diff options
Diffstat (limited to 'gdb/sparc-tdep.c')
-rw-r--r-- | gdb/sparc-tdep.c | 2120 |
1 files changed, 2120 insertions, 0 deletions
diff --git a/gdb/sparc-tdep.c b/gdb/sparc-tdep.c new file mode 100644 index 00000000000..113b32cd7cc --- /dev/null +++ b/gdb/sparc-tdep.c @@ -0,0 +1,2120 @@ +/* Target-dependent code for the SPARC for GDB, the GNU debugger. + Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997 + Free Software Foundation, Inc. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +/* ??? Support for calling functions from gdb in sparc64 is unfinished. */ + +#include "defs.h" +#include "frame.h" +#include "inferior.h" +#include "obstack.h" +#include "target.h" +#include "value.h" +#include "bfd.h" +#include "gdb_string.h" + +#ifdef USE_PROC_FS +#include <sys/procfs.h> +#endif + +#include "gdbcore.h" + +#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) +#define SPARC_HAS_FPU 0 +#else +#define SPARC_HAS_FPU 1 +#endif + +#ifdef GDB_TARGET_IS_SPARC64 +#define FP_REGISTER_BYTES (64 * 4) +#else +#define FP_REGISTER_BYTES (32 * 4) +#endif + +/* If not defined, assume 32 bit sparc. */ +#ifndef FP_MAX_REGNUM +#define FP_MAX_REGNUM (FP0_REGNUM + 32) +#endif + +#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) + +/* From infrun.c */ +extern int stop_after_trap; + +/* We don't store all registers immediately when requested, since they + get sent over in large chunks anyway. Instead, we accumulate most + of the changes and send them over once. "deferred_stores" keeps + track of which sets of registers we have locally-changed copies of, + so we only need send the groups that have changed. */ + +int deferred_stores = 0; /* Cumulates stores we want to do eventually. */ + + +/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode + where instructions are big-endian and data are little-endian. + This flag is set when we detect that the target is of this type. */ + +int bi_endian = 0; + + +/* Fetch a single instruction. Even on bi-endian machines + such as sparc86x, instructions are always big-endian. */ + +static unsigned long +fetch_instruction (pc) + CORE_ADDR pc; +{ + unsigned long retval; + int i; + unsigned char buf[4]; + + read_memory (pc, buf, sizeof (buf)); + + /* Start at the most significant end of the integer, and work towards + the least significant. */ + retval = 0; + for (i = 0; i < sizeof (buf); ++i) + retval = (retval << 8) | buf[i]; + return retval; +} + + +/* Branches with prediction are treated like their non-predicting cousins. */ +/* FIXME: What about floating point branches? */ + +/* Macros to extract fields from sparc instructions. */ +#define X_OP(i) (((i) >> 30) & 0x3) +#define X_RD(i) (((i) >> 25) & 0x1f) +#define X_A(i) (((i) >> 29) & 1) +#define X_COND(i) (((i) >> 25) & 0xf) +#define X_OP2(i) (((i) >> 22) & 0x7) +#define X_IMM22(i) ((i) & 0x3fffff) +#define X_OP3(i) (((i) >> 19) & 0x3f) +#define X_RS1(i) (((i) >> 14) & 0x1f) +#define X_I(i) (((i) >> 13) & 1) +#define X_IMM13(i) ((i) & 0x1fff) +/* Sign extension macros. */ +#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) +#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) +#define X_CC(i) (((i) >> 20) & 3) +#define X_P(i) (((i) >> 19) & 1) +#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) +#define X_RCOND(i) (((i) >> 25) & 7) +#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) +#define X_FCN(i) (((i) >> 25) & 31) + +typedef enum +{ + Error, not_branch, bicc, bicca, ba, baa, ticc, ta, +#ifdef GDB_TARGET_IS_SPARC64 + done_retry +#endif +} branch_type; + +/* Simulate single-step ptrace call for sun4. Code written by Gary + Beihl (beihl@mcc.com). */ + +/* npc4 and next_pc describe the situation at the time that the + step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ +static CORE_ADDR next_pc, npc4, target; +static int brknpc4, brktrg; +typedef char binsn_quantum[BREAKPOINT_MAX]; +static binsn_quantum break_mem[3]; + +static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *)); + +/* single_step() is called just before we want to resume the inferior, + if we want to single-step it but there is no hardware or kernel single-step + support (as on all SPARCs). We find all the possible targets of the + coming instruction and breakpoint them. + + single_step is also called just after the inferior stops. If we had + set up a simulated single-step, we undo our damage. */ + +void +sparc_software_single_step (ignore, insert_breakpoints_p) + enum target_signal ignore; /* pid, but we don't need it */ + int insert_breakpoints_p; +{ + branch_type br; + CORE_ADDR pc; + long pc_instruction; + + if (insert_breakpoints_p) + { + /* Always set breakpoint for NPC. */ + next_pc = read_register (NPC_REGNUM); + npc4 = next_pc + 4; /* branch not taken */ + + target_insert_breakpoint (next_pc, break_mem[0]); + /* printf_unfiltered ("set break at %x\n",next_pc); */ + + pc = read_register (PC_REGNUM); + pc_instruction = fetch_instruction (pc); + br = isbranch (pc_instruction, pc, &target); + brknpc4 = brktrg = 0; + + if (br == bicca) + { + /* Conditional annulled branch will either end up at + npc (if taken) or at npc+4 (if not taken). + Trap npc+4. */ + brknpc4 = 1; + target_insert_breakpoint (npc4, break_mem[1]); + } + else if (br == baa && target != next_pc) + { + /* Unconditional annulled branch will always end up at + the target. */ + brktrg = 1; + target_insert_breakpoint (target, break_mem[2]); + } +#ifdef GDB_TARGET_IS_SPARC64 + else if (br == done_retry) + { + brktrg = 1; + target_insert_breakpoint (target, break_mem[2]); + } +#endif + } + else + { + /* Remove breakpoints */ + target_remove_breakpoint (next_pc, break_mem[0]); + + if (brknpc4) + target_remove_breakpoint (npc4, break_mem[1]); + + if (brktrg) + target_remove_breakpoint (target, break_mem[2]); + } +} + +/* Call this for each newly created frame. For SPARC, we need to calculate + the bottom of the frame, and do some extra work if the prologue + has been generated via the -mflat option to GCC. In particular, + we need to know where the previous fp and the pc have been stashed, + since their exact position within the frame may vary. */ + +void +sparc_init_extra_frame_info (fromleaf, fi) + int fromleaf; + struct frame_info *fi; +{ + char *name; + CORE_ADDR prologue_start, prologue_end; + int insn; + + fi->bottom = + (fi->next ? + (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) : + read_sp ()); + + /* If fi->next is NULL, then we already set ->frame by passing read_fp() + to create_new_frame. */ + if (fi->next) + { + char buf[MAX_REGISTER_RAW_SIZE]; + + /* Compute ->frame as if not flat. If it is flat, we'll change + it later. */ + if (fi->next->next != NULL + && (fi->next->next->signal_handler_caller + || frame_in_dummy (fi->next->next)) + && frameless_look_for_prologue (fi->next)) + { + /* A frameless function interrupted by a signal did not change + the frame pointer, fix up frame pointer accordingly. */ + fi->frame = FRAME_FP (fi->next); + fi->bottom = fi->next->bottom; + } + else + { + /* Should we adjust for stack bias here? */ + get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); + fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); +#ifdef GDB_TARGET_IS_SPARC64 + if (fi->frame & 1) + fi->frame += 2047; +#endif + + } + } + + /* Decide whether this is a function with a ``flat register window'' + frame. For such functions, the frame pointer is actually in %i7. */ + fi->flat = 0; + fi->in_prologue = 0; + if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end)) + { + /* See if the function starts with an add (which will be of a + negative number if a flat frame) to the sp. FIXME: Does not + handle large frames which will need more than one instruction + to adjust the sp. */ + insn = fetch_instruction (prologue_start, 4); + if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 + && X_I (insn) && X_SIMM13 (insn) < 0) + { + int offset = X_SIMM13 (insn); + + /* Then look for a save of %i7 into the frame. */ + insn = fetch_instruction (prologue_start + 4); + if (X_OP (insn) == 3 + && X_RD (insn) == 31 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14) + { + char buf[MAX_REGISTER_RAW_SIZE]; + + /* We definitely have a flat frame now. */ + fi->flat = 1; + + fi->sp_offset = offset; + + /* Overwrite the frame's address with the value in %i7. */ + get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); + fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); +#ifdef GDB_TARGET_IS_SPARC64 + if (fi->frame & 1) + fi->frame += 2047; +#endif + /* Record where the fp got saved. */ + fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); + + /* Also try to collect where the pc got saved to. */ + fi->pc_addr = 0; + insn = fetch_instruction (prologue_start + 12); + if (X_OP (insn) == 3 + && X_RD (insn) == 15 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14) + fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); + } + } + else + { + /* Check if the PC is in the function prologue before a SAVE + instruction has been executed yet. If so, set the frame + to the current value of the stack pointer and set + the in_prologue flag. */ + CORE_ADDR addr; + struct symtab_and_line sal; + + sal = find_pc_line (prologue_start, 0); + if (sal.line == 0) /* no line info, use PC */ + prologue_end = fi->pc; + else if (sal.end < prologue_end) + prologue_end = sal.end; + if (fi->pc < prologue_end) + { + for (addr = prologue_start; addr < fi->pc; addr += 4) + { + insn = read_memory_integer (addr, 4); + if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c) + break; /* SAVE seen, stop searching */ + } + if (addr >= fi->pc) + { + fi->in_prologue = 1; + fi->frame = read_register (SP_REGNUM); + } + } + } + } + if (fi->next && fi->frame == 0) + { + /* Kludge to cause init_prev_frame_info to destroy the new frame. */ + fi->frame = fi->next->frame; + fi->pc = fi->next->pc; + } +} + +CORE_ADDR +sparc_frame_chain (frame) + struct frame_info *frame; +{ + /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain + value. If it realy is zero, we detect it later in + sparc_init_prev_frame. */ + return (CORE_ADDR)1; +} + +CORE_ADDR +sparc_extract_struct_value_address (regbuf) + char regbuf[REGISTER_BYTES]; +{ + return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), + REGISTER_RAW_SIZE (O0_REGNUM)); +} + +/* Find the pc saved in frame FRAME. */ + +CORE_ADDR +sparc_frame_saved_pc (frame) + struct frame_info *frame; +{ + char buf[MAX_REGISTER_RAW_SIZE]; + CORE_ADDR addr; + + if (frame->signal_handler_caller) + { + /* This is the signal trampoline frame. + Get the saved PC from the sigcontext structure. */ + +#ifndef SIGCONTEXT_PC_OFFSET +#define SIGCONTEXT_PC_OFFSET 12 +#endif + + CORE_ADDR sigcontext_addr; + char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT]; + int saved_pc_offset = SIGCONTEXT_PC_OFFSET; + char *name = NULL; + + /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext + as the third parameter. The offset to the saved pc is 12. */ + find_pc_partial_function (frame->pc, &name, + (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); + if (name && STREQ (name, "ucbsigvechandler")) + saved_pc_offset = 12; + + /* The sigcontext address is contained in register O2. */ + get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, + frame, O0_REGNUM + 2, (enum lval_type *)NULL); + sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); + + /* Don't cause a memory_error when accessing sigcontext in case the + stack layout has changed or the stack is corrupt. */ + target_read_memory (sigcontext_addr + saved_pc_offset, + scbuf, sizeof (scbuf)); + return extract_address (scbuf, sizeof (scbuf)); + } + else if (frame->in_prologue || + (frame->next != NULL + && (frame->next->signal_handler_caller + || frame_in_dummy (frame->next)) + && frameless_look_for_prologue (frame))) + { + /* A frameless function interrupted by a signal did not save + the PC, it is still in %o7. */ + get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, + frame, O7_REGNUM, (enum lval_type *)NULL); + return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); + } + if (frame->flat) + addr = frame->pc_addr; + else + addr = frame->bottom + FRAME_SAVED_I0 + + SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); + + if (addr == 0) + /* A flat frame leaf function might not save the PC anywhere, + just leave it in %o7. */ + return PC_ADJUST (read_register (O7_REGNUM)); + + read_memory (addr, buf, SPARC_INTREG_SIZE); + return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); +} + +/* Since an individual frame in the frame cache is defined by two + arguments (a frame pointer and a stack pointer), we need two + arguments to get info for an arbitrary stack frame. This routine + takes two arguments and makes the cached frames look as if these + two arguments defined a frame on the cache. This allows the rest + of info frame to extract the important arguments without + difficulty. */ + +struct frame_info * +setup_arbitrary_frame (argc, argv) + int argc; + CORE_ADDR *argv; +{ + struct frame_info *frame; + + if (argc != 2) + error ("Sparc frame specifications require two arguments: fp and sp"); + + frame = create_new_frame (argv[0], 0); + + if (!frame) + fatal ("internal: create_new_frame returned invalid frame"); + + frame->bottom = argv[1]; + frame->pc = FRAME_SAVED_PC (frame); + return frame; +} + +/* Given a pc value, skip it forward past the function prologue by + disassembling instructions that appear to be a prologue. + + If FRAMELESS_P is set, we are only testing to see if the function + is frameless. This allows a quicker answer. + + This routine should be more specific in its actions; making sure + that it uses the same register in the initial prologue section. */ + +static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *, + struct frame_saved_regs *)); + +static CORE_ADDR +examine_prologue (start_pc, frameless_p, fi, saved_regs) + CORE_ADDR start_pc; + int frameless_p; + struct frame_info *fi; + struct frame_saved_regs *saved_regs; +{ + int insn; + int dest = -1; + CORE_ADDR pc = start_pc; + int is_flat = 0; + + insn = fetch_instruction (pc); + + /* Recognize the `sethi' insn and record its destination. */ + if (X_OP (insn) == 0 && X_OP2 (insn) == 4) + { + dest = X_RD (insn); + pc += 4; + insn = fetch_instruction (pc); + } + + /* Recognize an add immediate value to register to either %g1 or + the destination register recorded above. Actually, this might + well recognize several different arithmetic operations. + It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" + followed by "save %sp, %g1, %sp" is a valid prologue (Not that + I imagine any compiler really does that, however). */ + if (X_OP (insn) == 2 + && X_I (insn) + && (X_RD (insn) == 1 || X_RD (insn) == dest)) + { + pc += 4; + insn = fetch_instruction (pc); + } + + /* Recognize any SAVE insn. */ + if (X_OP (insn) == 2 && X_OP3 (insn) == 60) + { + pc += 4; + if (frameless_p) /* If the save is all we care about, */ + return pc; /* return before doing more work */ + insn = fetch_instruction (pc); + } + /* Recognize add to %sp. */ + else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) + { + pc += 4; + if (frameless_p) /* If the add is all we care about, */ + return pc; /* return before doing more work */ + is_flat = 1; + insn = fetch_instruction (pc); + /* Recognize store of frame pointer (i7). */ + if (X_OP (insn) == 3 + && X_RD (insn) == 31 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14) + { + pc += 4; + insn = fetch_instruction (pc); + + /* Recognize sub %sp, <anything>, %i7. */ + if (X_OP (insn) == 2 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14 + && X_RD (insn) == 31) + { + pc += 4; + insn = fetch_instruction (pc); + } + else + return pc; + } + else + return pc; + } + else + /* Without a save or add instruction, it's not a prologue. */ + return start_pc; + + while (1) + { + /* Recognize stores into the frame from the input registers. + This recognizes all non alternate stores of input register, + into a location offset from the frame pointer. */ + if ((X_OP (insn) == 3 + && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ + && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ + && X_I (insn) /* Immediate mode. */ + && X_RS1 (insn) == 30 /* Off of frame pointer. */ + /* Into reserved stack space. */ + && X_SIMM13 (insn) >= 0x44 + && X_SIMM13 (insn) < 0x5b)) + ; + else if (is_flat + && X_OP (insn) == 3 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14 + ) + { + if (saved_regs && X_I (insn)) + saved_regs->regs[X_RD (insn)] = + fi->frame + fi->sp_offset + X_SIMM13 (insn); + } + else + break; + pc += 4; + insn = fetch_instruction (pc); + } + + return pc; +} + +CORE_ADDR +skip_prologue (start_pc, frameless_p) + CORE_ADDR start_pc; + int frameless_p; +{ + return examine_prologue (start_pc, frameless_p, NULL, NULL); +} + +/* Check instruction at ADDR to see if it is a branch. + All non-annulled instructions will go to NPC or will trap. + Set *TARGET if we find a candidate branch; set to zero if not. + + This isn't static as it's used by remote-sa.sparc.c. */ + +static branch_type +isbranch (instruction, addr, target) + long instruction; + CORE_ADDR addr, *target; +{ + branch_type val = not_branch; + long int offset = 0; /* Must be signed for sign-extend. */ + + *target = 0; + + if (X_OP (instruction) == 0 + && (X_OP2 (instruction) == 2 + || X_OP2 (instruction) == 6 + || X_OP2 (instruction) == 1 + || X_OP2 (instruction) == 3 + || X_OP2 (instruction) == 5 +#ifndef GDB_TARGET_IS_SPARC64 + || X_OP2 (instruction) == 7 +#endif + )) + { + if (X_COND (instruction) == 8) + val = X_A (instruction) ? baa : ba; + else + val = X_A (instruction) ? bicca : bicc; + switch (X_OP2 (instruction)) + { + case 2: + case 6: +#ifndef GDB_TARGET_IS_SPARC64 + case 7: +#endif + offset = 4 * X_DISP22 (instruction); + break; + case 1: + case 5: + offset = 4 * X_DISP19 (instruction); + break; + case 3: + offset = 4 * X_DISP16 (instruction); + break; + } + *target = addr + offset; + } +#ifdef GDB_TARGET_IS_SPARC64 + else if (X_OP (instruction) == 2 + && X_OP3 (instruction) == 62) + { + if (X_FCN (instruction) == 0) + { + /* done */ + *target = read_register (TNPC_REGNUM); + val = done_retry; + } + else if (X_FCN (instruction) == 1) + { + /* retry */ + *target = read_register (TPC_REGNUM); + val = done_retry; + } + } +#endif + + return val; +} + +/* Find register number REGNUM relative to FRAME and put its + (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable + was optimized out (and thus can't be fetched). If the variable + was fetched from memory, set *ADDRP to where it was fetched from, + otherwise it was fetched from a register. + + The argument RAW_BUFFER must point to aligned memory. */ + +void +get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) + char *raw_buffer; + int *optimized; + CORE_ADDR *addrp; + struct frame_info *frame; + int regnum; + enum lval_type *lval; +{ + struct frame_info *frame1; + CORE_ADDR addr; + + if (!target_has_registers) + error ("No registers."); + + if (optimized) + *optimized = 0; + + addr = 0; + + /* FIXME This code extracted from infcmd.c; should put elsewhere! */ + if (frame == NULL) + { + /* error ("No selected frame."); */ + if (!target_has_registers) + error ("The program has no registers now."); + if (selected_frame == NULL) + error ("No selected frame."); + /* Try to use selected frame */ + frame = get_prev_frame (selected_frame); + if (frame == 0) + error ("Cmd not meaningful in the outermost frame."); + } + + + frame1 = frame->next; + + /* Get saved PC from the frame info if not in innermost frame. */ + if (regnum == PC_REGNUM && frame1 != NULL) + { + if (lval != NULL) + *lval = not_lval; + if (raw_buffer != NULL) + { + /* Put it back in target format. */ + store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); + } + if (addrp != NULL) + *addrp = 0; + return; + } + + while (frame1 != NULL) + { + if (frame1->pc >= (frame1->bottom ? frame1->bottom : + read_sp ()) + && frame1->pc <= FRAME_FP (frame1)) + { + /* Dummy frame. All but the window regs are in there somewhere. + The window registers are saved on the stack, just like in a + normal frame. */ + if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) + addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE + - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); + else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) + addr = (frame1->prev->bottom + + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) + addr = (frame1->prev->bottom + + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_L0); + else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) + addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE + - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); +#ifdef FP0_REGNUM + else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) + addr = frame1->frame + (regnum - FP0_REGNUM) * 4 + - (FP_REGISTER_BYTES); +#ifdef GDB_TARGET_IS_SPARC64 + else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) + addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 + - (FP_REGISTER_BYTES); +#endif +#endif /* FP0_REGNUM */ + else if (regnum >= Y_REGNUM && regnum < NUM_REGS) + addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE + - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); + } + else if (frame1->flat) + { + + if (regnum == RP_REGNUM) + addr = frame1->pc_addr; + else if (regnum == I7_REGNUM) + addr = frame1->fp_addr; + else + { + CORE_ADDR func_start; + struct frame_saved_regs regs; + memset (®s, 0, sizeof (regs)); + + find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); + examine_prologue (func_start, 0, frame1, ®s); + addr = regs.regs[regnum]; + } + } + else + { + /* Normal frame. Local and In registers are saved on stack. */ + if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) + addr = (frame1->prev->bottom + + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) + addr = (frame1->prev->bottom + + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_L0); + else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) + { + /* Outs become ins. */ + get_saved_register (raw_buffer, optimized, addrp, frame1, + (regnum - O0_REGNUM + I0_REGNUM), lval); + return; + } + } + if (addr != 0) + break; + frame1 = frame1->next; + } + if (addr != 0) + { + if (lval != NULL) + *lval = lval_memory; + if (regnum == SP_REGNUM) + { + if (raw_buffer != NULL) + { + /* Put it back in target format. */ + store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); + } + if (addrp != NULL) + *addrp = 0; + return; + } + if (raw_buffer != NULL) + read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); + } + else + { + if (lval != NULL) + *lval = lval_register; + addr = REGISTER_BYTE (regnum); + if (raw_buffer != NULL) + read_register_gen (regnum, raw_buffer); + } + if (addrp != NULL) + *addrp = addr; +} + +/* Push an empty stack frame, and record in it the current PC, regs, etc. + + We save the non-windowed registers and the ins. The locals and outs + are new; they don't need to be saved. The i's and l's of + the last frame were already saved on the stack. */ + +/* Definitely see tm-sparc.h for more doc of the frame format here. */ + +#ifdef GDB_TARGET_IS_SPARC64 +#define DUMMY_REG_SAVE_OFFSET (128 + 16) +#else +#define DUMMY_REG_SAVE_OFFSET 0x60 +#endif + +/* See tm-sparc.h for how this is calculated. */ +#ifdef FP0_REGNUM +#define DUMMY_STACK_REG_BUF_SIZE \ +(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) +#else +#define DUMMY_STACK_REG_BUF_SIZE \ +(((8+8+8) * SPARC_INTREG_SIZE) ) +#endif /* FP0_REGNUM */ +#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) + +void +sparc_push_dummy_frame () +{ + CORE_ADDR sp, old_sp; + char register_temp[DUMMY_STACK_SIZE]; + + old_sp = sp = read_sp (); + +#ifdef GDB_TARGET_IS_SPARC64 + /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ + read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0], + REGISTER_RAW_SIZE (PC_REGNUM) * 7); + read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), ®ister_temp[8], + REGISTER_RAW_SIZE (PSTATE_REGNUM)); + /* FIXME: not sure what needs to be saved here. */ +#else + /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ + read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], + REGISTER_RAW_SIZE (Y_REGNUM) * 8); +#endif + + read_register_bytes (REGISTER_BYTE (O0_REGNUM), + ®ister_temp[8 * SPARC_INTREG_SIZE], + SPARC_INTREG_SIZE * 8); + + read_register_bytes (REGISTER_BYTE (G0_REGNUM), + ®ister_temp[16 * SPARC_INTREG_SIZE], + SPARC_INTREG_SIZE * 8); + +#ifdef FP0_REGNUM + read_register_bytes (REGISTER_BYTE (FP0_REGNUM), + ®ister_temp[24 * SPARC_INTREG_SIZE], + FP_REGISTER_BYTES); +#endif /* FP0_REGNUM */ + + sp -= DUMMY_STACK_SIZE; + + write_sp (sp); + + write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], + DUMMY_STACK_REG_BUF_SIZE); + + if (strcmp (target_shortname, "sim") != 0) + { + write_fp (old_sp); + + /* Set return address register for the call dummy to the current PC. */ + write_register (I7_REGNUM, read_pc() - 8); + } + else + { + /* The call dummy will write this value to FP before executing + the 'save'. This ensures that register window flushes work + correctly in the simulator. */ + write_register (G0_REGNUM+1, read_register (FP_REGNUM)); + + /* The call dummy will write this value to FP after executing + the 'save'. */ + write_register (G0_REGNUM+2, old_sp); + + /* The call dummy will write this value to the return address (%i7) after + executing the 'save'. */ + write_register (G0_REGNUM+3, read_pc() - 8); + + /* Set the FP that the call dummy will be using after the 'save'. + This makes backtraces from an inferior function call work properly. */ + write_register (FP_REGNUM, old_sp); + } +} + +/* sparc_frame_find_saved_regs (). This function is here only because + pop_frame uses it. Note there is an interesting corner case which + I think few ports of GDB get right--if you are popping a frame + which does not save some register that *is* saved by a more inner + frame (such a frame will never be a dummy frame because dummy + frames save all registers). Rewriting pop_frame to use + get_saved_register would solve this problem and also get rid of the + ugly duplication between sparc_frame_find_saved_regs and + get_saved_register. + + Stores, into a struct frame_saved_regs, + the addresses of the saved registers of frame described by FRAME_INFO. + This includes special registers such as pc and fp saved in special + ways in the stack frame. sp is even more special: + the address we return for it IS the sp for the next frame. + + Note that on register window machines, we are currently making the + assumption that window registers are being saved somewhere in the + frame in which they are being used. If they are stored in an + inferior frame, find_saved_register will break. + + On the Sun 4, the only time all registers are saved is when + a dummy frame is involved. Otherwise, the only saved registers + are the LOCAL and IN registers which are saved as a result + of the "save/restore" opcodes. This condition is determined + by address rather than by value. + + The "pc" is not stored in a frame on the SPARC. (What is stored + is a return address minus 8.) sparc_pop_frame knows how to + deal with that. Other routines might or might not. + + See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information + about how this works. */ + +static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *, + struct frame_saved_regs *)); + +static void +sparc_frame_find_saved_regs (fi, saved_regs_addr) + struct frame_info *fi; + struct frame_saved_regs *saved_regs_addr; +{ + register int regnum; + CORE_ADDR frame_addr = FRAME_FP (fi); + + if (!fi) + fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); + + memset (saved_regs_addr, 0, sizeof (*saved_regs_addr)); + + if (fi->pc >= (fi->bottom ? fi->bottom : + read_sp ()) + && fi->pc <= FRAME_FP(fi)) + { + /* Dummy frame. All but the window regs are in there somewhere. */ + for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++) + saved_regs_addr->regs[regnum] = + frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; + for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) + saved_regs_addr->regs[regnum] = + frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; +#ifdef FP0_REGNUM + for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) + saved_regs_addr->regs[regnum] = + frame_addr + (regnum - FP0_REGNUM) * 4 + - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; +#ifdef GDB_TARGET_IS_SPARC64 + for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++) + saved_regs_addr->regs[regnum] = + frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4 + - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; +#endif +#endif /* FP0_REGNUM */ +#ifdef GDB_TARGET_IS_SPARC64 + for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) + { + saved_regs_addr->regs[regnum] = + frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE; + } + saved_regs_addr->regs[PSTATE_REGNUM] = + frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; +#else + for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) + saved_regs_addr->regs[regnum] = + frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE; +#endif + frame_addr = fi->bottom ? + fi->bottom : read_sp (); + } + else if (fi->flat) + { + CORE_ADDR func_start; + find_pc_partial_function (fi->pc, NULL, &func_start, NULL); + examine_prologue (func_start, 0, fi, saved_regs_addr); + + /* Flat register window frame. */ + saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr; + saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr; + } + else + { + /* Normal frame. Just Local and In registers */ + frame_addr = fi->bottom ? + fi->bottom : read_sp (); + for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++) + saved_regs_addr->regs[regnum] = + (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_L0); + for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) + saved_regs_addr->regs[regnum] = + (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + } + if (fi->next) + { + if (fi->flat) + { + saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr; + } + else + { + /* Pull off either the next frame pointer or the stack pointer */ + CORE_ADDR next_next_frame_addr = + (fi->next->bottom ? + fi->next->bottom : + read_sp ()); + for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++) + saved_regs_addr->regs[regnum] = + (next_next_frame_addr + + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + } + } + /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ + /* FIXME -- should this adjust for the sparc64 offset? */ + saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi); +} + +/* Discard from the stack the innermost frame, restoring all saved registers. + + Note that the values stored in fsr by get_frame_saved_regs are *in + the context of the called frame*. What this means is that the i + regs of fsr must be restored into the o regs of the (calling) frame that + we pop into. We don't care about the output regs of the calling frame, + since unless it's a dummy frame, it won't have any output regs in it. + + We never have to bother with %l (local) regs, since the called routine's + locals get tossed, and the calling routine's locals are already saved + on its stack. */ + +/* Definitely see tm-sparc.h for more doc of the frame format here. */ + +void +sparc_pop_frame () +{ + register struct frame_info *frame = get_current_frame (); + register CORE_ADDR pc; + struct frame_saved_regs fsr; + char raw_buffer[REGISTER_BYTES]; + int regnum; + + sparc_frame_find_saved_regs (frame, &fsr); +#ifdef FP0_REGNUM + if (fsr.regs[FP0_REGNUM]) + { + read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); + write_register_bytes (REGISTER_BYTE (FP0_REGNUM), + raw_buffer, FP_REGISTER_BYTES); + } +#ifndef GDB_TARGET_IS_SPARC64 + if (fsr.regs[FPS_REGNUM]) + { + read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4); + write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4); + } + if (fsr.regs[CPS_REGNUM]) + { + read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4); + write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4); + } +#endif +#endif /* FP0_REGNUM */ + if (fsr.regs[G1_REGNUM]) + { + read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); + write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, + 7 * SPARC_INTREG_SIZE); + } + + if (frame->flat) + { + /* Each register might or might not have been saved, need to test + individually. */ + for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) + if (fsr.regs[regnum]) + write_register (regnum, read_memory_integer (fsr.regs[regnum], + SPARC_INTREG_SIZE)); + for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) + if (fsr.regs[regnum]) + write_register (regnum, read_memory_integer (fsr.regs[regnum], + SPARC_INTREG_SIZE)); + + /* Handle all outs except stack pointer (o0-o5; o7). */ + for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) + if (fsr.regs[regnum]) + write_register (regnum, read_memory_integer (fsr.regs[regnum], + SPARC_INTREG_SIZE)); + if (fsr.regs[O0_REGNUM + 7]) + write_register (O0_REGNUM + 7, + read_memory_integer (fsr.regs[O0_REGNUM + 7], + SPARC_INTREG_SIZE)); + + write_sp (frame->frame); + } + else if (fsr.regs[I0_REGNUM]) + { + CORE_ADDR sp; + + char reg_temp[REGISTER_BYTES]; + + read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); + + /* Get the ins and locals which we are about to restore. Just + moving the stack pointer is all that is really needed, except + store_inferior_registers is then going to write the ins and + locals from the registers array, so we need to muck with the + registers array. */ + sp = fsr.regs[SP_REGNUM]; +#ifdef GDB_TARGET_IS_SPARC64 + if (sp & 1) + sp += 2047; +#endif + read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); + + /* Restore the out registers. + Among other things this writes the new stack pointer. */ + write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, + SPARC_INTREG_SIZE * 8); + + write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, + SPARC_INTREG_SIZE * 16); + } +#ifndef GDB_TARGET_IS_SPARC64 + if (fsr.regs[PS_REGNUM]) + write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); +#endif + if (fsr.regs[Y_REGNUM]) + write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM))); + if (fsr.regs[PC_REGNUM]) + { + /* Explicitly specified PC (and maybe NPC) -- just restore them. */ + write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], + REGISTER_RAW_SIZE (PC_REGNUM))); + if (fsr.regs[NPC_REGNUM]) + write_register (NPC_REGNUM, + read_memory_integer (fsr.regs[NPC_REGNUM], + REGISTER_RAW_SIZE (NPC_REGNUM))); + } + else if (frame->flat) + { + if (frame->pc_addr) + pc = PC_ADJUST ((CORE_ADDR) + read_memory_integer (frame->pc_addr, + REGISTER_RAW_SIZE (PC_REGNUM))); + else + { + /* I think this happens only in the innermost frame, if so then + it is a complicated way of saying + "pc = read_register (O7_REGNUM);". */ + char buf[MAX_REGISTER_RAW_SIZE]; + get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); + pc = PC_ADJUST (extract_address + (buf, REGISTER_RAW_SIZE (O7_REGNUM))); + } + + write_register (PC_REGNUM, pc); + write_register (NPC_REGNUM, pc + 4); + } + else if (fsr.regs[I7_REGNUM]) + { + /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ + pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM], + SPARC_INTREG_SIZE)); + write_register (PC_REGNUM, pc); + write_register (NPC_REGNUM, pc + 4); + } + flush_cached_frames (); +} + +/* On the Sun 4 under SunOS, the compile will leave a fake insn which + encodes the structure size being returned. If we detect such + a fake insn, step past it. */ + +CORE_ADDR +sparc_pc_adjust(pc) + CORE_ADDR pc; +{ + unsigned long insn; + char buf[4]; + int err; + + err = target_read_memory (pc + 8, buf, 4); + insn = extract_unsigned_integer (buf, 4); + if ((err == 0) && (insn & 0xffc00000) == 0) + return pc+12; + else + return pc+8; +} + +/* If pc is in a shared library trampoline, return its target. + The SunOs 4.x linker rewrites the jump table entries for PIC + compiled modules in the main executable to bypass the dynamic linker + with jumps of the form + sethi %hi(addr),%g1 + jmp %g1+%lo(addr) + and removes the corresponding jump table relocation entry in the + dynamic relocations. + find_solib_trampoline_target relies on the presence of the jump + table relocation entry, so we have to detect these jump instructions + by hand. */ + +CORE_ADDR +sunos4_skip_trampoline_code (pc) + CORE_ADDR pc; +{ + unsigned long insn1; + char buf[4]; + int err; + + err = target_read_memory (pc, buf, 4); + insn1 = extract_unsigned_integer (buf, 4); + if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) + { + unsigned long insn2; + + err = target_read_memory (pc + 4, buf, 4); + insn2 = extract_unsigned_integer (buf, 4); + if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) + { + CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; + int delta = insn2 & 0x1fff; + + /* Sign extend the displacement. */ + if (delta & 0x1000) + delta |= ~0x1fff; + return target_pc + delta; + } + } + return find_solib_trampoline_target (pc); +} + +#ifdef USE_PROC_FS /* Target dependent support for /proc */ + +/* The /proc interface divides the target machine's register set up into + two different sets, the general register set (gregset) and the floating + point register set (fpregset). For each set, there is an ioctl to get + the current register set and another ioctl to set the current values. + + The actual structure passed through the ioctl interface is, of course, + naturally machine dependent, and is different for each set of registers. + For the sparc for example, the general register set is typically defined + by: + + typedef int gregset_t[38]; + + #define R_G0 0 + ... + #define R_TBR 37 + + and the floating point set by: + + typedef struct prfpregset { + union { + u_long pr_regs[32]; + double pr_dregs[16]; + } pr_fr; + void * pr_filler; + u_long pr_fsr; + u_char pr_qcnt; + u_char pr_q_entrysize; + u_char pr_en; + u_long pr_q[64]; + } prfpregset_t; + + These routines provide the packing and unpacking of gregset_t and + fpregset_t formatted data. + + */ + +/* Given a pointer to a general register set in /proc format (gregset_t *), + unpack the register contents and supply them as gdb's idea of the current + register values. */ + +void +supply_gregset (gregsetp) +prgregset_t *gregsetp; +{ + register int regi; + register prgreg_t *regp = (prgreg_t *) gregsetp; + static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; + + /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ + for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++) + { + supply_register (regi, (char *) (regp + regi)); + } + + /* These require a bit more care. */ + supply_register (PS_REGNUM, (char *) (regp + R_PS)); + supply_register (PC_REGNUM, (char *) (regp + R_PC)); + supply_register (NPC_REGNUM,(char *) (regp + R_nPC)); + supply_register (Y_REGNUM, (char *) (regp + R_Y)); + + /* Fill inaccessible registers with zero. */ + supply_register (WIM_REGNUM, zerobuf); + supply_register (TBR_REGNUM, zerobuf); + supply_register (CPS_REGNUM, zerobuf); +} + +void +fill_gregset (gregsetp, regno) +prgregset_t *gregsetp; +int regno; +{ + int regi; + register prgreg_t *regp = (prgreg_t *) gregsetp; + + for (regi = 0 ; regi <= R_I7 ; regi++) + { + if ((regno == -1) || (regno == regi)) + { + *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; + } + } + if ((regno == -1) || (regno == PS_REGNUM)) + { + *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; + } + if ((regno == -1) || (regno == PC_REGNUM)) + { + *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; + } + if ((regno == -1) || (regno == NPC_REGNUM)) + { + *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)]; + } + if ((regno == -1) || (regno == Y_REGNUM)) + { + *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)]; + } +} + +#if defined (FP0_REGNUM) + +/* Given a pointer to a floating point register set in /proc format + (fpregset_t *), unpack the register contents and supply them as gdb's + idea of the current floating point register values. */ + +void +supply_fpregset (fpregsetp) +prfpregset_t *fpregsetp; +{ + register int regi; + char *from; + + for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) + { + from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; + supply_register (regi, from); + } + supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); +} + +/* Given a pointer to a floating point register set in /proc format + (fpregset_t *), update the register specified by REGNO from gdb's idea + of the current floating point register set. If REGNO is -1, update + them all. */ +/* ??? This will probably need some changes for sparc64. */ + +void +fill_fpregset (fpregsetp, regno) +prfpregset_t *fpregsetp; +int regno; +{ + int regi; + char *to; + char *from; + + for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) + { + if ((regno == -1) || (regno == regi)) + { + from = (char *) ®isters[REGISTER_BYTE (regi)]; + to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; + memcpy (to, from, REGISTER_RAW_SIZE (regi)); + } + } + if ((regno == -1) || (regno == FPS_REGNUM)) + { + fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; + } +} + +#endif /* defined (FP0_REGNUM) */ + +#endif /* USE_PROC_FS */ + + +#ifdef GET_LONGJMP_TARGET + +/* Figure out where the longjmp will land. We expect that we have just entered + longjmp and haven't yet setup the stack frame, so the args are still in the + output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we + extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. + This routine returns true on success */ + +int +get_longjmp_target (pc) + CORE_ADDR *pc; +{ + CORE_ADDR jb_addr; +#define LONGJMP_TARGET_SIZE 4 + char buf[LONGJMP_TARGET_SIZE]; + + jb_addr = read_register (O0_REGNUM); + + if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, + LONGJMP_TARGET_SIZE)) + return 0; + + *pc = extract_address (buf, LONGJMP_TARGET_SIZE); + + return 1; +} +#endif /* GET_LONGJMP_TARGET */ + +#ifdef STATIC_TRANSFORM_NAME +/* SunPRO (3.0 at least), encodes the static variables. This is not + related to C++ mangling, it is done for C too. */ + +char * +sunpro_static_transform_name (name) + char *name; +{ + char *p; + if (name[0] == '$') + { + /* For file-local statics there will be a dollar sign, a bunch + of junk (the contents of which match a string given in the + N_OPT), a period and the name. For function-local statics + there will be a bunch of junk (which seems to change the + second character from 'A' to 'B'), a period, the name of the + function, and the name. So just skip everything before the + last period. */ + p = strrchr (name, '.'); + if (p != NULL) + name = p + 1; + } + return name; +} +#endif /* STATIC_TRANSFORM_NAME */ + + +/* Utilities for printing registers. + Page numbers refer to the SPARC Architecture Manual. */ + +static void dump_ccreg PARAMS ((char *, int)); + +static void +dump_ccreg (reg, val) + char *reg; + int val; +{ + /* page 41 */ + printf_unfiltered ("%s:%s,%s,%s,%s", reg, + val & 8 ? "N" : "NN", + val & 4 ? "Z" : "NZ", + val & 2 ? "O" : "NO", + val & 1 ? "C" : "NC" + ); +} + +static char * +decode_asi (val) + int val; +{ + /* page 72 */ + switch (val) + { + case 4 : return "ASI_NUCLEUS"; + case 0x0c : return "ASI_NUCLEUS_LITTLE"; + case 0x10 : return "ASI_AS_IF_USER_PRIMARY"; + case 0x11 : return "ASI_AS_IF_USER_SECONDARY"; + case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE"; + case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE"; + case 0x80 : return "ASI_PRIMARY"; + case 0x81 : return "ASI_SECONDARY"; + case 0x82 : return "ASI_PRIMARY_NOFAULT"; + case 0x83 : return "ASI_SECONDARY_NOFAULT"; + case 0x88 : return "ASI_PRIMARY_LITTLE"; + case 0x89 : return "ASI_SECONDARY_LITTLE"; + case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE"; + case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE"; + default : return NULL; + } +} + +/* PRINT_REGISTER_HOOK routine. + Pretty print various registers. */ +/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ + +void +sparc_print_register_hook (regno) + int regno; +{ + ULONGEST val; + + /* Handle double/quad versions of lower 32 fp regs. */ + if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 + && (regno & 1) == 0) + { + char value[16]; + + if (!read_relative_register_raw_bytes (regno, value) + && !read_relative_register_raw_bytes (regno + 1, value + 4)) + { + printf_unfiltered ("\t"); + print_floating (value, builtin_type_double, gdb_stdout); + } +#if 0 /* FIXME: gdb doesn't handle long doubles */ + if ((regno & 3) == 0) + { + if (!read_relative_register_raw_bytes (regno + 2, value + 8) + && !read_relative_register_raw_bytes (regno + 3, value + 12)) + { + printf_unfiltered ("\t"); + print_floating (value, builtin_type_long_double, gdb_stdout); + } + } +#endif + return; + } + +#if 0 /* FIXME: gdb doesn't handle long doubles */ + /* Print upper fp regs as long double if appropriate. */ + if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM + /* We test for even numbered regs and not a multiple of 4 because + the upper fp regs are recorded as doubles. */ + && (regno & 1) == 0) + { + char value[16]; + + if (!read_relative_register_raw_bytes (regno, value) + && !read_relative_register_raw_bytes (regno + 1, value + 8)) + { + printf_unfiltered ("\t"); + print_floating (value, builtin_type_long_double, gdb_stdout); + } + return; + } +#endif + + /* FIXME: Some of these are priviledged registers. + Not sure how they should be handled. */ + +#define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) + + val = read_register (regno); + + /* pages 40 - 60 */ + switch (regno) + { +#ifdef GDB_TARGET_IS_SPARC64 + case CCR_REGNUM : + printf_unfiltered("\t"); + dump_ccreg ("xcc", val >> 4); + printf_unfiltered(", "); + dump_ccreg ("icc", val & 15); + break; + case FPRS_REGNUM : + printf ("\tfef:%d, du:%d, dl:%d", + BITS (2, 1), BITS (1, 1), BITS (0, 1)); + break; + case FSR_REGNUM : + { + static char *fcc[4] = { "=", "<", ">", "?" }; + static char *rd[4] = { "N", "0", "+", "-" }; + /* Long, yes, but I'd rather leave it as is and use a wide screen. */ + printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", + fcc[BITS (10, 3)], fcc[BITS (32, 3)], + fcc[BITS (34, 3)], fcc[BITS (36, 3)], + rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), + BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31)); + break; + } + case ASI_REGNUM : + { + char *asi = decode_asi (val); + if (asi != NULL) + printf ("\t%s", asi); + break; + } + case VER_REGNUM : + printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", + BITS (48, 0xffff), BITS (32, 0xffff), + BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); + break; + case PSTATE_REGNUM : + { + static char *mm[4] = { "tso", "pso", "rso", "?" }; + printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d", + BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1), + BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1), + BITS (0, 1)); + break; + } + case TSTATE_REGNUM : + /* FIXME: print all 4? */ + break; + case TT_REGNUM : + /* FIXME: print all 4? */ + break; + case TPC_REGNUM : + /* FIXME: print all 4? */ + break; + case TNPC_REGNUM : + /* FIXME: print all 4? */ + break; + case WSTATE_REGNUM : + printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); + break; + case CWP_REGNUM : + printf ("\t%d", BITS (0, 31)); + break; + case CANSAVE_REGNUM : + printf ("\t%-2d before spill", BITS (0, 31)); + break; + case CANRESTORE_REGNUM : + printf ("\t%-2d before fill", BITS (0, 31)); + break; + case CLEANWIN_REGNUM : + printf ("\t%-2d before clean", BITS (0, 31)); + break; + case OTHERWIN_REGNUM : + printf ("\t%d", BITS (0, 31)); + break; +#else + case PS_REGNUM: + printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", + BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', + BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', + BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), + BITS (0, 31)); + break; + case FPS_REGNUM: + { + static char *fcc[4] = { "=", "<", ">", "?" }; + static char *rd[4] = { "N", "0", "+", "-" }; + /* Long, yes, but I'd rather leave it as is and use a wide screen. */ + printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " + "fcc:%s, aexc:%d, cexc:%d", + rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), + BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), + BITS (0, 31)); + break; + } + +#endif /* GDB_TARGET_IS_SPARC64 */ + } + +#undef BITS +} + +int +gdb_print_insn_sparc (memaddr, info) + bfd_vma memaddr; + disassemble_info *info; +{ + /* It's necessary to override mach again because print_insn messes it up. */ + info->mach = TM_PRINT_INSN_MACH; + return print_insn_sparc (memaddr, info); +} + +/* The SPARC passes the arguments on the stack; arguments smaller + than an int are promoted to an int. */ + +CORE_ADDR +sparc_push_arguments (nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + int struct_return; + CORE_ADDR struct_addr; +{ + int i; + int accumulate_size = 0; + struct sparc_arg + { + char *contents; + int len; + int offset; + }; + struct sparc_arg *sparc_args = + (struct sparc_arg*)alloca (nargs * sizeof (struct sparc_arg)); + struct sparc_arg *m_arg; + + /* Promote arguments if necessary, and calculate their stack offsets + and sizes. */ + for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) + { + value_ptr arg = args[i]; + struct type *arg_type = check_typedef (VALUE_TYPE (arg)); + /* Cast argument to long if necessary as the compiler does it too. */ + switch (TYPE_CODE (arg_type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_BOOL: + case TYPE_CODE_CHAR: + case TYPE_CODE_RANGE: + case TYPE_CODE_ENUM: + if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) + { + arg_type = builtin_type_long; + arg = value_cast (arg_type, arg); + } + break; + default: + break; + } + m_arg->len = TYPE_LENGTH (arg_type); + m_arg->offset = accumulate_size; + accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; + m_arg->contents = VALUE_CONTENTS(arg); + } + + /* Make room for the arguments on the stack. */ + accumulate_size += CALL_DUMMY_STACK_ADJUST; + sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST; + + /* `Push' arguments on the stack. */ + for (i = nargs; m_arg--, --i >= 0; ) + write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len); + + return sp; +} + + +/* Extract from an array REGBUF containing the (raw) register state + a function return value of type TYPE, and copy that, in virtual format, + into VALBUF. */ + +void +sparc_extract_return_value (type, regbuf, valbuf) + struct type *type; + char *regbuf; + char *valbuf; +{ + int typelen = TYPE_LENGTH (type); + int regsize = REGISTER_RAW_SIZE (O0_REGNUM); + + if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) + memcpy (valbuf, ®buf [REGISTER_BYTE (FP0_REGNUM)], typelen); + else + memcpy (valbuf, + ®buf [O0_REGNUM * regsize + + (typelen >= regsize + || TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0 + : regsize - typelen)], + typelen); +} + + +/* Write into appropriate registers a function return value + of type TYPE, given in virtual format. On SPARCs with FPUs, + float values are returned in %f0 (and %f1). In all other cases, + values are returned in register %o0. */ + +void +sparc_store_return_value (type, valbuf) + struct type *type; + char *valbuf; +{ + int regno; + char buffer[MAX_REGISTER_RAW_SIZE]; + + if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) + /* Floating-point values are returned in the register pair */ + /* formed by %f0 and %f1 (doubles are, anyway). */ + regno = FP0_REGNUM; + else + /* Other values are returned in register %o0. */ + regno = O0_REGNUM; + + /* Add leading zeros to the value. */ + if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE(regno)) + { + bzero (buffer, REGISTER_RAW_SIZE(regno)); + memcpy (buffer + REGISTER_RAW_SIZE(regno) - TYPE_LENGTH (type), valbuf, + TYPE_LENGTH (type)); + write_register_bytes (REGISTER_BYTE (regno), buffer, + REGISTER_RAW_SIZE(regno)); + } + else + write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type)); +} + + +/* Insert the function address into a call dummy instruction sequence + stored at DUMMY. + + For structs and unions, if the function was compiled with Sun cc, + it expects 'unimp' after the call. But gcc doesn't use that + (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY + can assume it is operating on a pristine CALL_DUMMY, not one that + has already been customized for a different function). */ + +void +sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc) + char *dummy; + CORE_ADDR pc; + CORE_ADDR fun; + struct type *value_type; + int using_gcc; +{ + int i; + + /* Store the relative adddress of the target function into the + 'call' instruction. */ + store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, + (0x40000000 + | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) + & 0x3fffffff))); + + /* Comply with strange Sun cc calling convention for struct-returning + functions. */ + if (!using_gcc + && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT + || TYPE_CODE (value_type) == TYPE_CODE_UNION)) + store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, + TYPE_LENGTH (value_type) & 0x1fff); + +#ifndef GDB_TARGET_IS_SPARC64 + /* If this is not a simulator target, change the first four instructions + of the call dummy to NOPs. Those instructions include a 'save' + instruction and are designed to work around problems with register + window flushing in the simulator. */ + if (strcmp (target_shortname, "sim") != 0) + { + for (i = 0; i < 4; i++) + store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); + } +#endif + + /* If this is a bi-endian target, GDB has written the call dummy + in little-endian order. We must byte-swap it back to big-endian. */ + if (bi_endian) + { + for (i = 0; i < CALL_DUMMY_LENGTH; i += 4) + { + char tmp = dummy [i]; + dummy [i] = dummy [i+3]; + dummy [i+3] = tmp; + tmp = dummy [i+1]; + dummy [i+1] = dummy [i+2]; + dummy [i+2] = tmp; + } + } +} + + +/* Set target byte order based on machine type. */ + +static int +sparc_target_architecture_hook (ap) + const bfd_arch_info_type *ap; +{ + int i, j; + + if (ap->mach == bfd_mach_sparc_sparclite_le) + { + if (TARGET_BYTE_ORDER_SELECTABLE_P) + { + target_byte_order = LITTLE_ENDIAN; + bi_endian = 1; + } + else + { + warning ("This GDB does not support little endian sparclite."); + } + } + else + bi_endian = 0; + return 1; +} + + +void +_initialize_sparc_tdep () +{ + tm_print_insn = gdb_print_insn_sparc; + tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ + target_architecture_hook = sparc_target_architecture_hook; +} + + +#ifdef GDB_TARGET_IS_SPARC64 + +/* Compensate for stack bias. Note that we currently don't handle mixed + 32/64 bit code. */ +CORE_ADDR +sparc64_read_sp () +{ + CORE_ADDR sp = read_register (SP_REGNUM); + + if (sp & 1) + sp += 2047; + return sp; +} + +CORE_ADDR +sparc64_read_fp () +{ + CORE_ADDR fp = read_register (FP_REGNUM); + + if (fp & 1) + fp += 2047; + return fp; +} + +void +sparc64_write_sp (val) + CORE_ADDR val; +{ + CORE_ADDR oldsp = read_register (SP_REGNUM); + if (oldsp & 1) + write_register (SP_REGNUM, val - 2047); + else + write_register (SP_REGNUM, val); +} + +void +sparc64_write_fp (val) + CORE_ADDR val; +{ + CORE_ADDR oldfp = read_register (FP_REGNUM); + if (oldfp & 1) + write_register (FP_REGNUM, val - 2047); + else + write_register (FP_REGNUM, val); +} + +/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are + also copied onto the stack in the correct places. */ + +CORE_ADDR +sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + unsigned char struct_return; + CORE_ADDR struct_retaddr; +{ + int x; + int regnum = 0; + CORE_ADDR tempsp; + + sp = (sp & ~(((unsigned long)TYPE_LENGTH (builtin_type_long)) - 1UL)); + + /* Figure out how much space we'll need. */ + for (x = nargs - 1; x >= 0; x--) + { + int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x]))); + value_ptr copyarg = args[x]; + int copylen = len; + + /* This code is, of course, no longer correct. */ + if (copylen < TYPE_LENGTH (builtin_type_long)) + { + copyarg = value_cast(builtin_type_long, copyarg); + copylen = TYPE_LENGTH (builtin_type_long); + } + sp -= copylen; + } + + /* Round down. */ + sp = sp & ~7; + tempsp = sp; + + /* Now write the arguments onto the stack, while writing FP arguments + into the FP registers. */ + for (x = 0; x < nargs; x++) + { + int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x]))); + value_ptr copyarg = args[x]; + int copylen = len; + + /* This code is, of course, no longer correct. */ + if (copylen < TYPE_LENGTH (builtin_type_long)) + { + copyarg = value_cast(builtin_type_long, copyarg); + copylen = TYPE_LENGTH (builtin_type_long); + } + write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); + tempsp += copylen; + if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32) + { + /* This gets copied into a FP register. */ + int nextreg = regnum + 2; + char *data = VALUE_CONTENTS (args[x]); + /* Floats go into the lower half of a FP register pair; quads + use 2 pairs. */ + + if (len == 16) + nextreg += 2; + else if (len == 4) + regnum++; + + write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum), + data, + len); + regnum = nextreg; + } + } + return sp; +} + +/* Values <= 32 bytes are returned in o0-o3 (floating-point values are + returned in f0-f3). */ +void +sparc64_extract_return_value (type, regbuf, valbuf, bitoffset) + struct type *type; + char *regbuf; + char *valbuf; + int bitoffset; +{ + int typelen = TYPE_LENGTH (type); + int regsize = REGISTER_RAW_SIZE (O0_REGNUM); + + if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) + { + memcpy (valbuf, ®buf [REGISTER_BYTE (FP0_REGNUM)], typelen); + return; + } + + if (TYPE_CODE (type) != TYPE_CODE_STRUCT + || (TYPE_LENGTH (type) > 32)) + { + memcpy (valbuf, + ®buf [O0_REGNUM * regsize + + (typelen >= regsize ? 0 : regsize - typelen)], + typelen); + return; + } + else + { + char *o0 = ®buf[O0_REGNUM * regsize]; + char *f0 = ®buf[FP0_REGNUM * regsize]; + int x; + + for (x = 0; x < TYPE_NFIELDS (type); x++) + { + struct field *f = &TYPE_FIELDS(type)[x]; + /* FIXME: We may need to handle static fields here. */ + int whichreg = (f->loc.bitpos + bitoffset) / 32; + int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; + int where = (f->loc.bitpos + bitoffset) / 8; + int size = TYPE_LENGTH (f->type); + int typecode = TYPE_CODE (f->type); + + if (typecode == TYPE_CODE_STRUCT) + { + sparc64_extract_return_value (f->type, + regbuf, + valbuf, + bitoffset + f->loc.bitpos); + } + else if (typecode == TYPE_CODE_FLT) + { + memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); + } + else + { + memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); + } + } + } +} +#endif |