/* Target-dependent code for the S+core architecture, for GDB, the GNU Debugger. Copyright (C) 2006-2013 Free Software Foundation, Inc. Contributed by Qinwei (qinwei@sunnorth.com.cn) Contributed by Ching-Peng Lin (cplin@sunplus.com) This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdb_assert.h" #include "inferior.h" #include "symtab.h" #include "objfiles.h" #include "gdbcore.h" #include "target.h" #include "arch-utils.h" #include "regcache.h" #include "regset.h" #include "dis-asm.h" #include "frame-unwind.h" #include "frame-base.h" #include "trad-frame.h" #include "dwarf2-frame.h" #include "score-tdep.h" #define G_FLD(_i,_ms,_ls) \ ((unsigned)((_i) << (31 - (_ms))) >> (31 - (_ms) + (_ls))) typedef struct{ unsigned long long v; unsigned long long raw; unsigned int len; }inst_t; struct score_frame_cache { CORE_ADDR base; CORE_ADDR fp; struct trad_frame_saved_reg *saved_regs; }; static int target_mach = bfd_mach_score7; static struct type * score_register_type (struct gdbarch *gdbarch, int regnum) { gdb_assert (regnum >= 0 && regnum < ((target_mach == bfd_mach_score7) ? SCORE7_NUM_REGS : SCORE3_NUM_REGS)); return builtin_type (gdbarch)->builtin_uint32; } static CORE_ADDR score_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, SCORE_SP_REGNUM); } static CORE_ADDR score_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) { return frame_unwind_register_unsigned (next_frame, SCORE_PC_REGNUM); } static const char * score7_register_name (struct gdbarch *gdbarch, int regnum) { const char *score_register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "PSR", "COND", "ECR", "EXCPVEC", "CCR", "EPC", "EMA", "TLBLOCK", "TLBPT", "PEADDR", "TLBRPT", "PEVN", "PECTX", "LIMPFN", "LDMPFN", "PREV", "DREG", "PC", "DSAVE", "COUNTER", "LDCR", "STCR", "CEH", "CEL", }; gdb_assert (regnum >= 0 && regnum < SCORE7_NUM_REGS); return score_register_names[regnum]; } static const char * score3_register_name (struct gdbarch *gdbarch, int regnum) { const char *score_register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "PSR", "COND", "ECR", "EXCPVEC", "CCR", "EPC", "EMA", "PREV", "DREG", "DSAVE", "COUNTER", "LDCR", "STCR", "CEH", "CEL", "", "", "PC", }; gdb_assert (regnum >= 0 && regnum < SCORE3_NUM_REGS); return score_register_names[regnum]; } #if WITH_SIM static int score_register_sim_regno (struct gdbarch *gdbarch, int regnum) { gdb_assert (regnum >= 0 && regnum < ((target_mach == bfd_mach_score7) ? SCORE7_NUM_REGS : SCORE3_NUM_REGS)); return regnum; } #endif static int score_print_insn (bfd_vma memaddr, struct disassemble_info *info) { if (info->endian == BFD_ENDIAN_BIG) return print_insn_big_score (memaddr, info); else return print_insn_little_score (memaddr, info); } static inst_t * score7_fetch_inst (struct gdbarch *gdbarch, CORE_ADDR addr, gdb_byte *memblock) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); static inst_t inst = { 0, 0, 0 }; gdb_byte buf[SCORE_INSTLEN] = { 0 }; int big; int ret; if (target_has_execution && memblock != NULL) { /* Fetch instruction from local MEMBLOCK. */ memcpy (buf, memblock, SCORE_INSTLEN); } else { /* Fetch instruction from target. */ ret = target_read_memory (addr & ~0x3, buf, SCORE_INSTLEN); if (ret) { error (_("Error: target_read_memory in file:%s, line:%d!"), __FILE__, __LINE__); return 0; } } inst.raw = extract_unsigned_integer (buf, SCORE_INSTLEN, byte_order); inst.len = (inst.raw & 0x80008000) ? 4 : 2; inst.v = ((inst.raw >> 16 & 0x7FFF) << 15) | (inst.raw & 0x7FFF); big = (byte_order == BFD_ENDIAN_BIG); if (inst.len == 2) { if (big ^ ((addr & 0x2) == 2)) inst.v = G_FLD (inst.v, 29, 15); else inst.v = G_FLD (inst.v, 14, 0); } return &inst; } static inst_t * score3_adjust_pc_and_fetch_inst (CORE_ADDR *pcptr, int *lenptr, enum bfd_endian byte_order) { static inst_t inst = { 0, 0, 0 }; struct breakplace { int break_offset; int inst_len; }; /* raw table 1 (column 2, 3, 4) * 0 1 0 * # 2 * 0 1 1 0 # 3 0 1 1 0 * # 6 table 2 (column 1, 2, 3) * 0 0 * * # 0, 4 0 1 0 * * # 2 1 1 0 * * # 6 */ static const struct breakplace bk_table[16] = { /* table 1 */ {0, 0}, {0, 0}, {0, 4}, {0, 6}, {0, 0}, {0, 0}, {-2, 6}, {0, 0}, /* table 2 */ {0, 2}, {0, 0}, {-2, 4}, {0, 0}, {0, 2}, {0, 0}, {-4, 6}, {0, 0} }; #define EXTRACT_LEN 2 CORE_ADDR adjust_pc = *pcptr & ~0x1; gdb_byte buf[5][EXTRACT_LEN] = { {'\0', '\0'}, {'\0', '\0'}, {'\0', '\0'}, {'\0', '\0'}, {'\0', '\0'} }; int ret; unsigned int raw; unsigned int cbits = 0; int bk_index; int i, count; inst.v = 0; inst.raw = 0; inst.len = 0; adjust_pc -= 4; for (i = 0; i < 5; i++) { ret = target_read_memory (adjust_pc + 2 * i, buf[i], EXTRACT_LEN); if (ret != 0) { buf[i][0] = '\0'; buf[i][1] = '\0'; if (i == 2) error (_("Error: target_read_memory in file:%s, line:%d!"), __FILE__, __LINE__); } raw = extract_unsigned_integer (buf[i], EXTRACT_LEN, byte_order); cbits = (cbits << 1) | (raw >> 15); } adjust_pc += 4; if (cbits & 0x4) { /* table 1 */ cbits = (cbits >> 1) & 0x7; bk_index = cbits; } else { /* table 2 */ cbits = (cbits >> 2) & 0x7; bk_index = cbits + 8; } gdb_assert (!((bk_table[bk_index].break_offset == 0) && (bk_table[bk_index].inst_len == 0))); inst.len = bk_table[bk_index].inst_len; i = (bk_table[bk_index].break_offset + 4) / 2; count = inst.len / 2; for (; count > 0; i++, count--) { inst.raw = (inst.raw << 16) | extract_unsigned_integer (buf[i], EXTRACT_LEN, byte_order); } switch (inst.len) { case 2: inst.v = inst.raw & 0x7FFF; break; case 4: inst.v = ((inst.raw >> 16 & 0x7FFF) << 15) | (inst.raw & 0x7FFF); break; case 6: inst.v = ((inst.raw >> 32 & 0x7FFF) << 30) | ((inst.raw >> 16 & 0x7FFF) << 15) | (inst.raw & 0x7FFF); break; } if (pcptr) *pcptr = adjust_pc + bk_table[bk_index].break_offset; if (lenptr) *lenptr = bk_table[bk_index].inst_len; #undef EXTRACT_LEN return &inst; } static const gdb_byte * score7_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); gdb_byte buf[SCORE_INSTLEN] = { 0 }; int ret; unsigned int raw; if ((ret = target_read_memory (*pcptr & ~0x3, buf, SCORE_INSTLEN)) != 0) { error (_("Error: target_read_memory in file:%s, line:%d!"), __FILE__, __LINE__); } raw = extract_unsigned_integer (buf, SCORE_INSTLEN, byte_order); if (byte_order == BFD_ENDIAN_BIG) { if (!(raw & 0x80008000)) { /* 16bits instruction. */ static gdb_byte big_breakpoint16[] = { 0x60, 0x02 }; *pcptr &= ~0x1; *lenptr = sizeof (big_breakpoint16); return big_breakpoint16; } else { /* 32bits instruction. */ static gdb_byte big_breakpoint32[] = { 0x80, 0x00, 0x80, 0x06 }; *pcptr &= ~0x3; *lenptr = sizeof (big_breakpoint32); return big_breakpoint32; } } else { if (!(raw & 0x80008000)) { /* 16bits instruction. */ static gdb_byte little_breakpoint16[] = { 0x02, 0x60 }; *pcptr &= ~0x1; *lenptr = sizeof (little_breakpoint16); return little_breakpoint16; } else { /* 32bits instruction. */ static gdb_byte little_breakpoint32[] = { 0x06, 0x80, 0x00, 0x80 }; *pcptr &= ~0x3; *lenptr = sizeof (little_breakpoint32); return little_breakpoint32; } } } static const gdb_byte * score3_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR adjust_pc = *pcptr; int len; static gdb_byte score_break_insns[6][6] = { /* The following three instructions are big endian. */ { 0x00, 0x20 }, { 0x80, 0x00, 0x00, 0x06 }, { 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }, /* The following three instructions are little endian. */ { 0x20, 0x00 }, { 0x00, 0x80, 0x06, 0x00 }, { 0x00, 0x80, 0x00, 0x80, 0x00, 0x00 }}; gdb_byte *p = NULL; int index = 0; score3_adjust_pc_and_fetch_inst (&adjust_pc, &len, byte_order); index = ((byte_order == BFD_ENDIAN_BIG) ? 0 : 3) + (len / 2 - 1); p = score_break_insns[index]; *pcptr = adjust_pc; *lenptr = len; return p; } static CORE_ADDR score_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) { CORE_ADDR adjust_pc = bpaddr; if (target_mach == bfd_mach_score3) score3_adjust_pc_and_fetch_inst (&adjust_pc, NULL, gdbarch_byte_order (gdbarch)); else adjust_pc = align_down (adjust_pc, 2); return adjust_pc; } static CORE_ADDR score_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) { return align_down (addr, 16); } static void score_xfer_register (struct regcache *regcache, int regnum, int length, enum bfd_endian endian, gdb_byte *readbuf, const gdb_byte *writebuf, int buf_offset) { int reg_offset = 0; gdb_assert (regnum >= 0 && regnum < ((target_mach == bfd_mach_score7) ? SCORE7_NUM_REGS : SCORE3_NUM_REGS)); switch (endian) { case BFD_ENDIAN_BIG: reg_offset = SCORE_REGSIZE - length; break; case BFD_ENDIAN_LITTLE: reg_offset = 0; break; case BFD_ENDIAN_UNKNOWN: reg_offset = 0; break; default: error (_("Error: score_xfer_register in file:%s, line:%d!"), __FILE__, __LINE__); } if (readbuf != NULL) regcache_cooked_read_part (regcache, regnum, reg_offset, length, readbuf + buf_offset); if (writebuf != NULL) regcache_cooked_write_part (regcache, regnum, reg_offset, length, writebuf + buf_offset); } static enum return_value_convention score_return_value (struct gdbarch *gdbarch, struct value *function, struct type *type, struct regcache *regcache, gdb_byte * readbuf, const gdb_byte * writebuf) { if (TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION || TYPE_CODE (type) == TYPE_CODE_ARRAY) return RETURN_VALUE_STRUCT_CONVENTION; else { int offset; int regnum; for (offset = 0, regnum = SCORE_A0_REGNUM; offset < TYPE_LENGTH (type); offset += SCORE_REGSIZE, regnum++) { int xfer = SCORE_REGSIZE; if (offset + xfer > TYPE_LENGTH (type)) xfer = TYPE_LENGTH (type) - offset; score_xfer_register (regcache, regnum, xfer, gdbarch_byte_order(gdbarch), readbuf, writebuf, offset); } return RETURN_VALUE_REGISTER_CONVENTION; } } static struct frame_id score_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) { return frame_id_build (get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM), get_frame_pc (this_frame)); } static int score_type_needs_double_align (struct type *type) { enum type_code typecode = TYPE_CODE (type); if ((typecode == TYPE_CODE_INT && TYPE_LENGTH (type) == 8) || (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)) return 1; else if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) { int i, n; n = TYPE_NFIELDS (type); for (i = 0; i < n; i++) if (score_type_needs_double_align (TYPE_FIELD_TYPE (type, i))) return 1; return 0; } return 0; } static CORE_ADDR score_push_dummy_call (struct gdbarch *gdbarch, struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); int argnum; int argreg; int arglen = 0; CORE_ADDR stack_offset = 0; CORE_ADDR addr = 0; /* Step 1, Save RA. */ regcache_cooked_write_unsigned (regcache, SCORE_RA_REGNUM, bp_addr); /* Step 2, Make space on the stack for the args. */ struct_addr = align_down (struct_addr, 16); sp = align_down (sp, 16); for (argnum = 0; argnum < nargs; argnum++) arglen += align_up (TYPE_LENGTH (value_type (args[argnum])), SCORE_REGSIZE); sp -= align_up (arglen, 16); argreg = SCORE_BEGIN_ARG_REGNUM; /* Step 3, Check if struct return then save the struct address to r4 and increase the stack_offset by 4. */ if (struct_return) { regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); stack_offset += SCORE_REGSIZE; } /* Step 4, Load arguments: If arg length is too long (> 4 bytes), then split the arg and save every parts. */ for (argnum = 0; argnum < nargs; argnum++) { struct value *arg = args[argnum]; struct type *arg_type = check_typedef (value_type (arg)); enum type_code typecode = TYPE_CODE (arg_type); const gdb_byte *val = value_contents (arg); int downward_offset = 0; int odd_sized_struct_p; int arg_last_part_p = 0; arglen = TYPE_LENGTH (arg_type); odd_sized_struct_p = (arglen > SCORE_REGSIZE && arglen % SCORE_REGSIZE != 0); /* If a arg should be aligned to 8 bytes (long long or double), the value should be put to even register numbers. */ if (score_type_needs_double_align (arg_type)) { if (argreg & 1) argreg++; } /* If sizeof a block < SCORE_REGSIZE, then Score GCC will chose the default "downward"/"upward" method: Example: struct struc { char a; char b; char c; } s = {'a', 'b', 'c'}; Big endian: s = {X, 'a', 'b', 'c'} Little endian: s = {'a', 'b', 'c', X} Where X is a hole. */ if (gdbarch_byte_order(gdbarch) == BFD_ENDIAN_BIG && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) && argreg > SCORE_LAST_ARG_REGNUM && arglen < SCORE_REGSIZE) downward_offset += (SCORE_REGSIZE - arglen); while (arglen > 0) { int partial_len = arglen < SCORE_REGSIZE ? arglen : SCORE_REGSIZE; ULONGEST regval = extract_unsigned_integer (val, partial_len, byte_order); /* The last part of a arg should shift left when gdbarch_byte_order is BFD_ENDIAN_BIG. */ if (byte_order == BFD_ENDIAN_BIG && arg_last_part_p == 1 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) regval <<= ((SCORE_REGSIZE - partial_len) * TARGET_CHAR_BIT); /* Always increase the stack_offset and save args to stack. */ addr = sp + stack_offset + downward_offset; write_memory (addr, val, partial_len); if (argreg <= SCORE_LAST_ARG_REGNUM) { regcache_cooked_write_unsigned (regcache, argreg++, regval); if (arglen > SCORE_REGSIZE && arglen < SCORE_REGSIZE * 2) arg_last_part_p = 1; } val += partial_len; arglen -= partial_len; stack_offset += align_up (partial_len, SCORE_REGSIZE); } } /* Step 5, Save SP. */ regcache_cooked_write_unsigned (regcache, SCORE_SP_REGNUM, sp); return sp; } static CORE_ADDR score7_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) { CORE_ADDR cpc = pc; int iscan = 32, stack_sub = 0; while (iscan-- > 0) { inst_t *inst = score7_fetch_inst (gdbarch, cpc, NULL); if (!inst) break; if ((inst->len == 4) && !stack_sub && (G_FLD (inst->v, 29, 25) == 0x1 && G_FLD (inst->v, 24, 20) == 0x0)) { /* addi r0, offset */ stack_sub = cpc + SCORE_INSTLEN; pc = cpc + SCORE_INSTLEN; } else if ((inst->len == 4) && (G_FLD (inst->v, 29, 25) == 0x0) && (G_FLD (inst->v, 24, 20) == 0x2) && (G_FLD (inst->v, 19, 15) == 0x0) && (G_FLD (inst->v, 14, 10) == 0xF) && (G_FLD (inst->v, 9, 0) == 0x56)) { /* mv r2, r0 */ pc = cpc + SCORE_INSTLEN; break; } else if ((inst->len == 2) && (G_FLD (inst->v, 14, 12) == 0x0) && (G_FLD (inst->v, 11, 8) == 0x2) && (G_FLD (inst->v, 7, 4) == 0x0) && (G_FLD (inst->v, 3, 0) == 0x3)) { /* mv! r2, r0 */ pc = cpc + SCORE16_INSTLEN; break; } else if ((inst->len == 2) && ((G_FLD (inst->v, 14, 12) == 3) /* j15 form */ || (G_FLD (inst->v, 14, 12) == 4) /* b15 form */ || (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 3, 0) == 0x4))) /* br! */ break; else if ((inst->len == 4) && ((G_FLD (inst->v, 29, 25) == 2) /* j32 form */ || (G_FLD (inst->v, 29, 25) == 4) /* b32 form */ || (G_FLD (inst->v, 29, 25) == 0x0 && G_FLD (inst->v, 6, 1) == 0x4))) /* br */ break; cpc += (inst->len == 2) ? SCORE16_INSTLEN : SCORE_INSTLEN; } return pc; } static CORE_ADDR score3_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) { CORE_ADDR cpc = pc; int iscan = 32, stack_sub = 0; while (iscan-- > 0) { inst_t *inst = score3_adjust_pc_and_fetch_inst (&cpc, NULL, gdbarch_byte_order (gdbarch)); if (!inst) break; if (inst->len == 4 && !stack_sub && (G_FLD (inst->v, 29, 25) == 0x1) && (G_FLD (inst->v, 19, 17) == 0x0) && (G_FLD (inst->v, 24, 20) == 0x0)) { /* addi r0, offset */ stack_sub = cpc + inst->len; pc = cpc + inst->len; } else if (inst->len == 4 && (G_FLD (inst->v, 29, 25) == 0x0) && (G_FLD (inst->v, 24, 20) == 0x2) && (G_FLD (inst->v, 19, 15) == 0x0) && (G_FLD (inst->v, 14, 10) == 0xF) && (G_FLD (inst->v, 9, 0) == 0x56)) { /* mv r2, r0 */ pc = cpc + inst->len; break; } else if ((inst->len == 2) && (G_FLD (inst->v, 14, 10) == 0x10) && (G_FLD (inst->v, 9, 5) == 0x2) && (G_FLD (inst->v, 4, 0) == 0x0)) { /* mv! r2, r0 */ pc = cpc + inst->len; break; } else if (inst->len == 2 && ((G_FLD (inst->v, 14, 12) == 3) /* b15 form */ || (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 11, 5) == 0x4))) /* br! */ break; else if (inst->len == 4 && ((G_FLD (inst->v, 29, 25) == 2) /* j32 form */ || (G_FLD (inst->v, 29, 25) == 4))) /* b32 form */ break; cpc += inst->len; } return pc; } static int score7_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR cur_pc) { inst_t *inst = score7_fetch_inst (gdbarch, cur_pc, NULL); if (inst->v == 0x23) return 1; /* mv! r0, r2 */ else if (G_FLD (inst->v, 14, 12) == 0x2 && G_FLD (inst->v, 3, 0) == 0xa) return 1; /* pop! */ else if (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 7, 0) == 0x34) return 1; /* br! r3 */ else if (G_FLD (inst->v, 29, 15) == 0x2 && G_FLD (inst->v, 6, 1) == 0x2b) return 1; /* mv r0, r2 */ else if (G_FLD (inst->v, 29, 25) == 0x0 && G_FLD (inst->v, 6, 1) == 0x4 && G_FLD (inst->v, 19, 15) == 0x3) return 1; /* br r3 */ else return 0; } static int score3_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR cur_pc) { CORE_ADDR pc = cur_pc; inst_t *inst = score3_adjust_pc_and_fetch_inst (&pc, NULL, gdbarch_byte_order (gdbarch)); if (inst->len == 2 && (G_FLD (inst->v, 14, 10) == 0x10) && (G_FLD (inst->v, 9, 5) == 0x0) && (G_FLD (inst->v, 4, 0) == 0x2)) return 1; /* mv! r0, r2 */ else if (inst->len == 4 && (G_FLD (inst->v, 29, 25) == 0x0) && (G_FLD (inst->v, 24, 20) == 0x2) && (G_FLD (inst->v, 19, 15) == 0x0) && (G_FLD (inst->v, 14, 10) == 0xF) && (G_FLD (inst->v, 9, 0) == 0x56)) return 1; /* mv r0, r2 */ else if (inst->len == 2 && (G_FLD (inst->v, 14, 12) == 0x0) && (G_FLD (inst->v, 11, 5) == 0x2)) return 1; /* pop! */ else if (inst->len == 2 && (G_FLD (inst->v, 14, 12) == 0x0) && (G_FLD (inst->v, 11, 7) == 0x0) && (G_FLD (inst->v, 6, 5) == 0x2)) return 1; /* rpop! */ else if (inst->len == 2 && (G_FLD (inst->v, 14, 12) == 0x0) && (G_FLD (inst->v, 11, 5) == 0x4) && (G_FLD (inst->v, 4, 0) == 0x3)) return 1; /* br! r3 */ else if (inst->len == 4 && (G_FLD (inst->v, 29, 25) == 0x0) && (G_FLD (inst->v, 24, 20) == 0x0) && (G_FLD (inst->v, 19, 15) == 0x3) && (G_FLD (inst->v, 14, 10) == 0xF) && (G_FLD (inst->v, 9, 0) == 0x8)) return 1; /* br r3 */ else return 0; } static gdb_byte * score7_malloc_and_get_memblock (CORE_ADDR addr, CORE_ADDR size) { int ret; gdb_byte *memblock = NULL; if (size < 0) { error (_("Error: malloc size < 0 in file:%s, line:%d!"), __FILE__, __LINE__); return NULL; } else if (size == 0) return NULL; memblock = xmalloc (size); memset (memblock, 0, size); ret = target_read_memory (addr & ~0x3, memblock, size); if (ret) { error (_("Error: target_read_memory in file:%s, line:%d!"), __FILE__, __LINE__); return NULL; } return memblock; } static void score7_free_memblock (gdb_byte *memblock) { xfree (memblock); } static void score7_adjust_memblock_ptr (gdb_byte **memblock, CORE_ADDR prev_pc, CORE_ADDR cur_pc) { if (prev_pc == -1) { /* First time call this function, do nothing. */ } else if (cur_pc - prev_pc == 2 && (cur_pc & 0x3) == 0) { /* First 16-bit instruction, then 32-bit instruction. */ *memblock += SCORE_INSTLEN; } else if (cur_pc - prev_pc == 4) { /* Is 32-bit instruction, increase MEMBLOCK by 4. */ *memblock += SCORE_INSTLEN; } } static void score7_analyze_prologue (CORE_ADDR startaddr, CORE_ADDR pc, struct frame_info *this_frame, struct score_frame_cache *this_cache) { struct gdbarch *gdbarch = get_frame_arch (this_frame); CORE_ADDR sp; CORE_ADDR fp; CORE_ADDR cur_pc = startaddr; int sp_offset = 0; int ra_offset = 0; int fp_offset = 0; int ra_offset_p = 0; int fp_offset_p = 0; int inst_len = 0; gdb_byte *memblock = NULL; gdb_byte *memblock_ptr = NULL; CORE_ADDR prev_pc = -1; /* Allocate MEMBLOCK if PC - STARTADDR > 0. */ memblock_ptr = memblock = score7_malloc_and_get_memblock (startaddr, pc - startaddr); sp = get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM); fp = get_frame_register_unsigned (this_frame, SCORE_FP_REGNUM); for (; cur_pc < pc; prev_pc = cur_pc, cur_pc += inst_len) { inst_t *inst = NULL; if (memblock != NULL) { /* Reading memory block from target succefully and got all the instructions(from STARTADDR to PC) needed. */ score7_adjust_memblock_ptr (&memblock, prev_pc, cur_pc); inst = score7_fetch_inst (gdbarch, cur_pc, memblock); } else { /* Otherwise, we fetch 4 bytes from target, and GDB also work correctly. */ inst = score7_fetch_inst (gdbarch, cur_pc, NULL); } /* FIXME: make a full-power prologue analyzer. */ if (inst->len == 2) { inst_len = SCORE16_INSTLEN; if (G_FLD (inst->v, 14, 12) == 0x2 && G_FLD (inst->v, 3, 0) == 0xe) { /* push! */ sp_offset += 4; if (G_FLD (inst->v, 11, 7) == 0x6 && ra_offset_p == 0) { /* push! r3, [r0] */ ra_offset = sp_offset; ra_offset_p = 1; } else if (G_FLD (inst->v, 11, 7) == 0x4 && fp_offset_p == 0) { /* push! r2, [r0] */ fp_offset = sp_offset; fp_offset_p = 1; } } else if (G_FLD (inst->v, 14, 12) == 0x2 && G_FLD (inst->v, 3, 0) == 0xa) { /* pop! */ sp_offset -= 4; } else if (G_FLD (inst->v, 14, 7) == 0xc1 && G_FLD (inst->v, 2, 0) == 0x0) { /* subei! r0, n */ sp_offset += (int) pow (2, G_FLD (inst->v, 6, 3)); } else if (G_FLD (inst->v, 14, 7) == 0xc0 && G_FLD (inst->v, 2, 0) == 0x0) { /* addei! r0, n */ sp_offset -= (int) pow (2, G_FLD (inst->v, 6, 3)); } } else { inst_len = SCORE_INSTLEN; if (G_FLD(inst->v, 29, 25) == 0x3 && G_FLD(inst->v, 2, 0) == 0x4 && G_FLD(inst->v, 19, 15) == 0) { /* sw rD, [r0, offset]+ */ sp_offset += SCORE_INSTLEN; if (G_FLD(inst->v, 24, 20) == 0x3) { /* rD = r3 */ if (ra_offset_p == 0) { ra_offset = sp_offset; ra_offset_p = 1; } } else if (G_FLD(inst->v, 24, 20) == 0x2) { /* rD = r2 */ if (fp_offset_p == 0) { fp_offset = sp_offset; fp_offset_p = 1; } } } else if (G_FLD(inst->v, 29, 25) == 0x14 && G_FLD(inst->v, 19,15) == 0) { /* sw rD, [r0, offset] */ if (G_FLD(inst->v, 24, 20) == 0x3) { /* rD = r3 */ ra_offset = sp_offset - G_FLD(inst->v, 14, 0); ra_offset_p = 1; } else if (G_FLD(inst->v, 24, 20) == 0x2) { /* rD = r2 */ fp_offset = sp_offset - G_FLD(inst->v, 14, 0); fp_offset_p = 1; } } else if (G_FLD (inst->v, 29, 15) == 0x1c60 && G_FLD (inst->v, 2, 0) == 0x0) { /* lw r3, [r0]+, 4 */ sp_offset -= SCORE_INSTLEN; ra_offset_p = 1; } else if (G_FLD (inst->v, 29, 15) == 0x1c40 && G_FLD (inst->v, 2, 0) == 0x0) { /* lw r2, [r0]+, 4 */ sp_offset -= SCORE_INSTLEN; fp_offset_p = 1; } else if (G_FLD (inst->v, 29, 17) == 0x100 && G_FLD (inst->v, 0, 0) == 0x0) { /* addi r0, -offset */ sp_offset += 65536 - G_FLD (inst->v, 16, 1); } else if (G_FLD (inst->v, 29, 17) == 0x110 && G_FLD (inst->v, 0, 0) == 0x0) { /* addi r2, offset */ if (pc - cur_pc > 4) { unsigned int save_v = inst->v; inst_t *inst2 = score7_fetch_inst (gdbarch, cur_pc + SCORE_INSTLEN, NULL); if (inst2->v == 0x23) { /* mv! r0, r2 */ sp_offset -= G_FLD (save_v, 16, 1); } } } } } /* Save RA. */ if (ra_offset_p == 1) { if (this_cache->saved_regs[SCORE_PC_REGNUM].addr == -1) this_cache->saved_regs[SCORE_PC_REGNUM].addr = sp + sp_offset - ra_offset; } else { this_cache->saved_regs[SCORE_PC_REGNUM] = this_cache->saved_regs[SCORE_RA_REGNUM]; } /* Save FP. */ if (fp_offset_p == 1) { if (this_cache->saved_regs[SCORE_FP_REGNUM].addr == -1) this_cache->saved_regs[SCORE_FP_REGNUM].addr = sp + sp_offset - fp_offset; } /* Save SP and FP. */ this_cache->base = sp + sp_offset; this_cache->fp = fp; /* Don't forget to free MEMBLOCK if we allocated it. */ if (memblock_ptr != NULL) score7_free_memblock (memblock_ptr); } static void score3_analyze_prologue (CORE_ADDR startaddr, CORE_ADDR pc, struct frame_info *this_frame, struct score_frame_cache *this_cache) { CORE_ADDR sp; CORE_ADDR fp; CORE_ADDR cur_pc = startaddr; enum bfd_endian byte_order = gdbarch_byte_order (get_frame_arch (this_frame)); int sp_offset = 0; int ra_offset = 0; int fp_offset = 0; int ra_offset_p = 0; int fp_offset_p = 0; int inst_len = 0; CORE_ADDR prev_pc = -1; sp = get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM); fp = get_frame_register_unsigned (this_frame, SCORE_FP_REGNUM); for (; cur_pc < pc; prev_pc = cur_pc, cur_pc += inst_len) { inst_t *inst = NULL; inst = score3_adjust_pc_and_fetch_inst (&cur_pc, &inst_len, byte_order); /* FIXME: make a full-power prologue analyzer. */ if (inst->len == 2) { if (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 11, 7) == 0x0 && G_FLD (inst->v, 6, 5) == 0x3) { /* push! */ sp_offset += 4; if (G_FLD (inst->v, 4, 0) == 0x3 && ra_offset_p == 0) { /* push! r3, [r0] */ ra_offset = sp_offset; ra_offset_p = 1; } else if (G_FLD (inst->v, 4, 0) == 0x2 && fp_offset_p == 0) { /* push! r2, [r0] */ fp_offset = sp_offset; fp_offset_p = 1; } } else if (G_FLD (inst->v, 14, 12) == 0x6 && G_FLD (inst->v, 11, 10) == 0x3) { /* rpush! */ int start_r = G_FLD (inst->v, 9, 5); int cnt = G_FLD (inst->v, 4, 0); if ((ra_offset_p == 0) && (start_r <= SCORE_RA_REGNUM) && (SCORE_RA_REGNUM < start_r + cnt)) { /* rpush! contains r3 */ ra_offset_p = 1; ra_offset = sp_offset + 4 * (SCORE_RA_REGNUM - start_r) + 4; } if ((fp_offset_p == 0) && (start_r <= SCORE_FP_REGNUM) && (SCORE_FP_REGNUM < start_r + cnt)) { /* rpush! contains r2 */ fp_offset_p = 1; fp_offset = sp_offset + 4 * (SCORE_FP_REGNUM - start_r) + 4; } sp_offset += 4 * cnt; } else if (G_FLD (inst->v, 14, 12) == 0x0 && G_FLD (inst->v, 11, 7) == 0x0 && G_FLD (inst->v, 6, 5) == 0x2) { /* pop! */ sp_offset -= 4; } else if (G_FLD (inst->v, 14, 12) == 0x6 && G_FLD (inst->v, 11, 10) == 0x2) { /* rpop! */ sp_offset -= 4 * G_FLD (inst->v, 4, 0); } else if (G_FLD (inst->v, 14, 12) == 0x5 && G_FLD (inst->v, 11, 10) == 0x3 && G_FLD (inst->v, 9, 6) == 0x0) { /* addi! r0, -offset */ int imm = G_FLD (inst->v, 5, 0); if (imm >> 5) imm = -(0x3F - imm + 1); sp_offset -= imm; } else if (G_FLD (inst->v, 14, 12) == 0x5 && G_FLD (inst->v, 11, 10) == 0x3 && G_FLD (inst->v, 9, 6) == 0x2) { /* addi! r2, offset */ if (pc - cur_pc >= 2) { unsigned int save_v = inst->v; inst_t *inst2; cur_pc += inst->len; inst2 = score3_adjust_pc_and_fetch_inst (&cur_pc, NULL, byte_order); if (inst2->len == 2 && G_FLD (inst2->v, 14, 10) == 0x10 && G_FLD (inst2->v, 9, 5) == 0x0 && G_FLD (inst2->v, 4, 0) == 0x2) { /* mv! r0, r2 */ int imm = G_FLD (inst->v, 5, 0); if (imm >> 5) imm = -(0x3F - imm + 1); sp_offset -= imm; } } } } else if (inst->len == 4) { if (G_FLD (inst->v, 29, 25) == 0x3 && G_FLD (inst->v, 2, 0) == 0x4 && G_FLD (inst->v, 24, 20) == 0x3 && G_FLD (inst->v, 19, 15) == 0x0) { /* sw r3, [r0, offset]+ */ sp_offset += inst->len; if (ra_offset_p == 0) { ra_offset = sp_offset; ra_offset_p = 1; } } else if (G_FLD (inst->v, 29, 25) == 0x3 && G_FLD (inst->v, 2, 0) == 0x4 && G_FLD (inst->v, 24, 20) == 0x2 && G_FLD (inst->v, 19, 15) == 0x0) { /* sw r2, [r0, offset]+ */ sp_offset += inst->len; if (fp_offset_p == 0) { fp_offset = sp_offset; fp_offset_p = 1; } } else if (G_FLD (inst->v, 29, 25) == 0x7 && G_FLD (inst->v, 2, 0) == 0x0 && G_FLD (inst->v, 24, 20) == 0x3 && G_FLD (inst->v, 19, 15) == 0x0) { /* lw r3, [r0]+, 4 */ sp_offset -= inst->len; ra_offset_p = 1; } else if (G_FLD (inst->v, 29, 25) == 0x7 && G_FLD (inst->v, 2, 0) == 0x0 && G_FLD (inst->v, 24, 20) == 0x2 && G_FLD (inst->v, 19, 15) == 0x0) { /* lw r2, [r0]+, 4 */ sp_offset -= inst->len; fp_offset_p = 1; } else if (G_FLD (inst->v, 29, 25) == 0x1 && G_FLD (inst->v, 19, 17) == 0x0 && G_FLD (inst->v, 24, 20) == 0x0 && G_FLD (inst->v, 0, 0) == 0x0) { /* addi r0, -offset */ int imm = G_FLD (inst->v, 16, 1); if (imm >> 15) imm = -(0xFFFF - imm + 1); sp_offset -= imm; } else if (G_FLD (inst->v, 29, 25) == 0x1 && G_FLD (inst->v, 19, 17) == 0x0 && G_FLD (inst->v, 24, 20) == 0x2 && G_FLD (inst->v, 0, 0) == 0x0) { /* addi r2, offset */ if (pc - cur_pc >= 2) { unsigned int save_v = inst->v; inst_t *inst2; cur_pc += inst->len; inst2 = score3_adjust_pc_and_fetch_inst (&cur_pc, NULL, byte_order); if (inst2->len == 2 && G_FLD (inst2->v, 14, 10) == 0x10 && G_FLD (inst2->v, 9, 5) == 0x0 && G_FLD (inst2->v, 4, 0) == 0x2) { /* mv! r0, r2 */ int imm = G_FLD (inst->v, 16, 1); if (imm >> 15) imm = -(0xFFFF - imm + 1); sp_offset -= imm; } } } } } /* Save RA. */ if (ra_offset_p == 1) { if (this_cache->saved_regs[SCORE_PC_REGNUM].addr == -1) this_cache->saved_regs[SCORE_PC_REGNUM].addr = sp + sp_offset - ra_offset; } else { this_cache->saved_regs[SCORE_PC_REGNUM] = this_cache->saved_regs[SCORE_RA_REGNUM]; } /* Save FP. */ if (fp_offset_p == 1) { if (this_cache->saved_regs[SCORE_FP_REGNUM].addr == -1) this_cache->saved_regs[SCORE_FP_REGNUM].addr = sp + sp_offset - fp_offset; } /* Save SP and FP. */ this_cache->base = sp + sp_offset; this_cache->fp = fp; } static struct score_frame_cache * score_make_prologue_cache (struct frame_info *this_frame, void **this_cache) { struct score_frame_cache *cache; if ((*this_cache) != NULL) return (*this_cache); cache = FRAME_OBSTACK_ZALLOC (struct score_frame_cache); (*this_cache) = cache; cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); /* Analyze the prologue. */ { const CORE_ADDR pc = get_frame_pc (this_frame); CORE_ADDR start_addr; find_pc_partial_function (pc, NULL, &start_addr, NULL); if (start_addr == 0) return cache; if (target_mach == bfd_mach_score3) score3_analyze_prologue (start_addr, pc, this_frame, *this_cache); else score7_analyze_prologue (start_addr, pc, this_frame, *this_cache); } /* Save SP. */ trad_frame_set_value (cache->saved_regs, SCORE_SP_REGNUM, cache->base); return (*this_cache); } static void score_prologue_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { struct score_frame_cache *info = score_make_prologue_cache (this_frame, this_cache); (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); } static struct value * score_prologue_prev_register (struct frame_info *this_frame, void **this_cache, int regnum) { struct score_frame_cache *info = score_make_prologue_cache (this_frame, this_cache); return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); } static const struct frame_unwind score_prologue_unwind = { NORMAL_FRAME, default_frame_unwind_stop_reason, score_prologue_this_id, score_prologue_prev_register, NULL, default_frame_sniffer, NULL }; static CORE_ADDR score_prologue_frame_base_address (struct frame_info *this_frame, void **this_cache) { struct score_frame_cache *info = score_make_prologue_cache (this_frame, this_cache); return info->fp; } static const struct frame_base score_prologue_frame_base = { &score_prologue_unwind, score_prologue_frame_base_address, score_prologue_frame_base_address, score_prologue_frame_base_address, }; static const struct frame_base * score_prologue_frame_base_sniffer (struct frame_info *this_frame) { return &score_prologue_frame_base; } /* Core file support (dirty hack) The core file MUST be generated by GNU/Linux on S+core. */ static void score7_linux_supply_gregset(const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs_buf, size_t len) { int regno; elf_gregset_t *gregs; gdb_assert (regset != NULL); gdb_assert ((regcache != NULL) && (gregs_buf != NULL)); gregs = (elf_gregset_t *) gregs_buf; for (regno = 0; regno < 32; regno++) if (regnum == -1 || regnum == regno) regcache_raw_supply (regcache, regno, gregs->regs + regno); { struct sreg { int regnum; void *buf; } sregs [] = { { 55, &(gregs->cel) }, /* CEL */ { 54, &(gregs->ceh) }, /* CEH */ { 53, &(gregs->sr0) }, /* sr0, i.e. cnt or COUNTER */ { 52, &(gregs->sr1) }, /* sr1, i.e. lcr or LDCR */ { 51, &(gregs->sr1) }, /* sr2, i.e. scr or STCR */ /* Exception occured at this address, exactly the PC we want */ { 49, &(gregs->cp0_epc) }, /* PC */ { 38, &(gregs->cp0_ema) }, /* EMA */ { 37, &(gregs->cp0_epc) }, /* EPC */ { 34, &(gregs->cp0_ecr) }, /* ECR */ { 33, &(gregs->cp0_condition) }, /* COND */ { 32, &(gregs->cp0_psr) }, /* PSR */ }; for (regno = 0; regno < sizeof(sregs)/sizeof(sregs[0]); regno++) if (regnum == -1 || regnum == sregs[regno].regnum) regcache_raw_supply (regcache, sregs[regno].regnum, sregs[regno].buf); } } /* Return the appropriate register set from the core section identified by SECT_NAME and SECT_SIZE. */ static const struct regset * score7_linux_regset_from_core_section(struct gdbarch *gdbarch, const char *sect_name, size_t sect_size) { struct gdbarch_tdep *tdep; gdb_assert (gdbarch != NULL); gdb_assert (sect_name != NULL); tdep = gdbarch_tdep (gdbarch); if (strcmp(sect_name, ".reg") == 0 && sect_size == sizeof(elf_gregset_t)) { if (tdep->gregset == NULL) tdep->gregset = regset_alloc (gdbarch, score7_linux_supply_gregset, NULL); return tdep->gregset; } return NULL; } static struct gdbarch * score_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; target_mach = info.bfd_arch_info->mach; arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) { return (arches->gdbarch); } tdep = xcalloc(1, sizeof(struct gdbarch_tdep)); gdbarch = gdbarch_alloc (&info, tdep); set_gdbarch_short_bit (gdbarch, 16); set_gdbarch_int_bit (gdbarch, 32); set_gdbarch_float_bit (gdbarch, 32); set_gdbarch_double_bit (gdbarch, 64); set_gdbarch_long_double_bit (gdbarch, 64); #if WITH_SIM set_gdbarch_register_sim_regno (gdbarch, score_register_sim_regno); #endif set_gdbarch_pc_regnum (gdbarch, SCORE_PC_REGNUM); set_gdbarch_sp_regnum (gdbarch, SCORE_SP_REGNUM); set_gdbarch_adjust_breakpoint_address (gdbarch, score_adjust_breakpoint_address); set_gdbarch_register_type (gdbarch, score_register_type); set_gdbarch_frame_align (gdbarch, score_frame_align); set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_unwind_sp (gdbarch, score_unwind_sp); set_gdbarch_unwind_pc (gdbarch, score_unwind_pc); set_gdbarch_print_insn (gdbarch, score_print_insn); switch (target_mach) { case bfd_mach_score7: set_gdbarch_breakpoint_from_pc (gdbarch, score7_breakpoint_from_pc); set_gdbarch_skip_prologue (gdbarch, score7_skip_prologue); set_gdbarch_in_function_epilogue_p (gdbarch, score7_in_function_epilogue_p); set_gdbarch_register_name (gdbarch, score7_register_name); set_gdbarch_num_regs (gdbarch, SCORE7_NUM_REGS); /* Core file support. */ set_gdbarch_regset_from_core_section (gdbarch, score7_linux_regset_from_core_section); break; case bfd_mach_score3: set_gdbarch_breakpoint_from_pc (gdbarch, score3_breakpoint_from_pc); set_gdbarch_skip_prologue (gdbarch, score3_skip_prologue); set_gdbarch_in_function_epilogue_p (gdbarch, score3_in_function_epilogue_p); set_gdbarch_register_name (gdbarch, score3_register_name); set_gdbarch_num_regs (gdbarch, SCORE3_NUM_REGS); break; } /* Watchpoint hooks. */ set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); /* Dummy frame hooks. */ set_gdbarch_return_value (gdbarch, score_return_value); set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); set_gdbarch_dummy_id (gdbarch, score_dummy_id); set_gdbarch_push_dummy_call (gdbarch, score_push_dummy_call); /* Normal frame hooks. */ dwarf2_append_unwinders (gdbarch); frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); frame_unwind_append_unwinder (gdbarch, &score_prologue_unwind); frame_base_append_sniffer (gdbarch, score_prologue_frame_base_sniffer); return gdbarch; } extern initialize_file_ftype _initialize_score_tdep; void _initialize_score_tdep (void) { gdbarch_register (bfd_arch_score, score_gdbarch_init, NULL); }