// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger. // OBSOLETE // OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software // OBSOLETE Foundation, Inc. // OBSOLETE // OBSOLETE This file is part of GDB. // OBSOLETE // OBSOLETE This program is free software; you can redistribute it and/or modify // OBSOLETE it under the terms of the GNU General Public License as published by // OBSOLETE the Free Software Foundation; either version 2 of the License, or // OBSOLETE (at your option) any later version. // OBSOLETE // OBSOLETE This program is distributed in the hope that it will be useful, // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // OBSOLETE GNU General Public License for more details. // OBSOLETE // OBSOLETE You should have received a copy of the GNU General Public License // OBSOLETE along with this program; if not, write to the Free Software // OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, // OBSOLETE Boston, MA 02111-1307, USA. */ // OBSOLETE // OBSOLETE #include "defs.h" // OBSOLETE #include "frame.h" // OBSOLETE #include "inferior.h" // OBSOLETE #include "target.h" // OBSOLETE #include "value.h" // OBSOLETE #include "bfd.h" // OBSOLETE #include "gdb_string.h" // OBSOLETE #include "gdbcore.h" // OBSOLETE #include "symfile.h" // OBSOLETE #include "regcache.h" // OBSOLETE // OBSOLETE /* Function: m32r_use_struct_convention // OBSOLETE Return nonzero if call_function should allocate stack space for a // OBSOLETE struct return? */ // OBSOLETE int // OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type) // OBSOLETE { // OBSOLETE return (TYPE_LENGTH (type) > 8); // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: frame_find_saved_regs // OBSOLETE Return the frame_saved_regs structure for the frame. // OBSOLETE Doesn't really work for dummy frames, but it does pass back // OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */ // OBSOLETE // OBSOLETE void // OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi, // OBSOLETE struct frame_saved_regs *regaddr) // OBSOLETE { // OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); // OBSOLETE } // OBSOLETE // OBSOLETE /* Turn this on if you want to see just how much instruction decoding // OBSOLETE if being done, its quite a lot // OBSOLETE */ // OBSOLETE #if 0 // OBSOLETE static void // OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn) // OBSOLETE { // OBSOLETE printf_filtered (" %s %08x %08x ", // OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn); // OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info); // OBSOLETE printf_filtered ("\n"); // OBSOLETE } // OBSOLETE #define insn_debug(args) { printf_filtered args; } // OBSOLETE #else // OBSOLETE #define dump_insn(a,b,c) {} // OBSOLETE #define insn_debug(args) {} // OBSOLETE #endif // OBSOLETE // OBSOLETE #define DEFAULT_SEARCH_LIMIT 44 // OBSOLETE // OBSOLETE /* Function: scan_prologue // OBSOLETE This function decodes the target function prologue to determine // OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it. // OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument, // OBSOLETE and returns the frame size. */ // OBSOLETE // OBSOLETE /* // OBSOLETE The sequence it currently generates is: // OBSOLETE // OBSOLETE if (varargs function) { ddi sp,#n } // OBSOLETE push registers // OBSOLETE if (additional stack <= 256) { addi sp,#-stack } // OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack // OBSOLETE // OBSOLETE } else if (additional stack) { // OBSOLETE seth sp,#(stack & 0xffff0000) // OBSOLETE or3 sp,sp,#(stack & 0x0000ffff) // OBSOLETE sub sp,r4 // OBSOLETE } // OBSOLETE if (frame pointer) { // OBSOLETE mv sp,fp // OBSOLETE } // OBSOLETE // OBSOLETE These instructions are scheduled like everything else, so you should stop at // OBSOLETE the first branch instruction. // OBSOLETE // OBSOLETE */ // OBSOLETE // OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info. // OBSOLETE The results of decoding a prologue should be cached because this // OBSOLETE thrashing is getting nuts. // OBSOLETE I am thinking of making a container class with two indexes, name and // OBSOLETE address. It may be better to extend the symbol table. // OBSOLETE */ // OBSOLETE // OBSOLETE static void // OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */ // OBSOLETE unsigned long *framelength, struct frame_info *fi, // OBSOLETE struct frame_saved_regs *fsr) // OBSOLETE { // OBSOLETE unsigned long framesize; // OBSOLETE int insn; // OBSOLETE int op1; // OBSOLETE int maybe_one_more = 0; // OBSOLETE CORE_ADDR after_prologue = 0; // OBSOLETE CORE_ADDR after_stack_adjust = 0; // OBSOLETE CORE_ADDR current_pc; // OBSOLETE // OBSOLETE // OBSOLETE framesize = 0; // OBSOLETE after_prologue = 0; // OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc)); // OBSOLETE // OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) // OBSOLETE { // OBSOLETE // OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2); // OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */ // OBSOLETE // OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its // OBSOLETE immediate data as though it were an instruction */ // OBSOLETE if (current_pc & 0x02) // OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */ // OBSOLETE if (maybe_one_more) // OBSOLETE { /* The last instruction was a branch, usually terminates // OBSOLETE the series, but if this is a parallel instruction, // OBSOLETE it may be a stack framing instruction */ // OBSOLETE if (!(insn & 0x8000)) // OBSOLETE { // OBSOLETE insn_debug (("Really done")); // OBSOLETE break; /* nope, we are really done */ // OBSOLETE } // OBSOLETE } // OBSOLETE insn &= 0x7fff; /* decode this instruction further */ // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE if (maybe_one_more) // OBSOLETE break; /* This isnt the one more */ // OBSOLETE if (insn & 0x8000) // OBSOLETE { // OBSOLETE insn_debug (("32 bit insn\n")); // OBSOLETE if (current_pc == scan_limit) // OBSOLETE scan_limit += 2; /* extend the search */ // OBSOLETE current_pc += 2; /* skip the immediate data */ // OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */ // OBSOLETE /* add 16 bit sign-extended offset */ // OBSOLETE { // OBSOLETE insn_debug (("stack increment\n")); // OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2)); // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */ // OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24) // OBSOLETE { /* subtract 24 bit sign-extended negative-offset */ // OBSOLETE dump_insn ("insn-2", current_pc + 2, insn); // OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4); // OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn); // OBSOLETE if (insn & 0x00800000) /* sign extend */ // OBSOLETE insn |= 0xff000000; /* negative */ // OBSOLETE else // OBSOLETE insn &= 0x00ffffff; /* positive */ // OBSOLETE framesize += insn; // OBSOLETE } // OBSOLETE } // OBSOLETE after_prologue = current_pc; // OBSOLETE continue; // OBSOLETE } // OBSOLETE } // OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */ // OBSOLETE // OBSOLETE if ((insn & 0xf0ff) == 0x207f) // OBSOLETE { /* st reg, @-sp */ // OBSOLETE int regno; // OBSOLETE insn_debug (("push\n")); // OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */ // OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi) // OBSOLETE fi->using_frame_pointer = 1; // OBSOLETE #endif // OBSOLETE framesize += 4; // OBSOLETE #if 0 // OBSOLETE /* Why should we increase the scan limit, just because we did a push? // OBSOLETE And if there is a reason, surely we would only want to do it if we // OBSOLETE had already reached the scan limit... */ // OBSOLETE if (current_pc == scan_limit) // OBSOLETE scan_limit += 2; // OBSOLETE #endif // OBSOLETE regno = ((insn >> 8) & 0xf); // OBSOLETE if (fsr) /* save_regs offset */ // OBSOLETE fsr->regs[regno] = framesize; // OBSOLETE after_prologue = 0; // OBSOLETE continue; // OBSOLETE } // OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */ // OBSOLETE /* add 8 bit sign-extended offset */ // OBSOLETE { // OBSOLETE int stack_adjust = (char) (insn & 0xff); // OBSOLETE // OBSOLETE /* there are probably two of these stack adjustments: // OBSOLETE 1) A negative one in the prologue, and // OBSOLETE 2) A positive one in the epilogue. // OBSOLETE We are only interested in the first one. */ // OBSOLETE // OBSOLETE if (stack_adjust < 0) // OBSOLETE { // OBSOLETE framesize -= stack_adjust; // OBSOLETE after_prologue = 0; // OBSOLETE /* A frameless function may have no "mv fp, sp". // OBSOLETE In that case, this is the end of the prologue. */ // OBSOLETE after_stack_adjust = current_pc + 2; // OBSOLETE } // OBSOLETE continue; // OBSOLETE } // OBSOLETE if (insn == 0x1d8f) // OBSOLETE { /* mv fp, sp */ // OBSOLETE if (fi) // OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */ // OBSOLETE insn_debug (("done fp found\n")); // OBSOLETE after_prologue = current_pc + 2; // OBSOLETE break; /* end of stack adjustments */ // OBSOLETE } // OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */ // OBSOLETE { // OBSOLETE insn_debug (("nop\n")); // OBSOLETE after_prologue = current_pc + 2; // OBSOLETE continue; /* nop occurs between pushes */ // OBSOLETE } // OBSOLETE /* End of prolog if any of these are branch instructions */ // OBSOLETE if ((op1 == 0x7000) // OBSOLETE || (op1 == 0xb000) // OBSOLETE || (op1 == 0xf000)) // OBSOLETE { // OBSOLETE after_prologue = current_pc; // OBSOLETE insn_debug (("Done: branch\n")); // OBSOLETE maybe_one_more = 1; // OBSOLETE continue; // OBSOLETE } // OBSOLETE /* Some of the branch instructions are mixed with other types */ // OBSOLETE if (op1 == 0x1000) // OBSOLETE { // OBSOLETE int subop = insn & 0x0ff0; // OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0)) // OBSOLETE { // OBSOLETE insn_debug (("done: jmp\n")); // OBSOLETE after_prologue = current_pc; // OBSOLETE maybe_one_more = 1; // OBSOLETE continue; /* jmp , jl */ // OBSOLETE } // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE if (current_pc >= scan_limit) // OBSOLETE { // OBSOLETE if (pl_endptr) // OBSOLETE { // OBSOLETE #if 1 // OBSOLETE if (after_stack_adjust != 0) // OBSOLETE /* We did not find a "mv fp,sp", but we DID find // OBSOLETE a stack_adjust. Is it safe to use that as the // OBSOLETE end of the prologue? I just don't know. */ // OBSOLETE { // OBSOLETE *pl_endptr = after_stack_adjust; // OBSOLETE if (framelength) // OBSOLETE *framelength = framesize; // OBSOLETE } // OBSOLETE else // OBSOLETE #endif // OBSOLETE /* We reached the end of the loop without finding the end // OBSOLETE of the prologue. No way to win -- we should report failure. // OBSOLETE The way we do that is to return the original start_pc. // OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */ // OBSOLETE *pl_endptr = start_pc; // OBSOLETE } // OBSOLETE return; // OBSOLETE } // OBSOLETE if (after_prologue == 0) // OBSOLETE after_prologue = current_pc; // OBSOLETE // OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue)); // OBSOLETE if (framelength) // OBSOLETE *framelength = framesize; // OBSOLETE if (pl_endptr) // OBSOLETE *pl_endptr = after_prologue; // OBSOLETE } /* decode_prologue */ // OBSOLETE // OBSOLETE /* Function: skip_prologue // OBSOLETE Find end of function prologue */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m32r_skip_prologue (CORE_ADDR pc) // OBSOLETE { // OBSOLETE CORE_ADDR func_addr, func_end; // OBSOLETE struct symtab_and_line sal; // OBSOLETE // OBSOLETE /* See what the symbol table says */ // OBSOLETE // OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) // OBSOLETE { // OBSOLETE sal = find_pc_line (func_addr, 0); // OBSOLETE // OBSOLETE if (sal.line != 0 && sal.end <= func_end) // OBSOLETE { // OBSOLETE // OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end)); // OBSOLETE func_end = sal.end; // OBSOLETE } // OBSOLETE else // OBSOLETE /* Either there's no line info, or the line after the prologue is after // OBSOLETE the end of the function. In this case, there probably isn't a // OBSOLETE prologue. */ // OBSOLETE { // OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n", // OBSOLETE sal.line, sal.end, func_end)); // OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); // OBSOLETE } // OBSOLETE } // OBSOLETE else // OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT; // OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0); // OBSOLETE return sal.end; // OBSOLETE } // OBSOLETE // OBSOLETE static unsigned long // OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr) // OBSOLETE { // OBSOLETE struct symtab_and_line sal; // OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc; // OBSOLETE unsigned long framesize = 0; // OBSOLETE // OBSOLETE /* this code essentially duplicates skip_prologue, // OBSOLETE but we need the start address below. */ // OBSOLETE // OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) // OBSOLETE { // OBSOLETE sal = find_pc_line (prologue_start, 0); // OBSOLETE // OBSOLETE if (sal.line == 0) /* no line info, use current PC */ // OBSOLETE if (prologue_start == entry_point_address ()) // OBSOLETE return 0; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE prologue_start = fi->pc; // OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks: // OBSOLETE allow for 16 pushes, an add, // OBSOLETE and "mv fp,sp" */ // OBSOLETE } // OBSOLETE #if 0 // OBSOLETE prologue_end = min (prologue_end, fi->pc); // OBSOLETE #endif // OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n", // OBSOLETE fi->pc, prologue_start, prologue_end)); // OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT); // OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize, // OBSOLETE fi, fsr); // OBSOLETE return framesize; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: init_extra_frame_info // OBSOLETE This function actually figures out the frame address for a given pc and // OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit // OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded // OBSOLETE on the stack. The only reliable way to get this info is to // OBSOLETE examine the prologue. */ // OBSOLETE // OBSOLETE void // OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi) // OBSOLETE { // OBSOLETE int reg; // OBSOLETE // OBSOLETE if (fi->next) // OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next); // OBSOLETE // OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); // OBSOLETE // OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE { // OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong // OBSOLETE by assuming it's always FP. */ // OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame, // OBSOLETE SP_REGNUM); // OBSOLETE fi->framesize = 0; // OBSOLETE return; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE fi->using_frame_pointer = 0; // OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr); // OBSOLETE // OBSOLETE if (!fi->next) // OBSOLETE if (fi->using_frame_pointer) // OBSOLETE { // OBSOLETE fi->frame = read_register (FP_REGNUM); // OBSOLETE } // OBSOLETE else // OBSOLETE fi->frame = read_register (SP_REGNUM); // OBSOLETE else // OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer) // OBSOLETE /* we have an FP */ // OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */ // OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4); // OBSOLETE for (reg = 0; reg < NUM_REGS; reg++) // OBSOLETE if (fi->fsr.regs[reg] != 0) // OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg]; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: m32r_virtual_frame_pointer // OBSOLETE Return the register that the function uses for a frame pointer, // OBSOLETE plus any necessary offset to be applied to the register before // OBSOLETE any frame pointer offsets. */ // OBSOLETE // OBSOLETE void // OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset) // OBSOLETE { // OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc (); // OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi); // OBSOLETE // OBSOLETE /* Set up a dummy frame_info. */ // OBSOLETE fi->next = NULL; // OBSOLETE fi->prev = NULL; // OBSOLETE fi->frame = 0; // OBSOLETE fi->pc = pc; // OBSOLETE // OBSOLETE /* Analyze the prolog and fill in the extra info. */ // OBSOLETE m32r_init_extra_frame_info (fi); // OBSOLETE // OBSOLETE /* Results will tell us which type of frame it uses. */ // OBSOLETE if (fi->using_frame_pointer) // OBSOLETE { // OBSOLETE *reg = FP_REGNUM; // OBSOLETE *offset = 0; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE *reg = SP_REGNUM; // OBSOLETE *offset = 0; // OBSOLETE } // OBSOLETE do_cleanups (old_chain); // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: find_callers_reg // OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing // OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and // OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This // OBSOLETE would provide a graceful failure mode when trying to get the value of // OBSOLETE caller-saves registers for an inner frame. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum) // OBSOLETE { // OBSOLETE for (; fi; fi = fi->next) // OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum); // OBSOLETE else if (fi->fsr.regs[regnum] != 0) // OBSOLETE return read_memory_integer (fi->fsr.regs[regnum], // OBSOLETE REGISTER_RAW_SIZE (regnum)); // OBSOLETE return read_register (regnum); // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of // OBSOLETE the calling function's frame. This will be used to create a new // OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and // OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For // OBSOLETE m32r, we save the frame size when we initialize the frame_info. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m32r_frame_chain (struct frame_info *fi) // OBSOLETE { // OBSOLETE CORE_ADDR fn_start, callers_pc, fp; // OBSOLETE // OBSOLETE /* is this a dummy frame? */ // OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE return fi->frame; /* dummy frame same as caller's frame */ // OBSOLETE // OBSOLETE /* is caller-of-this a dummy frame? */ // OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ // OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM); // OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp)) // OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */ // OBSOLETE // OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) // OBSOLETE if (fn_start == entry_point_address ()) // OBSOLETE return 0; /* in _start fn, don't chain further */ // OBSOLETE if (fi->framesize == 0) // OBSOLETE { // OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n", // OBSOLETE paddr (fi->frame), // OBSOLETE paddr (fi->pc)); // OBSOLETE return 0; // OBSOLETE } // OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize)); // OBSOLETE return fi->frame + fi->framesize; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: push_return_address (pc) // OBSOLETE Set up the return address for the inferior function call. // OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction // OBSOLETE (ie. when using an empty CALL_DUMMY) */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp) // OBSOLETE { // OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); // OBSOLETE return sp; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: pop_frame // OBSOLETE Discard from the stack the innermost frame, // OBSOLETE restoring all saved registers. */ // OBSOLETE // OBSOLETE struct frame_info * // OBSOLETE m32r_pop_frame (struct frame_info *frame) // OBSOLETE { // OBSOLETE int regnum; // OBSOLETE // OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) // OBSOLETE generic_pop_dummy_frame (); // OBSOLETE else // OBSOLETE { // OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++) // OBSOLETE if (frame->fsr.regs[regnum] != 0) // OBSOLETE write_register (regnum, // OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4)); // OBSOLETE // OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); // OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM)); // OBSOLETE if (read_register (PSW_REGNUM) & 0x80) // OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM)); // OBSOLETE else // OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM)); // OBSOLETE } // OBSOLETE flush_cached_frames (); // OBSOLETE return NULL; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: frame_saved_pc // OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved // OBSOLETE in the stack anywhere, otherwise we get it from the registers. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m32r_frame_saved_pc (struct frame_info *fi) // OBSOLETE { // OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) // OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); // OBSOLETE else // OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM); // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: push_arguments // OBSOLETE Setup the function arguments for calling a function in the inferior. // OBSOLETE // OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3) // OBSOLETE which are dedicated for passing function arguments. Up to the first // OBSOLETE four arguments (depending on size) may go into these registers. // OBSOLETE The rest go on the stack. // OBSOLETE // OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole // OBSOLETE register or a whole 32-bit word on the stack, and will be // OBSOLETE right-justified in the register or the stack word. This includes // OBSOLETE chars, shorts, and small aggregate types. // OBSOLETE // OBSOLETE Arguments of 8 bytes size are split between two registers, if // OBSOLETE available. If only one register is available, the argument will // OBSOLETE be split between the register and the stack. Otherwise it is // OBSOLETE passed entirely on the stack. Aggregate types with sizes between // OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified // OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes // OBSOLETE which are right-justified). // OBSOLETE // OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack, // OBSOLETE and then a pointer to the copy is passed in the place of the normal // OBSOLETE argument (either in a register if available, or on the stack). // OBSOLETE // OBSOLETE Functions that must return an aggregate type can return it in the // OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or // OBSOLETE less. For larger return values, the caller must allocate space for // OBSOLETE the callee to copy the return value to. A pointer to this space is // OBSOLETE passed as an implicit first argument, always in R0. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp, // OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr) // OBSOLETE { // OBSOLETE int stack_offset, stack_alloc; // OBSOLETE int argreg; // OBSOLETE int argnum; // OBSOLETE struct type *type; // OBSOLETE CORE_ADDR regval; // OBSOLETE char *val; // OBSOLETE char valbuf[4]; // OBSOLETE int len; // OBSOLETE int odd_sized_struct; // OBSOLETE // OBSOLETE /* first force sp to a 4-byte alignment */ // OBSOLETE sp = sp & ~3; // OBSOLETE // OBSOLETE argreg = ARG0_REGNUM; // OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */ // OBSOLETE if (struct_return) // OBSOLETE write_register (argreg++, struct_addr); // OBSOLETE // OBSOLETE /* Now make sure there's space on the stack */ // OBSOLETE for (argnum = 0, stack_alloc = 0; // OBSOLETE argnum < nargs; argnum++) // OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3); // OBSOLETE sp -= stack_alloc; /* make room on stack for args */ // OBSOLETE // OBSOLETE // OBSOLETE /* Now load as many as possible of the first arguments into // OBSOLETE registers, and push the rest onto the stack. There are 16 bytes // OBSOLETE in four registers available. Loop thru args from first to last. */ // OBSOLETE // OBSOLETE argreg = ARG0_REGNUM; // OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) // OBSOLETE { // OBSOLETE type = VALUE_TYPE (args[argnum]); // OBSOLETE len = TYPE_LENGTH (type); // OBSOLETE memset (valbuf, 0, sizeof (valbuf)); // OBSOLETE if (len < 4) // OBSOLETE { /* value gets right-justified in the register or stack word */ // OBSOLETE memcpy (valbuf + (4 - len), // OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len); // OBSOLETE val = valbuf; // OBSOLETE } // OBSOLETE else // OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]); // OBSOLETE // OBSOLETE if (len > 4 && (len & 3) != 0) // OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */ // OBSOLETE else // OBSOLETE odd_sized_struct = 0; // OBSOLETE while (len > 0) // OBSOLETE { // OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct) // OBSOLETE { /* must go on the stack */ // OBSOLETE write_memory (sp + stack_offset, val, 4); // OBSOLETE stack_offset += 4; // OBSOLETE } // OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!! // OBSOLETE That's because some *&^%$ things get passed on the stack // OBSOLETE AND in the registers! */ // OBSOLETE if (argreg <= ARGLAST_REGNUM) // OBSOLETE { /* there's room in a register */ // OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg)); // OBSOLETE write_register (argreg++, regval); // OBSOLETE } // OBSOLETE /* Store the value 4 bytes at a time. This means that things // OBSOLETE larger than 4 bytes may go partly in registers and partly // OBSOLETE on the stack. */ // OBSOLETE len -= REGISTER_RAW_SIZE (argreg); // OBSOLETE val += REGISTER_RAW_SIZE (argreg); // OBSOLETE } // OBSOLETE } // OBSOLETE return sp; // OBSOLETE } // OBSOLETE // OBSOLETE /* Function: fix_call_dummy // OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function // OBSOLETE has the responsability to insert the address of the actual code that // OBSOLETE is the target of the target function call. */ // OBSOLETE // OBSOLETE void // OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, // OBSOLETE struct value **args, struct type *type, int gcc_p) // OBSOLETE { // OBSOLETE /* ld24 r8, <(imm24) fun> */ // OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Function: m32r_write_sp // OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI, // OBSOLETE we must actually write one of those two as well, depending on PSW. */ // OBSOLETE // OBSOLETE void // OBSOLETE m32r_write_sp (CORE_ADDR val) // OBSOLETE { // OBSOLETE unsigned long psw = read_register (PSW_REGNUM); // OBSOLETE // OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */ // OBSOLETE write_register (SPU_REGNUM, val); // OBSOLETE else // OBSOLETE write_register (SPI_REGNUM, val); // OBSOLETE write_register (SP_REGNUM, val); // OBSOLETE } // OBSOLETE // OBSOLETE void // OBSOLETE _initialize_m32r_tdep (void) // OBSOLETE { // OBSOLETE tm_print_insn = print_insn_m32r; // OBSOLETE }