/* General utility routines for GDB, the GNU debugger. Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdb_assert.h" #include #include "gdb_string.h" #include "event-top.h" #ifdef HAVE_CURSES_H #include #endif #ifdef HAVE_TERM_H #include #endif #ifdef __GO32__ #include #endif /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */ #ifdef reg #undef reg #endif #include #include "gdbcmd.h" #include "serial.h" #include "bfd.h" #include "target.h" #include "demangle.h" #include "expression.h" #include "language.h" #include "annotate.h" #include "inferior.h" /* for signed_pointer_to_address */ #include #ifndef MALLOC_INCOMPATIBLE #ifdef NEED_DECLARATION_MALLOC extern PTR malloc (); #endif #ifdef NEED_DECLARATION_REALLOC extern PTR realloc (); #endif #ifdef NEED_DECLARATION_FREE extern void free (); #endif #endif #undef XMALLOC #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) /* readline defines this. */ #undef savestring void (*error_begin_hook) (void); /* Holds the last error message issued by gdb */ static struct ui_file *gdb_lasterr; /* Prototypes for local functions */ static void vfprintf_maybe_filtered (struct ui_file *, const char *, va_list, int); static void fputs_maybe_filtered (const char *, struct ui_file *, int); #if defined (USE_MMALLOC) && !defined (NO_MMCHECK) static void malloc_botch (void); #endif static void prompt_for_continue (void); static void set_width_command (char *, int, struct cmd_list_element *); static void set_width (void); /* Chain of cleanup actions established with make_cleanup, to be executed if an error happens. */ static struct cleanup *cleanup_chain; /* cleaned up after a failed command */ static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */ static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */ static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */ /* cleaned up on each error from within an execution command */ static struct cleanup *exec_error_cleanup_chain; /* Pointer to what is left to do for an execution command after the target stops. Used only in asynchronous mode, by targets that support async execution. The finish and until commands use it. So does the target extended-remote command. */ struct continuation *cmd_continuation; struct continuation *intermediate_continuation; /* Nonzero if we have job control. */ int job_control; /* Nonzero means a quit has been requested. */ int quit_flag; /* Nonzero means quit immediately if Control-C is typed now, rather than waiting until QUIT is executed. Be careful in setting this; code which executes with immediate_quit set has to be very careful about being able to deal with being interrupted at any time. It is almost always better to use QUIT; the only exception I can think of is being able to quit out of a system call (using EINTR loses if the SIGINT happens between the previous QUIT and the system call). To immediately quit in the case in which a SIGINT happens between the previous QUIT and setting immediate_quit (desirable anytime we expect to block), call QUIT after setting immediate_quit. */ int immediate_quit; /* Nonzero means that encoded C++ names should be printed out in their C++ form rather than raw. */ int demangle = 1; /* Nonzero means that encoded C++ names should be printed out in their C++ form even in assembler language displays. If this is set, but DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */ int asm_demangle = 0; /* Nonzero means that strings with character values >0x7F should be printed as octal escapes. Zero means just print the value (e.g. it's an international character, and the terminal or window can cope.) */ int sevenbit_strings = 0; /* String to be printed before error messages, if any. */ char *error_pre_print; /* String to be printed before quit messages, if any. */ char *quit_pre_print; /* String to be printed before warning messages, if any. */ char *warning_pre_print = "\nwarning: "; int pagination_enabled = 1; /* Add a new cleanup to the cleanup_chain, and return the previous chain pointer to be passed later to do_cleanups or discard_cleanups. Args are FUNCTION to clean up with, and ARG to pass to it. */ struct cleanup * make_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&cleanup_chain, function, arg); } struct cleanup * make_final_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&final_cleanup_chain, function, arg); } struct cleanup * make_run_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&run_cleanup_chain, function, arg); } struct cleanup * make_exec_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&exec_cleanup_chain, function, arg); } struct cleanup * make_exec_error_cleanup (make_cleanup_ftype *function, void *arg) { return make_my_cleanup (&exec_error_cleanup_chain, function, arg); } static void do_freeargv (void *arg) { freeargv ((char **) arg); } struct cleanup * make_cleanup_freeargv (char **arg) { return make_my_cleanup (&cleanup_chain, do_freeargv, arg); } static void do_bfd_close_cleanup (void *arg) { bfd_close (arg); } struct cleanup * make_cleanup_bfd_close (bfd *abfd) { return make_cleanup (do_bfd_close_cleanup, abfd); } static void do_close_cleanup (void *arg) { int *fd = arg; close (*fd); xfree (fd); } struct cleanup * make_cleanup_close (int fd) { int *saved_fd = xmalloc (sizeof (fd)); *saved_fd = fd; return make_cleanup (do_close_cleanup, saved_fd); } static void do_ui_file_delete (void *arg) { ui_file_delete (arg); } struct cleanup * make_cleanup_ui_file_delete (struct ui_file *arg) { return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg); } struct cleanup * make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function, void *arg) { register struct cleanup *new = (struct cleanup *) xmalloc (sizeof (struct cleanup)); register struct cleanup *old_chain = *pmy_chain; new->next = *pmy_chain; new->function = function; new->arg = arg; *pmy_chain = new; return old_chain; } /* Discard cleanups and do the actions they describe until we get back to the point OLD_CHAIN in the cleanup_chain. */ void do_cleanups (register struct cleanup *old_chain) { do_my_cleanups (&cleanup_chain, old_chain); } void do_final_cleanups (register struct cleanup *old_chain) { do_my_cleanups (&final_cleanup_chain, old_chain); } void do_run_cleanups (register struct cleanup *old_chain) { do_my_cleanups (&run_cleanup_chain, old_chain); } void do_exec_cleanups (register struct cleanup *old_chain) { do_my_cleanups (&exec_cleanup_chain, old_chain); } void do_exec_error_cleanups (register struct cleanup *old_chain) { do_my_cleanups (&exec_error_cleanup_chain, old_chain); } void do_my_cleanups (register struct cleanup **pmy_chain, register struct cleanup *old_chain) { register struct cleanup *ptr; while ((ptr = *pmy_chain) != old_chain) { *pmy_chain = ptr->next; /* Do this first incase recursion */ (*ptr->function) (ptr->arg); xfree (ptr); } } /* Discard cleanups, not doing the actions they describe, until we get back to the point OLD_CHAIN in the cleanup_chain. */ void discard_cleanups (register struct cleanup *old_chain) { discard_my_cleanups (&cleanup_chain, old_chain); } void discard_final_cleanups (register struct cleanup *old_chain) { discard_my_cleanups (&final_cleanup_chain, old_chain); } void discard_exec_error_cleanups (register struct cleanup *old_chain) { discard_my_cleanups (&exec_error_cleanup_chain, old_chain); } void discard_my_cleanups (register struct cleanup **pmy_chain, register struct cleanup *old_chain) { register struct cleanup *ptr; while ((ptr = *pmy_chain) != old_chain) { *pmy_chain = ptr->next; xfree (ptr); } } /* Set the cleanup_chain to 0, and return the old cleanup chain. */ struct cleanup * save_cleanups (void) { return save_my_cleanups (&cleanup_chain); } struct cleanup * save_final_cleanups (void) { return save_my_cleanups (&final_cleanup_chain); } struct cleanup * save_my_cleanups (struct cleanup **pmy_chain) { struct cleanup *old_chain = *pmy_chain; *pmy_chain = 0; return old_chain; } /* Restore the cleanup chain from a previously saved chain. */ void restore_cleanups (struct cleanup *chain) { restore_my_cleanups (&cleanup_chain, chain); } void restore_final_cleanups (struct cleanup *chain) { restore_my_cleanups (&final_cleanup_chain, chain); } void restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain) { *pmy_chain = chain; } /* This function is useful for cleanups. Do foo = xmalloc (...); old_chain = make_cleanup (free_current_contents, &foo); to arrange to free the object thus allocated. */ void free_current_contents (void *ptr) { void **location = ptr; if (location == NULL) internal_error (__FILE__, __LINE__, "free_current_contents: NULL pointer"); if (*location != NULL) { xfree (*location); *location = NULL; } } /* Provide a known function that does nothing, to use as a base for for a possibly long chain of cleanups. This is useful where we use the cleanup chain for handling normal cleanups as well as dealing with cleanups that need to be done as a result of a call to error(). In such cases, we may not be certain where the first cleanup is, unless we have a do-nothing one to always use as the base. */ /* ARGSUSED */ void null_cleanup (void *arg) { } /* Add a continuation to the continuation list, the global list cmd_continuation. The new continuation will be added at the front.*/ void add_continuation (void (*continuation_hook) (struct continuation_arg *), struct continuation_arg *arg_list) { struct continuation *continuation_ptr; continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation)); continuation_ptr->continuation_hook = continuation_hook; continuation_ptr->arg_list = arg_list; continuation_ptr->next = cmd_continuation; cmd_continuation = continuation_ptr; } /* Walk down the cmd_continuation list, and execute all the continuations. There is a problem though. In some cases new continuations may be added while we are in the middle of this loop. If this happens they will be added in the front, and done before we have a chance of exhausting those that were already there. We need to then save the beginning of the list in a pointer and do the continuations from there on, instead of using the global beginning of list as our iteration pointer.*/ void do_all_continuations (void) { struct continuation *continuation_ptr; struct continuation *saved_continuation; /* Copy the list header into another pointer, and set the global list header to null, so that the global list can change as a side effect of invoking the continuations and the processing of the preexisting continuations will not be affected. */ continuation_ptr = cmd_continuation; cmd_continuation = NULL; /* Work now on the list we have set aside. */ while (continuation_ptr) { (continuation_ptr->continuation_hook) (continuation_ptr->arg_list); saved_continuation = continuation_ptr; continuation_ptr = continuation_ptr->next; xfree (saved_continuation); } } /* Walk down the cmd_continuation list, and get rid of all the continuations. */ void discard_all_continuations (void) { struct continuation *continuation_ptr; while (cmd_continuation) { continuation_ptr = cmd_continuation; cmd_continuation = continuation_ptr->next; xfree (continuation_ptr); } } /* Add a continuation to the continuation list, the global list intermediate_continuation. The new continuation will be added at the front.*/ void add_intermediate_continuation (void (*continuation_hook) (struct continuation_arg *), struct continuation_arg *arg_list) { struct continuation *continuation_ptr; continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation)); continuation_ptr->continuation_hook = continuation_hook; continuation_ptr->arg_list = arg_list; continuation_ptr->next = intermediate_continuation; intermediate_continuation = continuation_ptr; } /* Walk down the cmd_continuation list, and execute all the continuations. There is a problem though. In some cases new continuations may be added while we are in the middle of this loop. If this happens they will be added in the front, and done before we have a chance of exhausting those that were already there. We need to then save the beginning of the list in a pointer and do the continuations from there on, instead of using the global beginning of list as our iteration pointer.*/ void do_all_intermediate_continuations (void) { struct continuation *continuation_ptr; struct continuation *saved_continuation; /* Copy the list header into another pointer, and set the global list header to null, so that the global list can change as a side effect of invoking the continuations and the processing of the preexisting continuations will not be affected. */ continuation_ptr = intermediate_continuation; intermediate_continuation = NULL; /* Work now on the list we have set aside. */ while (continuation_ptr) { (continuation_ptr->continuation_hook) (continuation_ptr->arg_list); saved_continuation = continuation_ptr; continuation_ptr = continuation_ptr->next; xfree (saved_continuation); } } /* Walk down the cmd_continuation list, and get rid of all the continuations. */ void discard_all_intermediate_continuations (void) { struct continuation *continuation_ptr; while (intermediate_continuation) { continuation_ptr = intermediate_continuation; intermediate_continuation = continuation_ptr->next; xfree (continuation_ptr); } } /* Print a warning message. Way to use this is to call warning_begin, output the warning message (use unfiltered output to gdb_stderr), ending in a newline. There is not currently a warning_end that you call afterwards, but such a thing might be added if it is useful for a GUI to separate warning messages from other output. FIXME: Why do warnings use unfiltered output and errors filtered? Is this anything other than a historical accident? */ void warning_begin (void) { target_terminal_ours (); wrap_here (""); /* Force out any buffered output */ gdb_flush (gdb_stdout); if (warning_pre_print) fprintf_unfiltered (gdb_stderr, warning_pre_print); } /* Print a warning message. The first argument STRING is the warning message, used as a fprintf string, and the remaining args are passed as arguments to it. The primary difference between warnings and errors is that a warning does not force the return to command level. */ void warning (const char *string,...) { va_list args; va_start (args, string); if (warning_hook) (*warning_hook) (string, args); else { warning_begin (); vfprintf_unfiltered (gdb_stderr, string, args); fprintf_unfiltered (gdb_stderr, "\n"); va_end (args); } } /* Start the printing of an error message. Way to use this is to call this, output the error message (use filtered output to gdb_stderr (FIXME: Some callers, like memory_error, use gdb_stdout)), ending in a newline, and then call return_to_top_level (RETURN_ERROR). error() provides a convenient way to do this for the special case that the error message can be formatted with a single printf call, but this is more general. */ void error_begin (void) { if (error_begin_hook) error_begin_hook (); target_terminal_ours (); wrap_here (""); /* Force out any buffered output */ gdb_flush (gdb_stdout); annotate_error_begin (); if (error_pre_print) fprintf_filtered (gdb_stderr, error_pre_print); } /* Print an error message and return to command level. The first argument STRING is the error message, used as a fprintf string, and the remaining args are passed as arguments to it. */ NORETURN void verror (const char *string, va_list args) { char *err_string; struct cleanup *err_string_cleanup; /* FIXME: cagney/1999-11-10: All error calls should come here. Unfortunately some code uses the sequence: error_begin(); print error message; return_to_top_level. That code should be flushed. */ error_begin (); /* NOTE: It's tempting to just do the following... vfprintf_filtered (gdb_stderr, string, args); and then follow with a similar looking statement to cause the message to also go to gdb_lasterr. But if we do this, we'll be traversing the va_list twice which works on some platforms and fails miserably on others. */ /* Save it as the last error */ ui_file_rewind (gdb_lasterr); vfprintf_filtered (gdb_lasterr, string, args); /* Retrieve the last error and print it to gdb_stderr */ err_string = error_last_message (); err_string_cleanup = make_cleanup (xfree, err_string); fputs_filtered (err_string, gdb_stderr); fprintf_filtered (gdb_stderr, "\n"); do_cleanups (err_string_cleanup); return_to_top_level (RETURN_ERROR); } NORETURN void error (const char *string,...) { va_list args; va_start (args, string); verror (string, args); va_end (args); } NORETURN void error_stream (struct ui_file *stream) { long size; char *msg = ui_file_xstrdup (stream, &size); make_cleanup (xfree, msg); error ("%s", msg); } /* Get the last error message issued by gdb */ char * error_last_message (void) { long len; return ui_file_xstrdup (gdb_lasterr, &len); } /* This is to be called by main() at the very beginning */ void error_init (void) { gdb_lasterr = mem_fileopen (); } /* Print a message reporting an internal error. Ask the user if they want to continue, dump core, or just exit. */ NORETURN void internal_verror (const char *file, int line, const char *fmt, va_list ap) { static char msg[] = "Internal GDB error: recursive internal error.\n"; static int dejavu = 0; int continue_p; int dump_core_p; /* don't allow infinite error recursion. */ switch (dejavu) { case 0: dejavu = 1; break; case 1: dejavu = 2; fputs_unfiltered (msg, gdb_stderr); internal_error (__FILE__, __LINE__, "failed internal consistency check"); default: dejavu = 3; write (STDERR_FILENO, msg, sizeof (msg)); exit (1); } /* Try to get the message out */ target_terminal_ours (); fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line); vfprintf_unfiltered (gdb_stderr, fmt, ap); fputs_unfiltered ("\n", gdb_stderr); /* Default (no case) is to quit GDB. When in batch mode this lessens the likelhood of GDB going into an infinate loop. */ continue_p = query ("\ An internal GDB error was detected. This may make further\n\ debugging unreliable. Continue this debugging session? "); /* Default (no case) is to not dump core. Lessen the chance of GDB leaving random core files around. */ dump_core_p = query ("\ Create a core file containing the current state of GDB? "); if (continue_p) { if (dump_core_p) { if (fork () == 0) internal_error (__FILE__, __LINE__, "failed internal consistency check"); } } else { if (dump_core_p) internal_error (__FILE__, __LINE__, "failed internal consistency check"); else exit (1); } dejavu = 0; return_to_top_level (RETURN_ERROR); } NORETURN void internal_error (const char *file, int line, const char *string, ...) { va_list ap; va_start (ap, string); internal_verror (file, line, string, ap); va_end (ap); } /* The strerror() function can return NULL for errno values that are out of range. Provide a "safe" version that always returns a printable string. */ char * safe_strerror (int errnum) { char *msg; static char buf[32]; if ((msg = strerror (errnum)) == NULL) { sprintf (buf, "(undocumented errno %d)", errnum); msg = buf; } return (msg); } /* Print the system error message for errno, and also mention STRING as the file name for which the error was encountered. Then return to command level. */ NORETURN void perror_with_name (char *string) { char *err; char *combined; err = safe_strerror (errno); combined = (char *) alloca (strlen (err) + strlen (string) + 3); strcpy (combined, string); strcat (combined, ": "); strcat (combined, err); /* I understand setting these is a matter of taste. Still, some people may clear errno but not know about bfd_error. Doing this here is not unreasonable. */ bfd_set_error (bfd_error_no_error); errno = 0; error ("%s.", combined); } /* Print the system error message for ERRCODE, and also mention STRING as the file name for which the error was encountered. */ void print_sys_errmsg (char *string, int errcode) { char *err; char *combined; err = safe_strerror (errcode); combined = (char *) alloca (strlen (err) + strlen (string) + 3); strcpy (combined, string); strcat (combined, ": "); strcat (combined, err); /* We want anything which was printed on stdout to come out first, before this message. */ gdb_flush (gdb_stdout); fprintf_unfiltered (gdb_stderr, "%s.\n", combined); } /* Control C eventually causes this to be called, at a convenient time. */ void quit (void) { struct serial *gdb_stdout_serial = serial_fdopen (1); target_terminal_ours (); /* We want all output to appear now, before we print "Quit". We have 3 levels of buffering we have to flush (it's possible that some of these should be changed to flush the lower-level ones too): */ /* 1. The _filtered buffer. */ wrap_here ((char *) 0); /* 2. The stdio buffer. */ gdb_flush (gdb_stdout); gdb_flush (gdb_stderr); /* 3. The system-level buffer. */ serial_drain_output (gdb_stdout_serial); serial_un_fdopen (gdb_stdout_serial); annotate_error_begin (); /* Don't use *_filtered; we don't want to prompt the user to continue. */ if (quit_pre_print) fprintf_unfiltered (gdb_stderr, quit_pre_print); #ifdef __MSDOS__ /* No steenking SIGINT will ever be coming our way when the program is resumed. Don't lie. */ fprintf_unfiltered (gdb_stderr, "Quit\n"); #else if (job_control /* If there is no terminal switching for this target, then we can't possibly get screwed by the lack of job control. */ || current_target.to_terminal_ours == NULL) fprintf_unfiltered (gdb_stderr, "Quit\n"); else fprintf_unfiltered (gdb_stderr, "Quit (expect signal SIGINT when the program is resumed)\n"); #endif return_to_top_level (RETURN_QUIT); } /* Control C comes here */ void request_quit (int signo) { quit_flag = 1; /* Restore the signal handler. Harmless with BSD-style signals, needed for System V-style signals. So just always do it, rather than worrying about USG defines and stuff like that. */ signal (signo, request_quit); #ifdef REQUEST_QUIT REQUEST_QUIT; #else if (immediate_quit) quit (); #endif } /* Memory management stuff (malloc friends). */ #if !defined (USE_MMALLOC) /* NOTE: These must use PTR so that their definition matches the declaration found in "mmalloc.h". */ PTR mmalloc (PTR md, size_t size) { return malloc (size); /* NOTE: GDB's only call to malloc() */ } PTR mrealloc (PTR md, PTR ptr, size_t size) { if (ptr == 0) /* Guard against old realloc's */ return mmalloc (md, size); else return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */ } PTR mcalloc (PTR md, size_t number, size_t size) { return calloc (number, size); /* NOTE: GDB's only call to calloc() */ } void mfree (PTR md, PTR ptr) { free (ptr); /* NOTE: GDB's only call to free() */ } #endif /* USE_MMALLOC */ #if !defined (USE_MMALLOC) || defined (NO_MMCHECK) void init_malloc (void *md) { } #else /* Have mmalloc and want corruption checking */ static void malloc_botch (void) { fprintf_unfiltered (gdb_stderr, "Memory corruption\n"); internal_error (__FILE__, __LINE__, "failed internal consistency check"); } /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified by MD, to detect memory corruption. Note that MD may be NULL to specify the default heap that grows via sbrk. Note that for freshly created regions, we must call mmcheckf prior to any mallocs in the region. Otherwise, any region which was allocated prior to installing the checking hooks, which is later reallocated or freed, will fail the checks! The mmcheck function only allows initial hooks to be installed before the first mmalloc. However, anytime after we have called mmcheck the first time to install the checking hooks, we can call it again to update the function pointer to the memory corruption handler. Returns zero on failure, non-zero on success. */ #ifndef MMCHECK_FORCE #define MMCHECK_FORCE 0 #endif void init_malloc (void *md) { if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE)) { /* Don't use warning(), which relies on current_target being set to something other than dummy_target, until after initialize_all_files(). */ fprintf_unfiltered (gdb_stderr, "warning: failed to install memory consistency checks; "); fprintf_unfiltered (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n"); } mmtrace (); } #endif /* Have mmalloc and want corruption checking */ /* Called when a memory allocation fails, with the number of bytes of memory requested in SIZE. */ NORETURN void nomem (long size) { if (size > 0) { internal_error (__FILE__, __LINE__, "virtual memory exhausted: can't allocate %ld bytes.", size); } else { internal_error (__FILE__, __LINE__, "virtual memory exhausted."); } } /* The xmmalloc() family of memory management routines. These are are like the mmalloc() family except that they implement consistent semantics and guard against typical memory management problems: if a malloc fails, an internal error is thrown; if free(NULL) is called, it is ignored; if *alloc(0) is called, NULL is returned. All these routines are implemented using the mmalloc() family. */ void * xmmalloc (void *md, size_t size) { void *val; if (size == 0) { val = NULL; } else { val = mmalloc (md, size); if (val == NULL) nomem (size); } return (val); } void * xmrealloc (void *md, void *ptr, size_t size) { void *val; if (size == 0) { if (ptr != NULL) mfree (md, ptr); val = NULL; } else { if (ptr != NULL) { val = mrealloc (md, ptr, size); } else { val = mmalloc (md, size); } if (val == NULL) { nomem (size); } } return (val); } void * xmcalloc (void *md, size_t number, size_t size) { void *mem; if (number == 0 || size == 0) mem = NULL; else { mem = mcalloc (md, number, size); if (mem == NULL) nomem (number * size); } return mem; } void xmfree (void *md, void *ptr) { if (ptr != NULL) mfree (md, ptr); } /* The xmalloc() (libiberty.h) family of memory management routines. These are like the ISO-C malloc() family except that they implement consistent semantics and guard against typical memory management problems. See xmmalloc() above for further information. All these routines are wrappers to the xmmalloc() family. */ /* NOTE: These are declared using PTR to ensure consistency with "libiberty.h". xfree() is GDB local. */ PTR xmalloc (size_t size) { return xmmalloc (NULL, size); } PTR xrealloc (PTR ptr, size_t size) { return xmrealloc (NULL, ptr, size); } PTR xcalloc (size_t number, size_t size) { return xmcalloc (NULL, number, size); } void xfree (void *ptr) { xmfree (NULL, ptr); } /* Like asprintf/vasprintf but get an internal_error if the call fails. */ void xasprintf (char **ret, const char *format, ...) { va_list args; va_start (args, format); xvasprintf (ret, format, args); va_end (args); } void xvasprintf (char **ret, const char *format, va_list ap) { int status = vasprintf (ret, format, ap); /* NULL could be returned due to a memory allocation problem; a badly format string; or something else. */ if ((*ret) == NULL) internal_error (__FILE__, __LINE__, "vasprintf returned NULL buffer (errno %d)", errno); /* A negative status with a non-NULL buffer shouldn't never happen. But to be sure. */ if (status < 0) internal_error (__FILE__, __LINE__, "vasprintf call failed (errno %d)", errno); } /* My replacement for the read system call. Used like `read' but keeps going if `read' returns too soon. */ int myread (int desc, char *addr, int len) { register int val; int orglen = len; while (len > 0) { val = read (desc, addr, len); if (val < 0) return val; if (val == 0) return orglen - len; len -= val; addr += val; } return orglen; } /* Make a copy of the string at PTR with SIZE characters (and add a null character at the end in the copy). Uses malloc to get the space. Returns the address of the copy. */ char * savestring (const char *ptr, size_t size) { register char *p = (char *) xmalloc (size + 1); memcpy (p, ptr, size); p[size] = 0; return p; } char * msavestring (void *md, const char *ptr, size_t size) { register char *p = (char *) xmmalloc (md, size + 1); memcpy (p, ptr, size); p[size] = 0; return p; } char * mstrsave (void *md, const char *ptr) { return (msavestring (md, ptr, strlen (ptr))); } void print_spaces (register int n, register struct ui_file *file) { fputs_unfiltered (n_spaces (n), file); } /* Print a host address. */ void gdb_print_host_address (void *addr, struct ui_file *stream) { /* We could use the %p conversion specifier to fprintf if we had any way of knowing whether this host supports it. But the following should work on the Alpha and on 32 bit machines. */ fprintf_filtered (stream, "0x%lx", (unsigned long) addr); } /* Ask user a y-or-n question and return 1 iff answer is yes. Takes three args which are given to printf to print the question. The first, a control string, should end in "? ". It should not say how to answer, because we do that. */ /* VARARGS */ int query (char *ctlstr,...) { va_list args; register int answer; register int ans2; int retval; va_start (args, ctlstr); if (query_hook) { return query_hook (ctlstr, args); } /* Automatically answer "yes" if input is not from a terminal. */ if (!input_from_terminal_p ()) return 1; /* OBSOLETE #ifdef MPW */ /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */ /* OBSOLETE if (mac_app) */ /* OBSOLETE return 1; */ /* OBSOLETE #endif *//* MPW */ while (1) { wrap_here (""); /* Flush any buffered output */ gdb_flush (gdb_stdout); if (annotation_level > 1) printf_filtered ("\n\032\032pre-query\n"); vfprintf_filtered (gdb_stdout, ctlstr, args); printf_filtered ("(y or n) "); if (annotation_level > 1) printf_filtered ("\n\032\032query\n"); /* OBSOLETE #ifdef MPW */ /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */ /* OBSOLETE have a prompt on the front of it. */ /* OBSOLETE if (!mac_app) */ /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */ /* OBSOLETE #endif *//* MPW */ wrap_here (""); gdb_flush (gdb_stdout); answer = fgetc (stdin); clearerr (stdin); /* in case of C-d */ if (answer == EOF) /* C-d */ { retval = 1; break; } /* Eat rest of input line, to EOF or newline */ if (answer != '\n') do { ans2 = fgetc (stdin); clearerr (stdin); } while (ans2 != EOF && ans2 != '\n' && ans2 != '\r'); if (answer >= 'a') answer -= 040; if (answer == 'Y') { retval = 1; break; } if (answer == 'N') { retval = 0; break; } printf_filtered ("Please answer y or n.\n"); } if (annotation_level > 1) printf_filtered ("\n\032\032post-query\n"); return retval; } /* Parse a C escape sequence. STRING_PTR points to a variable containing a pointer to the string to parse. That pointer should point to the character after the \. That pointer is updated past the characters we use. The value of the escape sequence is returned. A negative value means the sequence \ newline was seen, which is supposed to be equivalent to nothing at all. If \ is followed by a null character, we return a negative value and leave the string pointer pointing at the null character. If \ is followed by 000, we return 0 and leave the string pointer after the zeros. A value of 0 does not mean end of string. */ int parse_escape (char **string_ptr) { register int c = *(*string_ptr)++; switch (c) { case 'a': return 007; /* Bell (alert) char */ case 'b': return '\b'; case 'e': /* Escape character */ return 033; case 'f': return '\f'; case 'n': return '\n'; case 'r': return '\r'; case 't': return '\t'; case 'v': return '\v'; case '\n': return -2; case 0: (*string_ptr)--; return 0; case '^': c = *(*string_ptr)++; if (c == '\\') c = parse_escape (string_ptr); if (c == '?') return 0177; return (c & 0200) | (c & 037); case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { register int i = c - '0'; register int count = 0; while (++count < 3) { if ((c = *(*string_ptr)++) >= '0' && c <= '7') { i *= 8; i += c - '0'; } else { (*string_ptr)--; break; } } return i; } default: return c; } } /* Print the character C on STREAM as part of the contents of a literal string whose delimiter is QUOTER. Note that this routine should only be call for printing things which are independent of the language of the program being debugged. */ static void printchar (int c, void (*do_fputs) (const char *, struct ui_file *), void (*do_fprintf) (struct ui_file *, const char *, ...), struct ui_file *stream, int quoter) { c &= 0xFF; /* Avoid sign bit follies */ if (c < 0x20 || /* Low control chars */ (c >= 0x7F && c < 0xA0) || /* DEL, High controls */ (sevenbit_strings && c >= 0x80)) { /* high order bit set */ switch (c) { case '\n': do_fputs ("\\n", stream); break; case '\b': do_fputs ("\\b", stream); break; case '\t': do_fputs ("\\t", stream); break; case '\f': do_fputs ("\\f", stream); break; case '\r': do_fputs ("\\r", stream); break; case '\033': do_fputs ("\\e", stream); break; case '\007': do_fputs ("\\a", stream); break; default: do_fprintf (stream, "\\%.3o", (unsigned int) c); break; } } else { if (c == '\\' || c == quoter) do_fputs ("\\", stream); do_fprintf (stream, "%c", c); } } /* Print the character C on STREAM as part of the contents of a literal string whose delimiter is QUOTER. Note that these routines should only be call for printing things which are independent of the language of the program being debugged. */ void fputstr_filtered (const char *str, int quoter, struct ui_file *stream) { while (*str) printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter); } void fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream) { while (*str) printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter); } void fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream) { int i; for (i = 0; i < n; i++) printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter); } /* Number of lines per page or UINT_MAX if paging is disabled. */ static unsigned int lines_per_page; /* Number of chars per line or UINT_MAX if line folding is disabled. */ static unsigned int chars_per_line; /* Current count of lines printed on this page, chars on this line. */ static unsigned int lines_printed, chars_printed; /* Buffer and start column of buffered text, for doing smarter word- wrapping. When someone calls wrap_here(), we start buffering output that comes through fputs_filtered(). If we see a newline, we just spit it out and forget about the wrap_here(). If we see another wrap_here(), we spit it out and remember the newer one. If we see the end of the line, we spit out a newline, the indent, and then the buffered output. */ /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which are waiting to be output (they have already been counted in chars_printed). When wrap_buffer[0] is null, the buffer is empty. */ static char *wrap_buffer; /* Pointer in wrap_buffer to the next character to fill. */ static char *wrap_pointer; /* String to indent by if the wrap occurs. Must not be NULL if wrap_column is non-zero. */ static char *wrap_indent; /* Column number on the screen where wrap_buffer begins, or 0 if wrapping is not in effect. */ static int wrap_column; /* Inialize the lines and chars per page */ void init_page_info (void) { #if defined(TUI) if (tui_version && m_winPtrNotNull (cmdWin)) { lines_per_page = cmdWin->generic.height; chars_per_line = cmdWin->generic.width; } else #endif { /* These defaults will be used if we are unable to get the correct values from termcap. */ #if defined(__GO32__) lines_per_page = ScreenRows (); chars_per_line = ScreenCols (); #else lines_per_page = 24; chars_per_line = 80; #if !defined (_WIN32) /* No termcap under MPW, although might be cool to do something by looking at worksheet or console window sizes. */ /* Initialize the screen height and width from termcap. */ { char *termtype = getenv ("TERM"); /* Positive means success, nonpositive means failure. */ int status; /* 2048 is large enough for all known terminals, according to the GNU termcap manual. */ char term_buffer[2048]; if (termtype) { status = tgetent (term_buffer, termtype); if (status > 0) { int val; int running_in_emacs = getenv ("EMACS") != NULL; val = tgetnum ("li"); if (val >= 0 && !running_in_emacs) lines_per_page = val; else /* The number of lines per page is not mentioned in the terminal description. This probably means that paging is not useful (e.g. emacs shell window), so disable paging. */ lines_per_page = UINT_MAX; val = tgetnum ("co"); if (val >= 0) chars_per_line = val; } } } #endif /* MPW */ #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER) /* If there is a better way to determine the window size, use it. */ SIGWINCH_HANDLER (SIGWINCH); #endif #endif /* If the output is not a terminal, don't paginate it. */ if (!ui_file_isatty (gdb_stdout)) lines_per_page = UINT_MAX; } /* the command_line_version */ set_width (); } static void set_width (void) { if (chars_per_line == 0) init_page_info (); if (!wrap_buffer) { wrap_buffer = (char *) xmalloc (chars_per_line + 2); wrap_buffer[0] = '\0'; } else wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2); wrap_pointer = wrap_buffer; /* Start it at the beginning */ } /* ARGSUSED */ static void set_width_command (char *args, int from_tty, struct cmd_list_element *c) { set_width (); } /* Wait, so the user can read what's on the screen. Prompt the user to continue by pressing RETURN. */ static void prompt_for_continue (void) { char *ignore; char cont_prompt[120]; if (annotation_level > 1) printf_unfiltered ("\n\032\032pre-prompt-for-continue\n"); strcpy (cont_prompt, "---Type to continue, or q to quit---"); if (annotation_level > 1) strcat (cont_prompt, "\n\032\032prompt-for-continue\n"); /* We must do this *before* we call gdb_readline, else it will eventually call us -- thinking that we're trying to print beyond the end of the screen. */ reinitialize_more_filter (); immediate_quit++; /* On a real operating system, the user can quit with SIGINT. But not on GO32. 'q' is provided on all systems so users don't have to change habits from system to system, and because telling them what to do in the prompt is more user-friendly than expecting them to think of SIGINT. */ /* Call readline, not gdb_readline, because GO32 readline handles control-C whereas control-C to gdb_readline will cause the user to get dumped out to DOS. */ ignore = readline (cont_prompt); if (annotation_level > 1) printf_unfiltered ("\n\032\032post-prompt-for-continue\n"); if (ignore) { char *p = ignore; while (*p == ' ' || *p == '\t') ++p; if (p[0] == 'q') { if (!event_loop_p) request_quit (SIGINT); else async_request_quit (0); } xfree (ignore); } immediate_quit--; /* Now we have to do this again, so that GDB will know that it doesn't need to save the ---Type --- line at the top of the screen. */ reinitialize_more_filter (); dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */ } /* Reinitialize filter; ie. tell it to reset to original values. */ void reinitialize_more_filter (void) { lines_printed = 0; chars_printed = 0; } /* Indicate that if the next sequence of characters overflows the line, a newline should be inserted here rather than when it hits the end. If INDENT is non-null, it is a string to be printed to indent the wrapped part on the next line. INDENT must remain accessible until the next call to wrap_here() or until a newline is printed through fputs_filtered(). If the line is already overfull, we immediately print a newline and the indentation, and disable further wrapping. If we don't know the width of lines, but we know the page height, we must not wrap words, but should still keep track of newlines that were explicitly printed. INDENT should not contain tabs, as that will mess up the char count on the next line. FIXME. This routine is guaranteed to force out any output which has been squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be used to force out output from the wrap_buffer. */ void wrap_here (char *indent) { /* This should have been allocated, but be paranoid anyway. */ if (!wrap_buffer) internal_error (__FILE__, __LINE__, "failed internal consistency check"); if (wrap_buffer[0]) { *wrap_pointer = '\0'; fputs_unfiltered (wrap_buffer, gdb_stdout); } wrap_pointer = wrap_buffer; wrap_buffer[0] = '\0'; if (chars_per_line == UINT_MAX) /* No line overflow checking */ { wrap_column = 0; } else if (chars_printed >= chars_per_line) { puts_filtered ("\n"); if (indent != NULL) puts_filtered (indent); wrap_column = 0; } else { wrap_column = chars_printed; if (indent == NULL) wrap_indent = ""; else wrap_indent = indent; } } /* Ensure that whatever gets printed next, using the filtered output commands, starts at the beginning of the line. I.E. if there is any pending output for the current line, flush it and start a new line. Otherwise do nothing. */ void begin_line (void) { if (chars_printed > 0) { puts_filtered ("\n"); } } /* Like fputs but if FILTER is true, pause after every screenful. Regardless of FILTER can wrap at points other than the final character of a line. Unlike fputs, fputs_maybe_filtered does not return a value. It is OK for LINEBUFFER to be NULL, in which case just don't print anything. Note that a longjmp to top level may occur in this routine (only if FILTER is true) (since prompt_for_continue may do so) so this routine should not be called when cleanups are not in place. */ static void fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream, int filter) { const char *lineptr; if (linebuffer == 0) return; /* Don't do any filtering if it is disabled. */ if ((stream != gdb_stdout) || !pagination_enabled || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX)) { fputs_unfiltered (linebuffer, stream); return; } /* Go through and output each character. Show line extension when this is necessary; prompt user for new page when this is necessary. */ lineptr = linebuffer; while (*lineptr) { /* Possible new page. */ if (filter && (lines_printed >= lines_per_page - 1)) prompt_for_continue (); while (*lineptr && *lineptr != '\n') { /* Print a single line. */ if (*lineptr == '\t') { if (wrap_column) *wrap_pointer++ = '\t'; else fputc_unfiltered ('\t', stream); /* Shifting right by 3 produces the number of tab stops we have already passed, and then adding one and shifting left 3 advances to the next tab stop. */ chars_printed = ((chars_printed >> 3) + 1) << 3; lineptr++; } else { if (wrap_column) *wrap_pointer++ = *lineptr; else fputc_unfiltered (*lineptr, stream); chars_printed++; lineptr++; } if (chars_printed >= chars_per_line) { unsigned int save_chars = chars_printed; chars_printed = 0; lines_printed++; /* If we aren't actually wrapping, don't output newline -- if chars_per_line is right, we probably just overflowed anyway; if it's wrong, let us keep going. */ if (wrap_column) fputc_unfiltered ('\n', stream); /* Possible new page. */ if (lines_printed >= lines_per_page - 1) prompt_for_continue (); /* Now output indentation and wrapped string */ if (wrap_column) { fputs_unfiltered (wrap_indent, stream); *wrap_pointer = '\0'; /* Null-terminate saved stuff */ fputs_unfiltered (wrap_buffer, stream); /* and eject it */ /* FIXME, this strlen is what prevents wrap_indent from containing tabs. However, if we recurse to print it and count its chars, we risk trouble if wrap_indent is longer than (the user settable) chars_per_line. Note also that this can set chars_printed > chars_per_line if we are printing a long string. */ chars_printed = strlen (wrap_indent) + (save_chars - wrap_column); wrap_pointer = wrap_buffer; /* Reset buffer */ wrap_buffer[0] = '\0'; wrap_column = 0; /* And disable fancy wrap */ } } } if (*lineptr == '\n') { chars_printed = 0; wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */ lines_printed++; fputc_unfiltered ('\n', stream); lineptr++; } } } void fputs_filtered (const char *linebuffer, struct ui_file *stream) { fputs_maybe_filtered (linebuffer, stream, 1); } int putchar_unfiltered (int c) { char buf = c; ui_file_write (gdb_stdout, &buf, 1); return c; } /* Write character C to gdb_stdout using GDB's paging mechanism and return C. May return nonlocally. */ int putchar_filtered (int c) { return fputc_filtered (c, gdb_stdout); } int fputc_unfiltered (int c, struct ui_file *stream) { char buf = c; ui_file_write (stream, &buf, 1); return c; } int fputc_filtered (int c, struct ui_file *stream) { char buf[2]; buf[0] = c; buf[1] = 0; fputs_filtered (buf, stream); return c; } /* puts_debug is like fputs_unfiltered, except it prints special characters in printable fashion. */ void puts_debug (char *prefix, char *string, char *suffix) { int ch; /* Print prefix and suffix after each line. */ static int new_line = 1; static int return_p = 0; static char *prev_prefix = ""; static char *prev_suffix = ""; if (*string == '\n') return_p = 0; /* If the prefix is changing, print the previous suffix, a new line, and the new prefix. */ if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line) { fputs_unfiltered (prev_suffix, gdb_stdlog); fputs_unfiltered ("\n", gdb_stdlog); fputs_unfiltered (prefix, gdb_stdlog); } /* Print prefix if we printed a newline during the previous call. */ if (new_line) { new_line = 0; fputs_unfiltered (prefix, gdb_stdlog); } prev_prefix = prefix; prev_suffix = suffix; /* Output characters in a printable format. */ while ((ch = *string++) != '\0') { switch (ch) { default: if (isprint (ch)) fputc_unfiltered (ch, gdb_stdlog); else fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff); break; case '\\': fputs_unfiltered ("\\\\", gdb_stdlog); break; case '\b': fputs_unfiltered ("\\b", gdb_stdlog); break; case '\f': fputs_unfiltered ("\\f", gdb_stdlog); break; case '\n': new_line = 1; fputs_unfiltered ("\\n", gdb_stdlog); break; case '\r': fputs_unfiltered ("\\r", gdb_stdlog); break; case '\t': fputs_unfiltered ("\\t", gdb_stdlog); break; case '\v': fputs_unfiltered ("\\v", gdb_stdlog); break; } return_p = ch == '\r'; } /* Print suffix if we printed a newline. */ if (new_line) { fputs_unfiltered (suffix, gdb_stdlog); fputs_unfiltered ("\n", gdb_stdlog); } } /* Print a variable number of ARGS using format FORMAT. If this information is going to put the amount written (since the last call to REINITIALIZE_MORE_FILTER or the last page break) over the page size, call prompt_for_continue to get the users permision to continue. Unlike fprintf, this function does not return a value. We implement three variants, vfprintf (takes a vararg list and stream), fprintf (takes a stream to write on), and printf (the usual). Note also that a longjmp to top level may occur in this routine (since prompt_for_continue may do so) so this routine should not be called when cleanups are not in place. */ static void vfprintf_maybe_filtered (struct ui_file *stream, const char *format, va_list args, int filter) { char *linebuffer; struct cleanup *old_cleanups; xvasprintf (&linebuffer, format, args); old_cleanups = make_cleanup (xfree, linebuffer); fputs_maybe_filtered (linebuffer, stream, filter); do_cleanups (old_cleanups); } void vfprintf_filtered (struct ui_file *stream, const char *format, va_list args) { vfprintf_maybe_filtered (stream, format, args, 1); } void vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args) { char *linebuffer; struct cleanup *old_cleanups; xvasprintf (&linebuffer, format, args); old_cleanups = make_cleanup (xfree, linebuffer); fputs_unfiltered (linebuffer, stream); do_cleanups (old_cleanups); } void vprintf_filtered (const char *format, va_list args) { vfprintf_maybe_filtered (gdb_stdout, format, args, 1); } void vprintf_unfiltered (const char *format, va_list args) { vfprintf_unfiltered (gdb_stdout, format, args); } void fprintf_filtered (struct ui_file * stream, const char *format,...) { va_list args; va_start (args, format); vfprintf_filtered (stream, format, args); va_end (args); } void fprintf_unfiltered (struct ui_file * stream, const char *format,...) { va_list args; va_start (args, format); vfprintf_unfiltered (stream, format, args); va_end (args); } /* Like fprintf_filtered, but prints its result indented. Called as fprintfi_filtered (spaces, stream, format, ...); */ void fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...) { va_list args; va_start (args, format); print_spaces_filtered (spaces, stream); vfprintf_filtered (stream, format, args); va_end (args); } void printf_filtered (const char *format,...) { va_list args; va_start (args, format); vfprintf_filtered (gdb_stdout, format, args); va_end (args); } void printf_unfiltered (const char *format,...) { va_list args; va_start (args, format); vfprintf_unfiltered (gdb_stdout, format, args); va_end (args); } /* Like printf_filtered, but prints it's result indented. Called as printfi_filtered (spaces, format, ...); */ void printfi_filtered (int spaces, const char *format,...) { va_list args; va_start (args, format); print_spaces_filtered (spaces, gdb_stdout); vfprintf_filtered (gdb_stdout, format, args); va_end (args); } /* Easy -- but watch out! This routine is *not* a replacement for puts()! puts() appends a newline. This one doesn't, and had better not! */ void puts_filtered (const char *string) { fputs_filtered (string, gdb_stdout); } void puts_unfiltered (const char *string) { fputs_unfiltered (string, gdb_stdout); } /* Return a pointer to N spaces and a null. The pointer is good until the next call to here. */ char * n_spaces (int n) { char *t; static char *spaces = 0; static int max_spaces = -1; if (n > max_spaces) { if (spaces) xfree (spaces); spaces = (char *) xmalloc (n + 1); for (t = spaces + n; t != spaces;) *--t = ' '; spaces[n] = '\0'; max_spaces = n; } return spaces + max_spaces - n; } /* Print N spaces. */ void print_spaces_filtered (int n, struct ui_file *stream) { fputs_filtered (n_spaces (n), stream); } /* C++ demangler stuff. */ /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language LANG, using demangling args ARG_MODE, and print it filtered to STREAM. If the name is not mangled, or the language for the name is unknown, or demangling is off, the name is printed in its "raw" form. */ void fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang, int arg_mode) { char *demangled; if (name != NULL) { /* If user wants to see raw output, no problem. */ if (!demangle) { fputs_filtered (name, stream); } else { switch (lang) { case language_cplus: demangled = cplus_demangle (name, arg_mode); break; case language_java: demangled = cplus_demangle (name, arg_mode | DMGL_JAVA); break; case language_chill: demangled = chill_demangle (name); break; default: demangled = NULL; break; } fputs_filtered (demangled ? demangled : name, stream); if (demangled != NULL) { xfree (demangled); } } } } /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any differences in whitespace. Returns 0 if they match, non-zero if they don't (slightly different than strcmp()'s range of return values). As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO". This "feature" is useful when searching for matching C++ function names (such as if the user types 'break FOO', where FOO is a mangled C++ function). */ int strcmp_iw (const char *string1, const char *string2) { while ((*string1 != '\0') && (*string2 != '\0')) { while (isspace (*string1)) { string1++; } while (isspace (*string2)) { string2++; } if (*string1 != *string2) { break; } if (*string1 != '\0') { string1++; string2++; } } return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0'); } /* ** subset_compare() ** Answer whether string_to_compare is a full or partial match to ** template_string. The partial match must be in sequence starting ** at index 0. */ int subset_compare (char *string_to_compare, char *template_string) { int match; if (template_string != (char *) NULL && string_to_compare != (char *) NULL && strlen (string_to_compare) <= strlen (template_string)) match = (strncmp (template_string, string_to_compare, strlen (string_to_compare)) == 0); else match = 0; return match; } static void pagination_on_command (char *arg, int from_tty); static void pagination_on_command (char *arg, int from_tty) { pagination_enabled = 1; } static void pagination_on_command (char *arg, int from_tty); static void pagination_off_command (char *arg, int from_tty) { pagination_enabled = 0; } void initialize_utils (void) { struct cmd_list_element *c; c = add_set_cmd ("width", class_support, var_uinteger, (char *) &chars_per_line, "Set number of characters gdb thinks are in a line.", &setlist); add_show_from_set (c, &showlist); c->function.sfunc = set_width_command; add_show_from_set (add_set_cmd ("height", class_support, var_uinteger, (char *) &lines_per_page, "Set number of lines gdb thinks are in a page.", &setlist), &showlist); init_page_info (); /* If the output is not a terminal, don't paginate it. */ if (!ui_file_isatty (gdb_stdout)) lines_per_page = UINT_MAX; set_width_command ((char *) NULL, 0, c); add_show_from_set (add_set_cmd ("demangle", class_support, var_boolean, (char *) &demangle, "Set demangling of encoded C++ names when displaying symbols.", &setprintlist), &showprintlist); add_show_from_set (add_set_cmd ("pagination", class_support, var_boolean, (char *) &pagination_enabled, "Set state of pagination.", &setlist), &showlist); if (xdb_commands) { add_com ("am", class_support, pagination_on_command, "Enable pagination"); add_com ("sm", class_support, pagination_off_command, "Disable pagination"); } add_show_from_set (add_set_cmd ("sevenbit-strings", class_support, var_boolean, (char *) &sevenbit_strings, "Set printing of 8-bit characters in strings as \\nnn.", &setprintlist), &showprintlist); add_show_from_set (add_set_cmd ("asm-demangle", class_support, var_boolean, (char *) &asm_demangle, "Set demangling of C++ names in disassembly listings.", &setprintlist), &showprintlist); } /* Machine specific function to handle SIGWINCH signal. */ #ifdef SIGWINCH_HANDLER_BODY SIGWINCH_HANDLER_BODY #endif /* Support for converting target fp numbers into host DOUBLEST format. */ /* XXX - This code should really be in libiberty/floatformat.c, however configuration issues with libiberty made this very difficult to do in the available time. */ #include "floatformat.h" #include /* ldexp */ /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not going to bother with trying to muck around with whether it is defined in a system header, what we do if not, etc. */ #define FLOATFORMAT_CHAR_BIT 8 static unsigned long get_field (unsigned char *, enum floatformat_byteorders, unsigned int, unsigned int, unsigned int); /* Extract a field which starts at START and is LEN bytes long. DATA and TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ static unsigned long get_field (unsigned char *data, enum floatformat_byteorders order, unsigned int total_len, unsigned int start, unsigned int len) { unsigned long result; unsigned int cur_byte; int cur_bitshift; /* Start at the least significant part of the field. */ if (order == floatformat_little || order == floatformat_littlebyte_bigword) { /* We start counting from the other end (i.e, from the high bytes rather than the low bytes). As such, we need to be concerned with what happens if bit 0 doesn't start on a byte boundary. I.e, we need to properly handle the case where total_len is not evenly divisible by 8. So we compute ``excess'' which represents the number of bits from the end of our starting byte needed to get to bit 0. */ int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; } else { cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; cur_bitshift = ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; } if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) result = *(data + cur_byte) >> (-cur_bitshift); else result = 0; cur_bitshift += FLOATFORMAT_CHAR_BIT; if (order == floatformat_little || order == floatformat_littlebyte_bigword) ++cur_byte; else --cur_byte; /* Move towards the most significant part of the field. */ while (cur_bitshift < len) { result |= (unsigned long)*(data + cur_byte) << cur_bitshift; cur_bitshift += FLOATFORMAT_CHAR_BIT; if (order == floatformat_little || order == floatformat_littlebyte_bigword) ++cur_byte; else --cur_byte; } if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) /* Mask out bits which are not part of the field */ result &= ((1UL << len) - 1); return result; } /* Convert from FMT to a DOUBLEST. FROM is the address of the extended float. Store the DOUBLEST in *TO. */ void floatformat_to_doublest (const struct floatformat *fmt, char *from, DOUBLEST *to) { unsigned char *ufrom = (unsigned char *) from; DOUBLEST dto; long exponent; unsigned long mant; unsigned int mant_bits, mant_off; int mant_bits_left; int special_exponent; /* It's a NaN, denorm or zero */ /* If the mantissa bits are not contiguous from one end of the mantissa to the other, we need to make a private copy of the source bytes that is in the right order since the unpacking algorithm assumes that the bits are contiguous. Swap the bytes individually rather than accessing them through "long *" since we have no guarantee that they start on a long alignment, and also sizeof(long) for the host could be different than sizeof(long) for the target. FIXME: Assumes sizeof(long) for the target is 4. */ if (fmt->byteorder == floatformat_littlebyte_bigword) { static unsigned char *newfrom; unsigned char *swapin, *swapout; int longswaps; longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT; longswaps >>= 3; if (newfrom == NULL) { newfrom = (unsigned char *) xmalloc (fmt->totalsize); } swapout = newfrom; swapin = ufrom; ufrom = newfrom; while (longswaps-- > 0) { /* This is ugly, but efficient */ *swapout++ = swapin[4]; *swapout++ = swapin[5]; *swapout++ = swapin[6]; *swapout++ = swapin[7]; *swapout++ = swapin[0]; *swapout++ = swapin[1]; *swapout++ = swapin[2]; *swapout++ = swapin[3]; swapin += 8; } } exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len); /* Note that if exponent indicates a NaN, we can't really do anything useful (not knowing if the host has NaN's, or how to build one). So it will end up as an infinity or something close; that is OK. */ mant_bits_left = fmt->man_len; mant_off = fmt->man_start; dto = 0.0; special_exponent = exponent == 0 || exponent == fmt->exp_nan; /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity, we don't check for zero as the exponent doesn't matter. */ if (!special_exponent) exponent -= fmt->exp_bias; else if (exponent == 0) exponent = 1 - fmt->exp_bias; /* Build the result algebraically. Might go infinite, underflow, etc; who cares. */ /* If this format uses a hidden bit, explicitly add it in now. Otherwise, increment the exponent by one to account for the integer bit. */ if (!special_exponent) { if (fmt->intbit == floatformat_intbit_no) dto = ldexp (1.0, exponent); else exponent++; } while (mant_bits_left > 0) { mant_bits = min (mant_bits_left, 32); mant = get_field (ufrom, fmt->byteorder, fmt->totalsize, mant_off, mant_bits); dto += ldexp ((double) mant, exponent - mant_bits); exponent -= mant_bits; mant_off += mant_bits; mant_bits_left -= mant_bits; } /* Negate it if negative. */ if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1)) dto = -dto; *to = dto; } static void put_field (unsigned char *, enum floatformat_byteorders, unsigned int, unsigned int, unsigned int, unsigned long); /* Set a field which starts at START and is LEN bytes long. DATA and TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ static void put_field (unsigned char *data, enum floatformat_byteorders order, unsigned int total_len, unsigned int start, unsigned int len, unsigned long stuff_to_put) { unsigned int cur_byte; int cur_bitshift; /* Start at the least significant part of the field. */ if (order == floatformat_little || order == floatformat_littlebyte_bigword) { int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; } else { cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; cur_bitshift = ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; } if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) { *(data + cur_byte) &= ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift)); *(data + cur_byte) |= (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); } cur_bitshift += FLOATFORMAT_CHAR_BIT; if (order == floatformat_little || order == floatformat_littlebyte_bigword) ++cur_byte; else --cur_byte; /* Move towards the most significant part of the field. */ while (cur_bitshift < len) { if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) { /* This is the last byte. */ *(data + cur_byte) &= ~((1 << (len - cur_bitshift)) - 1); *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); } else *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); cur_bitshift += FLOATFORMAT_CHAR_BIT; if (order == floatformat_little || order == floatformat_littlebyte_bigword) ++cur_byte; else --cur_byte; } } #ifdef HAVE_LONG_DOUBLE /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. The range of the returned value is >= 0.5 and < 1.0. This is equivalent to frexp, but operates on the long double data type. */ static long double ldfrexp (long double value, int *eptr); static long double ldfrexp (long double value, int *eptr) { long double tmp; int exp; /* Unfortunately, there are no portable functions for extracting the exponent of a long double, so we have to do it iteratively by multiplying or dividing by two until the fraction is between 0.5 and 1.0. */ if (value < 0.0l) value = -value; tmp = 1.0l; exp = 0; if (value >= tmp) /* Value >= 1.0 */ while (value >= tmp) { tmp *= 2.0l; exp++; } else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ { while (value < tmp) { tmp /= 2.0l; exp--; } tmp *= 2.0l; exp++; } *eptr = exp; return value / tmp; } #endif /* HAVE_LONG_DOUBLE */ /* The converse: convert the DOUBLEST *FROM to an extended float and store where TO points. Neither FROM nor TO have any alignment restrictions. */ void floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from, char *to) { DOUBLEST dfrom; int exponent; DOUBLEST mant; unsigned int mant_bits, mant_off; int mant_bits_left; unsigned char *uto = (unsigned char *) to; memcpy (&dfrom, from, sizeof (dfrom)); memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) / FLOATFORMAT_CHAR_BIT); if (dfrom == 0) return; /* Result is zero */ if (dfrom != dfrom) /* Result is NaN */ { /* From is NaN */ put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len, fmt->exp_nan); /* Be sure it's not infinity, but NaN value is irrel */ put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, 32, 1); return; } /* If negative, set the sign bit. */ if (dfrom < 0) { put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1); dfrom = -dfrom; } if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */ { /* Infinity exponent is same as NaN's. */ put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len, fmt->exp_nan); /* Infinity mantissa is all zeroes. */ put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, fmt->man_len, 0); return; } #ifdef HAVE_LONG_DOUBLE mant = ldfrexp (dfrom, &exponent); #else mant = frexp (dfrom, &exponent); #endif put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len, exponent + fmt->exp_bias - 1); mant_bits_left = fmt->man_len; mant_off = fmt->man_start; while (mant_bits_left > 0) { unsigned long mant_long; mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; mant *= 4294967296.0; mant_long = ((unsigned long) mant) & 0xffffffffL; mant -= mant_long; /* If the integer bit is implicit, then we need to discard it. If we are discarding a zero, we should be (but are not) creating a denormalized number which means adjusting the exponent (I think). */ if (mant_bits_left == fmt->man_len && fmt->intbit == floatformat_intbit_no) { mant_long <<= 1; mant_long &= 0xffffffffL; mant_bits -= 1; } if (mant_bits < 32) { /* The bits we want are in the most significant MANT_BITS bits of mant_long. Move them to the least significant. */ mant_long >>= 32 - mant_bits; } put_field (uto, fmt->byteorder, fmt->totalsize, mant_off, mant_bits, mant_long); mant_off += mant_bits; mant_bits_left -= mant_bits; } if (fmt->byteorder == floatformat_littlebyte_bigword) { int count; unsigned char *swaplow = uto; unsigned char *swaphigh = uto + 4; unsigned char tmp; for (count = 0; count < 4; count++) { tmp = *swaplow; *swaplow++ = *swaphigh; *swaphigh++ = tmp; } } } /* Check if VAL (which is assumed to be a floating point number whose format is described by FMT) is negative. */ int floatformat_is_negative (const struct floatformat *fmt, char *val) { unsigned char *uval = (unsigned char *) val; return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1); } /* Check if VAL is "not a number" (NaN) for FMT. */ int floatformat_is_nan (const struct floatformat *fmt, char *val) { unsigned char *uval = (unsigned char *) val; long exponent; unsigned long mant; unsigned int mant_bits, mant_off; int mant_bits_left; if (! fmt->exp_nan) return 0; exponent = get_field (uval, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len); if (exponent != fmt->exp_nan) return 0; mant_bits_left = fmt->man_len; mant_off = fmt->man_start; while (mant_bits_left > 0) { mant_bits = min (mant_bits_left, 32); mant = get_field (uval, fmt->byteorder, fmt->totalsize, mant_off, mant_bits); /* If there is an explicit integer bit, mask it off. */ if (mant_off == fmt->man_start && fmt->intbit == floatformat_intbit_yes) mant &= ~(1 << (mant_bits - 1)); if (mant) return 1; mant_off += mant_bits; mant_bits_left -= mant_bits; } return 0; } /* Convert the mantissa of VAL (which is assumed to be a floating point number whose format is described by FMT) into a hexadecimal and store it in a static string. Return a pointer to that string. */ char * floatformat_mantissa (const struct floatformat *fmt, char *val) { unsigned char *uval = (unsigned char *) val; unsigned long mant; unsigned int mant_bits, mant_off; int mant_bits_left; static char res[50]; char buf[9]; /* Make sure we have enough room to store the mantissa. */ gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); mant_off = fmt->man_start; mant_bits_left = fmt->man_len; mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; mant = get_field (uval, fmt->byteorder, fmt->totalsize, mant_off, mant_bits); sprintf (res, "%lx", mant); mant_off += mant_bits; mant_bits_left -= mant_bits; while (mant_bits_left > 0) { mant = get_field (uval, fmt->byteorder, fmt->totalsize, mant_off, 32); sprintf (buf, "%08lx", mant); strcat (res, buf); mant_off += 32; mant_bits_left -= 32; } return res; } /* print routines to handle variable size regs, etc. */ /* temporary storage using circular buffer */ #define NUMCELLS 16 #define CELLSIZE 32 static char * get_cell (void) { static char buf[NUMCELLS][CELLSIZE]; static int cell = 0; if (++cell >= NUMCELLS) cell = 0; return buf[cell]; } int strlen_paddr (void) { return (TARGET_ADDR_BIT / 8 * 2); } char * paddr (CORE_ADDR addr) { return phex (addr, TARGET_ADDR_BIT / 8); } char * paddr_nz (CORE_ADDR addr) { return phex_nz (addr, TARGET_ADDR_BIT / 8); } static void decimal2str (char *paddr_str, char *sign, ULONGEST addr) { /* steal code from valprint.c:print_decimal(). Should this worry about the real size of addr as the above does? */ unsigned long temp[3]; int i = 0; do { temp[i] = addr % (1000 * 1000 * 1000); addr /= (1000 * 1000 * 1000); i++; } while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0]))); switch (i) { case 1: sprintf (paddr_str, "%s%lu", sign, temp[0]); break; case 2: sprintf (paddr_str, "%s%lu%09lu", sign, temp[1], temp[0]); break; case 3: sprintf (paddr_str, "%s%lu%09lu%09lu", sign, temp[2], temp[1], temp[0]); break; default: internal_error (__FILE__, __LINE__, "failed internal consistency check"); } } char * paddr_u (CORE_ADDR addr) { char *paddr_str = get_cell (); decimal2str (paddr_str, "", addr); return paddr_str; } char * paddr_d (LONGEST addr) { char *paddr_str = get_cell (); if (addr < 0) decimal2str (paddr_str, "-", -addr); else decimal2str (paddr_str, "", addr); return paddr_str; } /* eliminate warning from compiler on 32-bit systems */ static int thirty_two = 32; char * phex (ULONGEST l, int sizeof_l) { char *str = get_cell (); switch (sizeof_l) { case 8: sprintf (str, "%08lx%08lx", (unsigned long) (l >> thirty_two), (unsigned long) (l & 0xffffffff)); break; case 4: sprintf (str, "%08lx", (unsigned long) l); break; case 2: sprintf (str, "%04x", (unsigned short) (l & 0xffff)); break; default: phex (l, sizeof (l)); break; } return str; } char * phex_nz (ULONGEST l, int sizeof_l) { char *str = get_cell (); switch (sizeof_l) { case 8: { unsigned long high = (unsigned long) (l >> thirty_two); if (high == 0) sprintf (str, "%lx", (unsigned long) (l & 0xffffffff)); else sprintf (str, "%lx%08lx", high, (unsigned long) (l & 0xffffffff)); break; } case 4: sprintf (str, "%lx", (unsigned long) l); break; case 2: sprintf (str, "%x", (unsigned short) (l & 0xffff)); break; default: phex_nz (l, sizeof (l)); break; } return str; } /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR using the target's conversion routines. */ CORE_ADDR host_pointer_to_address (void *ptr) { if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr)) internal_error (__FILE__, __LINE__, "core_addr_to_void_ptr: bad cast"); return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr); } void * address_to_host_pointer (CORE_ADDR addr) { void *ptr; if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr)) internal_error (__FILE__, __LINE__, "core_addr_to_void_ptr: bad cast"); ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr); return ptr; }