/* Functions specific to running gdb native on IA-64 running
GNU/Linux.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
2009 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "gdb_string.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#include "regcache.h"
#include "ia64-tdep.h"
#include "linux-nat.h"
#include
#include
#include "gdb_wait.h"
#ifdef HAVE_SYS_REG_H
#include
#endif
#include
#include
#include
#include
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
/* These must match the order of the register names.
Some sort of lookup table is needed because the offsets associated
with the registers are all over the board. */
static int u_offsets[] =
{
/* general registers */
-1, /* gr0 not available; i.e, it's always zero */
PT_R1,
PT_R2,
PT_R3,
PT_R4,
PT_R5,
PT_R6,
PT_R7,
PT_R8,
PT_R9,
PT_R10,
PT_R11,
PT_R12,
PT_R13,
PT_R14,
PT_R15,
PT_R16,
PT_R17,
PT_R18,
PT_R19,
PT_R20,
PT_R21,
PT_R22,
PT_R23,
PT_R24,
PT_R25,
PT_R26,
PT_R27,
PT_R28,
PT_R29,
PT_R30,
PT_R31,
/* gr32 through gr127 not directly available via the ptrace interface */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
/* Floating point registers */
-1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
PT_F2,
PT_F3,
PT_F4,
PT_F5,
PT_F6,
PT_F7,
PT_F8,
PT_F9,
PT_F10,
PT_F11,
PT_F12,
PT_F13,
PT_F14,
PT_F15,
PT_F16,
PT_F17,
PT_F18,
PT_F19,
PT_F20,
PT_F21,
PT_F22,
PT_F23,
PT_F24,
PT_F25,
PT_F26,
PT_F27,
PT_F28,
PT_F29,
PT_F30,
PT_F31,
PT_F32,
PT_F33,
PT_F34,
PT_F35,
PT_F36,
PT_F37,
PT_F38,
PT_F39,
PT_F40,
PT_F41,
PT_F42,
PT_F43,
PT_F44,
PT_F45,
PT_F46,
PT_F47,
PT_F48,
PT_F49,
PT_F50,
PT_F51,
PT_F52,
PT_F53,
PT_F54,
PT_F55,
PT_F56,
PT_F57,
PT_F58,
PT_F59,
PT_F60,
PT_F61,
PT_F62,
PT_F63,
PT_F64,
PT_F65,
PT_F66,
PT_F67,
PT_F68,
PT_F69,
PT_F70,
PT_F71,
PT_F72,
PT_F73,
PT_F74,
PT_F75,
PT_F76,
PT_F77,
PT_F78,
PT_F79,
PT_F80,
PT_F81,
PT_F82,
PT_F83,
PT_F84,
PT_F85,
PT_F86,
PT_F87,
PT_F88,
PT_F89,
PT_F90,
PT_F91,
PT_F92,
PT_F93,
PT_F94,
PT_F95,
PT_F96,
PT_F97,
PT_F98,
PT_F99,
PT_F100,
PT_F101,
PT_F102,
PT_F103,
PT_F104,
PT_F105,
PT_F106,
PT_F107,
PT_F108,
PT_F109,
PT_F110,
PT_F111,
PT_F112,
PT_F113,
PT_F114,
PT_F115,
PT_F116,
PT_F117,
PT_F118,
PT_F119,
PT_F120,
PT_F121,
PT_F122,
PT_F123,
PT_F124,
PT_F125,
PT_F126,
PT_F127,
/* predicate registers - we don't fetch these individually */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* branch registers */
PT_B0,
PT_B1,
PT_B2,
PT_B3,
PT_B4,
PT_B5,
PT_B6,
PT_B7,
/* virtual frame pointer and virtual return address pointer */
-1, -1,
/* other registers */
PT_PR,
PT_CR_IIP, /* ip */
PT_CR_IPSR, /* psr */
PT_CFM, /* cfm */
/* kernel registers not visible via ptrace interface (?) */
-1, -1, -1, -1, -1, -1, -1, -1,
/* hole */
-1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_RSC,
PT_AR_BSP,
PT_AR_BSPSTORE,
PT_AR_RNAT,
-1,
-1, /* Not available: FCR, IA32 floating control register */
-1, -1,
-1, /* Not available: EFLAG */
-1, /* Not available: CSD */
-1, /* Not available: SSD */
-1, /* Not available: CFLG */
-1, /* Not available: FSR */
-1, /* Not available: FIR */
-1, /* Not available: FDR */
-1,
PT_AR_CCV,
-1, -1, -1,
PT_AR_UNAT,
-1, -1, -1,
PT_AR_FPSR,
-1, -1, -1,
-1, /* Not available: ITC */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_PFS,
PT_AR_LC,
-1, /* Not available: EC, the Epilog Count register */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1,
/* nat bits - not fetched directly; instead we obtain these bits from
either rnat or unat or from memory. */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
};
static CORE_ADDR
ia64_register_addr (struct gdbarch *gdbarch, int regno)
{
CORE_ADDR addr;
if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
error (_("Invalid register number %d."), regno);
if (u_offsets[regno] == -1)
addr = 0;
else
addr = (CORE_ADDR) u_offsets[regno];
return addr;
}
static int
ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
{
return regno < 0
|| regno >= gdbarch_num_regs (gdbarch)
|| u_offsets[regno] == -1;
}
static int
ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
{
/* Rationale behind not permitting stores to bspstore...
The IA-64 architecture provides bspstore and bsp which refer
memory locations in the RSE's backing store. bspstore is the
next location which will be written when the RSE needs to write
to memory. bsp is the address at which r32 in the current frame
would be found if it were written to the backing store.
The IA-64 architecture provides read-only access to bsp and
read/write access to bspstore (but only when the RSE is in
the enforced lazy mode). It should be noted that stores
to bspstore also affect the value of bsp. Changing bspstore
does not affect the number of dirty entries between bspstore
and bsp, so changing bspstore by N words will also cause bsp
to be changed by (roughly) N as well. (It could be N-1 or N+1
depending upon where the NaT collection bits fall.)
OTOH, the Linux kernel provides read/write access to bsp (and
currently read/write access to bspstore as well). But it
is definitely the case that if you change one, the other
will change at the same time. It is more useful to gdb to
be able to change bsp. So in order to prevent strange and
undesirable things from happening when a dummy stack frame
is popped (after calling an inferior function), we allow
bspstore to be read, but not written. (Note that popping
a (generic) dummy stack frame causes all registers that
were previously read from the inferior process to be written
back.) */
return regno < 0
|| regno >= gdbarch_num_regs (gdbarch)
|| u_offsets[regno] == -1
|| regno == IA64_BSPSTORE_REGNUM;
}
void
supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
{
int regi;
const greg_t *regp = (const greg_t *) gregsetp;
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
{
regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
}
/* FIXME: NAT collection bits are at index 32; gotta deal with these
somehow... */
regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
{
regcache_raw_supply (regcache, regi,
regp + 34 + (regi - IA64_BR0_REGNUM));
}
regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
}
void
fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
{
int regi;
greg_t *regp = (greg_t *) gregsetp;
#define COPY_REG(_idx_,_regi_) \
if ((regno == -1) || regno == _regi_) \
regcache_raw_collect (regcache, _regi_, regp + _idx_)
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
{
COPY_REG (regi - IA64_GR0_REGNUM, regi);
}
/* FIXME: NAT collection bits at index 32? */
COPY_REG (33, IA64_PR_REGNUM);
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
{
COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
}
COPY_REG (42, IA64_IP_REGNUM);
COPY_REG (43, IA64_CFM_REGNUM);
COPY_REG (44, IA64_PSR_REGNUM);
COPY_REG (45, IA64_RSC_REGNUM);
COPY_REG (46, IA64_BSP_REGNUM);
COPY_REG (47, IA64_BSPSTORE_REGNUM);
COPY_REG (48, IA64_RNAT_REGNUM);
COPY_REG (49, IA64_CCV_REGNUM);
COPY_REG (50, IA64_UNAT_REGNUM);
COPY_REG (51, IA64_FPSR_REGNUM);
COPY_REG (52, IA64_PFS_REGNUM);
COPY_REG (53, IA64_LC_REGNUM);
COPY_REG (54, IA64_EC_REGNUM);
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), unpack the register contents and supply them as gdb's
idea of the current floating point register values. */
void
supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
{
int regi;
const char *from;
for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
{
from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
regcache_raw_supply (regcache, regi, from);
}
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), update the register specified by REGNO from gdb's idea
of the current floating point register set. If REGNO is -1, update
them all. */
void
fill_fpregset (const struct regcache *regcache,
fpregset_t *fpregsetp, int regno)
{
int regi;
for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
{
if ((regno == -1) || (regno == regi))
regcache_raw_collect (regcache, regi,
&((*fpregsetp)[regi - IA64_FR0_REGNUM]));
}
}
#define IA64_PSR_DB (1UL << 24)
#define IA64_PSR_DD (1UL << 39)
static void
enable_watchpoints_in_psr (ptid_t ptid)
{
struct regcache *regcache = get_thread_regcache (ptid);
ULONGEST psr;
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
if (!(psr & IA64_PSR_DB))
{
psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
watchpoints and breakpoints. */
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
}
}
static long debug_registers[8];
static void
store_debug_register (ptid_t ptid, int idx, long val)
{
int tid;
tid = TIDGET (ptid);
if (tid == 0)
tid = PIDGET (ptid);
(void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
}
static void
store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
{
if (dbr_addr)
store_debug_register (ptid, 2 * idx, *dbr_addr);
if (dbr_mask)
store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
}
static int
is_power_of_2 (int val)
{
int i, onecount;
onecount = 0;
for (i = 0; i < 8 * sizeof (val); i++)
if (val & (1 << i))
onecount++;
return onecount <= 1;
}
static int
ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
{
struct lwp_info *lp;
ptid_t ptid;
int idx;
long dbr_addr, dbr_mask;
int max_watchpoints = 4;
if (len <= 0 || !is_power_of_2 (len))
return -1;
for (idx = 0; idx < max_watchpoints; idx++)
{
dbr_mask = debug_registers[idx * 2 + 1];
if ((dbr_mask & (0x3UL << 62)) == 0)
{
/* Exit loop if both r and w bits clear */
break;
}
}
if (idx == max_watchpoints)
return -1;
dbr_addr = (long) addr;
dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
switch (rw)
{
case hw_write:
dbr_mask |= (1L << 62); /* Set w bit */
break;
case hw_read:
dbr_mask |= (1L << 63); /* Set r bit */
break;
case hw_access:
dbr_mask |= (3L << 62); /* Set both r and w bits */
break;
default:
return -1;
}
debug_registers[2 * idx] = dbr_addr;
debug_registers[2 * idx + 1] = dbr_mask;
ALL_LWPS (lp, ptid)
{
store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
enable_watchpoints_in_psr (ptid);
}
return 0;
}
static int
ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type)
{
int idx;
long dbr_addr, dbr_mask;
int max_watchpoints = 4;
if (len <= 0 || !is_power_of_2 (len))
return -1;
for (idx = 0; idx < max_watchpoints; idx++)
{
dbr_addr = debug_registers[2 * idx];
dbr_mask = debug_registers[2 * idx + 1];
if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
{
struct lwp_info *lp;
ptid_t ptid;
debug_registers[2 * idx] = 0;
debug_registers[2 * idx + 1] = 0;
dbr_addr = 0;
dbr_mask = 0;
ALL_LWPS (lp, ptid)
store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
return 0;
}
}
return -1;
}
static void
ia64_linux_new_thread (ptid_t ptid)
{
int i, any;
any = 0;
for (i = 0; i < 8; i++)
{
if (debug_registers[i] != 0)
any = 1;
store_debug_register (ptid, i, debug_registers[i]);
}
if (any)
enable_watchpoints_in_psr (ptid);
}
static int
ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
{
CORE_ADDR psr;
struct siginfo *siginfo_p;
struct regcache *regcache = get_current_regcache ();
siginfo_p = linux_nat_get_siginfo (inferior_ptid);
if (siginfo_p->si_signo != SIGTRAP
|| (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
return 0;
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
for the next instruction */
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
*addr_p = (CORE_ADDR)siginfo_p->si_addr;
return 1;
}
static int
ia64_linux_stopped_by_watchpoint (void)
{
CORE_ADDR addr;
return ia64_linux_stopped_data_address (¤t_target, &addr);
}
static int
ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
{
return 1;
}
/* Fetch register REGNUM from the inferior. */
static void
ia64_linux_fetch_register (struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
CORE_ADDR addr;
size_t size;
PTRACE_TYPE_RET *buf;
int pid, i;
if (ia64_cannot_fetch_register (gdbarch, regnum))
{
regcache_raw_supply (regcache, regnum, NULL);
return;
}
/* Cater for systems like GNU/Linux, that implement threads as
separate processes. */
pid = ptid_get_lwp (inferior_ptid);
if (pid == 0)
pid = ptid_get_pid (inferior_ptid);
/* This isn't really an address, but ptrace thinks of it as one. */
addr = ia64_register_addr (gdbarch, regnum);
size = register_size (gdbarch, regnum);
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
buf = alloca (size);
/* Read the register contents from the inferior a chunk at a time. */
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
{
errno = 0;
buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
if (errno != 0)
error (_("Couldn't read register %s (#%d): %s."),
gdbarch_register_name (gdbarch, regnum),
regnum, safe_strerror (errno));
addr += sizeof (PTRACE_TYPE_RET);
}
regcache_raw_supply (regcache, regnum, buf);
}
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
for all registers. */
static void
ia64_linux_fetch_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
if (regnum == -1)
for (regnum = 0;
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
regnum++)
ia64_linux_fetch_register (regcache, regnum);
else
ia64_linux_fetch_register (regcache, regnum);
}
/* Store register REGNUM into the inferior. */
static void
ia64_linux_store_register (const struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
CORE_ADDR addr;
size_t size;
PTRACE_TYPE_RET *buf;
int pid, i;
if (ia64_cannot_store_register (gdbarch, regnum))
return;
/* Cater for systems like GNU/Linux, that implement threads as
separate processes. */
pid = ptid_get_lwp (inferior_ptid);
if (pid == 0)
pid = ptid_get_pid (inferior_ptid);
/* This isn't really an address, but ptrace thinks of it as one. */
addr = ia64_register_addr (gdbarch, regnum);
size = register_size (gdbarch, regnum);
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
buf = alloca (size);
/* Write the register contents into the inferior a chunk at a time. */
regcache_raw_collect (regcache, regnum, buf);
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
{
errno = 0;
ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
if (errno != 0)
error (_("Couldn't write register %s (#%d): %s."),
gdbarch_register_name (gdbarch, regnum),
regnum, safe_strerror (errno));
addr += sizeof (PTRACE_TYPE_RET);
}
}
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
this for all registers. */
static void
ia64_linux_store_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
if (regnum == -1)
for (regnum = 0;
regnum < gdbarch_num_regs (get_regcache_arch (regcache));
regnum++)
ia64_linux_store_register (regcache, regnum);
else
ia64_linux_store_register (regcache, regnum);
}
static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
const char *, gdb_byte *, const gdb_byte *,
ULONGEST, LONGEST);
static LONGEST
ia64_linux_xfer_partial (struct target_ops *ops,
enum target_object object,
const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, LONGEST len)
{
if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
return syscall (__NR_getunwind, readbuf, len);
return super_xfer_partial (ops, object, annex, readbuf, writebuf,
offset, len);
}
void _initialize_ia64_linux_nat (void);
void
_initialize_ia64_linux_nat (void)
{
struct target_ops *t;
/* Fill in the generic GNU/Linux methods. */
t = linux_target ();
/* Override the default fetch/store register routines. */
t->to_fetch_registers = ia64_linux_fetch_registers;
t->to_store_registers = ia64_linux_store_registers;
/* Override the default to_xfer_partial. */
super_xfer_partial = t->to_xfer_partial;
t->to_xfer_partial = ia64_linux_xfer_partial;
/* Override watchpoint routines. */
/* The IA-64 architecture can step over a watch point (without triggering
it again) if the "dd" (data debug fault disable) bit in the processor
status word is set.
This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
code there has determined that a hardware watchpoint has indeed
been hit. The CPU will then be able to execute one instruction
without triggering a watchpoint. */
t->to_have_steppable_watchpoint = 1;
t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
t->to_stopped_data_address = ia64_linux_stopped_data_address;
t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
/* Register the target. */
linux_nat_add_target (t);
linux_nat_set_new_thread (t, ia64_linux_new_thread);
}