/* Target-dependent code for GNU/Linux, architecture independent. Copyright (C) 2009-2013 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdbtypes.h" #include "linux-tdep.h" #include "auxv.h" #include "target.h" #include "gdbthread.h" #include "gdbcore.h" #include "regcache.h" #include "regset.h" #include "elf/common.h" #include "elf-bfd.h" /* for elfcore_write_* */ #include "inferior.h" #include "cli/cli-utils.h" #include "arch-utils.h" #include "gdb_obstack.h" #include "cli/cli-utils.h" #include static struct gdbarch_data *linux_gdbarch_data_handle; struct linux_gdbarch_data { struct type *siginfo_type; }; static void * init_linux_gdbarch_data (struct gdbarch *gdbarch) { return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data); } static struct linux_gdbarch_data * get_linux_gdbarch_data (struct gdbarch *gdbarch) { return gdbarch_data (gdbarch, linux_gdbarch_data_handle); } /* This function is suitable for architectures that don't extend/override the standard siginfo structure. */ struct type * linux_get_siginfo_type (struct gdbarch *gdbarch) { struct linux_gdbarch_data *linux_gdbarch_data; struct type *int_type, *uint_type, *long_type, *void_ptr_type; struct type *uid_type, *pid_type; struct type *sigval_type, *clock_type; struct type *siginfo_type, *sifields_type; struct type *type; linux_gdbarch_data = get_linux_gdbarch_data (gdbarch); if (linux_gdbarch_data->siginfo_type != NULL) return linux_gdbarch_data->siginfo_type; int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0, "int"); uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 1, "unsigned int"); long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long"); void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void); /* sival_t */ sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); TYPE_NAME (sigval_type) = xstrdup ("sigval_t"); append_composite_type_field (sigval_type, "sival_int", int_type); append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type); /* __pid_t */ pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, TYPE_LENGTH (int_type), "__pid_t"); TYPE_TARGET_TYPE (pid_type) = int_type; TYPE_TARGET_STUB (pid_type) = 1; /* __uid_t */ uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, TYPE_LENGTH (uint_type), "__uid_t"); TYPE_TARGET_TYPE (uid_type) = uint_type; TYPE_TARGET_STUB (uid_type) = 1; /* __clock_t */ clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, TYPE_LENGTH (long_type), "__clock_t"); TYPE_TARGET_TYPE (clock_type) = long_type; TYPE_TARGET_STUB (clock_type) = 1; /* _sifields */ sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); { const int si_max_size = 128; int si_pad_size; int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT; /* _pad */ if (gdbarch_ptr_bit (gdbarch) == 64) si_pad_size = (si_max_size / size_of_int) - 4; else si_pad_size = (si_max_size / size_of_int) - 3; append_composite_type_field (sifields_type, "_pad", init_vector_type (int_type, si_pad_size)); } /* _kill */ type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); append_composite_type_field (type, "si_pid", pid_type); append_composite_type_field (type, "si_uid", uid_type); append_composite_type_field (sifields_type, "_kill", type); /* _timer */ type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); append_composite_type_field (type, "si_tid", int_type); append_composite_type_field (type, "si_overrun", int_type); append_composite_type_field (type, "si_sigval", sigval_type); append_composite_type_field (sifields_type, "_timer", type); /* _rt */ type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); append_composite_type_field (type, "si_pid", pid_type); append_composite_type_field (type, "si_uid", uid_type); append_composite_type_field (type, "si_sigval", sigval_type); append_composite_type_field (sifields_type, "_rt", type); /* _sigchld */ type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); append_composite_type_field (type, "si_pid", pid_type); append_composite_type_field (type, "si_uid", uid_type); append_composite_type_field (type, "si_status", int_type); append_composite_type_field (type, "si_utime", clock_type); append_composite_type_field (type, "si_stime", clock_type); append_composite_type_field (sifields_type, "_sigchld", type); /* _sigfault */ type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); append_composite_type_field (type, "si_addr", void_ptr_type); append_composite_type_field (sifields_type, "_sigfault", type); /* _sigpoll */ type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); append_composite_type_field (type, "si_band", long_type); append_composite_type_field (type, "si_fd", int_type); append_composite_type_field (sifields_type, "_sigpoll", type); /* struct siginfo */ siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); TYPE_NAME (siginfo_type) = xstrdup ("siginfo"); append_composite_type_field (siginfo_type, "si_signo", int_type); append_composite_type_field (siginfo_type, "si_errno", int_type); append_composite_type_field (siginfo_type, "si_code", int_type); append_composite_type_field_aligned (siginfo_type, "_sifields", sifields_type, TYPE_LENGTH (long_type)); linux_gdbarch_data->siginfo_type = siginfo_type; return siginfo_type; } static int linux_has_shared_address_space (struct gdbarch *gdbarch) { /* Determine whether we are running on uClinux or normal Linux kernel. */ CORE_ADDR dummy; int target_is_uclinux; target_is_uclinux = (target_auxv_search (¤t_target, AT_NULL, &dummy) > 0 && target_auxv_search (¤t_target, AT_PAGESZ, &dummy) == 0); return target_is_uclinux; } /* This is how we want PTIDs from core files to be printed. */ static char * linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid) { static char buf[80]; if (ptid_get_lwp (ptid) != 0) { snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid)); return buf; } return normal_pid_to_str (ptid); } /* Service function for corefiles and info proc. */ static void read_mapping (const char *line, ULONGEST *addr, ULONGEST *endaddr, const char **permissions, size_t *permissions_len, ULONGEST *offset, const char **device, size_t *device_len, ULONGEST *inode, const char **filename) { const char *p = line; *addr = strtoulst (p, &p, 16); if (*p == '-') p++; *endaddr = strtoulst (p, &p, 16); p = skip_spaces_const (p); *permissions = p; while (*p && !isspace (*p)) p++; *permissions_len = p - *permissions; *offset = strtoulst (p, &p, 16); p = skip_spaces_const (p); *device = p; while (*p && !isspace (*p)) p++; *device_len = p - *device; *inode = strtoulst (p, &p, 10); p = skip_spaces_const (p); *filename = p; } /* Implement the "info proc" command. */ static void linux_info_proc (struct gdbarch *gdbarch, char *args, enum info_proc_what what) { /* A long is used for pid instead of an int to avoid a loss of precision compiler warning from the output of strtoul. */ long pid; int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL); int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL); int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL); int mappings_f = (what == IP_MAPPINGS || what == IP_ALL); int status_f = (what == IP_STATUS || what == IP_ALL); int stat_f = (what == IP_STAT || what == IP_ALL); char filename[100]; char *data; int target_errno; if (args && isdigit (args[0])) pid = strtoul (args, &args, 10); else { if (!target_has_execution) error (_("No current process: you must name one.")); if (current_inferior ()->fake_pid_p) error (_("Can't determine the current process's PID: you must name one.")); pid = current_inferior ()->pid; } args = skip_spaces (args); if (args && args[0]) error (_("Too many parameters: %s"), args); printf_filtered (_("process %ld\n"), pid); if (cmdline_f) { xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid); data = target_fileio_read_stralloc (filename); if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); printf_filtered ("cmdline = '%s'\n", data); do_cleanups (cleanup); } else warning (_("unable to open /proc file '%s'"), filename); } if (cwd_f) { xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid); data = target_fileio_readlink (filename, &target_errno); if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); printf_filtered ("cwd = '%s'\n", data); do_cleanups (cleanup); } else warning (_("unable to read link '%s'"), filename); } if (exe_f) { xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid); data = target_fileio_readlink (filename, &target_errno); if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); printf_filtered ("exe = '%s'\n", data); do_cleanups (cleanup); } else warning (_("unable to read link '%s'"), filename); } if (mappings_f) { xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid); data = target_fileio_read_stralloc (filename); if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); char *line; printf_filtered (_("Mapped address spaces:\n\n")); if (gdbarch_addr_bit (gdbarch) == 32) { printf_filtered ("\t%10s %10s %10s %10s %s\n", "Start Addr", " End Addr", " Size", " Offset", "objfile"); } else { printf_filtered (" %18s %18s %10s %10s %s\n", "Start Addr", " End Addr", " Size", " Offset", "objfile"); } for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n")) { ULONGEST addr, endaddr, offset, inode; const char *permissions, *device, *filename; size_t permissions_len, device_len; read_mapping (line, &addr, &endaddr, &permissions, &permissions_len, &offset, &device, &device_len, &inode, &filename); if (gdbarch_addr_bit (gdbarch) == 32) { printf_filtered ("\t%10s %10s %10s %10s %s\n", paddress (gdbarch, addr), paddress (gdbarch, endaddr), hex_string (endaddr - addr), hex_string (offset), *filename? filename : ""); } else { printf_filtered (" %18s %18s %10s %10s %s\n", paddress (gdbarch, addr), paddress (gdbarch, endaddr), hex_string (endaddr - addr), hex_string (offset), *filename? filename : ""); } } do_cleanups (cleanup); } else warning (_("unable to open /proc file '%s'"), filename); } if (status_f) { xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid); data = target_fileio_read_stralloc (filename); if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); puts_filtered (data); do_cleanups (cleanup); } else warning (_("unable to open /proc file '%s'"), filename); } if (stat_f) { xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid); data = target_fileio_read_stralloc (filename); if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); const char *p = data; printf_filtered (_("Process: %s\n"), pulongest (strtoulst (p, &p, 10))); p = skip_spaces_const (p); if (*p == '(') { const char *ep = strchr (p, ')'); if (ep != NULL) { printf_filtered ("Exec file: %.*s\n", (int) (ep - p - 1), p + 1); p = ep + 1; } } p = skip_spaces_const (p); if (*p) printf_filtered (_("State: %c\n"), *p++); if (*p) printf_filtered (_("Parent process: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Process group: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Session id: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("TTY: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("TTY owner process group: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Flags: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Minor faults (no memory page): %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Minor faults, children: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Major faults (memory page faults): %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Major faults, children: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("utime: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("stime: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("utime, children: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("stime, children: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("jiffies remaining in current " "time slice: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("'nice' value: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("jiffies until next timeout: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("jiffies until next SIGALRM: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("start time (jiffies since " "system boot): %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Virtual memory size: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Resident set size: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("rlim: %s\n"), pulongest (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Start of text: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("End of text: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Start of stack: %s\n"), hex_string (strtoulst (p, &p, 10))); #if 0 /* Don't know how architecture-dependent the rest is... Anyway the signal bitmap info is available from "status". */ if (*p) printf_filtered (_("Kernel stack pointer: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Kernel instr pointer: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Pending signals bitmap: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Blocked signals bitmap: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Ignored signals bitmap: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("Catched signals bitmap: %s\n"), hex_string (strtoulst (p, &p, 10))); if (*p) printf_filtered (_("wchan (system call): %s\n"), hex_string (strtoulst (p, &p, 10))); #endif do_cleanups (cleanup); } else warning (_("unable to open /proc file '%s'"), filename); } } /* Implement "info proc mappings" for a corefile. */ static void linux_core_info_proc_mappings (struct gdbarch *gdbarch, char *args) { asection *section; ULONGEST count, page_size; unsigned char *descdata, *filenames, *descend, *contents; size_t note_size; unsigned int addr_size_bits, addr_size; struct cleanup *cleanup; struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd); /* We assume this for reading 64-bit core files. */ gdb_static_assert (sizeof (ULONGEST) >= 8); section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file"); if (section == NULL) { warning (_("unable to find mappings in core file")); return; } addr_size_bits = gdbarch_addr_bit (core_gdbarch); addr_size = addr_size_bits / 8; note_size = bfd_get_section_size (section); if (note_size < 2 * addr_size) error (_("malformed core note - too short for header")); contents = xmalloc (note_size); cleanup = make_cleanup (xfree, contents); if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size)) error (_("could not get core note contents")); descdata = contents; descend = descdata + note_size; if (descdata[note_size - 1] != '\0') error (_("malformed note - does not end with \\0")); count = bfd_get (addr_size_bits, core_bfd, descdata); descdata += addr_size; page_size = bfd_get (addr_size_bits, core_bfd, descdata); descdata += addr_size; if (note_size < 2 * addr_size + count * 3 * addr_size) error (_("malformed note - too short for supplied file count")); printf_filtered (_("Mapped address spaces:\n\n")); if (gdbarch_addr_bit (gdbarch) == 32) { printf_filtered ("\t%10s %10s %10s %10s %s\n", "Start Addr", " End Addr", " Size", " Offset", "objfile"); } else { printf_filtered (" %18s %18s %10s %10s %s\n", "Start Addr", " End Addr", " Size", " Offset", "objfile"); } filenames = descdata + count * 3 * addr_size; while (--count > 0) { ULONGEST start, end, file_ofs; if (filenames == descend) error (_("malformed note - filenames end too early")); start = bfd_get (addr_size_bits, core_bfd, descdata); descdata += addr_size; end = bfd_get (addr_size_bits, core_bfd, descdata); descdata += addr_size; file_ofs = bfd_get (addr_size_bits, core_bfd, descdata); descdata += addr_size; file_ofs *= page_size; if (gdbarch_addr_bit (gdbarch) == 32) printf_filtered ("\t%10s %10s %10s %10s %s\n", paddress (gdbarch, start), paddress (gdbarch, end), hex_string (end - start), hex_string (file_ofs), filenames); else printf_filtered (" %18s %18s %10s %10s %s\n", paddress (gdbarch, start), paddress (gdbarch, end), hex_string (end - start), hex_string (file_ofs), filenames); filenames += 1 + strlen ((char *) filenames); } do_cleanups (cleanup); } /* Implement "info proc" for a corefile. */ static void linux_core_info_proc (struct gdbarch *gdbarch, char *args, enum info_proc_what what) { int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL); int mappings_f = (what == IP_MAPPINGS || what == IP_ALL); if (exe_f) { const char *exe; exe = bfd_core_file_failing_command (core_bfd); if (exe != NULL) printf_filtered ("exe = '%s'\n", exe); else warning (_("unable to find command name in core file")); } if (mappings_f) linux_core_info_proc_mappings (gdbarch, args); if (!exe_f && !mappings_f) error (_("unable to handle request")); } typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size, ULONGEST offset, ULONGEST inode, int read, int write, int exec, int modified, const char *filename, void *data); /* List memory regions in the inferior for a corefile. */ static int linux_find_memory_regions_full (struct gdbarch *gdbarch, linux_find_memory_region_ftype *func, void *obfd) { char mapsfilename[100]; char *data; /* We need to know the real target PID to access /proc. */ if (current_inferior ()->fake_pid_p) return 1; xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", current_inferior ()->pid); data = target_fileio_read_stralloc (mapsfilename); if (data == NULL) { /* Older Linux kernels did not support /proc/PID/smaps. */ xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", current_inferior ()->pid); data = target_fileio_read_stralloc (mapsfilename); } if (data) { struct cleanup *cleanup = make_cleanup (xfree, data); char *line; line = strtok (data, "\n"); while (line) { ULONGEST addr, endaddr, offset, inode; const char *permissions, *device, *filename; size_t permissions_len, device_len; int read, write, exec; int modified = 0, has_anonymous = 0; read_mapping (line, &addr, &endaddr, &permissions, &permissions_len, &offset, &device, &device_len, &inode, &filename); /* Decode permissions. */ read = (memchr (permissions, 'r', permissions_len) != 0); write = (memchr (permissions, 'w', permissions_len) != 0); exec = (memchr (permissions, 'x', permissions_len) != 0); /* Try to detect if region was modified by parsing smaps counters. */ for (line = strtok (NULL, "\n"); line && line[0] >= 'A' && line[0] <= 'Z'; line = strtok (NULL, "\n")) { char keyword[64 + 1]; if (sscanf (line, "%64s", keyword) != 1) { warning (_("Error parsing {s,}maps file '%s'"), mapsfilename); break; } if (strcmp (keyword, "Anonymous:") == 0) has_anonymous = 1; if (strcmp (keyword, "Shared_Dirty:") == 0 || strcmp (keyword, "Private_Dirty:") == 0 || strcmp (keyword, "Swap:") == 0 || strcmp (keyword, "Anonymous:") == 0) { unsigned long number; if (sscanf (line, "%*s%lu", &number) != 1) { warning (_("Error parsing {s,}maps file '%s' number"), mapsfilename); break; } if (number != 0) modified = 1; } } /* Older Linux kernels did not support the "Anonymous:" counter. If it is missing, we can't be sure - dump all the pages. */ if (!has_anonymous) modified = 1; /* Invoke the callback function to create the corefile segment. */ func (addr, endaddr - addr, offset, inode, read, write, exec, modified, filename, obfd); } do_cleanups (cleanup); return 0; } return 1; } /* A structure for passing information through linux_find_memory_regions_full. */ struct linux_find_memory_regions_data { /* The original callback. */ find_memory_region_ftype func; /* The original datum. */ void *obfd; }; /* A callback for linux_find_memory_regions that converts between the "full"-style callback and find_memory_region_ftype. */ static int linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size, ULONGEST offset, ULONGEST inode, int read, int write, int exec, int modified, const char *filename, void *arg) { struct linux_find_memory_regions_data *data = arg; return data->func (vaddr, size, read, write, exec, modified, data->obfd); } /* A variant of linux_find_memory_regions_full that is suitable as the gdbarch find_memory_regions method. */ static int linux_find_memory_regions (struct gdbarch *gdbarch, find_memory_region_ftype func, void *obfd) { struct linux_find_memory_regions_data data; data.func = func; data.obfd = obfd; return linux_find_memory_regions_full (gdbarch, linux_find_memory_regions_thunk, &data); } /* Determine which signal stopped execution. */ static int find_signalled_thread (struct thread_info *info, void *data) { if (info->suspend.stop_signal != GDB_SIGNAL_0 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid)) return 1; return 0; } static enum gdb_signal find_stop_signal (void) { struct thread_info *info = iterate_over_threads (find_signalled_thread, NULL); if (info) return info->suspend.stop_signal; else return GDB_SIGNAL_0; } /* Generate corefile notes for SPU contexts. */ static char * linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size) { static const char *spu_files[] = { "object-id", "mem", "regs", "fpcr", "lslr", "decr", "decr_status", "signal1", "signal1_type", "signal2", "signal2_type", "event_mask", "event_status", "mbox_info", "ibox_info", "wbox_info", "dma_info", "proxydma_info", }; enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); gdb_byte *spu_ids; LONGEST i, j, size; /* Determine list of SPU ids. */ size = target_read_alloc (¤t_target, TARGET_OBJECT_SPU, NULL, &spu_ids); /* Generate corefile notes for each SPU file. */ for (i = 0; i < size; i += 4) { int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order); for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++) { char annex[32], note_name[32]; gdb_byte *spu_data; LONGEST spu_len; xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]); spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU, annex, &spu_data); if (spu_len > 0) { xsnprintf (note_name, sizeof note_name, "SPU/%s", annex); note_data = elfcore_write_note (obfd, note_data, note_size, note_name, NT_SPU, spu_data, spu_len); xfree (spu_data); if (!note_data) { xfree (spu_ids); return NULL; } } } } if (size > 0) xfree (spu_ids); return note_data; } /* This is used to pass information from linux_make_mappings_corefile_notes through linux_find_memory_regions_full. */ struct linux_make_mappings_data { /* Number of files mapped. */ ULONGEST file_count; /* The obstack for the main part of the data. */ struct obstack *data_obstack; /* The filename obstack. */ struct obstack *filename_obstack; /* The architecture's "long" type. */ struct type *long_type; }; static linux_find_memory_region_ftype linux_make_mappings_callback; /* A callback for linux_find_memory_regions_full that updates the mappings data for linux_make_mappings_corefile_notes. */ static int linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size, ULONGEST offset, ULONGEST inode, int read, int write, int exec, int modified, const char *filename, void *data) { struct linux_make_mappings_data *map_data = data; gdb_byte buf[sizeof (ULONGEST)]; if (*filename == '\0' || inode == 0) return 0; ++map_data->file_count; pack_long (buf, map_data->long_type, vaddr); obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type)); pack_long (buf, map_data->long_type, vaddr + size); obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type)); pack_long (buf, map_data->long_type, offset); obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type)); obstack_grow_str0 (map_data->filename_obstack, filename); return 0; } /* Write the file mapping data to the core file, if possible. OBFD is the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE is a pointer to the note size. Returns the new NOTE_DATA and updates NOTE_SIZE. */ static char * linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, char *note_data, int *note_size) { struct cleanup *cleanup; struct obstack data_obstack, filename_obstack; struct linux_make_mappings_data mapping_data; struct type *long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long"); gdb_byte buf[sizeof (ULONGEST)]; obstack_init (&data_obstack); cleanup = make_cleanup_obstack_free (&data_obstack); obstack_init (&filename_obstack); make_cleanup_obstack_free (&filename_obstack); mapping_data.file_count = 0; mapping_data.data_obstack = &data_obstack; mapping_data.filename_obstack = &filename_obstack; mapping_data.long_type = long_type; /* Reserve space for the count. */ obstack_blank (&data_obstack, TYPE_LENGTH (long_type)); /* We always write the page size as 1 since we have no good way to determine the correct value. */ pack_long (buf, long_type, 1); obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type)); linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback, &mapping_data); if (mapping_data.file_count != 0) { /* Write the count to the obstack. */ pack_long ((gdb_byte *) obstack_base (&data_obstack), long_type, mapping_data.file_count); /* Copy the filenames to the data obstack. */ obstack_grow (&data_obstack, obstack_base (&filename_obstack), obstack_object_size (&filename_obstack)); note_data = elfcore_write_note (obfd, note_data, note_size, "CORE", NT_FILE, obstack_base (&data_obstack), obstack_object_size (&data_obstack)); } do_cleanups (cleanup); return note_data; } /* Records the thread's register state for the corefile note section. */ static char * linux_collect_thread_registers (const struct regcache *regcache, ptid_t ptid, bfd *obfd, char *note_data, int *note_size, enum gdb_signal stop_signal) { struct gdbarch *gdbarch = get_regcache_arch (regcache); struct core_regset_section *sect_list; unsigned long lwp; sect_list = gdbarch_core_regset_sections (gdbarch); gdb_assert (sect_list); /* For remote targets the LWP may not be available, so use the TID. */ lwp = ptid_get_lwp (ptid); if (!lwp) lwp = ptid_get_tid (ptid); while (sect_list->sect_name != NULL) { const struct regset *regset; char *buf; regset = gdbarch_regset_from_core_section (gdbarch, sect_list->sect_name, sect_list->size); gdb_assert (regset && regset->collect_regset); buf = xmalloc (sect_list->size); regset->collect_regset (regset, regcache, -1, buf, sect_list->size); /* PRSTATUS still needs to be treated specially. */ if (strcmp (sect_list->sect_name, ".reg") == 0) note_data = (char *) elfcore_write_prstatus (obfd, note_data, note_size, lwp, gdb_signal_to_host (stop_signal), buf); else note_data = (char *) elfcore_write_register_note (obfd, note_data, note_size, sect_list->sect_name, buf, sect_list->size); xfree (buf); sect_list++; if (!note_data) return NULL; } return note_data; } /* Fetch the siginfo data for the current thread, if it exists. If there is no data, or we could not read it, return NULL. Otherwise, return a newly malloc'd buffer holding the data and fill in *SIZE with the size of the data. The caller is responsible for freeing the data. */ static gdb_byte * linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size) { struct type *siginfo_type; gdb_byte *buf; LONGEST bytes_read; struct cleanup *cleanups; if (!gdbarch_get_siginfo_type_p (gdbarch)) return NULL; siginfo_type = gdbarch_get_siginfo_type (gdbarch); buf = xmalloc (TYPE_LENGTH (siginfo_type)); cleanups = make_cleanup (xfree, buf); bytes_read = target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, buf, 0, TYPE_LENGTH (siginfo_type)); if (bytes_read == TYPE_LENGTH (siginfo_type)) { discard_cleanups (cleanups); *size = bytes_read; } else { do_cleanups (cleanups); buf = NULL; } return buf; } struct linux_corefile_thread_data { struct gdbarch *gdbarch; int pid; bfd *obfd; char *note_data; int *note_size; int num_notes; enum gdb_signal stop_signal; linux_collect_thread_registers_ftype collect; }; /* Called by gdbthread.c once per thread. Records the thread's register state for the corefile note section. */ static int linux_corefile_thread_callback (struct thread_info *info, void *data) { struct linux_corefile_thread_data *args = data; if (ptid_get_pid (info->ptid) == args->pid) { struct cleanup *old_chain; struct regcache *regcache; gdb_byte *siginfo_data; LONGEST siginfo_size; regcache = get_thread_arch_regcache (info->ptid, args->gdbarch); old_chain = save_inferior_ptid (); inferior_ptid = info->ptid; target_fetch_registers (regcache, -1); siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size); do_cleanups (old_chain); old_chain = make_cleanup (xfree, siginfo_data); args->note_data = args->collect (regcache, info->ptid, args->obfd, args->note_data, args->note_size, args->stop_signal); args->num_notes++; if (siginfo_data != NULL) { args->note_data = elfcore_write_note (args->obfd, args->note_data, args->note_size, "CORE", NT_SIGINFO, siginfo_data, siginfo_size); args->num_notes++; } do_cleanups (old_chain); } return !args->note_data; } /* Fill the PRPSINFO structure with information about the process being debugged. Returns 1 in case of success, 0 for failures. Please note that even if the structure cannot be entirely filled (e.g., GDB was unable to gather information about the process UID/GID), this function will still return 1 since some information was already recorded. It will only return 0 iff nothing can be gathered. */ static int linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p) { /* The filename which we will use to obtain some info about the process. We will basically use this to store the `/proc/PID/FILENAME' file. */ char filename[100]; /* The full name of the program which generated the corefile. */ char *fname; /* The basename of the executable. */ const char *basename; /* The arguments of the program. */ char *psargs; char *infargs; /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */ char *proc_stat, *proc_status; /* Temporary buffer. */ char *tmpstr; /* The valid states of a process, according to the Linux kernel. */ const char valid_states[] = "RSDTZW"; /* The program state. */ const char *prog_state; /* The state of the process. */ char pr_sname; /* The PID of the program which generated the corefile. */ pid_t pid; /* Process flags. */ unsigned int pr_flag; /* Process nice value. */ long pr_nice; /* The number of fields read by `sscanf'. */ int n_fields = 0; /* Cleanups. */ struct cleanup *c; int i; gdb_assert (p != NULL); /* Obtaining PID and filename. */ pid = ptid_get_pid (inferior_ptid); xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid); fname = target_fileio_read_stralloc (filename); if (fname == NULL || *fname == '\0') { /* No program name was read, so we won't be able to retrieve more information about the process. */ xfree (fname); return 0; } c = make_cleanup (xfree, fname); memset (p, 0, sizeof (*p)); /* Defining the PID. */ p->pr_pid = pid; /* Copying the program name. Only the basename matters. */ basename = lbasename (fname); strncpy (p->pr_fname, basename, sizeof (p->pr_fname)); p->pr_fname[sizeof (p->pr_fname) - 1] = '\0'; infargs = get_inferior_args (); psargs = xstrdup (fname); if (infargs != NULL) psargs = reconcat (psargs, psargs, " ", infargs, NULL); make_cleanup (xfree, psargs); strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs)); p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0'; xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid); proc_stat = target_fileio_read_stralloc (filename); make_cleanup (xfree, proc_stat); if (proc_stat == NULL || *proc_stat == '\0') { /* Despite being unable to read more information about the process, we return 1 here because at least we have its command line, PID and arguments. */ do_cleanups (c); return 1; } /* Ok, we have the stats. It's time to do a little parsing of the contents of the buffer, so that we end up reading what we want. The following parsing mechanism is strongly based on the information generated by the `fs/proc/array.c' file, present in the Linux kernel tree. More details about how the information is displayed can be obtained by seeing the manpage of proc(5), specifically under the entry of `/proc/[pid]/stat'. */ /* Getting rid of the PID, since we already have it. */ while (isdigit (*proc_stat)) ++proc_stat; proc_stat = skip_spaces (proc_stat); /* Getting rid of the executable name, since we already have it. We know that this name will be in parentheses, so we can safely look for the close-paren. */ while (*proc_stat != ')') ++proc_stat; ++proc_stat; proc_stat = skip_spaces (proc_stat); n_fields = sscanf (proc_stat, "%c" /* Process state. */ "%d%d%d" /* Parent PID, group ID, session ID. */ "%*d%*d" /* tty_nr, tpgid (not used). */ "%u" /* Flags. */ "%*s%*s%*s%*s" /* minflt, cminflt, majflt, cmajflt (not used). */ "%*s%*s%*s%*s" /* utime, stime, cutime, cstime (not used). */ "%*s" /* Priority (not used). */ "%ld", /* Nice. */ &pr_sname, &p->pr_ppid, &p->pr_pgrp, &p->pr_sid, &pr_flag, &pr_nice); if (n_fields != 6) { /* Again, we couldn't read the complementary information about the process state. However, we already have minimal information, so we just return 1 here. */ do_cleanups (c); return 1; } /* Filling the structure fields. */ prog_state = strchr (valid_states, pr_sname); if (prog_state != NULL) p->pr_state = prog_state - valid_states; else { /* Zero means "Running". */ p->pr_state = 0; } p->pr_sname = p->pr_state > 5 ? '.' : pr_sname; p->pr_zomb = p->pr_sname == 'Z'; p->pr_nice = pr_nice; p->pr_flag = pr_flag; /* Finally, obtaining the UID and GID. For that, we read and parse the contents of the `/proc/PID/status' file. */ xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid); proc_status = target_fileio_read_stralloc (filename); make_cleanup (xfree, proc_status); if (proc_status == NULL || *proc_status == '\0') { /* Returning 1 since we already have a bunch of information. */ do_cleanups (c); return 1; } /* Extracting the UID. */ tmpstr = strstr (proc_status, "Uid:"); if (tmpstr != NULL) { /* Advancing the pointer to the beginning of the UID. */ tmpstr += sizeof ("Uid:"); while (*tmpstr != '\0' && !isdigit (*tmpstr)) ++tmpstr; if (isdigit (*tmpstr)) p->pr_uid = strtol (tmpstr, &tmpstr, 10); } /* Extracting the GID. */ tmpstr = strstr (proc_status, "Gid:"); if (tmpstr != NULL) { /* Advancing the pointer to the beginning of the GID. */ tmpstr += sizeof ("Gid:"); while (*tmpstr != '\0' && !isdigit (*tmpstr)) ++tmpstr; if (isdigit (*tmpstr)) p->pr_gid = strtol (tmpstr, &tmpstr, 10); } do_cleanups (c); return 1; } /* Fills the "to_make_corefile_note" target vector. Builds the note section for a corefile, and returns it in a malloc buffer. */ char * linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size, linux_collect_thread_registers_ftype collect) { struct linux_corefile_thread_data thread_args; struct elf_internal_linux_prpsinfo prpsinfo; char *note_data = NULL; gdb_byte *auxv; int auxv_len; if (linux_fill_prpsinfo (&prpsinfo)) { if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch)) { note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd, note_data, note_size, &prpsinfo); } else { if (gdbarch_ptr_bit (gdbarch) == 64) note_data = elfcore_write_linux_prpsinfo64 (obfd, note_data, note_size, &prpsinfo); else note_data = elfcore_write_linux_prpsinfo32 (obfd, note_data, note_size, &prpsinfo); } } /* Thread register information. */ thread_args.gdbarch = gdbarch; thread_args.pid = ptid_get_pid (inferior_ptid); thread_args.obfd = obfd; thread_args.note_data = note_data; thread_args.note_size = note_size; thread_args.num_notes = 0; thread_args.stop_signal = find_stop_signal (); thread_args.collect = collect; iterate_over_threads (linux_corefile_thread_callback, &thread_args); note_data = thread_args.note_data; if (!note_data) return NULL; /* Auxillary vector. */ auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV, NULL, &auxv); if (auxv_len > 0) { note_data = elfcore_write_note (obfd, note_data, note_size, "CORE", NT_AUXV, auxv, auxv_len); xfree (auxv); if (!note_data) return NULL; } /* SPU information. */ note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size); if (!note_data) return NULL; /* File mappings. */ note_data = linux_make_mappings_corefile_notes (gdbarch, obfd, note_data, note_size); make_cleanup (xfree, note_data); return note_data; } static char * linux_make_corefile_notes_1 (struct gdbarch *gdbarch, bfd *obfd, int *note_size) { /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been converted to gdbarch_core_regset_sections, we no longer need to fall back to the target method at this point. */ if (!gdbarch_core_regset_sections (gdbarch)) return target_make_corefile_notes (obfd, note_size); else return linux_make_corefile_notes (gdbarch, obfd, note_size, linux_collect_thread_registers); } /* To be called from the various GDB_OSABI_LINUX handlers for the various GNU/Linux architectures and machine types. */ void linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str); set_gdbarch_info_proc (gdbarch, linux_info_proc); set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc); set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions); set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes_1); set_gdbarch_has_shared_address_space (gdbarch, linux_has_shared_address_space); } /* Provide a prototype to silence -Wmissing-prototypes. */ extern initialize_file_ftype _initialize_linux_tdep; void _initialize_linux_tdep (void) { linux_gdbarch_data_handle = gdbarch_data_register_post_init (init_linux_gdbarch_data); }