minimal_symbol *funsymbol, *stub_symbol;
+ CORE_ADDR newfun = 0;
+
+ funsymbol = lookup_minimal_symbol_by_pc (fun);
+ if (!funsymbol)
+ error ("Unable to find minimal symbol for target fucntion.\n");
+
+ /* Search all the object files for an import symbol with the
+ right name. */
+ ALL_OBJFILES (objfile)
+ {
+ stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
+ NULL, objfile);
+ /* Found a symbol with the right name. */
+ if (stub_symbol)
+ {
+ struct unwind_table_entry *u;
+ /* It must be a shared library trampoline. */
+ if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
+ continue;
+
+ /* It must also be an import stub. */
+ u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
+ if (!u || u->stub_unwind.stub_type != IMPORT)
+ continue;
+
+ /* OK. Looks like the correct import stub. */
+ newfun = SYMBOL_VALUE (stub_symbol);
+ fun = newfun;
+ }
+ }
+ if (newfun == 0)
+ write_register (19, som_solib_get_got_by_pc (fun));
+ }
+#endif /* end of if 0 */
+#endif
+ }
+
+ /* If we are calling an import stub (eg calling into a dynamic library)
+ then have sr4export call the magic __d_plt_call routine which is linked
+ in from end.o. (You can't use _sr4export to call the import stub as
+ the value in sp-24 will get fried and you end up returning to the
+ wrong location. You can't call the import stub directly as the code
+ to bind the PLT entry to a function can't return to a stack address.) */
+
+ /* elz:
+ There does not have to be an import stub to call a routine in a
+ different load module (note: a "load module" is an a.out or a shared
+ library). If you call a routine indirectly, going through $$dyncall (or
+ $$dyncall_external), you won't go through an import stub. Import stubs
+ are only used for direct calls to an imported routine.
+
+ What you (wdb) need is to go through $$dyncall with a proper plabel for
+ the imported routine. shl_findsym() returns you the address of a plabel
+ suitable for use in making an indirect call through, e.g., through
+ $$dyncall.
+ This is taken care below with the call to find_stub_.... */
+#if 0
+ /* elz: this check here is not necessary if we are going to call stuff through
+ plabels only, we just now check whether the function we call is in a shlib */
+ u = find_unwind_entry (fun);
+
+ if (u && u->stub_unwind.stub_type == IMPORT ||
+ (!(u && u->stub_unwind.stub_type == IMPORT) && solib_handle))
+#endif /* 0 */
+ if (solib_handle)
+ {
+ CORE_ADDR new_fun;
+
+ /* Prefer __gcc_plt_call over the HP supplied routine because
+ __gcc_plt_call works for any number of arguments. */
+ trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
+ if (trampoline == NULL)
+ trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
+
+ if (trampoline == NULL)
+ {
+ error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g (links in /opt/langtools/lib/end.o)");
+ }
+ /* This is where sr4export will jump to. */
+ new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
+
+ if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
+ {
+ /* if the function is in a shared library, but we have no import sub for
+ it, we need to get the plabel from a call to __d_shl_get, which is a
+ function in end.o. To call this function we need to set up various things */
+
+ /* actually now we just use the plabel any time we make the call,
+ because on 10.30 and 11.00 this is the only acceptable way. This also
+ works fine for 10.20 */
+ /* if (!(u && u->stub_unwind.stub_type == IMPORT) && solib_handle) */
+ {
+ struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc(fun);
+
+ new_stub = find_stub_with_shl_get(fmsymbol, solib_handle);
+
+ if (new_stub == NULL)
+ error("Can't find an import stub for %s", SYMBOL_NAME(fmsymbol)); /* purecov: deadcode */
+ }
+
+ /* We have to store the address of the stub in __shlib_funcptr. */
+ msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
+ (struct objfile *)NULL);
+ if (msymbol == NULL)
+ error ("Can't find an address for __shlib_funcptr"); /* purecov: deadcode */
+
+ /* if (new_stub != NULL) */
+ target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&new_stub, 4);
+ /* this is no longer used */
+ /* else
+ target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4); */
+
+ /* We want sr4export to call __d_plt_call, so we claim it is
+ the final target. Clear trampoline. */
+ fun = new_fun;
+ trampoline = NULL;
+ }
+ }
+
+ /* Store upper 21 bits of function address into ldil. fun will either be
+ the final target (most cases) or __d_plt_call when calling into a shared
+ library and __gcc_plt_call is not available. */
+ store_unsigned_integer
+ (&dummy[FUNC_LDIL_OFFSET],
+ INSTRUCTION_SIZE,
+ deposit_21 (fun >> 11,
+ extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
+ INSTRUCTION_SIZE)));
+
+ /* Store lower 11 bits of function address into ldo */
+ store_unsigned_integer
+ (&dummy[FUNC_LDO_OFFSET],
+ INSTRUCTION_SIZE,
+ deposit_14 (fun & MASK_11,
+ extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
+ INSTRUCTION_SIZE)));
+#ifdef SR4EXPORT_LDIL_OFFSET
+
+ {
+ CORE_ADDR trampoline_addr;
+
+ /* We may still need sr4export's address too. */
+
+ if (trampoline == NULL)
+ {
+ msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
+ if (msymbol == NULL)
+ error ("Can't find an address for _sr4export trampoline"); /* purecov: deadcode */
+
+ trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
+ }
+ else
+ trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
+
+
+ /* Store upper 21 bits of trampoline's address into ldil */
+ store_unsigned_integer
+ (&dummy[SR4EXPORT_LDIL_OFFSET],
+ INSTRUCTION_SIZE,
+ deposit_21 (trampoline_addr >> 11,
+ extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
+ INSTRUCTION_SIZE)));
+
+ /* Store lower 11 bits of trampoline's address into ldo */
+ store_unsigned_integer
+ (&dummy[SR4EXPORT_LDO_OFFSET],
+ INSTRUCTION_SIZE,
+ deposit_14 (trampoline_addr & MASK_11,
+ extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
+ INSTRUCTION_SIZE)));
+ }
+#endif
+
+ write_register (22, pc);
+
+ /* If we are in a syscall, then we should call the stack dummy
+ directly. $$dyncall is not needed as the kernel sets up the
+ space id registers properly based on the value in %r31. In
+ fact calling $$dyncall will not work because the value in %r22
+ will be clobbered on the syscall exit path.
+
+ Similarly if the current PC is in a shared library. Note however,
+ this scheme won't work if the shared library isn't mapped into
+ the same space as the stack. */
+ if (flags & 2)
+ return pc;
+#ifndef GDB_TARGET_IS_PA_ELF
+ else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
+ return pc;
+#endif
+ else
+ return dyncall_addr;
+
+}
+
+
+
+
+/* If the pid is in a syscall, then the FP register is not readable.
+ We'll return zero in that case, rather than attempting to read it
+ and cause a warning. */
+CORE_ADDR
+target_read_fp (pid)
+ int pid;
+{
+ int flags = read_register (FLAGS_REGNUM);
+
+ if (flags & 2) {
+ return (CORE_ADDR) 0;
+ }
+
+ /* This is the only site that may directly read_register () the FP
+ register. All others must use TARGET_READ_FP (). */
+ return read_register (FP_REGNUM);
+}
+
+
+/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
+ bits. */
+
+CORE_ADDR
+target_read_pc (pid)
+ int pid;
+{
+ int flags = read_register_pid (FLAGS_REGNUM, pid);
+
+ /* The following test does not belong here. It is OS-specific, and belongs
+ in native code. */
+ /* Test SS_INSYSCALL */
+ if (flags & 2)
+ return read_register_pid (31, pid) & ~0x3;
+
+ return read_register_pid (PC_REGNUM, pid) & ~0x3;
+}
+
+/* Write out the PC. If currently in a syscall, then also write the new
+ PC value into %r31. */
+
+void
+target_write_pc (v, pid)
+ CORE_ADDR v;
+ int pid;
+{
+ int flags = read_register_pid (FLAGS_REGNUM, pid);
+
+ /* The following test does not belong here. It is OS-specific, and belongs
+ in native code. */
+ /* If in a syscall, then set %r31. Also make sure to get the
+ privilege bits set correctly. */
+ /* Test SS_INSYSCALL */
+ if (flags & 2)
+ write_register_pid (31, v | 0x3, pid);
+
+ write_register_pid (PC_REGNUM, v, pid);
+ write_register_pid (NPC_REGNUM, v + 4, pid);
+}
+
+/* return the alignment of a type in bytes. Structures have the maximum
+ alignment required by their fields. */
+
+static int
+hppa_alignof (type)
+ struct type *type;
+{
+ int max_align, align, i;
+ CHECK_TYPEDEF (type);
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_PTR:
+ case TYPE_CODE_INT:
+ case TYPE_CODE_FLT:
+ return TYPE_LENGTH (type);
+ case TYPE_CODE_ARRAY:
+ return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ max_align = 1;
+ for (i = 0; i < TYPE_NFIELDS (type); i++)
+ {
+ /* Bit fields have no real alignment. */
+ /* if (!TYPE_FIELD_BITPOS (type, i)) */
+ if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
+ {
+ align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
+ max_align = max (max_align, align);
+ }
+ }
+ return max_align;
+ default:
+ return 4;
+ }
+}
+
+/* Print the register regnum, or all registers if regnum is -1 */
+
+void
+pa_do_registers_info (regnum, fpregs)
+ int regnum;
+ int fpregs;
+{
+ char raw_regs [REGISTER_BYTES];
+ int i;
+
+ /* Make a copy of gdb's save area (may cause actual
+ reads from the target). */
+ for (i = 0; i < NUM_REGS; i++)
+ read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
+
+ if (regnum == -1)
+ pa_print_registers (raw_regs, regnum, fpregs);
+ else if (regnum < FP4_REGNUM) {
+ long reg_val[2];
+
+ /* Why is the value not passed through "extract_signed_integer"
+ as in "pa_print_registers" below? */
+ pa_register_look_aside(raw_regs, regnum, &reg_val[0]);
+
+ if(!is_pa_2) {
+ printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
+ }
+ else {
+ /* Fancy % formats to prevent leading zeros. */
+ if(reg_val[0] == 0)
+ printf_unfiltered("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
+ else
+ printf_unfiltered("%s %x%8.8x\n", REGISTER_NAME (regnum),
+ reg_val[0], reg_val[1]);
+ }
+ }
+ else
+ /* Note that real floating point values only start at
+ FP4_REGNUM. FP0 and up are just status and error
+ registers, which have integral (bit) values. */
+ pa_print_fp_reg (regnum);
+}
+
+/********** new function ********************/
+void
+pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
+ int regnum;
+ int fpregs;
+ GDB_FILE *stream;
+ enum precision_type precision;
+{
+ char raw_regs [REGISTER_BYTES];
+ int i;
+
+ /* Make a copy of gdb's save area (may cause actual
+ reads from the target). */
+ for (i = 0; i < NUM_REGS; i++)
+ read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
+
+ if (regnum == -1)
+ pa_strcat_registers (raw_regs, regnum, fpregs, stream);
+
+ else if (regnum < FP4_REGNUM) {
+ long reg_val[2];
+
+ /* Why is the value not passed through "extract_signed_integer"
+ as in "pa_print_registers" below? */
+ pa_register_look_aside(raw_regs, regnum, &reg_val[0]);
+
+ if(!is_pa_2) {
+ fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
+ }
+ else {
+ /* Fancy % formats to prevent leading zeros. */
+ if(reg_val[0] == 0)
+ fprintf_unfiltered(stream, "%s %x", REGISTER_NAME (regnum),
+ reg_val[1]);
+ else
+ fprintf_unfiltered(stream, "%s %x%8.8x", REGISTER_NAME (regnum),
+ reg_val[0], reg_val[1]);
+ }
+ }
+ else
+ /* Note that real floating point values only start at
+ FP4_REGNUM. FP0 and up are just status and error
+ registers, which have integral (bit) values. */
+ pa_strcat_fp_reg (regnum, stream, precision);
+}
+
+/* If this is a PA2.0 machine, fetch the real 64-bit register
+ value. Otherwise use the info from gdb's saved register area.
+
+ Note that reg_val is really expected to be an array of longs,
+ with two elements. */
+static void
+pa_register_look_aside(raw_regs, regnum, raw_val)
+ char *raw_regs;
+ int regnum;
+ long *raw_val;
+{
+ static int know_which = 0; /* False */
+
+ int regaddr;
+ unsigned int offset;
+ register int i;
+ int start;
+
+
+ char buf[MAX_REGISTER_RAW_SIZE];
+ long long reg_val;
+
+ if(!know_which) {
+ if(CPU_PA_RISC2_0 == sysconf(_SC_CPU_VERSION)) {
+ is_pa_2 = (1==1);
+ }
+
+ know_which = 1; /* True */
+ }
+
+ raw_val[0] = 0;
+ raw_val[1] = 0;
+
+ if(!is_pa_2) {
+ raw_val[1] = *(long *)(raw_regs + REGISTER_BYTE(regnum));
+ return;
+ }
+
+ /* Code below copied from hppah-nat.c, with fixes for wide
+ registers, using different area of save_state, etc. */
+ if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
+ !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE) {
+ /* Use narrow regs area of save_state and default macro. */
+ offset = U_REGS_OFFSET;
+ regaddr = register_addr(regnum, offset);
+ start = 1;
+ }
+ else {
+ /* Use wide regs area, and calculate registers as 8 bytes wide.
+
+ We'd like to do this, but current version of "C" doesn't
+ permit "offsetof":
+
+ offset = offsetof(save_state_t, ss_wide);
+
+ Note that to avoid "C" doing typed pointer arithmetic, we
+ have to cast away the type in our offset calculation:
+ otherwise we get an offset of 1! */
+
+ /* #if the following code out so that this file can still be
+ compiled on older HPUX boxes (< 10.20) which don't have
+ this structure/structure member. */
+#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
+ save_state_t temp;
+
+ offset = ((int) &temp.ss_wide) - ((int) &temp);
+ regaddr = offset + regnum * 8;
+ start = 0;
+#endif
+ }
+
+ for(i = start; i < 2; i++)
+ {
+ errno = 0;
+ raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
+ (PTRACE_ARG3_TYPE) regaddr, 0);
+ if (errno != 0)
+ {
+ /* Warning, not error, in case we are attached; sometimes the
+ kernel doesn't let us at the registers. */
+ char *err = safe_strerror (errno);
+ char *msg = alloca (strlen (err) + 128);
+ sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
+ warning (msg);
+ goto error_exit;
+ }
+
+ regaddr += sizeof (long);
+ }
+
+ if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
+ raw_val[1] &= ~0x3; /* I think we're masking out space bits */
+
+error_exit:
+ ;
+}
+
+/* "Info all-reg" command */
+
+static void
+pa_print_registers (raw_regs, regnum, fpregs)
+ char *raw_regs;
+ int regnum;
+ int fpregs;
+{
+ int i,j;
+ long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
+ long long_val;
+
+ for (i = 0; i < 18; i++)
+ {
+ for (j = 0; j < 4; j++)
+ {
+ /* Q: Why is the value passed through "extract_signed_integer",
+ while above, in "pa_do_registers_info" it isn't?
+ A: ? */
+ pa_register_look_aside(raw_regs, i+(j*18), &raw_val[0]);
+
+ /* Even fancier % formats to prevent leading zeros
+ and still maintain the output in columns. */
+ if(!is_pa_2) {
+ /* Being big-endian, on this machine the low bits
+ (the ones we want to look at) are in the second longword. */
+ long_val = extract_signed_integer (&raw_val[1], 4);
+ printf_filtered ("%8.8s: %8x ",
+ REGISTER_NAME (i+(j*18)), long_val);
+ }
+ else {
+ /* raw_val = extract_signed_integer(&raw_val, 8); */
+ if(raw_val[0] == 0)
+ printf_filtered("%8.8s: %8x ",
+ REGISTER_NAME (i+(j*18)), raw_val[1]);
+ else
+ printf_filtered("%8.8s: %8x%8.8x ", REGISTER_NAME (i+(j*18)),
+ raw_val[0], raw_val[1]);
+ }
+ }
+ printf_unfiltered ("\n");
+ }
+
+ if (fpregs)
+ for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
+ pa_print_fp_reg (i);
+}
+
+/************* new function ******************/
+static void
+pa_strcat_registers (raw_regs, regnum, fpregs, stream)
+ char *raw_regs;
+ int regnum;
+ int fpregs;
+ GDB_FILE *stream;
+{
+ int i,j;
+ long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
+ long long_val;
+ enum precision_type precision;
+
+ precision = unspecified_precision;
+
+ for (i = 0; i < 18; i++)
+ {
+ for (j = 0; j < 4; j++)
+ {
+ /* Q: Why is the value passed through "extract_signed_integer",
+ while above, in "pa_do_registers_info" it isn't?
+ A: ? */
+ pa_register_look_aside(raw_regs, i+(j*18), &raw_val[0]);
+
+ /* Even fancier % formats to prevent leading zeros
+ and still maintain the output in columns. */
+ if(!is_pa_2) {
+ /* Being big-endian, on this machine the low bits
+ (the ones we want to look at) are in the second longword. */
+ long_val = extract_signed_integer(&raw_val[1], 4);
+ fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i+(j*18)), long_val);
+ }
+ else {
+ /* raw_val = extract_signed_integer(&raw_val, 8); */
+ if(raw_val[0] == 0)
+ fprintf_filtered(stream, "%8.8s: %8x ", REGISTER_NAME (i+(j*18)),
+ raw_val[1]);
+ else
+ fprintf_filtered(stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i+(j*18)),
+ raw_val[0], raw_val[1]);
+ }
+ }
+ fprintf_unfiltered (stream, "\n");
+ }
+
+ if (fpregs)
+ for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
+ pa_strcat_fp_reg (i, stream, precision);
+}
+
+static void
+pa_print_fp_reg (i)
+ int i;
+{
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+ char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
+
+ /* Get 32bits of data. */
+ read_relative_register_raw_bytes (i, raw_buffer);
+
+ /* Put it in the buffer. No conversions are ever necessary. */
+ memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
+
+ fputs_filtered (REGISTER_NAME (i), gdb_stdout);
+ print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
+ fputs_filtered ("(single precision) ", gdb_stdout);
+
+ val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
+ 1, 0, Val_pretty_default);
+ printf_filtered ("\n");
+
+ /* If "i" is even, then this register can also be a double-precision
+ FP register. Dump it out as such. */
+ if ((i % 2) == 0)
+ {
+ /* Get the data in raw format for the 2nd half. */
+ read_relative_register_raw_bytes (i + 1, raw_buffer);
+
+ /* Copy it into the appropriate part of the virtual buffer. */
+ memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
+ REGISTER_RAW_SIZE (i));
+
+ /* Dump it as a double. */
+ fputs_filtered (REGISTER_NAME (i), gdb_stdout);
+ print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
+ fputs_filtered ("(double precision) ", gdb_stdout);
+
+ val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
+ 1, 0, Val_pretty_default);
+ printf_filtered ("\n");
+ }
+}
+
+/*************** new function ***********************/
+static void
+pa_strcat_fp_reg (i, stream, precision)
+ int i;
+ GDB_FILE *stream;
+ enum precision_type precision;
+{
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+ char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
+
+ fputs_filtered (REGISTER_NAME (i), stream);
+ print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
+
+ /* Get 32bits of data. */
+ read_relative_register_raw_bytes (i, raw_buffer);
+
+ /* Put it in the buffer. No conversions are ever necessary. */
+ memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
+
+ if (precision == double_precision && (i % 2) == 0)
+ {
+
+ char raw_buf[MAX_REGISTER_RAW_SIZE];
+
+ /* Get the data in raw format for the 2nd half. */
+ read_relative_register_raw_bytes (i + 1, raw_buf);
+
+ /* Copy it into the appropriate part of the virtual buffer. */
+ memcpy (virtual_buffer + REGISTER_RAW_SIZE(i), raw_buf, REGISTER_RAW_SIZE (i));
+
+ val_print (builtin_type_double, virtual_buffer, 0, 0 , stream, 0,
+ 1, 0, Val_pretty_default);
+
+ }
+ else {
+ val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
+ 1, 0, Val_pretty_default);
+ }
+
+}
+
+/* Return one if PC is in the call path of a trampoline, else return zero.
+
+ Note we return one for *any* call trampoline (long-call, arg-reloc), not
+ just shared library trampolines (import, export). */
+
+int
+in_solib_call_trampoline (pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ struct minimal_symbol *minsym;
+ struct unwind_table_entry *u;
+ static CORE_ADDR dyncall = 0;
+ static CORE_ADDR sr4export = 0;
+
+/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
+ new exec file */
+
+ /* First see if PC is in one of the two C-library trampolines. */
+ if (!dyncall)
+ {
+ minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
+ if (minsym)
+ dyncall = SYMBOL_VALUE_ADDRESS (minsym);
+ else
+ dyncall = -1;
+ }
+
+ if (!sr4export)
+ {
+ minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
+ if (minsym)
+ sr4export = SYMBOL_VALUE_ADDRESS (minsym);
+ else
+ sr4export = -1;
+ }
+
+ if (pc == dyncall || pc == sr4export)
+ return 1;
+
+ /* Get the unwind descriptor corresponding to PC, return zero
+ if no unwind was found. */
+ u = find_unwind_entry (pc);
+ if (!u)
+ return 0;
+
+ /* If this isn't a linker stub, then return now. */
+ if (u->stub_unwind.stub_type == 0)
+ return 0;
+
+ /* By definition a long-branch stub is a call stub. */
+ if (u->stub_unwind.stub_type == LONG_BRANCH)
+ return 1;
+
+ /* The call and return path execute the same instructions within
+ an IMPORT stub! So an IMPORT stub is both a call and return
+ trampoline. */
+ if (u->stub_unwind.stub_type == IMPORT)
+ return 1;
+
+ /* Parameter relocation stubs always have a call path and may have a
+ return path. */
+ if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
+ || u->stub_unwind.stub_type == EXPORT)
+ {
+ CORE_ADDR addr;
+
+ /* Search forward from the current PC until we hit a branch
+ or the end of the stub. */
+ for (addr = pc; addr <= u->region_end; addr += 4)
+ {
+ unsigned long insn;
+
+ insn = read_memory_integer (addr, 4);
+
+ /* Does it look like a bl? If so then it's the call path, if
+ we find a bv or be first, then we're on the return path. */
+ if ((insn & 0xfc00e000) == 0xe8000000)
+ return 1;
+ else if ((insn & 0xfc00e001) == 0xe800c000
+ || (insn & 0xfc000000) == 0xe0000000)
+ return 0;
+ }
+
+ /* Should never happen. */
+ warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
+ return 0; /* purecov: deadcode */
+ }
+
+ /* Unknown stub type. For now, just return zero. */
+ return 0; /* purecov: deadcode */
+}
+
+/* Return one if PC is in the return path of a trampoline, else return zero.
+
+ Note we return one for *any* call trampoline (long-call, arg-reloc), not
+ just shared library trampolines (import, export). */
+
+int
+in_solib_return_trampoline (pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ struct unwind_table_entry *u;
+
+ /* Get the unwind descriptor corresponding to PC, return zero
+ if no unwind was found. */
+ u = find_unwind_entry (pc);
+ if (!u)
+ return 0;
+
+ /* If this isn't a linker stub or it's just a long branch stub, then
+ return zero. */
+ if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
+ return 0;
+
+ /* The call and return path execute the same instructions within
+ an IMPORT stub! So an IMPORT stub is both a call and return
+ trampoline. */
+ if (u->stub_unwind.stub_type == IMPORT)
+ return 1;
+
+ /* Parameter relocation stubs always have a call path and may have a
+ return path. */
+ if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
+ || u->stub_unwind.stub_type == EXPORT)
+ {
+ CORE_ADDR addr;
+
+ /* Search forward from the current PC until we hit a branch
+ or the end of the stub. */
+ for (addr = pc; addr <= u->region_end; addr += 4)
+ {
+ unsigned long insn;
+
+ insn = read_memory_integer (addr, 4);
+
+ /* Does it look like a bl? If so then it's the call path, if
+ we find a bv or be first, then we're on the return path. */
+ if ((insn & 0xfc00e000) == 0xe8000000)
+ return 0;
+ else if ((insn & 0xfc00e001) == 0xe800c000
+ || (insn & 0xfc000000) == 0xe0000000)
+ return 1;
+ }
+
+ /* Should never happen. */
+ warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
+ return 0; /* purecov: deadcode */
+ }
+
+ /* Unknown stub type. For now, just return zero. */
+ return 0; /* purecov: deadcode */
+
+}
+
+/* Figure out if PC is in a trampoline, and if so find out where
+ the trampoline will jump to. If not in a trampoline, return zero.
+
+ Simple code examination probably is not a good idea since the code
+ sequences in trampolines can also appear in user code.
+
+ We use unwinds and information from the minimal symbol table to
+ determine when we're in a trampoline. This won't work for ELF
+ (yet) since it doesn't create stub unwind entries. Whether or
+ not ELF will create stub unwinds or normal unwinds for linker
+ stubs is still being debated.
+
+ This should handle simple calls through dyncall or sr4export,
+ long calls, argument relocation stubs, and dyncall/sr4export
+ calling an argument relocation stub. It even handles some stubs
+ used in dynamic executables. */
+
+# if 0
+CORE_ADDR
+skip_trampoline_code (pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ return find_solib_trampoline_target(pc);
+}
+
+#endif
+
+CORE_ADDR
+skip_trampoline_code (pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ long orig_pc = pc;
+ long prev_inst, curr_inst, loc;
+ static CORE_ADDR dyncall = 0;
+ static CORE_ADDR dyncall_external = 0;
+ static CORE_ADDR sr4export = 0;
+ struct minimal_symbol *msym;
+ struct unwind_table_entry *u;
+
+
+/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
+ new exec file */
+
+ if (!dyncall)
+ {
+ msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
+ if (msym)
+ dyncall = SYMBOL_VALUE_ADDRESS (msym);
+ else
+ dyncall = -1;
+ }
+
+ if (!dyncall_external)
+ {
+ msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
+ if (msym)
+ dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
+ else
+ dyncall_external = -1;
+ }
+
+ if (!sr4export)
+ {
+ msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
+ if (msym)
+ sr4export = SYMBOL_VALUE_ADDRESS (msym);
+ else
+ sr4export = -1;
+ }
+
+ /* Addresses passed to dyncall may *NOT* be the actual address
+ of the function. So we may have to do something special. */
+ if (pc == dyncall)
+ {
+ pc = (CORE_ADDR) read_register (22);
+
+ /* If bit 30 (counting from the left) is on, then pc is the address of
+ the PLT entry for this function, not the address of the function
+ itself. Bit 31 has meaning too, but only for MPE. */
+ if (pc & 0x2)
+ pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
+ }
+ if (pc == dyncall_external)
+ {
+ pc = (CORE_ADDR) read_register (22);
+ pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
+ }
+ else if (pc == sr4export)
+ pc = (CORE_ADDR) (read_register (22));
+
+ /* Get the unwind descriptor corresponding to PC, return zero
+ if no unwind was found. */
+ u = find_unwind_entry (pc);
+ if (!u)
+ return 0;
+
+ /* If this isn't a linker stub, then return now. */
+ /* elz: attention here! (FIXME) because of a compiler/linker
+ error, some stubs which should have a non zero stub_unwind.stub_type
+ have unfortunately a value of zero. So this function would return here
+ as if we were not in a trampoline. To fix this, we go look at the partial
+ symbol information, which reports this guy as a stub.
+ (FIXME): Unfortunately, we are not that lucky: it turns out that the
+ partial symbol information is also wrong sometimes. This is because
+ when it is entered (somread.c::som_symtab_read()) it can happen that
+ if the type of the symbol (from the som) is Entry, and the symbol is
+ in a shared library, then it can also be a trampoline. This would
+ be OK, except that I believe the way they decide if we are ina shared library
+ does not work. SOOOO..., even if we have a regular function w/o trampolines
+ its minimal symbol can be assigned type mst_solib_trampoline.
+ Also, if we find that the symbol is a real stub, then we fix the unwind
+ descriptor, and define the stub type to be EXPORT.
+ Hopefully this is correct most of the times. */
+ if (u->stub_unwind.stub_type == 0)
+ {
+
+/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
+ we can delete all the code which appears between the lines */
+/*--------------------------------------------------------------------------*/
+ msym = lookup_minimal_symbol_by_pc (pc);
+
+ if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
+ return orig_pc == pc ? 0 : pc & ~0x3;
+
+ else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
+ {
+ struct objfile *objfile;
+ struct minimal_symbol *msymbol;
+ int function_found = 0;
+
+ /* go look if there is another minimal symbol with the same name as
+ this one, but with type mst_text. This would happen if the msym
+ is an actual trampoline, in which case there would be another
+ symbol with the same name corresponding to the real function */
+
+ ALL_MSYMBOLS (objfile, msymbol)
+ {
+ if (MSYMBOL_TYPE (msymbol) == mst_text
+ && STREQ (SYMBOL_NAME (msymbol) , SYMBOL_NAME (msym)))
+ {
+ function_found = 1;
+ break;
+ }
+ }
+
+ if (function_found)
+ /* the type of msym is correct (mst_solib_trampoline), but
+ the unwind info is wrong, so set it to the correct value */
+ u->stub_unwind.stub_type = EXPORT;
+ else
+ /* the stub type info in the unwind is correct (this is not a
+ trampoline), but the msym type information is wrong, it
+ should be mst_text. So we need to fix the msym, and also
+ get out of this function */
+ {
+ MSYMBOL_TYPE (msym) = mst_text;
+ return orig_pc == pc ? 0 : pc & ~0x3;
+ }
+ }
+
+/*--------------------------------------------------------------------------*/
+ }
+
+ /* It's a stub. Search for a branch and figure out where it goes.
+ Note we have to handle multi insn branch sequences like ldil;ble.
+ Most (all?) other branches can be determined by examining the contents
+ of certain registers and the stack. */
+
+ loc = pc;
+ curr_inst = 0;
+ prev_inst = 0;
+ while (1)
+ {
+ /* Make sure we haven't walked outside the range of this stub. */
+ if (u != find_unwind_entry (loc))
+ {
+ warning ("Unable to find branch in linker stub");
+ return orig_pc == pc ? 0 : pc & ~0x3;
+ }
+
+ prev_inst = curr_inst;
+ curr_inst = read_memory_integer (loc, 4);
+
+ /* Does it look like a branch external using %r1? Then it's the
+ branch from the stub to the actual function. */
+ if ((curr_inst & 0xffe0e000) == 0xe0202000)
+ {
+ /* Yup. See if the previous instruction loaded
+ a value into %r1. If so compute and return the jump address. */
+ if ((prev_inst & 0xffe00000) == 0x20200000)
+ return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
+ else
+ {
+ warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
+ return orig_pc == pc ? 0 : pc & ~0x3;
+ }
+ }
+
+ /* Does it look like a be 0(sr0,%r21)? OR
+ Does it look like a be, n 0(sr0,%r21)? OR
+ Does it look like a bve (r21)? (this is on PA2.0)
+ Does it look like a bve, n(r21)? (this is also on PA2.0)
+ That's the branch from an
+ import stub to an export stub.
+
+ It is impossible to determine the target of the branch via
+ simple examination of instructions and/or data (consider
+ that the address in the plabel may be the address of the
+ bind-on-reference routine in the dynamic loader).
+
+ So we have try an alternative approach.
+
+ Get the name of the symbol at our current location; it should
+ be a stub symbol with the same name as the symbol in the
+ shared library.
+
+ Then lookup a minimal symbol with the same name; we should
+ get the minimal symbol for the target routine in the shared
+ library as those take precedence of import/export stubs. */
+ if ((curr_inst == 0xe2a00000) ||
+ (curr_inst == 0xe2a00002) ||
+ (curr_inst == 0xeaa0d000) ||
+ (curr_inst == 0xeaa0d002))
+ {
+ struct minimal_symbol *stubsym, *libsym;
+
+ stubsym = lookup_minimal_symbol_by_pc (loc);
+ if (stubsym == NULL)
+ {
+ warning ("Unable to find symbol for 0x%x", loc);
+ return orig_pc == pc ? 0 : pc & ~0x3;
+ }
+
+ libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
+ if (libsym == NULL)
+ {
+ warning ("Unable to find library symbol for %s\n",
+ SYMBOL_NAME (stubsym));
+ return orig_pc == pc ? 0 : pc & ~0x3;
+ }
+
+ return SYMBOL_VALUE (libsym);
+ }
+
+ /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
+ branch from the stub to the actual function. */
+ /*elz*/
+ else if ((curr_inst & 0xffe0e000) == 0xe8400000
+ || (curr_inst & 0xffe0e000) == 0xe8000000
+ || (curr_inst & 0xffe0e000) == 0xe800A000)
+ return (loc + extract_17 (curr_inst) + 8) & ~0x3;
+
+ /* Does it look like bv (rp)? Note this depends on the
+ current stack pointer being the same as the stack
+ pointer in the stub itself! This is a branch on from the
+ stub back to the original caller. */
+ /*else if ((curr_inst & 0xffe0e000) == 0xe840c000)*/
+ else if ((curr_inst & 0xffe0f000) == 0xe840c000)
+ {
+ /* Yup. See if the previous instruction loaded
+ rp from sp - 8. */
+ if (prev_inst == 0x4bc23ff1)
+ return (read_memory_integer
+ (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
+ else
+ {
+ warning ("Unable to find restore of %%rp before bv (%%rp).");
+ return orig_pc == pc ? 0 : pc & ~0x3;
+ }
+ }
+
+ /* elz: added this case to capture the new instruction
+ at the end of the return part of an export stub used by
+ the PA2.0: BVE, n (rp) */
+ else if ((curr_inst & 0xffe0f000) == 0xe840d000)
+ {
+ return (read_memory_integer
+ (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
+ }
+
+ /* What about be,n 0(sr0,%rp)? It's just another way we return to
+ the original caller from the stub. Used in dynamic executables. */
+ else if (curr_inst == 0xe0400002)
+ {
+ /* The value we jump to is sitting in sp - 24. But that's
+ loaded several instructions before the be instruction.
+ I guess we could check for the previous instruction being
+ mtsp %r1,%sr0 if we want to do sanity checking. */
+ return (read_memory_integer
+ (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
+ }
+
+ /* Haven't found the branch yet, but we're still in the stub.
+ Keep looking. */
+ loc += 4;
+ }
+}
+
+
+/* For the given instruction (INST), return any adjustment it makes
+ to the stack pointer or zero for no adjustment.
+
+ This only handles instructions commonly found in prologues. */
+
+static int
+prologue_inst_adjust_sp (inst)
+ unsigned long inst;
+{
+ /* This must persist across calls. */
+ static int save_high21;
+
+ /* The most common way to perform a stack adjustment ldo X(sp),sp */
+ if ((inst & 0xffffc000) == 0x37de0000)
+ return extract_14 (inst);
+
+ /* stwm X,D(sp) */
+ if ((inst & 0xffe00000) == 0x6fc00000)
+ return extract_14 (inst);
+
+ /* addil high21,%r1; ldo low11,(%r1),%r30)
+ save high bits in save_high21 for later use. */
+ if ((inst & 0xffe00000) == 0x28200000)
+ {
+ save_high21 = extract_21 (inst);
+ return 0;
+ }
+
+ if ((inst & 0xffff0000) == 0x343e0000)
+ return save_high21 + extract_14 (inst);
+
+ /* fstws as used by the HP compilers. */
+ if ((inst & 0xffffffe0) == 0x2fd01220)
+ return extract_5_load (inst);
+
+ /* No adjustment. */
+ return 0;
+}
+
+/* Return nonzero if INST is a branch of some kind, else return zero. */
+
+static int
+is_branch (inst)
+ unsigned long inst;
+{
+ switch (inst >> 26)
+ {
+ case 0x20:
+ case 0x21:
+ case 0x22:
+ case 0x23:
+ case 0x28:
+ case 0x29:
+ case 0x2a:
+ case 0x2b:
+ case 0x30:
+ case 0x31:
+ case 0x32:
+ case 0x33:
+ case 0x38:
+ case 0x39:
+ case 0x3a:
+ return 1;
+
+ default:
+ return 0;
+ }
+}
+
+/* Return the register number for a GR which is saved by INST or
+ zero it INST does not save a GR. */
+
+static int
+inst_saves_gr (inst)
+ unsigned long inst;
+{
+ /* Does it look like a stw? */
+ if ((inst >> 26) == 0x1a)
+ return extract_5R_store (inst);
+
+ /* Does it look like a stwm? GCC & HPC may use this in prologues. */
+ if ((inst >> 26) == 0x1b)
+ return extract_5R_store (inst);
+
+ /* Does it look like sth or stb? HPC versions 9.0 and later use these
+ too. */
+ if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
+ return extract_5R_store (inst);
+
+ return 0;
+}
+
+/* Return the register number for a FR which is saved by INST or
+ zero it INST does not save a FR.
+
+ Note we only care about full 64bit register stores (that's the only
+ kind of stores the prologue will use).
+
+ FIXME: What about argument stores with the HP compiler in ANSI mode? */
+
+static int
+inst_saves_fr (inst)
+ unsigned long inst;
+{
+ /* is this an FSTDS ?*/
+ if ((inst & 0xfc00dfc0) == 0x2c001200)
+ return extract_5r_store (inst);
+ /* is this an FSTWS ?*/
+ if ((inst & 0xfc00df80) == 0x24001200)
+ return extract_5r_store (inst);
+ return 0;
+}
+
+/* Advance PC across any function entry prologue instructions
+ to reach some "real" code.
+
+ Use information in the unwind table to determine what exactly should
+ be in the prologue. */
+
+
+CORE_ADDR
+skip_prologue_hard_way (pc)
+ CORE_ADDR pc;
+{
+ char buf[4];
+ CORE_ADDR orig_pc = pc;
+ unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
+ unsigned long args_stored, status, i, restart_gr, restart_fr;
+ struct unwind_table_entry *u;
+
+ restart_gr = 0;
+ restart_fr = 0;
+
+restart:
+ u = find_unwind_entry (pc);
+ if (!u)
+ return pc;
+
+ /* If we are not at the beginning of a function, then return now. */
+ if ((pc & ~0x3) != u->region_start)
+ return pc;
+
+ /* This is how much of a frame adjustment we need to account for. */
+ stack_remaining = u->Total_frame_size << 3;
+
+ /* Magic register saves we want to know about. */
+ save_rp = u->Save_RP;
+ save_sp = u->Save_SP;
+
+ /* An indication that args may be stored into the stack. Unfortunately
+ the HPUX compilers tend to set this in cases where no args were
+ stored too!. */
+ args_stored = 1;
+
+ /* Turn the Entry_GR field into a bitmask. */
+ save_gr = 0;
+ for (i = 3; i < u->Entry_GR + 3; i++)
+ {
+ /* Frame pointer gets saved into a special location. */
+ if (u->Save_SP && i == FP_REGNUM)
+ continue;
+
+ save_gr |= (1 << i);
+ }
+ save_gr &= ~restart_gr;
+
+ /* Turn the Entry_FR field into a bitmask too. */
+ save_fr = 0;
+ for (i = 12; i < u->Entry_FR + 12; i++)
+ save_fr |= (1 << i);
+ save_fr &= ~restart_fr;
+
+ /* Loop until we find everything of interest or hit a branch.
+
+ For unoptimized GCC code and for any HP CC code this will never ever
+ examine any user instructions.
+
+ For optimzied GCC code we're faced with problems. GCC will schedule
+ its prologue and make prologue instructions available for delay slot
+ filling. The end result is user code gets mixed in with the prologue
+ and a prologue instruction may be in the delay slot of the first branch
+ or call.
+
+ Some unexpected things are expected with debugging optimized code, so
+ we allow this routine to walk past user instructions in optimized
+ GCC code. */
+ while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
+ || args_stored)
+ {
+ unsigned int reg_num;
+ unsigned long old_stack_remaining, old_save_gr, old_save_fr;
+ unsigned long old_save_rp, old_save_sp, next_inst;
+
+ /* Save copies of all the triggers so we can compare them later
+ (only for HPC). */
+ old_save_gr = save_gr;
+ old_save_fr = save_fr;
+ old_save_rp = save_rp;
+ old_save_sp = save_sp;
+ old_stack_remaining = stack_remaining;
+
+ status = target_read_memory (pc, buf, 4);
+ inst = extract_unsigned_integer (buf, 4);
+
+ /* Yow! */
+ if (status != 0)
+ return pc;
+
+ /* Note the interesting effects of this instruction. */
+ stack_remaining -= prologue_inst_adjust_sp (inst);
+
+ /* There is only one instruction used for saving RP into the stack. */
+ if (inst == 0x6bc23fd9)
+ save_rp = 0;
+
+ /* This is the only way we save SP into the stack. At this time
+ the HP compilers never bother to save SP into the stack. */
+ if ((inst & 0xffffc000) == 0x6fc10000)
+ save_sp = 0;
+
+ /* Account for general and floating-point register saves. */
+ reg_num = inst_saves_gr (inst);
+ save_gr &= ~(1 << reg_num);
+
+ /* Ugh. Also account for argument stores into the stack.
+ Unfortunately args_stored only tells us that some arguments
+ where stored into the stack. Not how many or what kind!
+
+ This is a kludge as on the HP compiler sets this bit and it
+ never does prologue scheduling. So once we see one, skip past
+ all of them. We have similar code for the fp arg stores below.
+
+ FIXME. Can still die if we have a mix of GR and FR argument
+ stores! */
+ if (reg_num >= 23 && reg_num <= 26)
+ {
+ while (reg_num >= 23 && reg_num <= 26)
+ {
+ pc += 4;
+ status = target_read_memory (pc, buf, 4);
+ inst = extract_unsigned_integer (buf, 4);
+ if (status != 0)
+ return pc;
+ reg_num = inst_saves_gr (inst);
+ }
+ args_stored = 0;
+ continue;
+ }
+
+ reg_num = inst_saves_fr (inst);
+ save_fr &= ~(1 << reg_num);
+
+ status = target_read_memory (pc + 4, buf, 4);
+ next_inst = extract_unsigned_integer (buf, 4);
+
+ /* Yow! */
+ if (status != 0)
+ return pc;
+
+ /* We've got to be read to handle the ldo before the fp register
+ save. */
+ if ((inst & 0xfc000000) == 0x34000000
+ && inst_saves_fr (next_inst) >= 4
+ && inst_saves_fr (next_inst) <= 7)
+ {
+ /* So we drop into the code below in a reasonable state. */
+ reg_num = inst_saves_fr (next_inst);
+ pc -= 4;
+ }
+
+ /* Ugh. Also account for argument stores into the stack.
+ This is a kludge as on the HP compiler sets this bit and it
+ never does prologue scheduling. So once we see one, skip past
+ all of them. */
+ if (reg_num >= 4 && reg_num <= 7)
+ {
+ while (reg_num >= 4 && reg_num <= 7)
+ {
+ pc += 8;
+ status = target_read_memory (pc, buf, 4);
+ inst = extract_unsigned_integer (buf, 4);
+ if (status != 0)
+ return pc;
+ if ((inst & 0xfc000000) != 0x34000000)
+ break;
+ status = target_read_memory (pc + 4, buf, 4);
+ next_inst = extract_unsigned_integer (buf, 4);
+ if (status != 0)
+ return pc;
+ reg_num = inst_saves_fr (next_inst);
+ }
+ args_stored = 0;
+ continue;
+ }
+
+ /* Quit if we hit any kind of branch. This can happen if a prologue
+ instruction is in the delay slot of the first call/branch. */
+ if (is_branch (inst))
+ break;
+
+ /* What a crock. The HP compilers set args_stored even if no
+ arguments were stored into the stack (boo hiss). This could
+ cause this code to then skip a bunch of user insns (up to the
+ first branch).
+
+ To combat this we try to identify when args_stored was bogusly
+ set and clear it. We only do this when args_stored is nonzero,
+ all other resources are accounted for, and nothing changed on
+ this pass. */
+ if (args_stored
+ && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
+ && old_save_gr == save_gr && old_save_fr == save_fr
+ && old_save_rp == save_rp && old_save_sp == save_sp
+ && old_stack_remaining == stack_remaining)
+ break;
+
+ /* Bump the PC. */
+ pc += 4;
+ }
+
+ /* We've got a tenative location for the end of the prologue. However
+ because of limitations in the unwind descriptor mechanism we may
+ have went too far into user code looking for the save of a register
+ that does not exist. So, if there registers we expected to be saved
+ but never were, mask them out and restart.
+
+ This should only happen in optimized code, and should be very rare. */
+ if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
+ {
+ pc = orig_pc;
+ restart_gr = save_gr;
+ restart_fr = save_fr;
+ goto restart;
+ }
+
+ return pc;
+}
+
+
+
+
+
+/* return 0 if we cannot determine the end of the prologue,
+ return the new pc value if we know where the prologue ends */
+
+static CORE_ADDR
+after_prologue (pc)
+ CORE_ADDR pc;
+{
+ struct symtab_and_line sal;
+ CORE_ADDR func_addr, func_end;
+ struct symbol *f;
+
+ if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ return 0; /* Unknown */
+
+ f = find_pc_function (pc);
+ if (!f)
+ return 0; /* no debug info, do it the hard way! */
+
+ sal = find_pc_line (func_addr, 0);
+
+ if (sal.end < func_end)
+ {
+ /* this happens when the function has no prologue, because the way
+ find_pc_line works: elz. Note: this may not be a very good
+ way to decide whether a function has a prologue or not, but
+ it is the best I can do with the info available
+ Also, this will work for functions like: int f()
+ {
+ return 2;
+ }
+ I.e. the bp will be inserted at the first open brace.
+ For functions where the body is only one line written like this:
+ int f()
+ { return 2; }
+ this will make the breakpoint to be at the last brace, after the body
+ has been executed already. What's the point of stepping through a function
+ without any variables anyway?? */
+
+ if ((SYMBOL_LINE(f) > 0) && (SYMBOL_LINE(f) < sal.line))
+ return pc; /*no adjusment will be made*/
+ else
+ return sal.end; /* this is the end of the prologue */
+ }
+ /* The line after the prologue is after the end of the function. In this
+ case, put the end of the prologue is the beginning of the function. */
+ /* This should happen only when the function is prologueless and has no
+ code in it. For instance void dumb(){} Note: this kind of function
+ is used quite a lot in the test system */
+
+ else return pc; /* no adjustment will be made */
+}
+
+/* To skip prologues, I use this predicate. Returns either PC itself
+ if the code at PC does not look like a function prologue; otherwise
+ returns an address that (if we're lucky) follows the prologue. If
+ LENIENT, then we must skip everything which is involved in setting
+ up the frame (it's OK to skip more, just so long as we don't skip
+ anything which might clobber the registers which are being saved.
+ Currently we must not skip more on the alpha, but we might the lenient
+ stuff some day. */
+
+CORE_ADDR
+skip_prologue (pc)
+ CORE_ADDR pc;
+{
+ unsigned long inst;
+ int offset;
+ CORE_ADDR post_prologue_pc;
+ char buf[4];
+
+#ifdef GDB_TARGET_HAS_SHARED_LIBS
+ /* Silently return the unaltered pc upon memory errors.
+ This could happen on OSF/1 if decode_line_1 tries to skip the
+ prologue for quickstarted shared library functions when the
+ shared library is not yet mapped in.
+ Reading target memory is slow over serial lines, so we perform
+ this check only if the target has shared libraries. */
+ if (target_read_memory (pc, buf, 4))
+ return pc;
+#endif
+
+ /* See if we can determine the end of the prologue via the symbol table.
+ If so, then return either PC, or the PC after the prologue, whichever
+ is greater. */
+
+ post_prologue_pc = after_prologue (pc);
+
+ if (post_prologue_pc != 0)
+ return max (pc, post_prologue_pc);
+
+
+ /* Can't determine prologue from the symbol table, (this can happen if there
+ is no debug information) so we need to fall back on the old code, which
+ looks at the instructions */
+ /* FIXME (elz) !!!!: this may create a problem if, once the bp is hit, the user says
+ where: the backtrace info is not right: this is because the point at which we
+ break is at the very first instruction of the function. At this time the stuff that
+ needs to be saved on the stack, has not been saved yet, so the backtrace
+ cannot know all it needs to know. This will need to be fixed in the
+ actual backtrace code. (Note: this is what DDE does) */
+
+ else
+
+ return (skip_prologue_hard_way(pc));
+
+#if 0
+/* elz: I am keeping this code around just in case, but remember, all the
+ instructions are for alpha: you should change all to the hppa instructions */
+
+ /* Can't determine prologue from the symbol table, need to examine
+ instructions. */
+
+ /* Skip the typical prologue instructions. These are the stack adjustment
+ instruction and the instructions that save registers on the stack
+ or in the gcc frame. */
+ for (offset = 0; offset < 100; offset += 4)
+ {
+ int status;
+
+ status = read_memory_nobpt (pc + offset, buf, 4);
+ if (status)
+ memory_error (status, pc + offset);
+ inst = extract_unsigned_integer (buf, 4);
+
+ /* The alpha has no delay slots. But let's keep the lenient stuff,
+ we might need it for something else in the future. */
+ if (lenient && 0)
+ continue;
+
+ if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
+ continue;
+ if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
+ continue;
+ if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
+ continue;
+ else if ((inst & 0xfc1f0000) == 0xb41e0000
+ && (inst & 0xffff0000) != 0xb7fe0000)
+ continue; /* stq reg,n($sp) */
+ /* reg != $zero */
+ else if ((inst & 0xfc1f0000) == 0x9c1e0000
+ && (inst & 0xffff0000) != 0x9ffe0000)
+ continue; /* stt reg,n($sp) */
+ /* reg != $zero */
+ else if (inst == 0x47de040f) /* bis sp,sp,fp */
+ continue;
+ else
+ break;
+ }
+ return pc + offset;
+#endif /* 0 */
+}
+
+/* Put here the code to store, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame. */
+
+void
+hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
+ struct frame_info *frame_info;
+ struct frame_saved_regs *frame_saved_regs;
+{
+ CORE_ADDR pc;
+ struct unwind_table_entry *u;
+ unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
+ int status, i, reg;
+ char buf[4];
+ int fp_loc = -1;
+
+ /* Zero out everything. */
+ memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
+
+ /* Call dummy frames always look the same, so there's no need to
+ examine the dummy code to determine locations of saved registers;
+ instead, let find_dummy_frame_regs fill in the correct offsets
+ for the saved registers. */
+ if ((frame_info->pc >= frame_info->frame
+ && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
+ + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
+ + 6 * 4)))
+ find_dummy_frame_regs (frame_info, frame_saved_regs);
+
+ /* Interrupt handlers are special too. They lay out the register
+ state in the exact same order as the register numbers in GDB. */
+ if (pc_in_interrupt_handler (frame_info->pc))
+ {
+ for (i = 0; i < NUM_REGS; i++)
+ {
+ /* SP is a little special. */
+ if (i == SP_REGNUM)
+ frame_saved_regs->regs[SP_REGNUM]
+ = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
+ else
+ frame_saved_regs->regs[i] = frame_info->frame + i * 4;
+ }
+ return;
+ }
+
+#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
+ /* Handle signal handler callers. */
+ if (frame_info->signal_handler_caller)
+ {
+ FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
+ return;
+ }
+#endif
+
+ /* Get the starting address of the function referred to by the PC
+ saved in frame. */
+ pc = get_pc_function_start (frame_info->pc);
+
+ /* Yow! */
+ u = find_unwind_entry (pc);
+ if (!u)
+ return;
+
+ /* This is how much of a frame adjustment we need to account for. */
+ stack_remaining = u->Total_frame_size << 3;
+
+ /* Magic register saves we want to know about. */
+ save_rp = u->Save_RP;
+ save_sp = u->Save_SP;
+
+ /* Turn the Entry_GR field into a bitmask. */
+ save_gr = 0;
+ for (i = 3; i < u->Entry_GR + 3; i++)
+ {
+ /* Frame pointer gets saved into a special location. */
+ if (u->Save_SP && i == FP_REGNUM)
+ continue;
+
+ save_gr |= (1 << i);
+ }
+
+ /* Turn the Entry_FR field into a bitmask too. */
+ save_fr = 0;
+ for (i = 12; i < u->Entry_FR + 12; i++)
+ save_fr |= (1 << i);
+
+ /* The frame always represents the value of %sp at entry to the
+ current function (and is thus equivalent to the "saved" stack
+ pointer. */
+ frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
+
+ /* Loop until we find everything of interest or hit a branch.
+
+ For unoptimized GCC code and for any HP CC code this will never ever
+ examine any user instructions.
+
+ For optimzied GCC code we're faced with problems. GCC will schedule
+ its prologue and make prologue instructions available for delay slot
+ filling. The end result is user code gets mixed in with the prologue
+ and a prologue instruction may be in the delay slot of the first branch
+ or call.
+
+ Some unexpected things are expected with debugging optimized code, so
+ we allow this routine to walk past user instructions in optimized
+ GCC code. */
+ while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
+ {
+ status = target_read_memory (pc, buf, 4);
+ inst = extract_unsigned_integer (buf, 4);
+
+ /* Yow! */
+ if (status != 0)
+ return;
+
+ /* Note the interesting effects of this instruction. */
+ stack_remaining -= prologue_inst_adjust_sp (inst);
+
+ /* There is only one instruction used for saving RP into the stack. */
+ if (inst == 0x6bc23fd9)
+ {
+ save_rp = 0;
+ frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
+ }
+
+ /* Just note that we found the save of SP into the stack. The
+ value for frame_saved_regs was computed above. */
+ if ((inst & 0xffffc000) == 0x6fc10000)
+ save_sp = 0;
+
+ /* Account for general and floating-point register saves. */
+ reg = inst_saves_gr (inst);
+ if (reg >= 3 && reg <= 18
+ && (!u->Save_SP || reg != FP_REGNUM))
+ {
+ save_gr &= ~(1 << reg);
+
+ /* stwm with a positive displacement is a *post modify*. */
+ if ((inst >> 26) == 0x1b
+ && extract_14 (inst) >= 0)
+ frame_saved_regs->regs[reg] = frame_info->frame;
+ else
+ {
+ /* Handle code with and without frame pointers. */
+ if (u->Save_SP)
+ frame_saved_regs->regs[reg]
+ = frame_info->frame + extract_14 (inst);
+ else
+ frame_saved_regs->regs[reg]
+ = frame_info->frame + (u->Total_frame_size << 3)
+ + extract_14 (inst);
+ }
+ }
+
+
+ /* GCC handles callee saved FP regs a little differently.
+
+ It emits an instruction to put the value of the start of
+ the FP store area into %r1. It then uses fstds,ma with
+ a basereg of %r1 for the stores.
+
+ HP CC emits them at the current stack pointer modifying
+ the stack pointer as it stores each register. */
+
+ /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
+ if ((inst & 0xffffc000) == 0x34610000
+ || (inst & 0xffffc000) == 0x37c10000)
+ fp_loc = extract_14 (inst);
+
+ reg = inst_saves_fr (inst);
+ if (reg >= 12 && reg <= 21)
+ {
+ /* Note +4 braindamage below is necessary because the FP status
+ registers are internally 8 registers rather than the expected
+ 4 registers. */
+ save_fr &= ~(1 << reg);
+ if (fp_loc == -1)
+ {
+ /* 1st HP CC FP register store. After this instruction
+ we've set enough state that the GCC and HPCC code are
+ both handled in the same manner. */
+ frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
+ fp_loc = 8;
+ }
+ else
+ {
+ frame_saved_regs->regs[reg + FP0_REGNUM + 4]
+ = frame_info->frame + fp_loc;
+ fp_loc += 8;
+ }
+ }
+
+ /* Quit if we hit any kind of branch. This can happen if a prologue
+ instruction is in the delay slot of the first call/branch. */
+ if (is_branch (inst))
+ break;
+
+ /* Bump the PC. */
+ pc += 4;
+ }
+}
+
+
+/* Exception handling support for the HP-UX ANSI C++ compiler.
+ The compiler (aCC) provides a callback for exception events;
+ GDB can set a breakpoint on this callback and find out what
+ exception event has occurred. */
+
+/* The name of the hook to be set to point to the callback function */
+static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
+/* The name of the function to be used to set the hook value */
+static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
+/* The name of the callback function in end.o */
+static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
+/* Name of function in end.o on which a break is set (called by above) */
+static char HP_ACC_EH_break[] = "__d_eh_break";
+/* Name of flag (in end.o) that enables catching throws */
+static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
+/* Name of flag (in end.o) that enables catching catching */
+static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
+/* The enum used by aCC */
+typedef enum {
+ __EH_NOTIFY_THROW,
+ __EH_NOTIFY_CATCH
+} __eh_notification;
+
+/* Is exception-handling support available with this executable? */
+static int hp_cxx_exception_support = 0;
+/* Has the initialize function been run? */
+int hp_cxx_exception_support_initialized = 0;
+/* Similar to above, but imported from breakpoint.c -- non-target-specific */
+extern int exception_support_initialized;
+/* Address of __eh_notify_hook */
+static CORE_ADDR eh_notify_hook_addr = NULL;
+/* Address of __d_eh_notify_callback */
+static CORE_ADDR eh_notify_callback_addr = NULL;
+/* Address of __d_eh_break */
+static CORE_ADDR eh_break_addr = NULL;
+/* Address of __d_eh_catch_catch */
+static CORE_ADDR eh_catch_catch_addr = NULL;
+/* Address of __d_eh_catch_throw */
+static CORE_ADDR eh_catch_throw_addr = NULL;
+/* Sal for __d_eh_break */
+static struct symtab_and_line * break_callback_sal = NULL;
+
+/* Code in end.c expects __d_pid to be set in the inferior,
+ otherwise __d_eh_notify_callback doesn't bother to call
+ __d_eh_break! So we poke the pid into this symbol
+ ourselves.
+ 0 => success
+ 1 => failure */
+int
+setup_d_pid_in_inferior ()
+{
+ CORE_ADDR anaddr;
+ struct minimal_symbol * msymbol;
+ char buf[4]; /* FIXME 32x64? */
+
+ /* Slam the pid of the process into __d_pid; failing is only a warning! */
+ msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
+ if (msymbol == NULL)
+ {
+ warning ("Unable to find __d_pid symbol in object file.");
+ warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
+ return 1;
+ }
+
+ anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
+ store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
+ if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
+ {
+ warning ("Unable to write __d_pid");
+ warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
+ return 1;
+ }
+ return 0;
+}
+
+/* Initialize exception catchpoint support by looking for the
+ necessary hooks/callbacks in end.o, etc., and set the hook value to
+ point to the required debug function
+
+ Return 0 => failure
+ 1 => success */
+
+static int
+initialize_hp_cxx_exception_support ()
+{
+ struct symtabs_and_lines sals;
+ struct cleanup * old_chain;
+ struct cleanup * canonical_strings_chain = NULL;
+ int i;
+ char * addr_start;
+ char * addr_end = NULL;
+ char ** canonical = (char **) NULL;
+ int thread = -1;
+ struct symbol * sym = NULL;
+ struct minimal_symbol * msym = NULL;
+ struct objfile * objfile;
+ asection *shlib_info;
+
+ /* Detect and disallow recursion. On HP-UX with aCC, infinite
+ recursion is a possibility because finding the hook for exception
+ callbacks involves making a call in the inferior, which means
+ re-inserting breakpoints which can re-invoke this code */
+
+ static int recurse = 0;
+ if (recurse > 0)
+ {
+ hp_cxx_exception_support_initialized = 0;
+ exception_support_initialized = 0;
+ return 0;
+ }
+
+ hp_cxx_exception_support = 0;
+
+ /* First check if we have seen any HP compiled objects; if not,
+ it is very unlikely that HP's idiosyncratic callback mechanism
+ for exception handling debug support will be available!
+ This will percolate back up to breakpoint.c, where our callers
+ will decide to try the g++ exception-handling support instead. */
+ if (!hp_som_som_object_present)
+ return 0;
+
+ /* We have a SOM executable with SOM debug info; find the hooks */
+
+ /* First look for the notify hook provided by aCC runtime libs */
+ /* If we find this symbol, we conclude that the executable must
+ have HP aCC exception support built in. If this symbol is not
+ found, even though we're a HP SOM-SOM file, we may have been
+ built with some other compiler (not aCC). This results percolates
+ back up to our callers in breakpoint.c which can decide to
+ try the g++ style of exception support instead.
+ If this symbol is found but the other symbols we require are
+ not found, there is something weird going on, and g++ support
+ should *not* be tried as an alternative.
+
+ ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
+ ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
+
+ /* libCsup has this hook; it'll usually be non-debuggable */
+ msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
+ if (msym)
+ {
+ eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
+ hp_cxx_exception_support = 1;
+ }
+ else
+ {
+ warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
+ warning ("Executable may not have been compiled debuggable with HP aCC.");
+ warning ("GDB will be unable to intercept exception events.");
+ eh_notify_hook_addr = 0;
+ hp_cxx_exception_support = 0;
+ return 0;
+ }
+
+#if 0 /* DEBUGGING */
+ printf ("Hook addr found is %lx\n", eh_notify_hook_addr);
+#endif
+
+ /* Next look for the notify callback routine in end.o */
+ /* This is always available in the SOM symbol dictionary if end.o is linked in */
+ msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
+ if (msym)
+ {
+ eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
+ hp_cxx_exception_support = 1;
+ }
+ else
+ {
+ warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
+ warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
+ warning ("GDB will be unable to intercept exception events.");
+ eh_notify_callback_addr = 0;
+ return 0;
+ }
+
+ /* Check whether the executable is dynamically linked or archive bound */
+ /* With an archive-bound executable we can use the raw addresses we find
+ for the callback function, etc. without modification. For an executable
+ with shared libraries, we have to do more work to find the plabel, which
+ can be the target of a call through $$dyncall from the aCC runtime support
+ library (libCsup) which is linked shared by default by aCC. */
+ /* This test below was copied from somsolib.c/somread.c. It may not be a very
+ reliable one to test that an executable is linked shared. pai/1997-07-18 */
+ shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
+ if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
+ {
+ /* The minsym we have has the local code address, but that's not the
+ plabel that can be used by an inter-load-module call. */
+ /* Find solib handle for main image (which has end.o), and use that
+ and the min sym as arguments to __d_shl_get() (which does the equivalent
+ of shl_findsym()) to find the plabel. */
+
+ args_for_find_stub args;
+ static char message[] = "Error while finding exception callback hook:\n";
+
+ args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
+ args.msym = msym;
+
+ recurse++;
+ eh_notify_callback_addr = catch_errors ((int (*) PARAMS ((char *))) cover_find_stub_with_shl_get,
+ (char *) &args,
+ message, RETURN_MASK_ALL);
+ recurse--;
+
+#if 0 /* DEBUGGING */
+ printf ("found plabel for eh notify callback: %x\n", eh_notify_callback_addr);
+#endif
+
+ exception_catchpoints_are_fragile = 1;
+
+ if (!eh_notify_callback_addr)
+ {
+ /* We can get here either if there is no plabel in the export list
+ for the main image, or if something strange happened (??) */
+ warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
+ warning ("GDB will not be able to intercept exception events.");
+ return 0;
+ }
+ }
+ else
+ exception_catchpoints_are_fragile = 0;
+
+#if 0 /* DEBUGGING */
+ printf ("Cb addr found is %lx\n", eh_notify_callback_addr);
+#endif
+
+ /* Now, look for the breakpointable routine in end.o */
+ /* This should also be available in the SOM symbol dict. if end.o linked in */
+ msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
+ if (msym)
+ {
+ eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
+ hp_cxx_exception_support = 1;
+ }
+ else
+ {
+ warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
+ warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
+ warning ("GDB will be unable to intercept exception events.");
+ eh_break_addr = 0;
+ return 0;
+ }
+
+#if 0 /* DEBUGGING */
+ printf ("break addr found is %lx\n", eh_break_addr);
+#endif
+
+ /* Next look for the catch enable flag provided in end.o */
+ sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
+ VAR_NAMESPACE, 0, (struct symtab **) NULL);
+ if (sym) /* sometimes present in debug info */
+ {
+ eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
+ hp_cxx_exception_support = 1;
+ }
+ else /* otherwise look in SOM symbol dict. */
+ {
+ msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
+ if (msym)
+ {
+ eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
+ hp_cxx_exception_support = 1;
+ }
+ else
+ {
+ warning ("Unable to enable interception of exception catches.");
+ warning ("Executable may not have been compiled debuggable with HP aCC.");
+ warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
+ return 0;
+ }
+ }
+
+#if 0 /* DEBUGGING */
+ printf ("catch catch addr found is %lx\n", eh_catch_catch_addr);
+#endif
+
+ /* Next look for the catch enable flag provided end.o */
+ sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
+ VAR_NAMESPACE, 0, (struct symtab **) NULL);
+ if (sym) /* sometimes present in debug info */
+ {
+ eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
+ hp_cxx_exception_support = 1;
+ }
+ else /* otherwise look in SOM symbol dict. */
+ {
+ msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
+ if (msym)
+ {
+ eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
+ hp_cxx_exception_support = 1;
+ }
+ else
+ {
+ warning ("Unable to enable interception of exception throws.");
+ warning ("Executable may not have been compiled debuggable with HP aCC.");
+ warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
+ return 0;
+ }
+ }
+
+#if 0 /* DEBUGGING */
+ printf ("catch throw addr found is %lx\n", eh_catch_throw_addr);
+#endif
+
+ /* Set the flags */
+ hp_cxx_exception_support = 2; /* everything worked so far */
+ hp_cxx_exception_support_initialized = 1;
+ exception_support_initialized = 1;
+
+ return 1;
+}
+
+/* Target operation for enabling or disabling interception of
+ exception events.
+ KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
+ ENABLE is either 0 (disable) or 1 (enable).
+ Return value is NULL if no support found;
+ -1 if something went wrong,
+ or a pointer to a symtab/line struct if the breakpointable
+ address was found. */
+
+struct symtab_and_line *
+child_enable_exception_callback (kind, enable)
+ enum exception_event_kind kind;
+ int enable;
+{
+ char buf[4];
+
+ if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
+ if (!initialize_hp_cxx_exception_support ())
+ return NULL;
+
+ switch (hp_cxx_exception_support)
+ {
+ case 0:
+ /* Assuming no HP support at all */
+ return NULL;
+ case 1:
+ /* HP support should be present, but something went wrong */
+ return (struct symtab_and_line *) -1; /* yuck! */
+ /* there may be other cases in the future */
+ }
+
+ /* Set the EH hook to point to the callback routine */
+ store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
+ /* pai: (temp) FIXME should there be a pack operation first? */
+ if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
+ {
+ warning ("Could not write to target memory for exception event callback.");
+ warning ("Interception of exception events may not work.");
+ return (struct symtab_and_line *) -1;
+ }
+ if (enable)
+ {
+ /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-(*/
+ if (inferior_pid > 0)
+ {
+ if (setup_d_pid_in_inferior ())
+ return (struct symtab_and_line *) -1;
+ }
+ else
+ {
+ warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); /* purecov: deadcode */
+ return (struct symtab_and_line *) -1; /* purecov: deadcode */
+ }
+ }
+
+ switch (kind)
+ {
+ case EX_EVENT_THROW:
+ store_unsigned_integer (buf, 4, enable ? 1 : 0);
+ if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
+ {
+ warning ("Couldn't enable exception throw interception.");
+ return (struct symtab_and_line *) -1;
+ }
+ break;
+ case EX_EVENT_CATCH:
+ store_unsigned_integer (buf, 4, enable ? 1 : 0);
+ if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
+ {
+ warning ("Couldn't enable exception catch interception.");
+ return (struct symtab_and_line *) -1;
+ }
+ break;
+ default: /* purecov: deadcode */
+ error ("Request to enable unknown or unsupported exception event."); /* purecov: deadcode */
+ }
+
+ /* Copy break address into new sal struct, malloc'ing if needed. */
+ if (!break_callback_sal)
+ {
+ break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
+ }
+ INIT_SAL(break_callback_sal);
+ break_callback_sal->symtab = NULL;
+ break_callback_sal->pc = eh_break_addr;
+ break_callback_sal->line = 0;
+ break_callback_sal->end = eh_break_addr;
+
+ return break_callback_sal;
+}
+
+/* Record some information about the current exception event */
+static struct exception_event_record current_ex_event;
+/* Convenience struct */
+static struct symtab_and_line null_symtab_and_line = { NULL, 0, 0, 0 };
+
+/* Report current exception event. Returns a pointer to a record
+ that describes the kind of the event, where it was thrown from,
+ and where it will be caught. More information may be reported
+ in the future */
+struct exception_event_record *
+child_get_current_exception_event ()
+{
+ CORE_ADDR event_kind;
+ CORE_ADDR throw_addr;
+ CORE_ADDR catch_addr;
+ struct frame_info *fi, *curr_frame;
+ int level = 1;
+
+ curr_frame = get_current_frame();
+ if (!curr_frame)
+ return (struct exception_event_record *) NULL;
+
+ /* Go up one frame to __d_eh_notify_callback, because at the
+ point when this code is executed, there's garbage in the
+ arguments of __d_eh_break. */
+ fi = find_relative_frame (curr_frame, &level);
+ if (level != 0)
+ return (struct exception_event_record *) NULL;
+
+ select_frame (fi, -1);
+
+ /* Read in the arguments */
+ /* __d_eh_notify_callback() is called with 3 arguments:
+ 1. event kind catch or throw
+ 2. the target address if known
+ 3. a flag -- not sure what this is. pai/1997-07-17 */
+ event_kind = read_register (ARG0_REGNUM);
+ catch_addr = read_register (ARG1_REGNUM);
+
+ /* Now go down to a user frame */
+ /* For a throw, __d_eh_break is called by
+ __d_eh_notify_callback which is called by
+ __notify_throw which is called
+ from user code.
+ For a catch, __d_eh_break is called by
+ __d_eh_notify_callback which is called by
+ <stackwalking stuff> which is called by
+ __throw__<stuff> or __rethrow_<stuff> which is called
+ from user code. */
+ /* FIXME: Don't use such magic numbers; search for the frames */
+ level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
+ fi = find_relative_frame (curr_frame, &level);
+ if (level != 0)
+ return (struct exception_event_record *) NULL;
+
+ select_frame (fi, -1);
+ throw_addr = fi->pc;
+
+ /* Go back to original (top) frame */
+ select_frame (curr_frame, -1);
+
+ current_ex_event.kind = (enum exception_event_kind) event_kind;
+ current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
+ current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
+
+ return &current_ex_event;
+}
+
+
+#ifdef MAINTENANCE_CMDS
+
+static void
+unwind_command (exp, from_tty)
+ char *exp;
+ int from_tty;
+{
+ CORE_ADDR address;
+ struct unwind_table_entry *u;
+
+ /* If we have an expression, evaluate it and use it as the address. */
+
+ if (exp != 0 && *exp != 0)
+ address = parse_and_eval_address (exp);
+ else
+ return;
+
+ u = find_unwind_entry (address);
+
+ if (!u)
+ {
+ printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
+ return;
+ }
+
+ printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
+
+ printf_unfiltered ("\tregion_start = ");
+ print_address (u->region_start, gdb_stdout);
+
+ printf_unfiltered ("\n\tregion_end = ");
+ print_address (u->region_end, gdb_stdout);
+
+#ifdef __STDC__
+#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
+#else
+#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
+#endif
+
+ printf_unfiltered ("\n\tflags =");
+ pif (Cannot_unwind);
+ pif (Millicode);
+ pif (Millicode_save_sr0);
+ pif (Entry_SR);
+ pif (Args_stored);
+ pif (Variable_Frame);
+ pif (Separate_Package_Body);
+ pif (Frame_Extension_Millicode);
+ pif (Stack_Overflow_Check);
+ pif (Two_Instruction_SP_Increment);
+ pif (Ada_Region);
+ pif (Save_SP);
+ pif (Save_RP);
+ pif (Save_MRP_in_frame);
+ pif (extn_ptr_defined);
+ pif (Cleanup_defined);
+ pif (MPE_XL_interrupt_marker);
+ pif (HP_UX_interrupt_marker);
+ pif (Large_frame);
+
+ putchar_unfiltered ('\n');
+
+#ifdef __STDC__
+#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
+#else
+#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
+#endif
+
+ pin (Region_description);
+ pin (Entry_FR);
+ pin (Entry_GR);
+ pin (Total_frame_size);
+}
+#endif /* MAINTENANCE_CMDS */
+
+#ifdef PREPARE_TO_PROCEED
+
+/* If the user has switched threads, and there is a breakpoint
+ at the old thread's pc location, then switch to that thread
+ and return TRUE, else return FALSE and don't do a thread
+ switch (or rather, don't seem to have done a thread switch).
+
+ Ptrace-based gdb will always return FALSE to the thread-switch
+ query, and thus also to PREPARE_TO_PROCEED.
+
+ The important thing is whether there is a BPT instruction,
+ not how many user breakpoints there are. So we have to worry
+ about things like these:
+
+ o Non-bp stop -- NO
+
+ o User hits bp, no switch -- NO
+
+ o User hits bp, switches threads -- YES
+
+ o User hits bp, deletes bp, switches threads -- NO
+
+ o User hits bp, deletes one of two or more bps
+ at that PC, user switches threads -- YES
+
+ o Plus, since we're buffering events, the user may have hit a
+ breakpoint, deleted the breakpoint and then gotten another
+ hit on that same breakpoint on another thread which
+ actually hit before the delete. (FIXME in breakpoint.c
+ so that "dead" breakpoints are ignored?) -- NO
+
+ For these reasons, we have to violate information hiding and
+ call "breakpoint_here_p". If core gdb thinks there is a bpt
+ here, that's what counts, as core gdb is the one which is
+ putting the BPT instruction in and taking it out. */
+int
+hppa_prepare_to_proceed()
+{
+ pid_t old_thread;
+ pid_t current_thread;
+
+ old_thread = hppa_switched_threads(inferior_pid);
+ if (old_thread != 0)
+ {
+ /* Switched over from "old_thread". Try to do
+ as little work as possible, 'cause mostly
+ we're going to switch back. */
+ CORE_ADDR new_pc;
+ CORE_ADDR old_pc = read_pc();
+
+ /* Yuk, shouldn't use global to specify current
+ thread. But that's how gdb does it. */
+ current_thread = inferior_pid;
+ inferior_pid = old_thread;
+
+ new_pc = read_pc();
+ if (new_pc != old_pc /* If at same pc, no need */
+ && breakpoint_here_p (new_pc))
+ {
+ /* User hasn't deleted the BP.
+ Return TRUE, finishing switch to "old_thread". */
+ flush_cached_frames ();
+ registers_changed ();
+#if 0
+ printf("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
+ current_thread, inferior_pid);
+#endif
+
+ return 1;
+ }
+
+ /* Otherwise switch back to the user-chosen thread. */
+ inferior_pid = current_thread;
+ new_pc = read_pc(); /* Re-prime register cache */
+ }
+
+ return 0;
+}
+#endif /* PREPARE_TO_PROCEED */
+
+void
+_initialize_hppa_tdep ()
+{
+ tm_print_insn = print_insn_hppa;
+
+#ifdef MAINTENANCE_CMDS
+ add_cmd ("unwind", class_maintenance, unwind_command,
+ "Print unwind table entry at given address.",
+ &maintenanceprintlist);
+#endif /* MAINTENANCE_CMDS */
+}