summaryrefslogtreecommitdiff
path: root/gdb/m32r-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/m32r-tdep.c')
-rw-r--r--gdb/m32r-tdep.c1413
1 files changed, 708 insertions, 705 deletions
diff --git a/gdb/m32r-tdep.c b/gdb/m32r-tdep.c
index eeb6335131b..93edbf99a2d 100644
--- a/gdb/m32r-tdep.c
+++ b/gdb/m32r-tdep.c
@@ -1,705 +1,708 @@
-/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
- Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330,
- Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "target.h"
-#include "value.h"
-#include "bfd.h"
-#include "gdb_string.h"
-#include "gdbcore.h"
-#include "symfile.h"
-#include "regcache.h"
-
-/* Function: m32r_use_struct_convention
- Return nonzero if call_function should allocate stack space for a
- struct return? */
-int
-m32r_use_struct_convention (int gcc_p, struct type *type)
-{
- return (TYPE_LENGTH (type) > 8);
-}
-
-/* Function: frame_find_saved_regs
- Return the frame_saved_regs structure for the frame.
- Doesn't really work for dummy frames, but it does pass back
- an empty frame_saved_regs, so I guess that's better than total failure */
-
-void
-m32r_frame_find_saved_regs (struct frame_info *fi,
- struct frame_saved_regs *regaddr)
-{
- memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
-}
-
-/* Turn this on if you want to see just how much instruction decoding
- if being done, its quite a lot
- */
-#if 0
-static void
-dump_insn (char *commnt, CORE_ADDR pc, int insn)
-{
- printf_filtered (" %s %08x %08x ",
- commnt, (unsigned int) pc, (unsigned int) insn);
- TARGET_PRINT_INSN (pc, &tm_print_insn_info);
- printf_filtered ("\n");
-}
-#define insn_debug(args) { printf_filtered args; }
-#else
-#define dump_insn(a,b,c) {}
-#define insn_debug(args) {}
-#endif
-
-#define DEFAULT_SEARCH_LIMIT 44
-
-/* Function: scan_prologue
- This function decodes the target function prologue to determine
- 1) the size of the stack frame, and 2) which registers are saved on it.
- It saves the offsets of saved regs in the frame_saved_regs argument,
- and returns the frame size. */
-
-/*
- The sequence it currently generates is:
-
- if (varargs function) { ddi sp,#n }
- push registers
- if (additional stack <= 256) { addi sp,#-stack }
- else if (additional stack < 65k) { add3 sp,sp,#-stack
-
- } else if (additional stack) {
- seth sp,#(stack & 0xffff0000)
- or3 sp,sp,#(stack & 0x0000ffff)
- sub sp,r4
- }
- if (frame pointer) {
- mv sp,fp
- }
-
- These instructions are scheduled like everything else, so you should stop at
- the first branch instruction.
-
- */
-
-/* This is required by skip prologue and by m32r_init_extra_frame_info.
- The results of decoding a prologue should be cached because this
- thrashing is getting nuts.
- I am thinking of making a container class with two indexes, name and
- address. It may be better to extend the symbol table.
- */
-
-static void
-decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
- unsigned long *framelength, struct frame_info *fi,
- struct frame_saved_regs *fsr)
-{
- unsigned long framesize;
- int insn;
- int op1;
- int maybe_one_more = 0;
- CORE_ADDR after_prologue = 0;
- CORE_ADDR after_stack_adjust = 0;
- CORE_ADDR current_pc;
-
-
- framesize = 0;
- after_prologue = 0;
- insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
-
- for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
- {
-
- insn = read_memory_unsigned_integer (current_pc, 2);
- dump_insn ("insn-1", current_pc, insn); /* MTZ */
-
- /* If this is a 32 bit instruction, we dont want to examine its
- immediate data as though it were an instruction */
- if (current_pc & 0x02)
- { /* Clear the parallel execution bit from 16 bit instruction */
- if (maybe_one_more)
- { /* The last instruction was a branch, usually terminates
- the series, but if this is a parallel instruction,
- it may be a stack framing instruction */
- if (!(insn & 0x8000))
- {
- insn_debug (("Really done"));
- break; /* nope, we are really done */
- }
- }
- insn &= 0x7fff; /* decode this instruction further */
- }
- else
- {
- if (maybe_one_more)
- break; /* This isnt the one more */
- if (insn & 0x8000)
- {
- insn_debug (("32 bit insn\n"));
- if (current_pc == scan_limit)
- scan_limit += 2; /* extend the search */
- current_pc += 2; /* skip the immediate data */
- if (insn == 0x8faf) /* add3 sp, sp, xxxx */
- /* add 16 bit sign-extended offset */
- {
- insn_debug (("stack increment\n"));
- framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
- }
- else
- {
- if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
- read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
- { /* subtract 24 bit sign-extended negative-offset */
- dump_insn ("insn-2", current_pc + 2, insn);
- insn = read_memory_unsigned_integer (current_pc - 2, 4);
- dump_insn ("insn-3(l4)", current_pc - 2, insn);
- if (insn & 0x00800000) /* sign extend */
- insn |= 0xff000000; /* negative */
- else
- insn &= 0x00ffffff; /* positive */
- framesize += insn;
- }
- }
- after_prologue = current_pc;
- continue;
- }
- }
- op1 = insn & 0xf000; /* isolate just the first nibble */
-
- if ((insn & 0xf0ff) == 0x207f)
- { /* st reg, @-sp */
- int regno;
- insn_debug (("push\n"));
-#if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
- if (((insn & 0xffff) == 0x2d7f) && fi)
- fi->using_frame_pointer = 1;
-#endif
- framesize += 4;
-#if 0
-/* Why should we increase the scan limit, just because we did a push?
- And if there is a reason, surely we would only want to do it if we
- had already reached the scan limit... */
- if (current_pc == scan_limit)
- scan_limit += 2;
-#endif
- regno = ((insn >> 8) & 0xf);
- if (fsr) /* save_regs offset */
- fsr->regs[regno] = framesize;
- after_prologue = 0;
- continue;
- }
- if ((insn >> 8) == 0x4f) /* addi sp, xx */
- /* add 8 bit sign-extended offset */
- {
- int stack_adjust = (char) (insn & 0xff);
-
- /* there are probably two of these stack adjustments:
- 1) A negative one in the prologue, and
- 2) A positive one in the epilogue.
- We are only interested in the first one. */
-
- if (stack_adjust < 0)
- {
- framesize -= stack_adjust;
- after_prologue = 0;
- /* A frameless function may have no "mv fp, sp".
- In that case, this is the end of the prologue. */
- after_stack_adjust = current_pc + 2;
- }
- continue;
- }
- if (insn == 0x1d8f)
- { /* mv fp, sp */
- if (fi)
- fi->using_frame_pointer = 1; /* fp is now valid */
- insn_debug (("done fp found\n"));
- after_prologue = current_pc + 2;
- break; /* end of stack adjustments */
- }
- if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
- {
- insn_debug (("nop\n"));
- after_prologue = current_pc + 2;
- continue; /* nop occurs between pushes */
- }
- /* End of prolog if any of these are branch instructions */
- if ((op1 == 0x7000)
- || (op1 == 0xb000)
- || (op1 == 0xf000))
- {
- after_prologue = current_pc;
- insn_debug (("Done: branch\n"));
- maybe_one_more = 1;
- continue;
- }
- /* Some of the branch instructions are mixed with other types */
- if (op1 == 0x1000)
- {
- int subop = insn & 0x0ff0;
- if ((subop == 0x0ec0) || (subop == 0x0fc0))
- {
- insn_debug (("done: jmp\n"));
- after_prologue = current_pc;
- maybe_one_more = 1;
- continue; /* jmp , jl */
- }
- }
- }
-
- if (current_pc >= scan_limit)
- {
- if (pl_endptr)
- {
-#if 1
- if (after_stack_adjust != 0)
- /* We did not find a "mv fp,sp", but we DID find
- a stack_adjust. Is it safe to use that as the
- end of the prologue? I just don't know. */
- {
- *pl_endptr = after_stack_adjust;
- if (framelength)
- *framelength = framesize;
- }
- else
-#endif
- /* We reached the end of the loop without finding the end
- of the prologue. No way to win -- we should report failure.
- The way we do that is to return the original start_pc.
- GDB will set a breakpoint at the start of the function (etc.) */
- *pl_endptr = start_pc;
- }
- return;
- }
- if (after_prologue == 0)
- after_prologue = current_pc;
-
- insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
- if (framelength)
- *framelength = framesize;
- if (pl_endptr)
- *pl_endptr = after_prologue;
-} /* decode_prologue */
-
-/* Function: skip_prologue
- Find end of function prologue */
-
-CORE_ADDR
-m32r_skip_prologue (CORE_ADDR pc)
-{
- CORE_ADDR func_addr, func_end;
- struct symtab_and_line sal;
-
- /* See what the symbol table says */
-
- if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
- {
- sal = find_pc_line (func_addr, 0);
-
- if (sal.line != 0 && sal.end <= func_end)
- {
-
- insn_debug (("BP after prologue %08x\n", sal.end));
- func_end = sal.end;
- }
- else
- /* Either there's no line info, or the line after the prologue is after
- the end of the function. In this case, there probably isn't a
- prologue. */
- {
- insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
- sal.line, sal.end, func_end));
- func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
- }
- }
- else
- func_end = pc + DEFAULT_SEARCH_LIMIT;
- decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
- return sal.end;
-}
-
-static unsigned long
-m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
-{
- struct symtab_and_line sal;
- CORE_ADDR prologue_start, prologue_end, current_pc;
- unsigned long framesize = 0;
-
- /* this code essentially duplicates skip_prologue,
- but we need the start address below. */
-
- if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
- {
- sal = find_pc_line (prologue_start, 0);
-
- if (sal.line == 0) /* no line info, use current PC */
- if (prologue_start == entry_point_address ())
- return 0;
- }
- else
- {
- prologue_start = fi->pc;
- prologue_end = prologue_start + 48; /* We're in the boondocks:
- allow for 16 pushes, an add,
- and "mv fp,sp" */
- }
-#if 0
- prologue_end = min (prologue_end, fi->pc);
-#endif
- insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
- fi->pc, prologue_start, prologue_end));
- prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
- decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
- fi, fsr);
- return framesize;
-}
-
-/* Function: init_extra_frame_info
- This function actually figures out the frame address for a given pc and
- sp. This is tricky on the m32r because we sometimes don't use an explicit
- frame pointer, and the previous stack pointer isn't necessarily recorded
- on the stack. The only reliable way to get this info is to
- examine the prologue. */
-
-void
-m32r_init_extra_frame_info (struct frame_info *fi)
-{
- int reg;
-
- if (fi->next)
- fi->pc = FRAME_SAVED_PC (fi->next);
-
- memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
-
- if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- {
- /* We need to setup fi->frame here because run_stack_dummy gets it wrong
- by assuming it's always FP. */
- fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
- SP_REGNUM);
- fi->framesize = 0;
- return;
- }
- else
- {
- fi->using_frame_pointer = 0;
- fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
-
- if (!fi->next)
- if (fi->using_frame_pointer)
- {
- fi->frame = read_register (FP_REGNUM);
- }
- else
- fi->frame = read_register (SP_REGNUM);
- else
- /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
- /* we have an FP */
- if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
- fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
- for (reg = 0; reg < NUM_REGS; reg++)
- if (fi->fsr.regs[reg] != 0)
- fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
- }
-}
-
-/* Function: m32r_virtual_frame_pointer
- Return the register that the function uses for a frame pointer,
- plus any necessary offset to be applied to the register before
- any frame pointer offsets. */
-
-void
-m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
-{
- struct frame_info fi;
-
- /* Set up a dummy frame_info. */
- fi.next = NULL;
- fi.prev = NULL;
- fi.frame = 0;
- fi.pc = pc;
-
- /* Analyze the prolog and fill in the extra info. */
- m32r_init_extra_frame_info (&fi);
-
-
- /* Results will tell us which type of frame it uses. */
- if (fi.using_frame_pointer)
- {
- *reg = FP_REGNUM;
- *offset = 0;
- }
- else
- {
- *reg = SP_REGNUM;
- *offset = 0;
- }
-}
-
-/* Function: find_callers_reg
- Find REGNUM on the stack. Otherwise, it's in an active register. One thing
- we might want to do here is to check REGNUM against the clobber mask, and
- somehow flag it as invalid if it isn't saved on the stack somewhere. This
- would provide a graceful failure mode when trying to get the value of
- caller-saves registers for an inner frame. */
-
-CORE_ADDR
-m32r_find_callers_reg (struct frame_info *fi, int regnum)
-{
- for (; fi; fi = fi->next)
- if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
- else if (fi->fsr.regs[regnum] != 0)
- return read_memory_integer (fi->fsr.regs[regnum],
- REGISTER_RAW_SIZE (regnum));
- return read_register (regnum);
-}
-
-/* Function: frame_chain Given a GDB frame, determine the address of
- the calling function's frame. This will be used to create a new
- GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
- DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
- m32r, we save the frame size when we initialize the frame_info. */
-
-CORE_ADDR
-m32r_frame_chain (struct frame_info *fi)
-{
- CORE_ADDR fn_start, callers_pc, fp;
-
- /* is this a dummy frame? */
- if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return fi->frame; /* dummy frame same as caller's frame */
-
- /* is caller-of-this a dummy frame? */
- callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
- fp = m32r_find_callers_reg (fi, FP_REGNUM);
- if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
- return fp; /* dummy frame's frame may bear no relation to ours */
-
- if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
- if (fn_start == entry_point_address ())
- return 0; /* in _start fn, don't chain further */
- if (fi->framesize == 0)
- {
- printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
- paddr (fi->frame),
- paddr (fi->pc));
- return 0;
- }
- insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
- return fi->frame + fi->framesize;
-}
-
-/* Function: push_return_address (pc)
- Set up the return address for the inferior function call.
- Necessary for targets that don't actually execute a JSR/BSR instruction
- (ie. when using an empty CALL_DUMMY) */
-
-CORE_ADDR
-m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
- write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
- return sp;
-}
-
-
-/* Function: pop_frame
- Discard from the stack the innermost frame,
- restoring all saved registers. */
-
-struct frame_info *
-m32r_pop_frame (struct frame_info *frame)
-{
- int regnum;
-
- if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- generic_pop_dummy_frame ();
- else
- {
- for (regnum = 0; regnum < NUM_REGS; regnum++)
- if (frame->fsr.regs[regnum] != 0)
- write_register (regnum,
- read_memory_integer (frame->fsr.regs[regnum], 4));
-
- write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
- write_register (SP_REGNUM, read_register (FP_REGNUM));
- if (read_register (PSW_REGNUM) & 0x80)
- write_register (SPU_REGNUM, read_register (SP_REGNUM));
- else
- write_register (SPI_REGNUM, read_register (SP_REGNUM));
- }
- flush_cached_frames ();
- return NULL;
-}
-
-/* Function: frame_saved_pc
- Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
- in the stack anywhere, otherwise we get it from the registers. */
-
-CORE_ADDR
-m32r_frame_saved_pc (struct frame_info *fi)
-{
- if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
- else
- return m32r_find_callers_reg (fi, RP_REGNUM);
-}
-
-/* Function: push_arguments
- Setup the function arguments for calling a function in the inferior.
-
- On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
- which are dedicated for passing function arguments. Up to the first
- four arguments (depending on size) may go into these registers.
- The rest go on the stack.
-
- Arguments that are smaller than 4 bytes will still take up a whole
- register or a whole 32-bit word on the stack, and will be
- right-justified in the register or the stack word. This includes
- chars, shorts, and small aggregate types.
-
- Arguments of 8 bytes size are split between two registers, if
- available. If only one register is available, the argument will
- be split between the register and the stack. Otherwise it is
- passed entirely on the stack. Aggregate types with sizes between
- 4 and 8 bytes are passed entirely on the stack, and are left-justified
- within the double-word (as opposed to aggregates smaller than 4 bytes
- which are right-justified).
-
- Aggregates of greater than 8 bytes are first copied onto the stack,
- and then a pointer to the copy is passed in the place of the normal
- argument (either in a register if available, or on the stack).
-
- Functions that must return an aggregate type can return it in the
- normal return value registers (R0 and R1) if its size is 8 bytes or
- less. For larger return values, the caller must allocate space for
- the callee to copy the return value to. A pointer to this space is
- passed as an implicit first argument, always in R0. */
-
-CORE_ADDR
-m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
- unsigned char struct_return, CORE_ADDR struct_addr)
-{
- int stack_offset, stack_alloc;
- int argreg;
- int argnum;
- struct type *type;
- CORE_ADDR regval;
- char *val;
- char valbuf[4];
- int len;
- int odd_sized_struct;
-
- /* first force sp to a 4-byte alignment */
- sp = sp & ~3;
-
- argreg = ARG0_REGNUM;
- /* The "struct return pointer" pseudo-argument goes in R0 */
- if (struct_return)
- write_register (argreg++, struct_addr);
-
- /* Now make sure there's space on the stack */
- for (argnum = 0, stack_alloc = 0;
- argnum < nargs; argnum++)
- stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
- sp -= stack_alloc; /* make room on stack for args */
-
-
- /* Now load as many as possible of the first arguments into
- registers, and push the rest onto the stack. There are 16 bytes
- in four registers available. Loop thru args from first to last. */
-
- argreg = ARG0_REGNUM;
- for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
- {
- type = VALUE_TYPE (args[argnum]);
- len = TYPE_LENGTH (type);
- memset (valbuf, 0, sizeof (valbuf));
- if (len < 4)
- { /* value gets right-justified in the register or stack word */
- memcpy (valbuf + (4 - len),
- (char *) VALUE_CONTENTS (args[argnum]), len);
- val = valbuf;
- }
- else
- val = (char *) VALUE_CONTENTS (args[argnum]);
-
- if (len > 4 && (len & 3) != 0)
- odd_sized_struct = 1; /* such structs go entirely on stack */
- else
- odd_sized_struct = 0;
- while (len > 0)
- {
- if (argreg > ARGLAST_REGNUM || odd_sized_struct)
- { /* must go on the stack */
- write_memory (sp + stack_offset, val, 4);
- stack_offset += 4;
- }
- /* NOTE WELL!!!!! This is not an "else if" clause!!!
- That's because some *&^%$ things get passed on the stack
- AND in the registers! */
- if (argreg <= ARGLAST_REGNUM)
- { /* there's room in a register */
- regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
- write_register (argreg++, regval);
- }
- /* Store the value 4 bytes at a time. This means that things
- larger than 4 bytes may go partly in registers and partly
- on the stack. */
- len -= REGISTER_RAW_SIZE (argreg);
- val += REGISTER_RAW_SIZE (argreg);
- }
- }
- return sp;
-}
-
-/* Function: fix_call_dummy
- If there is real CALL_DUMMY code (eg. on the stack), this function
- has the responsability to insert the address of the actual code that
- is the target of the target function call. */
-
-void
-m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
- struct value **args, struct type *type, int gcc_p)
-{
- /* ld24 r8, <(imm24) fun> */
- *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
-}
-
-
-/* Function: m32r_write_sp
- Because SP is really a read-only register that mirrors either SPU or SPI,
- we must actually write one of those two as well, depending on PSW. */
-
-void
-m32r_write_sp (CORE_ADDR val)
-{
- unsigned long psw = read_register (PSW_REGNUM);
-
- if (psw & 0x80) /* stack mode: user or interrupt */
- write_register (SPU_REGNUM, val);
- else
- write_register (SPI_REGNUM, val);
- write_register (SP_REGNUM, val);
-}
-
-void
-_initialize_m32r_tdep (void)
-{
- tm_print_insn = print_insn_m32r;
-}
+// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
+// OBSOLETE
+// OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
+// OBSOLETE Foundation, Inc.
+// OBSOLETE
+// OBSOLETE This file is part of GDB.
+// OBSOLETE
+// OBSOLETE This program is free software; you can redistribute it and/or modify
+// OBSOLETE it under the terms of the GNU General Public License as published by
+// OBSOLETE the Free Software Foundation; either version 2 of the License, or
+// OBSOLETE (at your option) any later version.
+// OBSOLETE
+// OBSOLETE This program is distributed in the hope that it will be useful,
+// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
+// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// OBSOLETE GNU General Public License for more details.
+// OBSOLETE
+// OBSOLETE You should have received a copy of the GNU General Public License
+// OBSOLETE along with this program; if not, write to the Free Software
+// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
+// OBSOLETE Boston, MA 02111-1307, USA. */
+// OBSOLETE
+// OBSOLETE #include "defs.h"
+// OBSOLETE #include "frame.h"
+// OBSOLETE #include "inferior.h"
+// OBSOLETE #include "target.h"
+// OBSOLETE #include "value.h"
+// OBSOLETE #include "bfd.h"
+// OBSOLETE #include "gdb_string.h"
+// OBSOLETE #include "gdbcore.h"
+// OBSOLETE #include "symfile.h"
+// OBSOLETE #include "regcache.h"
+// OBSOLETE
+// OBSOLETE /* Function: m32r_use_struct_convention
+// OBSOLETE Return nonzero if call_function should allocate stack space for a
+// OBSOLETE struct return? */
+// OBSOLETE int
+// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
+// OBSOLETE {
+// OBSOLETE return (TYPE_LENGTH (type) > 8);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: frame_find_saved_regs
+// OBSOLETE Return the frame_saved_regs structure for the frame.
+// OBSOLETE Doesn't really work for dummy frames, but it does pass back
+// OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
+// OBSOLETE struct frame_saved_regs *regaddr)
+// OBSOLETE {
+// OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
+// OBSOLETE if being done, its quite a lot
+// OBSOLETE */
+// OBSOLETE #if 0
+// OBSOLETE static void
+// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
+// OBSOLETE {
+// OBSOLETE printf_filtered (" %s %08x %08x ",
+// OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn);
+// OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info);
+// OBSOLETE printf_filtered ("\n");
+// OBSOLETE }
+// OBSOLETE #define insn_debug(args) { printf_filtered args; }
+// OBSOLETE #else
+// OBSOLETE #define dump_insn(a,b,c) {}
+// OBSOLETE #define insn_debug(args) {}
+// OBSOLETE #endif
+// OBSOLETE
+// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
+// OBSOLETE
+// OBSOLETE /* Function: scan_prologue
+// OBSOLETE This function decodes the target function prologue to determine
+// OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it.
+// OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument,
+// OBSOLETE and returns the frame size. */
+// OBSOLETE
+// OBSOLETE /*
+// OBSOLETE The sequence it currently generates is:
+// OBSOLETE
+// OBSOLETE if (varargs function) { ddi sp,#n }
+// OBSOLETE push registers
+// OBSOLETE if (additional stack <= 256) { addi sp,#-stack }
+// OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack
+// OBSOLETE
+// OBSOLETE } else if (additional stack) {
+// OBSOLETE seth sp,#(stack & 0xffff0000)
+// OBSOLETE or3 sp,sp,#(stack & 0x0000ffff)
+// OBSOLETE sub sp,r4
+// OBSOLETE }
+// OBSOLETE if (frame pointer) {
+// OBSOLETE mv sp,fp
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE These instructions are scheduled like everything else, so you should stop at
+// OBSOLETE the first branch instruction.
+// OBSOLETE
+// OBSOLETE */
+// OBSOLETE
+// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info.
+// OBSOLETE The results of decoding a prologue should be cached because this
+// OBSOLETE thrashing is getting nuts.
+// OBSOLETE I am thinking of making a container class with two indexes, name and
+// OBSOLETE address. It may be better to extend the symbol table.
+// OBSOLETE */
+// OBSOLETE
+// OBSOLETE static void
+// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
+// OBSOLETE unsigned long *framelength, struct frame_info *fi,
+// OBSOLETE struct frame_saved_regs *fsr)
+// OBSOLETE {
+// OBSOLETE unsigned long framesize;
+// OBSOLETE int insn;
+// OBSOLETE int op1;
+// OBSOLETE int maybe_one_more = 0;
+// OBSOLETE CORE_ADDR after_prologue = 0;
+// OBSOLETE CORE_ADDR after_stack_adjust = 0;
+// OBSOLETE CORE_ADDR current_pc;
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE framesize = 0;
+// OBSOLETE after_prologue = 0;
+// OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
+// OBSOLETE
+// OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
+// OBSOLETE {
+// OBSOLETE
+// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2);
+// OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */
+// OBSOLETE
+// OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its
+// OBSOLETE immediate data as though it were an instruction */
+// OBSOLETE if (current_pc & 0x02)
+// OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */
+// OBSOLETE if (maybe_one_more)
+// OBSOLETE { /* The last instruction was a branch, usually terminates
+// OBSOLETE the series, but if this is a parallel instruction,
+// OBSOLETE it may be a stack framing instruction */
+// OBSOLETE if (!(insn & 0x8000))
+// OBSOLETE {
+// OBSOLETE insn_debug (("Really done"));
+// OBSOLETE break; /* nope, we are really done */
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE insn &= 0x7fff; /* decode this instruction further */
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE if (maybe_one_more)
+// OBSOLETE break; /* This isnt the one more */
+// OBSOLETE if (insn & 0x8000)
+// OBSOLETE {
+// OBSOLETE insn_debug (("32 bit insn\n"));
+// OBSOLETE if (current_pc == scan_limit)
+// OBSOLETE scan_limit += 2; /* extend the search */
+// OBSOLETE current_pc += 2; /* skip the immediate data */
+// OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */
+// OBSOLETE /* add 16 bit sign-extended offset */
+// OBSOLETE {
+// OBSOLETE insn_debug (("stack increment\n"));
+// OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
+// OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
+// OBSOLETE { /* subtract 24 bit sign-extended negative-offset */
+// OBSOLETE dump_insn ("insn-2", current_pc + 2, insn);
+// OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4);
+// OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn);
+// OBSOLETE if (insn & 0x00800000) /* sign extend */
+// OBSOLETE insn |= 0xff000000; /* negative */
+// OBSOLETE else
+// OBSOLETE insn &= 0x00ffffff; /* positive */
+// OBSOLETE framesize += insn;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE after_prologue = current_pc;
+// OBSOLETE continue;
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */
+// OBSOLETE
+// OBSOLETE if ((insn & 0xf0ff) == 0x207f)
+// OBSOLETE { /* st reg, @-sp */
+// OBSOLETE int regno;
+// OBSOLETE insn_debug (("push\n"));
+// OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
+// OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi)
+// OBSOLETE fi->using_frame_pointer = 1;
+// OBSOLETE #endif
+// OBSOLETE framesize += 4;
+// OBSOLETE #if 0
+// OBSOLETE /* Why should we increase the scan limit, just because we did a push?
+// OBSOLETE And if there is a reason, surely we would only want to do it if we
+// OBSOLETE had already reached the scan limit... */
+// OBSOLETE if (current_pc == scan_limit)
+// OBSOLETE scan_limit += 2;
+// OBSOLETE #endif
+// OBSOLETE regno = ((insn >> 8) & 0xf);
+// OBSOLETE if (fsr) /* save_regs offset */
+// OBSOLETE fsr->regs[regno] = framesize;
+// OBSOLETE after_prologue = 0;
+// OBSOLETE continue;
+// OBSOLETE }
+// OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */
+// OBSOLETE /* add 8 bit sign-extended offset */
+// OBSOLETE {
+// OBSOLETE int stack_adjust = (char) (insn & 0xff);
+// OBSOLETE
+// OBSOLETE /* there are probably two of these stack adjustments:
+// OBSOLETE 1) A negative one in the prologue, and
+// OBSOLETE 2) A positive one in the epilogue.
+// OBSOLETE We are only interested in the first one. */
+// OBSOLETE
+// OBSOLETE if (stack_adjust < 0)
+// OBSOLETE {
+// OBSOLETE framesize -= stack_adjust;
+// OBSOLETE after_prologue = 0;
+// OBSOLETE /* A frameless function may have no "mv fp, sp".
+// OBSOLETE In that case, this is the end of the prologue. */
+// OBSOLETE after_stack_adjust = current_pc + 2;
+// OBSOLETE }
+// OBSOLETE continue;
+// OBSOLETE }
+// OBSOLETE if (insn == 0x1d8f)
+// OBSOLETE { /* mv fp, sp */
+// OBSOLETE if (fi)
+// OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */
+// OBSOLETE insn_debug (("done fp found\n"));
+// OBSOLETE after_prologue = current_pc + 2;
+// OBSOLETE break; /* end of stack adjustments */
+// OBSOLETE }
+// OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
+// OBSOLETE {
+// OBSOLETE insn_debug (("nop\n"));
+// OBSOLETE after_prologue = current_pc + 2;
+// OBSOLETE continue; /* nop occurs between pushes */
+// OBSOLETE }
+// OBSOLETE /* End of prolog if any of these are branch instructions */
+// OBSOLETE if ((op1 == 0x7000)
+// OBSOLETE || (op1 == 0xb000)
+// OBSOLETE || (op1 == 0xf000))
+// OBSOLETE {
+// OBSOLETE after_prologue = current_pc;
+// OBSOLETE insn_debug (("Done: branch\n"));
+// OBSOLETE maybe_one_more = 1;
+// OBSOLETE continue;
+// OBSOLETE }
+// OBSOLETE /* Some of the branch instructions are mixed with other types */
+// OBSOLETE if (op1 == 0x1000)
+// OBSOLETE {
+// OBSOLETE int subop = insn & 0x0ff0;
+// OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0))
+// OBSOLETE {
+// OBSOLETE insn_debug (("done: jmp\n"));
+// OBSOLETE after_prologue = current_pc;
+// OBSOLETE maybe_one_more = 1;
+// OBSOLETE continue; /* jmp , jl */
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE if (current_pc >= scan_limit)
+// OBSOLETE {
+// OBSOLETE if (pl_endptr)
+// OBSOLETE {
+// OBSOLETE #if 1
+// OBSOLETE if (after_stack_adjust != 0)
+// OBSOLETE /* We did not find a "mv fp,sp", but we DID find
+// OBSOLETE a stack_adjust. Is it safe to use that as the
+// OBSOLETE end of the prologue? I just don't know. */
+// OBSOLETE {
+// OBSOLETE *pl_endptr = after_stack_adjust;
+// OBSOLETE if (framelength)
+// OBSOLETE *framelength = framesize;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE #endif
+// OBSOLETE /* We reached the end of the loop without finding the end
+// OBSOLETE of the prologue. No way to win -- we should report failure.
+// OBSOLETE The way we do that is to return the original start_pc.
+// OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */
+// OBSOLETE *pl_endptr = start_pc;
+// OBSOLETE }
+// OBSOLETE return;
+// OBSOLETE }
+// OBSOLETE if (after_prologue == 0)
+// OBSOLETE after_prologue = current_pc;
+// OBSOLETE
+// OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
+// OBSOLETE if (framelength)
+// OBSOLETE *framelength = framesize;
+// OBSOLETE if (pl_endptr)
+// OBSOLETE *pl_endptr = after_prologue;
+// OBSOLETE } /* decode_prologue */
+// OBSOLETE
+// OBSOLETE /* Function: skip_prologue
+// OBSOLETE Find end of function prologue */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
+// OBSOLETE {
+// OBSOLETE CORE_ADDR func_addr, func_end;
+// OBSOLETE struct symtab_and_line sal;
+// OBSOLETE
+// OBSOLETE /* See what the symbol table says */
+// OBSOLETE
+// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+// OBSOLETE {
+// OBSOLETE sal = find_pc_line (func_addr, 0);
+// OBSOLETE
+// OBSOLETE if (sal.line != 0 && sal.end <= func_end)
+// OBSOLETE {
+// OBSOLETE
+// OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end));
+// OBSOLETE func_end = sal.end;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE /* Either there's no line info, or the line after the prologue is after
+// OBSOLETE the end of the function. In this case, there probably isn't a
+// OBSOLETE prologue. */
+// OBSOLETE {
+// OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
+// OBSOLETE sal.line, sal.end, func_end));
+// OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT;
+// OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
+// OBSOLETE return sal.end;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE static unsigned long
+// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
+// OBSOLETE {
+// OBSOLETE struct symtab_and_line sal;
+// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc;
+// OBSOLETE unsigned long framesize = 0;
+// OBSOLETE
+// OBSOLETE /* this code essentially duplicates skip_prologue,
+// OBSOLETE but we need the start address below. */
+// OBSOLETE
+// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
+// OBSOLETE {
+// OBSOLETE sal = find_pc_line (prologue_start, 0);
+// OBSOLETE
+// OBSOLETE if (sal.line == 0) /* no line info, use current PC */
+// OBSOLETE if (prologue_start == entry_point_address ())
+// OBSOLETE return 0;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE prologue_start = fi->pc;
+// OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks:
+// OBSOLETE allow for 16 pushes, an add,
+// OBSOLETE and "mv fp,sp" */
+// OBSOLETE }
+// OBSOLETE #if 0
+// OBSOLETE prologue_end = min (prologue_end, fi->pc);
+// OBSOLETE #endif
+// OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
+// OBSOLETE fi->pc, prologue_start, prologue_end));
+// OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
+// OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
+// OBSOLETE fi, fsr);
+// OBSOLETE return framesize;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: init_extra_frame_info
+// OBSOLETE This function actually figures out the frame address for a given pc and
+// OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit
+// OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded
+// OBSOLETE on the stack. The only reliable way to get this info is to
+// OBSOLETE examine the prologue. */
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
+// OBSOLETE {
+// OBSOLETE int reg;
+// OBSOLETE
+// OBSOLETE if (fi->next)
+// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next);
+// OBSOLETE
+// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
+// OBSOLETE
+// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+// OBSOLETE {
+// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong
+// OBSOLETE by assuming it's always FP. */
+// OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
+// OBSOLETE SP_REGNUM);
+// OBSOLETE fi->framesize = 0;
+// OBSOLETE return;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE fi->using_frame_pointer = 0;
+// OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
+// OBSOLETE
+// OBSOLETE if (!fi->next)
+// OBSOLETE if (fi->using_frame_pointer)
+// OBSOLETE {
+// OBSOLETE fi->frame = read_register (FP_REGNUM);
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE fi->frame = read_register (SP_REGNUM);
+// OBSOLETE else
+// OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
+// OBSOLETE /* we have an FP */
+// OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
+// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
+// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++)
+// OBSOLETE if (fi->fsr.regs[reg] != 0)
+// OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: m32r_virtual_frame_pointer
+// OBSOLETE Return the register that the function uses for a frame pointer,
+// OBSOLETE plus any necessary offset to be applied to the register before
+// OBSOLETE any frame pointer offsets. */
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
+// OBSOLETE {
+// OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc ();
+// OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi);
+// OBSOLETE
+// OBSOLETE /* Set up a dummy frame_info. */
+// OBSOLETE fi->next = NULL;
+// OBSOLETE fi->prev = NULL;
+// OBSOLETE fi->frame = 0;
+// OBSOLETE fi->pc = pc;
+// OBSOLETE
+// OBSOLETE /* Analyze the prolog and fill in the extra info. */
+// OBSOLETE m32r_init_extra_frame_info (fi);
+// OBSOLETE
+// OBSOLETE /* Results will tell us which type of frame it uses. */
+// OBSOLETE if (fi->using_frame_pointer)
+// OBSOLETE {
+// OBSOLETE *reg = FP_REGNUM;
+// OBSOLETE *offset = 0;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE *reg = SP_REGNUM;
+// OBSOLETE *offset = 0;
+// OBSOLETE }
+// OBSOLETE do_cleanups (old_chain);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: find_callers_reg
+// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing
+// OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and
+// OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This
+// OBSOLETE would provide a graceful failure mode when trying to get the value of
+// OBSOLETE caller-saves registers for an inner frame. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
+// OBSOLETE {
+// OBSOLETE for (; fi; fi = fi->next)
+// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
+// OBSOLETE else if (fi->fsr.regs[regnum] != 0)
+// OBSOLETE return read_memory_integer (fi->fsr.regs[regnum],
+// OBSOLETE REGISTER_RAW_SIZE (regnum));
+// OBSOLETE return read_register (regnum);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
+// OBSOLETE the calling function's frame. This will be used to create a new
+// OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
+// OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
+// OBSOLETE m32r, we save the frame size when we initialize the frame_info. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m32r_frame_chain (struct frame_info *fi)
+// OBSOLETE {
+// OBSOLETE CORE_ADDR fn_start, callers_pc, fp;
+// OBSOLETE
+// OBSOLETE /* is this a dummy frame? */
+// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */
+// OBSOLETE
+// OBSOLETE /* is caller-of-this a dummy frame? */
+// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
+// OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM);
+// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
+// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */
+// OBSOLETE
+// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
+// OBSOLETE if (fn_start == entry_point_address ())
+// OBSOLETE return 0; /* in _start fn, don't chain further */
+// OBSOLETE if (fi->framesize == 0)
+// OBSOLETE {
+// OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
+// OBSOLETE paddr (fi->frame),
+// OBSOLETE paddr (fi->pc));
+// OBSOLETE return 0;
+// OBSOLETE }
+// OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
+// OBSOLETE return fi->frame + fi->framesize;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: push_return_address (pc)
+// OBSOLETE Set up the return address for the inferior function call.
+// OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction
+// OBSOLETE (ie. when using an empty CALL_DUMMY) */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
+// OBSOLETE {
+// OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
+// OBSOLETE return sp;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* Function: pop_frame
+// OBSOLETE Discard from the stack the innermost frame,
+// OBSOLETE restoring all saved registers. */
+// OBSOLETE
+// OBSOLETE struct frame_info *
+// OBSOLETE m32r_pop_frame (struct frame_info *frame)
+// OBSOLETE {
+// OBSOLETE int regnum;
+// OBSOLETE
+// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
+// OBSOLETE generic_pop_dummy_frame ();
+// OBSOLETE else
+// OBSOLETE {
+// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++)
+// OBSOLETE if (frame->fsr.regs[regnum] != 0)
+// OBSOLETE write_register (regnum,
+// OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4));
+// OBSOLETE
+// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
+// OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM));
+// OBSOLETE if (read_register (PSW_REGNUM) & 0x80)
+// OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM));
+// OBSOLETE else
+// OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM));
+// OBSOLETE }
+// OBSOLETE flush_cached_frames ();
+// OBSOLETE return NULL;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: frame_saved_pc
+// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
+// OBSOLETE in the stack anywhere, otherwise we get it from the registers. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
+// OBSOLETE {
+// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
+// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
+// OBSOLETE else
+// OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: push_arguments
+// OBSOLETE Setup the function arguments for calling a function in the inferior.
+// OBSOLETE
+// OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
+// OBSOLETE which are dedicated for passing function arguments. Up to the first
+// OBSOLETE four arguments (depending on size) may go into these registers.
+// OBSOLETE The rest go on the stack.
+// OBSOLETE
+// OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole
+// OBSOLETE register or a whole 32-bit word on the stack, and will be
+// OBSOLETE right-justified in the register or the stack word. This includes
+// OBSOLETE chars, shorts, and small aggregate types.
+// OBSOLETE
+// OBSOLETE Arguments of 8 bytes size are split between two registers, if
+// OBSOLETE available. If only one register is available, the argument will
+// OBSOLETE be split between the register and the stack. Otherwise it is
+// OBSOLETE passed entirely on the stack. Aggregate types with sizes between
+// OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified
+// OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes
+// OBSOLETE which are right-justified).
+// OBSOLETE
+// OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack,
+// OBSOLETE and then a pointer to the copy is passed in the place of the normal
+// OBSOLETE argument (either in a register if available, or on the stack).
+// OBSOLETE
+// OBSOLETE Functions that must return an aggregate type can return it in the
+// OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or
+// OBSOLETE less. For larger return values, the caller must allocate space for
+// OBSOLETE the callee to copy the return value to. A pointer to this space is
+// OBSOLETE passed as an implicit first argument, always in R0. */
+// OBSOLETE
+// OBSOLETE CORE_ADDR
+// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
+// OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr)
+// OBSOLETE {
+// OBSOLETE int stack_offset, stack_alloc;
+// OBSOLETE int argreg;
+// OBSOLETE int argnum;
+// OBSOLETE struct type *type;
+// OBSOLETE CORE_ADDR regval;
+// OBSOLETE char *val;
+// OBSOLETE char valbuf[4];
+// OBSOLETE int len;
+// OBSOLETE int odd_sized_struct;
+// OBSOLETE
+// OBSOLETE /* first force sp to a 4-byte alignment */
+// OBSOLETE sp = sp & ~3;
+// OBSOLETE
+// OBSOLETE argreg = ARG0_REGNUM;
+// OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */
+// OBSOLETE if (struct_return)
+// OBSOLETE write_register (argreg++, struct_addr);
+// OBSOLETE
+// OBSOLETE /* Now make sure there's space on the stack */
+// OBSOLETE for (argnum = 0, stack_alloc = 0;
+// OBSOLETE argnum < nargs; argnum++)
+// OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
+// OBSOLETE sp -= stack_alloc; /* make room on stack for args */
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* Now load as many as possible of the first arguments into
+// OBSOLETE registers, and push the rest onto the stack. There are 16 bytes
+// OBSOLETE in four registers available. Loop thru args from first to last. */
+// OBSOLETE
+// OBSOLETE argreg = ARG0_REGNUM;
+// OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
+// OBSOLETE {
+// OBSOLETE type = VALUE_TYPE (args[argnum]);
+// OBSOLETE len = TYPE_LENGTH (type);
+// OBSOLETE memset (valbuf, 0, sizeof (valbuf));
+// OBSOLETE if (len < 4)
+// OBSOLETE { /* value gets right-justified in the register or stack word */
+// OBSOLETE memcpy (valbuf + (4 - len),
+// OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len);
+// OBSOLETE val = valbuf;
+// OBSOLETE }
+// OBSOLETE else
+// OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]);
+// OBSOLETE
+// OBSOLETE if (len > 4 && (len & 3) != 0)
+// OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */
+// OBSOLETE else
+// OBSOLETE odd_sized_struct = 0;
+// OBSOLETE while (len > 0)
+// OBSOLETE {
+// OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct)
+// OBSOLETE { /* must go on the stack */
+// OBSOLETE write_memory (sp + stack_offset, val, 4);
+// OBSOLETE stack_offset += 4;
+// OBSOLETE }
+// OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!!
+// OBSOLETE That's because some *&^%$ things get passed on the stack
+// OBSOLETE AND in the registers! */
+// OBSOLETE if (argreg <= ARGLAST_REGNUM)
+// OBSOLETE { /* there's room in a register */
+// OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
+// OBSOLETE write_register (argreg++, regval);
+// OBSOLETE }
+// OBSOLETE /* Store the value 4 bytes at a time. This means that things
+// OBSOLETE larger than 4 bytes may go partly in registers and partly
+// OBSOLETE on the stack. */
+// OBSOLETE len -= REGISTER_RAW_SIZE (argreg);
+// OBSOLETE val += REGISTER_RAW_SIZE (argreg);
+// OBSOLETE }
+// OBSOLETE }
+// OBSOLETE return sp;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE /* Function: fix_call_dummy
+// OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function
+// OBSOLETE has the responsability to insert the address of the actual code that
+// OBSOLETE is the target of the target function call. */
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
+// OBSOLETE struct value **args, struct type *type, int gcc_p)
+// OBSOLETE {
+// OBSOLETE /* ld24 r8, <(imm24) fun> */
+// OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE
+// OBSOLETE /* Function: m32r_write_sp
+// OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI,
+// OBSOLETE we must actually write one of those two as well, depending on PSW. */
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE m32r_write_sp (CORE_ADDR val)
+// OBSOLETE {
+// OBSOLETE unsigned long psw = read_register (PSW_REGNUM);
+// OBSOLETE
+// OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */
+// OBSOLETE write_register (SPU_REGNUM, val);
+// OBSOLETE else
+// OBSOLETE write_register (SPI_REGNUM, val);
+// OBSOLETE write_register (SP_REGNUM, val);
+// OBSOLETE }
+// OBSOLETE
+// OBSOLETE void
+// OBSOLETE _initialize_m32r_tdep (void)
+// OBSOLETE {
+// OBSOLETE tm_print_insn = print_insn_m32r;
+// OBSOLETE }