/* Target-dependent code for PowerPC systems using the SVR4 ABI for GDB, the GNU debugger. Copyright 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdbcore.h" #include "inferior.h" #include "regcache.h" #include "value.h" #include "gdb_string.h" #include "ppc-tdep.h" /* Ensure that X is aligned to an S byte boundary (assuming that S is a power of 2) rounding up/down where necessary. */ static ULONGEST align_up (ULONGEST x, int s) { return (x + s - 1) & -s; } static ULONGEST align_down (ULONGEST x, int s) { return (x & -s); } /* Pass the arguments in either registers, or in the stack. Using the ppc sysv ABI, the first eight words of the argument list (that might be less than eight parameters if some parameters occupy more than one word) are passed in r3..r10 registers. float and double parameters are passed in fpr's, in addition to that. Rest of the parameters if any are passed in user stack. If the function is returning a structure, then the return address is passed in r3, then the first 7 words of the parametes can be passed in registers, starting from r4. */ CORE_ADDR ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); const CORE_ADDR saved_sp = read_sp (); int argspace = 0; /* 0 is an initial wrong guess. */ int write_pass; /* Go through the argument list twice. Pass 1: Figure out how much new stack space is required for arguments and pushed values. Unlike the PowerOpen ABI, the SysV ABI doesn't reserve any extra space for parameters which are put in registers, but does always push structures and then pass their address. Pass 2: Replay the same computation but this time also write the values out to the target. */ for (write_pass = 0; write_pass < 2; write_pass++) { int argno; /* Next available floating point register for float and double arguments. */ int freg = 1; /* Next available general register for non-float, non-vector arguments. */ int greg = 3; /* Next available vector register for vector arguments. */ int vreg = 2; /* Arguments start above the "LR save word" and "Back chain". */ int argoffset = 2 * tdep->wordsize; /* Structures start after the arguments. */ int structoffset = argoffset + argspace; /* If the function is returning a `struct', then the first word (which will be passed in r3) is used for struct return address. In that case we should advance one word and start from r4 register to copy parameters. */ if (struct_return) { if (write_pass) regcache_cooked_write_signed (regcache, tdep->ppc_gp0_regnum + greg, struct_addr); greg++; } for (argno = 0; argno < nargs; argno++) { struct value *arg = args[argno]; struct type *type = check_typedef (VALUE_TYPE (arg)); int len = TYPE_LENGTH (type); char *val = VALUE_CONTENTS (arg); if (TYPE_CODE (type) == TYPE_CODE_FLT && ppc_floating_point_unit_p (current_gdbarch) && len <= 8) { /* Floating point value converted to "double" then passed in an FP register, when the registers run out, 8 byte aligned stack is used. */ if (freg <= 8) { if (write_pass) { /* Always store the floating point value using the register's floating-point format. */ char regval[MAX_REGISTER_SIZE]; struct type *regtype = register_type (gdbarch, FP0_REGNUM + freg); convert_typed_floating (val, type, regval, regtype); regcache_cooked_write (regcache, FP0_REGNUM + freg, regval); } freg++; } else { /* SysV ABI converts floats to doubles before writing them to an 8 byte aligned stack location. */ argoffset = align_up (argoffset, 8); if (write_pass) { char memval[8]; struct type *memtype; switch (TARGET_BYTE_ORDER) { case BFD_ENDIAN_BIG: memtype = builtin_type_ieee_double_big; break; case BFD_ENDIAN_LITTLE: memtype = builtin_type_ieee_double_little; break; default: internal_error (__FILE__, __LINE__, "bad switch"); } convert_typed_floating (val, type, memval, memtype); write_memory (sp + argoffset, val, len); } argoffset += 8; } } else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */ || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */ { /* "long long" or "double" passed in an odd/even register pair with the low addressed word in the odd register and the high addressed word in the even register, or when the registers run out an 8 byte aligned stack location. */ if (greg > 9) { /* Just in case GREG was 10. */ greg = 11; argoffset = align_up (argoffset, 8); if (write_pass) write_memory (sp + argoffset, val, len); argoffset += 8; } else if (tdep->wordsize == 8) { if (write_pass) regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + greg, val); greg += 1; } else { /* Must start on an odd register - r3/r4 etc. */ if ((greg & 1) == 0) greg++; if (write_pass) { regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + greg + 0, val + 0); regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + greg + 1, val + 4); } greg += 2; } } else if (len == 16 && TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0) { /* Vector parameter passed in an Altivec register, or when that runs out, 16 byte aligned stack location. */ if (vreg <= 13) { if (write_pass) regcache_cooked_write (current_regcache, tdep->ppc_vr0_regnum + vreg, val); vreg++; } else { argoffset = align_up (argoffset, 16); if (write_pass) write_memory (sp + argoffset, val, 16); argoffset += 16; } } else if (len == 8 && TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0) { /* Vector parameter passed in an e500 register, or when that runs out, 8 byte aligned stack location. Note that since e500 vector and general purpose registers both map onto the same underlying register set, a "greg" and not a "vreg" is consumed here. A cooked write stores the value in the correct locations within the raw register cache. */ if (greg <= 10) { if (write_pass) regcache_cooked_write (current_regcache, tdep->ppc_ev0_regnum + greg, val); greg++; } else { argoffset = align_up (argoffset, 8); if (write_pass) write_memory (sp + argoffset, val, 8); argoffset += 8; } } else { /* Reduce the parameter down to something that fits in a "word". */ char word[MAX_REGISTER_SIZE]; memset (word, 0, MAX_REGISTER_SIZE); if (len > tdep->wordsize || TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION) { /* Structs and large values are put on an 8 byte aligned stack ... */ structoffset = align_up (structoffset, 8); if (write_pass) write_memory (sp + structoffset, val, len); /* ... and then a "word" pointing to that address is passed as the parameter. */ store_unsigned_integer (word, tdep->wordsize, sp + structoffset); structoffset += len; } else if (TYPE_CODE (type) == TYPE_CODE_INT) /* Sign or zero extend the "int" into a "word". */ store_unsigned_integer (word, tdep->wordsize, unpack_long (type, val)); else /* Always goes in the low address. */ memcpy (word, val, len); /* Store that "word" in a register, or on the stack. The words have "4" byte alignment. */ if (greg <= 10) { if (write_pass) regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + greg, word); greg++; } else { argoffset = align_up (argoffset, tdep->wordsize); if (write_pass) write_memory (sp + argoffset, word, tdep->wordsize); argoffset += tdep->wordsize; } } } /* Compute the actual stack space requirements. */ if (!write_pass) { /* Remember the amount of space needed by the arguments. */ argspace = argoffset; /* Allocate space for both the arguments and the structures. */ sp -= (argoffset + structoffset); /* Ensure that the stack is still 16 byte aligned. */ sp = align_down (sp, 16); } } /* Update %sp. */ regcache_cooked_write_signed (regcache, SP_REGNUM, sp); /* Write the backchain (it occupies WORDSIZED bytes). */ write_memory_signed_integer (sp, tdep->wordsize, saved_sp); /* Point the inferior function call's return address at the dummy's breakpoint. */ regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); return sp; } /* Until November 2001, gcc was not complying to the SYSV ABI for returning structures less than or equal to 8 bytes in size. It was returning everything in memory. When this was corrected, it wasn't fixed for native platforms. */ int ppc_sysv_abi_broken_use_struct_convention (int gcc_p, struct type *value_type) { if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8) && TYPE_VECTOR (value_type)) return 0; return generic_use_struct_convention (gcc_p, value_type); } /* Structures 8 bytes or less long are returned in the r3 & r4 registers, according to the SYSV ABI. */ int ppc_sysv_abi_use_struct_convention (int gcc_p, struct type *value_type) { if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8) && TYPE_VECTOR (value_type)) return 0; return (TYPE_LENGTH (value_type) > 8); }