// OBSOLETE /* Target-dependent code for the Fujitsu FR30. // OBSOLETE Copyright 1999, 2000, 2001 Free Software Foundation, Inc. // OBSOLETE // OBSOLETE This file is part of GDB. // OBSOLETE // OBSOLETE This program is free software; you can redistribute it and/or modify // OBSOLETE it under the terms of the GNU General Public License as published by // OBSOLETE the Free Software Foundation; either version 2 of the License, or // OBSOLETE (at your option) any later version. // OBSOLETE // OBSOLETE This program is distributed in the hope that it will be useful, // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // OBSOLETE GNU General Public License for more details. // OBSOLETE // OBSOLETE You should have received a copy of the GNU General Public License // OBSOLETE along with this program; if not, write to the Free Software // OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, // OBSOLETE Boston, MA 02111-1307, USA. */ // OBSOLETE // OBSOLETE #include "defs.h" // OBSOLETE #include "frame.h" // OBSOLETE #include "inferior.h" // OBSOLETE #include "obstack.h" // OBSOLETE #include "target.h" // OBSOLETE #include "value.h" // OBSOLETE #include "bfd.h" // OBSOLETE #include "gdb_string.h" // OBSOLETE #include "gdbcore.h" // OBSOLETE #include "symfile.h" // OBSOLETE #include "regcache.h" // OBSOLETE // OBSOLETE /* An expression that tells us whether the function invocation represented // OBSOLETE by FI does not have a frame on the stack associated with it. */ // OBSOLETE int // OBSOLETE fr30_frameless_function_invocation (struct frame_info *fi) // OBSOLETE { // OBSOLETE int frameless; // OBSOLETE CORE_ADDR func_start, after_prologue; // OBSOLETE func_start = (get_pc_function_start ((fi)->pc) + // OBSOLETE FUNCTION_START_OFFSET); // OBSOLETE after_prologue = func_start; // OBSOLETE after_prologue = SKIP_PROLOGUE (after_prologue); // OBSOLETE frameless = (after_prologue == func_start); // OBSOLETE return frameless; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: pop_frame // OBSOLETE This routine gets called when either the user uses the `return' // OBSOLETE command, or the call dummy breakpoint gets hit. */ // OBSOLETE // OBSOLETE void // OBSOLETE fr30_pop_frame (void) // OBSOLETE { // OBSOLETE struct frame_info *frame = get_current_frame (); // OBSOLETE int regnum; // OBSOLETE CORE_ADDR sp = read_register (SP_REGNUM); // OBSOLETE // OBSOLETE if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) // OBSOLETE generic_pop_dummy_frame (); // OBSOLETE else // OBSOLETE { // OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); // OBSOLETE // OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++) // OBSOLETE if (frame->fsr.regs[regnum] != 0) // OBSOLETE { // OBSOLETE write_register (regnum, // OBSOLETE read_memory_unsigned_integer (frame->fsr.regs[regnum], // OBSOLETE REGISTER_RAW_SIZE (regnum))); // OBSOLETE } // OBSOLETE write_register (SP_REGNUM, sp + frame->framesize); // OBSOLETE } // OBSOLETE flush_cached_frames (); // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: fr30_store_return_value // OBSOLETE Put a value where a caller expects to see it. Used by the 'return' // OBSOLETE command. */ // OBSOLETE void // OBSOLETE fr30_store_return_value (struct type *type, // OBSOLETE char *valbuf) // OBSOLETE { // OBSOLETE /* Here's how the FR30 returns values (gleaned from gcc/config/ // OBSOLETE fr30/fr30.h): // OBSOLETE // OBSOLETE If the return value is 32 bits long or less, it goes in r4. // OBSOLETE // OBSOLETE If the return value is 64 bits long or less, it goes in r4 (most // OBSOLETE significant word) and r5 (least significant word. // OBSOLETE // OBSOLETE If the function returns a structure, of any size, the caller // OBSOLETE passes the function an invisible first argument where the callee // OBSOLETE should store the value. But GDB doesn't let you do that anyway. // OBSOLETE // OBSOLETE If you're returning a value smaller than a word, it's not really // OBSOLETE necessary to zero the upper bytes of the register; the caller is // OBSOLETE supposed to ignore them. However, the FR30 typically keeps its // OBSOLETE values extended to the full register width, so we should emulate // OBSOLETE that. */ // OBSOLETE // OBSOLETE /* The FR30 is big-endian, so if we return a small value (like a // OBSOLETE short or a char), we need to position it correctly within the // OBSOLETE register. We round the size up to a register boundary, and then // OBSOLETE adjust the offset so as to place the value at the right end. */ // OBSOLETE int value_size = TYPE_LENGTH (type); // OBSOLETE int returned_size = (value_size + FR30_REGSIZE - 1) & ~(FR30_REGSIZE - 1); // OBSOLETE int offset = (REGISTER_BYTE (RETVAL_REG) // OBSOLETE + (returned_size - value_size)); // OBSOLETE char *zeros = alloca (returned_size); // OBSOLETE memset (zeros, 0, returned_size); // OBSOLETE // OBSOLETE write_register_bytes (REGISTER_BYTE (RETVAL_REG), zeros, returned_size); // OBSOLETE write_register_bytes (offset, valbuf, value_size); // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: skip_prologue // OBSOLETE Return the address of the first code past the prologue of the function. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE fr30_skip_prologue (CORE_ADDR pc) // OBSOLETE { // OBSOLETE CORE_ADDR func_addr, func_end; // OBSOLETE // OBSOLETE /* See what the symbol table says */ // OBSOLETE // OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) // OBSOLETE { // OBSOLETE struct symtab_and_line sal; // OBSOLETE // OBSOLETE sal = find_pc_line (func_addr, 0); // OBSOLETE // OBSOLETE if (sal.line != 0 && sal.end < func_end) // OBSOLETE { // OBSOLETE return sal.end; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* Either we didn't find the start of this function (nothing we can do), // OBSOLETE or there's no line info, or the line after the prologue is after // OBSOLETE the end of the function (there probably isn't a prologue). */ // OBSOLETE // OBSOLETE return pc; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: push_arguments // OBSOLETE Setup arguments and RP for a call to the target. First four args // OBSOLETE go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack... // OBSOLETE Structs are passed by reference. XXX not right now Z.R. // OBSOLETE 64 bit quantities (doubles and long longs) may be split between // OBSOLETE the regs and the stack. // OBSOLETE When calling a function that returns a struct, a pointer to the struct // OBSOLETE is passed in as a secret first argument (always in FIRST_ARGREG). // OBSOLETE // OBSOLETE Stack space for the args has NOT been allocated: that job is up to us. // OBSOLETE */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE fr30_push_arguments (int nargs, struct value **args, CORE_ADDR sp, // OBSOLETE int struct_return, CORE_ADDR struct_addr) // OBSOLETE { // OBSOLETE int argreg; // OBSOLETE int argnum; // OBSOLETE int stack_offset; // OBSOLETE struct stack_arg // OBSOLETE { // OBSOLETE char *val; // OBSOLETE int len; // OBSOLETE int offset; // OBSOLETE }; // OBSOLETE struct stack_arg *stack_args = // OBSOLETE (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg)); // OBSOLETE int nstack_args = 0; // OBSOLETE // OBSOLETE argreg = FIRST_ARGREG; // OBSOLETE // OBSOLETE /* the struct_return pointer occupies the first parameter-passing reg */ // OBSOLETE if (struct_return) // OBSOLETE write_register (argreg++, struct_addr); // OBSOLETE // OBSOLETE stack_offset = 0; // OBSOLETE // OBSOLETE /* Process args from left to right. Store as many as allowed in // OBSOLETE registers, save the rest to be pushed on the stack */ // OBSOLETE for (argnum = 0; argnum < nargs; argnum++) // OBSOLETE { // OBSOLETE char *val; // OBSOLETE struct value *arg = args[argnum]; // OBSOLETE struct type *arg_type = check_typedef (VALUE_TYPE (arg)); // OBSOLETE struct type *target_type = TYPE_TARGET_TYPE (arg_type); // OBSOLETE int len = TYPE_LENGTH (arg_type); // OBSOLETE enum type_code typecode = TYPE_CODE (arg_type); // OBSOLETE CORE_ADDR regval; // OBSOLETE int newarg; // OBSOLETE // OBSOLETE val = (char *) VALUE_CONTENTS (arg); // OBSOLETE // OBSOLETE { // OBSOLETE /* Copy the argument to general registers or the stack in // OBSOLETE register-sized pieces. Large arguments are split between // OBSOLETE registers and stack. */ // OBSOLETE while (len > 0) // OBSOLETE { // OBSOLETE if (argreg <= LAST_ARGREG) // OBSOLETE { // OBSOLETE int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE; // OBSOLETE regval = extract_address (val, partial_len); // OBSOLETE // OBSOLETE /* It's a simple argument being passed in a general // OBSOLETE register. */ // OBSOLETE write_register (argreg, regval); // OBSOLETE argreg++; // OBSOLETE len -= partial_len; // OBSOLETE val += partial_len; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* keep for later pushing */ // OBSOLETE stack_args[nstack_args].val = val; // OBSOLETE stack_args[nstack_args++].len = len; // OBSOLETE break; // OBSOLETE } // OBSOLETE } // OBSOLETE } // OBSOLETE } // OBSOLETE /* now do the real stack pushing, process args right to left */ // OBSOLETE while (nstack_args--) // OBSOLETE { // OBSOLETE sp -= stack_args[nstack_args].len; // OBSOLETE write_memory (sp, stack_args[nstack_args].val, // OBSOLETE stack_args[nstack_args].len); // OBSOLETE } // OBSOLETE // OBSOLETE /* Return adjusted stack pointer. */ // OBSOLETE return sp; // OBSOLETE } // OBSOLETE // OBSOLETE void _initialize_fr30_tdep (void); // OBSOLETE // OBSOLETE void // OBSOLETE _initialize_fr30_tdep (void) // OBSOLETE { // OBSOLETE extern int print_insn_fr30 (bfd_vma, disassemble_info *); // OBSOLETE tm_print_insn = print_insn_fr30; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: check_prologue_cache // OBSOLETE Check if prologue for this frame's PC has already been scanned. // OBSOLETE If it has, copy the relevant information about that prologue and // OBSOLETE return non-zero. Otherwise do not copy anything and return zero. // OBSOLETE // OBSOLETE The information saved in the cache includes: // OBSOLETE * the frame register number; // OBSOLETE * the size of the stack frame; // OBSOLETE * the offsets of saved regs (relative to the old SP); and // OBSOLETE * the offset from the stack pointer to the frame pointer // OBSOLETE // OBSOLETE The cache contains only one entry, since this is adequate // OBSOLETE for the typical sequence of prologue scan requests we get. // OBSOLETE When performing a backtrace, GDB will usually ask to scan // OBSOLETE the same function twice in a row (once to get the frame chain, // OBSOLETE and once to fill in the extra frame information). // OBSOLETE */ // OBSOLETE // OBSOLETE static struct frame_info prologue_cache; // OBSOLETE // OBSOLETE static int // OBSOLETE check_prologue_cache (struct frame_info *fi) // OBSOLETE { // OBSOLETE int i; // OBSOLETE // OBSOLETE if (fi->pc == prologue_cache.pc) // OBSOLETE { // OBSOLETE fi->framereg = prologue_cache.framereg; // OBSOLETE fi->framesize = prologue_cache.framesize; // OBSOLETE fi->frameoffset = prologue_cache.frameoffset; // OBSOLETE for (i = 0; i <= NUM_REGS; i++) // OBSOLETE fi->fsr.regs[i] = prologue_cache.fsr.regs[i]; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE else // OBSOLETE return 0; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: save_prologue_cache // OBSOLETE Copy the prologue information from fi to the prologue cache. // OBSOLETE */ // OBSOLETE // OBSOLETE static void // OBSOLETE save_prologue_cache (struct frame_info *fi) // OBSOLETE { // OBSOLETE int i; // OBSOLETE // OBSOLETE prologue_cache.pc = fi->pc; // OBSOLETE prologue_cache.framereg = fi->framereg; // OBSOLETE prologue_cache.framesize = fi->framesize; // OBSOLETE prologue_cache.frameoffset = fi->frameoffset; // OBSOLETE // OBSOLETE for (i = 0; i <= NUM_REGS; i++) // OBSOLETE { // OBSOLETE prologue_cache.fsr.regs[i] = fi->fsr.regs[i]; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: scan_prologue // OBSOLETE Scan the prologue of the function that contains PC, and record what // OBSOLETE we find in PI. PI->fsr must be zeroed by the called. Returns the // OBSOLETE pc after the prologue. Note that the addresses saved in pi->fsr // OBSOLETE are actually just frame relative (negative offsets from the frame // OBSOLETE pointer). This is because we don't know the actual value of the // OBSOLETE frame pointer yet. In some circumstances, the frame pointer can't // OBSOLETE be determined till after we have scanned the prologue. */ // OBSOLETE // OBSOLETE static void // OBSOLETE fr30_scan_prologue (struct frame_info *fi) // OBSOLETE { // OBSOLETE int sp_offset, fp_offset; // OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc; // OBSOLETE // OBSOLETE /* Check if this function is already in the cache of frame information. */ // OBSOLETE if (check_prologue_cache (fi)) // OBSOLETE return; // OBSOLETE // OBSOLETE /* Assume there is no frame until proven otherwise. */ // OBSOLETE fi->framereg = SP_REGNUM; // OBSOLETE fi->framesize = 0; // OBSOLETE fi->frameoffset = 0; // OBSOLETE // OBSOLETE /* Find the function prologue. If we can't find the function in // OBSOLETE the symbol table, peek in the stack frame to find the PC. */ // OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) // OBSOLETE { // OBSOLETE /* Assume the prologue is everything between the first instruction // OBSOLETE in the function and the first source line. */ // OBSOLETE struct symtab_and_line sal = find_pc_line (prologue_start, 0); // OBSOLETE // OBSOLETE if (sal.line == 0) /* no line info, use current PC */ // OBSOLETE prologue_end = fi->pc; // OBSOLETE else if (sal.end < prologue_end) /* next line begins after fn end */ // OBSOLETE prologue_end = sal.end; /* (probably means no prologue) */ // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* XXX Z.R. What now??? The following is entirely bogus */ // OBSOLETE prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12; // OBSOLETE prologue_end = prologue_start + 40; // OBSOLETE } // OBSOLETE // OBSOLETE /* Now search the prologue looking for instructions that set up the // OBSOLETE frame pointer, adjust the stack pointer, and save registers. */ // OBSOLETE // OBSOLETE sp_offset = fp_offset = 0; // OBSOLETE for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2) // OBSOLETE { // OBSOLETE unsigned int insn; // OBSOLETE // OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2); // OBSOLETE // OBSOLETE if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */ // OBSOLETE { // OBSOLETE int reg, mask = insn & 0xff; // OBSOLETE // OBSOLETE /* scan in one sweep - create virtual 16-bit mask from either insn's mask */ // OBSOLETE if ((insn & 0x0100) == 0) // OBSOLETE { // OBSOLETE mask <<= 8; /* stm0 - move to upper byte in virtual mask */ // OBSOLETE } // OBSOLETE // OBSOLETE /* Calculate offsets of saved registers (to be turned later into addresses). */ // OBSOLETE for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++) // OBSOLETE if (mask & (1 << (15 - reg))) // OBSOLETE { // OBSOLETE sp_offset -= 4; // OBSOLETE fi->fsr.regs[reg] = sp_offset; // OBSOLETE } // OBSOLETE } // OBSOLETE else if ((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */ // OBSOLETE { // OBSOLETE int reg = insn & 0xf; // OBSOLETE // OBSOLETE sp_offset -= 4; // OBSOLETE fi->fsr.regs[reg] = sp_offset; // OBSOLETE } // OBSOLETE else if ((insn & 0xff00) == 0x0f00) /* enter */ // OBSOLETE { // OBSOLETE fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4; // OBSOLETE sp_offset -= 4 * (insn & 0xff); // OBSOLETE fi->framereg = FP_REGNUM; // OBSOLETE } // OBSOLETE else if (insn == 0x1781) /* st rp,@-sp */ // OBSOLETE { // OBSOLETE sp_offset -= 4; // OBSOLETE fi->fsr.regs[RP_REGNUM] = sp_offset; // OBSOLETE } // OBSOLETE else if (insn == 0x170e) /* st fp,@-sp */ // OBSOLETE { // OBSOLETE sp_offset -= 4; // OBSOLETE fi->fsr.regs[FP_REGNUM] = sp_offset; // OBSOLETE } // OBSOLETE else if (insn == 0x8bfe) /* mov sp,fp */ // OBSOLETE { // OBSOLETE fi->framereg = FP_REGNUM; // OBSOLETE } // OBSOLETE else if ((insn & 0xff00) == 0xa300) /* addsp xx */ // OBSOLETE { // OBSOLETE sp_offset += 4 * (signed char) (insn & 0xff); // OBSOLETE } // OBSOLETE else if ((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */ // OBSOLETE read_memory_unsigned_integer (current_pc + 4, 2) // OBSOLETE == 0xac0f) /* sub r0,sp */ // OBSOLETE { // OBSOLETE /* large stack adjustment */ // OBSOLETE sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer (current_pc + 2, 2)); // OBSOLETE current_pc += 4; // OBSOLETE } // OBSOLETE else if (insn == 0x9f80 && /* ldi:32 xx,r0 */ // OBSOLETE read_memory_unsigned_integer (current_pc + 6, 2) // OBSOLETE == 0xac0f) /* sub r0,sp */ // OBSOLETE { // OBSOLETE /* large stack adjustment */ // OBSOLETE sp_offset -= // OBSOLETE (read_memory_unsigned_integer (current_pc + 2, 2) << 16 | // OBSOLETE read_memory_unsigned_integer (current_pc + 4, 2)); // OBSOLETE current_pc += 6; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* The frame size is just the negative of the offset (from the original SP) // OBSOLETE of the last thing thing we pushed on the stack. The frame offset is // OBSOLETE [new FP] - [new SP]. */ // OBSOLETE fi->framesize = -sp_offset; // OBSOLETE fi->frameoffset = fp_offset - sp_offset; // OBSOLETE // OBSOLETE save_prologue_cache (fi); // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: init_extra_frame_info // OBSOLETE Setup the frame's frame pointer, pc, and frame addresses for saved // OBSOLETE registers. Most of the work is done in scan_prologue(). // OBSOLETE // OBSOLETE Note that when we are called for the last frame (currently active frame), // OBSOLETE that fi->pc and fi->frame will already be setup. However, fi->frame will // OBSOLETE be valid only if this routine uses FP. For previous frames, fi-frame will // OBSOLETE always be correct (since that is derived from fr30_frame_chain ()). // OBSOLETE // OBSOLETE We can be called with the PC in the call dummy under two circumstances. // OBSOLETE First, during normal backtracing, second, while figuring out the frame // OBSOLETE pointer just prior to calling the target function (see run_stack_dummy). */ // OBSOLETE // OBSOLETE void // OBSOLETE fr30_init_extra_frame_info (struct frame_info *fi) // OBSOLETE { // OBSOLETE int reg; // OBSOLETE // OBSOLETE if (fi->next) // OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next); // OBSOLETE // OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); // OBSOLETE // OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE { // OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong // OBSOLETE by assuming it's always FP. */ // OBSOLETE fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); // OBSOLETE fi->framesize = 0; // OBSOLETE fi->frameoffset = 0; // OBSOLETE return; // OBSOLETE } // OBSOLETE fr30_scan_prologue (fi); // OBSOLETE // OBSOLETE if (!fi->next) /* this is the innermost frame? */ // OBSOLETE fi->frame = read_register (fi->framereg); // OBSOLETE else // OBSOLETE /* not the innermost frame */ // OBSOLETE /* If we have an FP, the callee saved it. */ // OBSOLETE if (fi->framereg == FP_REGNUM) // OBSOLETE if (fi->next->fsr.regs[fi->framereg] != 0) // OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], 4); // OBSOLETE // OBSOLETE /* Calculate actual addresses of saved registers using offsets determined // OBSOLETE by fr30_scan_prologue. */ // OBSOLETE for (reg = 0; reg < NUM_REGS; reg++) // OBSOLETE if (fi->fsr.regs[reg] != 0) // OBSOLETE { // OBSOLETE fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: find_callers_reg // OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. // OBSOLETE One thing we might want to do here is to check REGNUM against the // OBSOLETE clobber mask, and somehow flag it as invalid if it isn't saved on // OBSOLETE the stack somewhere. This would provide a graceful failure mode // OBSOLETE when trying to get the value of caller-saves registers for an inner // OBSOLETE frame. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE fr30_find_callers_reg (struct frame_info *fi, int regnum) // OBSOLETE { // OBSOLETE for (; fi; fi = fi->next) // OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE return generic_read_register_dummy (fi->pc, fi->frame, regnum); // OBSOLETE else if (fi->fsr.regs[regnum] != 0) // OBSOLETE return read_memory_unsigned_integer (fi->fsr.regs[regnum], // OBSOLETE REGISTER_RAW_SIZE (regnum)); // OBSOLETE // OBSOLETE return read_register (regnum); // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: frame_chain // OBSOLETE Figure out the frame prior to FI. Unfortunately, this involves // OBSOLETE scanning the prologue of the caller, which will also be done // OBSOLETE shortly by fr30_init_extra_frame_info. For the dummy frame, we // OBSOLETE just return the stack pointer that was in use at the time the // OBSOLETE function call was made. */ // OBSOLETE // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE fr30_frame_chain (struct frame_info *fi) // OBSOLETE { // OBSOLETE CORE_ADDR fn_start, callers_pc, fp; // OBSOLETE struct frame_info caller_fi; // OBSOLETE int framereg; // OBSOLETE // OBSOLETE /* is this a dummy frame? */ // OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE return fi->frame; /* dummy frame same as caller's frame */ // OBSOLETE // OBSOLETE /* is caller-of-this a dummy frame? */ // OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ // OBSOLETE fp = fr30_find_callers_reg (fi, FP_REGNUM); // OBSOLETE if (PC_IN_CALL_DUMMY (callers_pc, fp, fp)) // OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */ // OBSOLETE // OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) // OBSOLETE if (fn_start == entry_point_address ()) // OBSOLETE return 0; /* in _start fn, don't chain further */ // OBSOLETE // OBSOLETE framereg = fi->framereg; // OBSOLETE // OBSOLETE /* If the caller is the startup code, we're at the end of the chain. */ // OBSOLETE if (find_pc_partial_function (callers_pc, 0, &fn_start, 0)) // OBSOLETE if (fn_start == entry_point_address ()) // OBSOLETE return 0; // OBSOLETE // OBSOLETE memset (&caller_fi, 0, sizeof (caller_fi)); // OBSOLETE caller_fi.pc = callers_pc; // OBSOLETE fr30_scan_prologue (&caller_fi); // OBSOLETE framereg = caller_fi.framereg; // OBSOLETE // OBSOLETE /* If the caller used a frame register, return its value. // OBSOLETE Otherwise, return the caller's stack pointer. */ // OBSOLETE if (framereg == FP_REGNUM) // OBSOLETE return fr30_find_callers_reg (fi, framereg); // OBSOLETE else // OBSOLETE return fi->frame + fi->framesize; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: frame_saved_pc // OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM // OBSOLETE is saved in the stack anywhere, otherwise we get it from the // OBSOLETE registers. If the inner frame is a dummy frame, return its PC // OBSOLETE instead of RP, because that's where "caller" of the dummy-frame // OBSOLETE will be found. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE fr30_frame_saved_pc (struct frame_info *fi) // OBSOLETE { // OBSOLETE if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); // OBSOLETE else // OBSOLETE return fr30_find_callers_reg (fi, RP_REGNUM); // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: fix_call_dummy // OBSOLETE Pokes the callee function's address into the CALL_DUMMY assembly stub. // OBSOLETE Assumes that the CALL_DUMMY looks like this: // OBSOLETE jarl , r31 // OBSOLETE trap // OBSOLETE */ // OBSOLETE // OBSOLETE int // OBSOLETE fr30_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs, // OBSOLETE struct value **args, struct type *type, int gcc_p) // OBSOLETE { // OBSOLETE long offset24; // OBSOLETE // OBSOLETE offset24 = (long) fun - (long) entry_point_address (); // OBSOLETE offset24 &= 0x3fffff; // OBSOLETE offset24 |= 0xff800000; /* jarl , r31 */ // OBSOLETE // OBSOLETE store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff); // OBSOLETE store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16); // OBSOLETE return 0; // OBSOLETE }