/* Simulator instruction semantics for sh64. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2013 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #ifdef DEFINE_LABELS /* The labels have the case they have because the enum of insn types is all uppercase and in the non-stdc case the insn symbol is built into the enum name. */ static struct { int index; void *label; } labels[] = { { SH64_COMPACT_INSN_X_INVALID, && case_sem_INSN_X_INVALID }, { SH64_COMPACT_INSN_X_AFTER, && case_sem_INSN_X_AFTER }, { SH64_COMPACT_INSN_X_BEFORE, && case_sem_INSN_X_BEFORE }, { SH64_COMPACT_INSN_X_CTI_CHAIN, && case_sem_INSN_X_CTI_CHAIN }, { SH64_COMPACT_INSN_X_CHAIN, && case_sem_INSN_X_CHAIN }, { SH64_COMPACT_INSN_X_BEGIN, && case_sem_INSN_X_BEGIN }, { SH64_COMPACT_INSN_ADD_COMPACT, && case_sem_INSN_ADD_COMPACT }, { SH64_COMPACT_INSN_ADDI_COMPACT, && case_sem_INSN_ADDI_COMPACT }, { SH64_COMPACT_INSN_ADDC_COMPACT, && case_sem_INSN_ADDC_COMPACT }, { SH64_COMPACT_INSN_ADDV_COMPACT, && case_sem_INSN_ADDV_COMPACT }, { SH64_COMPACT_INSN_AND_COMPACT, && case_sem_INSN_AND_COMPACT }, { SH64_COMPACT_INSN_ANDI_COMPACT, && case_sem_INSN_ANDI_COMPACT }, { SH64_COMPACT_INSN_ANDB_COMPACT, && case_sem_INSN_ANDB_COMPACT }, { SH64_COMPACT_INSN_BF_COMPACT, && case_sem_INSN_BF_COMPACT }, { SH64_COMPACT_INSN_BFS_COMPACT, && case_sem_INSN_BFS_COMPACT }, { SH64_COMPACT_INSN_BRA_COMPACT, && case_sem_INSN_BRA_COMPACT }, { SH64_COMPACT_INSN_BRAF_COMPACT, && case_sem_INSN_BRAF_COMPACT }, { SH64_COMPACT_INSN_BRK_COMPACT, && case_sem_INSN_BRK_COMPACT }, { SH64_COMPACT_INSN_BSR_COMPACT, && case_sem_INSN_BSR_COMPACT }, { SH64_COMPACT_INSN_BSRF_COMPACT, && case_sem_INSN_BSRF_COMPACT }, { SH64_COMPACT_INSN_BT_COMPACT, && case_sem_INSN_BT_COMPACT }, { SH64_COMPACT_INSN_BTS_COMPACT, && case_sem_INSN_BTS_COMPACT }, { SH64_COMPACT_INSN_CLRMAC_COMPACT, && case_sem_INSN_CLRMAC_COMPACT }, { SH64_COMPACT_INSN_CLRS_COMPACT, && case_sem_INSN_CLRS_COMPACT }, { SH64_COMPACT_INSN_CLRT_COMPACT, && case_sem_INSN_CLRT_COMPACT }, { SH64_COMPACT_INSN_CMPEQ_COMPACT, && case_sem_INSN_CMPEQ_COMPACT }, { SH64_COMPACT_INSN_CMPEQI_COMPACT, && case_sem_INSN_CMPEQI_COMPACT }, { SH64_COMPACT_INSN_CMPGE_COMPACT, && case_sem_INSN_CMPGE_COMPACT }, { SH64_COMPACT_INSN_CMPGT_COMPACT, && case_sem_INSN_CMPGT_COMPACT }, { SH64_COMPACT_INSN_CMPHI_COMPACT, && case_sem_INSN_CMPHI_COMPACT }, { SH64_COMPACT_INSN_CMPHS_COMPACT, && case_sem_INSN_CMPHS_COMPACT }, { SH64_COMPACT_INSN_CMPPL_COMPACT, && case_sem_INSN_CMPPL_COMPACT }, { SH64_COMPACT_INSN_CMPPZ_COMPACT, && case_sem_INSN_CMPPZ_COMPACT }, { SH64_COMPACT_INSN_CMPSTR_COMPACT, && case_sem_INSN_CMPSTR_COMPACT }, { SH64_COMPACT_INSN_DIV0S_COMPACT, && case_sem_INSN_DIV0S_COMPACT }, { SH64_COMPACT_INSN_DIV0U_COMPACT, && case_sem_INSN_DIV0U_COMPACT }, { SH64_COMPACT_INSN_DIV1_COMPACT, && case_sem_INSN_DIV1_COMPACT }, { SH64_COMPACT_INSN_DIVU_COMPACT, && case_sem_INSN_DIVU_COMPACT }, { SH64_COMPACT_INSN_MULR_COMPACT, && case_sem_INSN_MULR_COMPACT }, { SH64_COMPACT_INSN_DMULSL_COMPACT, && case_sem_INSN_DMULSL_COMPACT }, { SH64_COMPACT_INSN_DMULUL_COMPACT, && case_sem_INSN_DMULUL_COMPACT }, { SH64_COMPACT_INSN_DT_COMPACT, && case_sem_INSN_DT_COMPACT }, { SH64_COMPACT_INSN_EXTSB_COMPACT, && case_sem_INSN_EXTSB_COMPACT }, { SH64_COMPACT_INSN_EXTSW_COMPACT, && case_sem_INSN_EXTSW_COMPACT }, { SH64_COMPACT_INSN_EXTUB_COMPACT, && case_sem_INSN_EXTUB_COMPACT }, { SH64_COMPACT_INSN_EXTUW_COMPACT, && case_sem_INSN_EXTUW_COMPACT }, { SH64_COMPACT_INSN_FABS_COMPACT, && case_sem_INSN_FABS_COMPACT }, { SH64_COMPACT_INSN_FADD_COMPACT, && case_sem_INSN_FADD_COMPACT }, { SH64_COMPACT_INSN_FCMPEQ_COMPACT, && case_sem_INSN_FCMPEQ_COMPACT }, { SH64_COMPACT_INSN_FCMPGT_COMPACT, && case_sem_INSN_FCMPGT_COMPACT }, { SH64_COMPACT_INSN_FCNVDS_COMPACT, && case_sem_INSN_FCNVDS_COMPACT }, { SH64_COMPACT_INSN_FCNVSD_COMPACT, && case_sem_INSN_FCNVSD_COMPACT }, { SH64_COMPACT_INSN_FDIV_COMPACT, && case_sem_INSN_FDIV_COMPACT }, { SH64_COMPACT_INSN_FIPR_COMPACT, && case_sem_INSN_FIPR_COMPACT }, { SH64_COMPACT_INSN_FLDS_COMPACT, && case_sem_INSN_FLDS_COMPACT }, { SH64_COMPACT_INSN_FLDI0_COMPACT, && case_sem_INSN_FLDI0_COMPACT }, { SH64_COMPACT_INSN_FLDI1_COMPACT, && case_sem_INSN_FLDI1_COMPACT }, { SH64_COMPACT_INSN_FLOAT_COMPACT, && case_sem_INSN_FLOAT_COMPACT }, { SH64_COMPACT_INSN_FMAC_COMPACT, && case_sem_INSN_FMAC_COMPACT }, { SH64_COMPACT_INSN_FMOV1_COMPACT, && case_sem_INSN_FMOV1_COMPACT }, { SH64_COMPACT_INSN_FMOV2_COMPACT, && case_sem_INSN_FMOV2_COMPACT }, { SH64_COMPACT_INSN_FMOV3_COMPACT, && case_sem_INSN_FMOV3_COMPACT }, { SH64_COMPACT_INSN_FMOV4_COMPACT, && case_sem_INSN_FMOV4_COMPACT }, { SH64_COMPACT_INSN_FMOV5_COMPACT, && case_sem_INSN_FMOV5_COMPACT }, { SH64_COMPACT_INSN_FMOV6_COMPACT, && case_sem_INSN_FMOV6_COMPACT }, { SH64_COMPACT_INSN_FMOV7_COMPACT, && case_sem_INSN_FMOV7_COMPACT }, { SH64_COMPACT_INSN_FMOV8_COMPACT, && case_sem_INSN_FMOV8_COMPACT }, { SH64_COMPACT_INSN_FMOV9_COMPACT, && case_sem_INSN_FMOV9_COMPACT }, { SH64_COMPACT_INSN_FMUL_COMPACT, && case_sem_INSN_FMUL_COMPACT }, { SH64_COMPACT_INSN_FNEG_COMPACT, && case_sem_INSN_FNEG_COMPACT }, { SH64_COMPACT_INSN_FRCHG_COMPACT, && case_sem_INSN_FRCHG_COMPACT }, { SH64_COMPACT_INSN_FSCHG_COMPACT, && case_sem_INSN_FSCHG_COMPACT }, { SH64_COMPACT_INSN_FSQRT_COMPACT, && case_sem_INSN_FSQRT_COMPACT }, { SH64_COMPACT_INSN_FSTS_COMPACT, && case_sem_INSN_FSTS_COMPACT }, { SH64_COMPACT_INSN_FSUB_COMPACT, && case_sem_INSN_FSUB_COMPACT }, { SH64_COMPACT_INSN_FTRC_COMPACT, && case_sem_INSN_FTRC_COMPACT }, { SH64_COMPACT_INSN_FTRV_COMPACT, && case_sem_INSN_FTRV_COMPACT }, { SH64_COMPACT_INSN_JMP_COMPACT, && case_sem_INSN_JMP_COMPACT }, { SH64_COMPACT_INSN_JSR_COMPACT, && case_sem_INSN_JSR_COMPACT }, { SH64_COMPACT_INSN_LDC_GBR_COMPACT, && case_sem_INSN_LDC_GBR_COMPACT }, { SH64_COMPACT_INSN_LDC_VBR_COMPACT, && case_sem_INSN_LDC_VBR_COMPACT }, { SH64_COMPACT_INSN_LDC_SR_COMPACT, && case_sem_INSN_LDC_SR_COMPACT }, { SH64_COMPACT_INSN_LDCL_GBR_COMPACT, && case_sem_INSN_LDCL_GBR_COMPACT }, { SH64_COMPACT_INSN_LDCL_VBR_COMPACT, && case_sem_INSN_LDCL_VBR_COMPACT }, { SH64_COMPACT_INSN_LDS_FPSCR_COMPACT, && case_sem_INSN_LDS_FPSCR_COMPACT }, { SH64_COMPACT_INSN_LDSL_FPSCR_COMPACT, && case_sem_INSN_LDSL_FPSCR_COMPACT }, { SH64_COMPACT_INSN_LDS_FPUL_COMPACT, && case_sem_INSN_LDS_FPUL_COMPACT }, { SH64_COMPACT_INSN_LDSL_FPUL_COMPACT, && case_sem_INSN_LDSL_FPUL_COMPACT }, { SH64_COMPACT_INSN_LDS_MACH_COMPACT, && case_sem_INSN_LDS_MACH_COMPACT }, { SH64_COMPACT_INSN_LDSL_MACH_COMPACT, && case_sem_INSN_LDSL_MACH_COMPACT }, { SH64_COMPACT_INSN_LDS_MACL_COMPACT, && case_sem_INSN_LDS_MACL_COMPACT }, { SH64_COMPACT_INSN_LDSL_MACL_COMPACT, && case_sem_INSN_LDSL_MACL_COMPACT }, { SH64_COMPACT_INSN_LDS_PR_COMPACT, && case_sem_INSN_LDS_PR_COMPACT }, { SH64_COMPACT_INSN_LDSL_PR_COMPACT, && case_sem_INSN_LDSL_PR_COMPACT }, { SH64_COMPACT_INSN_MACL_COMPACT, && case_sem_INSN_MACL_COMPACT }, { SH64_COMPACT_INSN_MACW_COMPACT, && case_sem_INSN_MACW_COMPACT }, { SH64_COMPACT_INSN_MOV_COMPACT, && case_sem_INSN_MOV_COMPACT }, { SH64_COMPACT_INSN_MOVI_COMPACT, && case_sem_INSN_MOVI_COMPACT }, { SH64_COMPACT_INSN_MOVI20_COMPACT, && case_sem_INSN_MOVI20_COMPACT }, { SH64_COMPACT_INSN_MOVB1_COMPACT, && case_sem_INSN_MOVB1_COMPACT }, { SH64_COMPACT_INSN_MOVB2_COMPACT, && case_sem_INSN_MOVB2_COMPACT }, { SH64_COMPACT_INSN_MOVB3_COMPACT, && case_sem_INSN_MOVB3_COMPACT }, { SH64_COMPACT_INSN_MOVB4_COMPACT, && case_sem_INSN_MOVB4_COMPACT }, { SH64_COMPACT_INSN_MOVB5_COMPACT, && case_sem_INSN_MOVB5_COMPACT }, { SH64_COMPACT_INSN_MOVB6_COMPACT, && case_sem_INSN_MOVB6_COMPACT }, { SH64_COMPACT_INSN_MOVB7_COMPACT, && case_sem_INSN_MOVB7_COMPACT }, { SH64_COMPACT_INSN_MOVB8_COMPACT, && case_sem_INSN_MOVB8_COMPACT }, { SH64_COMPACT_INSN_MOVB9_COMPACT, && case_sem_INSN_MOVB9_COMPACT }, { SH64_COMPACT_INSN_MOVB10_COMPACT, && case_sem_INSN_MOVB10_COMPACT }, { SH64_COMPACT_INSN_MOVL1_COMPACT, && case_sem_INSN_MOVL1_COMPACT }, { SH64_COMPACT_INSN_MOVL2_COMPACT, && case_sem_INSN_MOVL2_COMPACT }, { SH64_COMPACT_INSN_MOVL3_COMPACT, && case_sem_INSN_MOVL3_COMPACT }, { SH64_COMPACT_INSN_MOVL4_COMPACT, && case_sem_INSN_MOVL4_COMPACT }, { SH64_COMPACT_INSN_MOVL5_COMPACT, && case_sem_INSN_MOVL5_COMPACT }, { SH64_COMPACT_INSN_MOVL6_COMPACT, && case_sem_INSN_MOVL6_COMPACT }, { SH64_COMPACT_INSN_MOVL7_COMPACT, && case_sem_INSN_MOVL7_COMPACT }, { SH64_COMPACT_INSN_MOVL8_COMPACT, && case_sem_INSN_MOVL8_COMPACT }, { SH64_COMPACT_INSN_MOVL9_COMPACT, && case_sem_INSN_MOVL9_COMPACT }, { SH64_COMPACT_INSN_MOVL10_COMPACT, && case_sem_INSN_MOVL10_COMPACT }, { SH64_COMPACT_INSN_MOVL11_COMPACT, && case_sem_INSN_MOVL11_COMPACT }, { SH64_COMPACT_INSN_MOVL12_COMPACT, && case_sem_INSN_MOVL12_COMPACT }, { SH64_COMPACT_INSN_MOVL13_COMPACT, && case_sem_INSN_MOVL13_COMPACT }, { SH64_COMPACT_INSN_MOVW1_COMPACT, && case_sem_INSN_MOVW1_COMPACT }, { SH64_COMPACT_INSN_MOVW2_COMPACT, && case_sem_INSN_MOVW2_COMPACT }, { SH64_COMPACT_INSN_MOVW3_COMPACT, && case_sem_INSN_MOVW3_COMPACT }, { SH64_COMPACT_INSN_MOVW4_COMPACT, && case_sem_INSN_MOVW4_COMPACT }, { SH64_COMPACT_INSN_MOVW5_COMPACT, && case_sem_INSN_MOVW5_COMPACT }, { SH64_COMPACT_INSN_MOVW6_COMPACT, && case_sem_INSN_MOVW6_COMPACT }, { SH64_COMPACT_INSN_MOVW7_COMPACT, && case_sem_INSN_MOVW7_COMPACT }, { SH64_COMPACT_INSN_MOVW8_COMPACT, && case_sem_INSN_MOVW8_COMPACT }, { SH64_COMPACT_INSN_MOVW9_COMPACT, && case_sem_INSN_MOVW9_COMPACT }, { SH64_COMPACT_INSN_MOVW10_COMPACT, && case_sem_INSN_MOVW10_COMPACT }, { SH64_COMPACT_INSN_MOVW11_COMPACT, && case_sem_INSN_MOVW11_COMPACT }, { SH64_COMPACT_INSN_MOVA_COMPACT, && case_sem_INSN_MOVA_COMPACT }, { SH64_COMPACT_INSN_MOVCAL_COMPACT, && case_sem_INSN_MOVCAL_COMPACT }, { SH64_COMPACT_INSN_MOVCOL_COMPACT, && case_sem_INSN_MOVCOL_COMPACT }, { SH64_COMPACT_INSN_MOVT_COMPACT, && case_sem_INSN_MOVT_COMPACT }, { SH64_COMPACT_INSN_MOVUAL_COMPACT, && case_sem_INSN_MOVUAL_COMPACT }, { SH64_COMPACT_INSN_MOVUAL2_COMPACT, && case_sem_INSN_MOVUAL2_COMPACT }, { SH64_COMPACT_INSN_MULL_COMPACT, && case_sem_INSN_MULL_COMPACT }, { SH64_COMPACT_INSN_MULSW_COMPACT, && case_sem_INSN_MULSW_COMPACT }, { SH64_COMPACT_INSN_MULUW_COMPACT, && case_sem_INSN_MULUW_COMPACT }, { SH64_COMPACT_INSN_NEG_COMPACT, && case_sem_INSN_NEG_COMPACT }, { SH64_COMPACT_INSN_NEGC_COMPACT, && case_sem_INSN_NEGC_COMPACT }, { SH64_COMPACT_INSN_NOP_COMPACT, && case_sem_INSN_NOP_COMPACT }, { SH64_COMPACT_INSN_NOT_COMPACT, && case_sem_INSN_NOT_COMPACT }, { SH64_COMPACT_INSN_OCBI_COMPACT, && case_sem_INSN_OCBI_COMPACT }, { SH64_COMPACT_INSN_OCBP_COMPACT, && case_sem_INSN_OCBP_COMPACT }, { SH64_COMPACT_INSN_OCBWB_COMPACT, && case_sem_INSN_OCBWB_COMPACT }, { SH64_COMPACT_INSN_OR_COMPACT, && case_sem_INSN_OR_COMPACT }, { SH64_COMPACT_INSN_ORI_COMPACT, && case_sem_INSN_ORI_COMPACT }, { SH64_COMPACT_INSN_ORB_COMPACT, && case_sem_INSN_ORB_COMPACT }, { SH64_COMPACT_INSN_PREF_COMPACT, && case_sem_INSN_PREF_COMPACT }, { SH64_COMPACT_INSN_ROTCL_COMPACT, && case_sem_INSN_ROTCL_COMPACT }, { SH64_COMPACT_INSN_ROTCR_COMPACT, && case_sem_INSN_ROTCR_COMPACT }, { SH64_COMPACT_INSN_ROTL_COMPACT, && case_sem_INSN_ROTL_COMPACT }, { SH64_COMPACT_INSN_ROTR_COMPACT, && case_sem_INSN_ROTR_COMPACT }, { SH64_COMPACT_INSN_RTS_COMPACT, && case_sem_INSN_RTS_COMPACT }, { SH64_COMPACT_INSN_SETS_COMPACT, && case_sem_INSN_SETS_COMPACT }, { SH64_COMPACT_INSN_SETT_COMPACT, && case_sem_INSN_SETT_COMPACT }, { SH64_COMPACT_INSN_SHAD_COMPACT, && case_sem_INSN_SHAD_COMPACT }, { SH64_COMPACT_INSN_SHAL_COMPACT, && case_sem_INSN_SHAL_COMPACT }, { SH64_COMPACT_INSN_SHAR_COMPACT, && case_sem_INSN_SHAR_COMPACT }, { SH64_COMPACT_INSN_SHLD_COMPACT, && case_sem_INSN_SHLD_COMPACT }, { SH64_COMPACT_INSN_SHLL_COMPACT, && case_sem_INSN_SHLL_COMPACT }, { SH64_COMPACT_INSN_SHLL2_COMPACT, && case_sem_INSN_SHLL2_COMPACT }, { SH64_COMPACT_INSN_SHLL8_COMPACT, && case_sem_INSN_SHLL8_COMPACT }, { SH64_COMPACT_INSN_SHLL16_COMPACT, && case_sem_INSN_SHLL16_COMPACT }, { SH64_COMPACT_INSN_SHLR_COMPACT, && case_sem_INSN_SHLR_COMPACT }, { SH64_COMPACT_INSN_SHLR2_COMPACT, && case_sem_INSN_SHLR2_COMPACT }, { SH64_COMPACT_INSN_SHLR8_COMPACT, && case_sem_INSN_SHLR8_COMPACT }, { SH64_COMPACT_INSN_SHLR16_COMPACT, && case_sem_INSN_SHLR16_COMPACT }, { SH64_COMPACT_INSN_STC_GBR_COMPACT, && case_sem_INSN_STC_GBR_COMPACT }, { SH64_COMPACT_INSN_STC_VBR_COMPACT, && case_sem_INSN_STC_VBR_COMPACT }, { SH64_COMPACT_INSN_STCL_GBR_COMPACT, && case_sem_INSN_STCL_GBR_COMPACT }, { SH64_COMPACT_INSN_STCL_VBR_COMPACT, && case_sem_INSN_STCL_VBR_COMPACT }, { SH64_COMPACT_INSN_STS_FPSCR_COMPACT, && case_sem_INSN_STS_FPSCR_COMPACT }, { SH64_COMPACT_INSN_STSL_FPSCR_COMPACT, && case_sem_INSN_STSL_FPSCR_COMPACT }, { SH64_COMPACT_INSN_STS_FPUL_COMPACT, && case_sem_INSN_STS_FPUL_COMPACT }, { SH64_COMPACT_INSN_STSL_FPUL_COMPACT, && case_sem_INSN_STSL_FPUL_COMPACT }, { SH64_COMPACT_INSN_STS_MACH_COMPACT, && case_sem_INSN_STS_MACH_COMPACT }, { SH64_COMPACT_INSN_STSL_MACH_COMPACT, && case_sem_INSN_STSL_MACH_COMPACT }, { SH64_COMPACT_INSN_STS_MACL_COMPACT, && case_sem_INSN_STS_MACL_COMPACT }, { SH64_COMPACT_INSN_STSL_MACL_COMPACT, && case_sem_INSN_STSL_MACL_COMPACT }, { SH64_COMPACT_INSN_STS_PR_COMPACT, && case_sem_INSN_STS_PR_COMPACT }, { SH64_COMPACT_INSN_STSL_PR_COMPACT, && case_sem_INSN_STSL_PR_COMPACT }, { SH64_COMPACT_INSN_SUB_COMPACT, && case_sem_INSN_SUB_COMPACT }, { SH64_COMPACT_INSN_SUBC_COMPACT, && case_sem_INSN_SUBC_COMPACT }, { SH64_COMPACT_INSN_SUBV_COMPACT, && case_sem_INSN_SUBV_COMPACT }, { SH64_COMPACT_INSN_SWAPB_COMPACT, && case_sem_INSN_SWAPB_COMPACT }, { SH64_COMPACT_INSN_SWAPW_COMPACT, && case_sem_INSN_SWAPW_COMPACT }, { SH64_COMPACT_INSN_TASB_COMPACT, && case_sem_INSN_TASB_COMPACT }, { SH64_COMPACT_INSN_TRAPA_COMPACT, && case_sem_INSN_TRAPA_COMPACT }, { SH64_COMPACT_INSN_TST_COMPACT, && case_sem_INSN_TST_COMPACT }, { SH64_COMPACT_INSN_TSTI_COMPACT, && case_sem_INSN_TSTI_COMPACT }, { SH64_COMPACT_INSN_TSTB_COMPACT, && case_sem_INSN_TSTB_COMPACT }, { SH64_COMPACT_INSN_XOR_COMPACT, && case_sem_INSN_XOR_COMPACT }, { SH64_COMPACT_INSN_XORI_COMPACT, && case_sem_INSN_XORI_COMPACT }, { SH64_COMPACT_INSN_XORB_COMPACT, && case_sem_INSN_XORB_COMPACT }, { SH64_COMPACT_INSN_XTRCT_COMPACT, && case_sem_INSN_XTRCT_COMPACT }, { 0, 0 } }; int i; for (i = 0; labels[i].label != 0; ++i) { #if FAST_P CPU_IDESC (current_cpu) [labels[i].index].sem_fast_lab = labels[i].label; #else CPU_IDESC (current_cpu) [labels[i].index].sem_full_lab = labels[i].label; #endif } #undef DEFINE_LABELS #endif /* DEFINE_LABELS */ #ifdef DEFINE_SWITCH /* If hyper-fast [well not unnecessarily slow] execution is selected, turn off frills like tracing and profiling. */ /* FIXME: A better way would be to have TRACE_RESULT check for something that can cause it to be optimized out. Another way would be to emit special handlers into the instruction "stream". */ #if FAST_P #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #endif #undef GET_ATTR #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) { #if WITH_SCACHE_PBB /* Branch to next handler without going around main loop. */ #define NEXT(vpc) goto * SEM_ARGBUF (vpc) -> semantic.sem_case SWITCH (sem, SEM_ARGBUF (vpc) -> semantic.sem_case) #else /* ! WITH_SCACHE_PBB */ #define NEXT(vpc) BREAK (sem) #ifdef __GNUC__ #if FAST_P SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_fast_lab) #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_full_lab) #endif #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->num) #endif #endif /* ! WITH_SCACHE_PBB */ { CASE (sem, INSN_X_INVALID) : /* --invalid-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 4); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_AFTER) : /* --after-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_SH64_COMPACT sh64_compact_pbb_after (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEFORE) : /* --before-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_SH64_COMPACT sh64_compact_pbb_before (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CTI_CHAIN) : /* --cti-chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_SH64_COMPACT #ifdef DEFINE_SWITCH vpc = sh64_compact_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = sh64_compact_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CHAIN) : /* --chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_SH64_COMPACT vpc = sh64_compact_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEGIN) : /* --begin-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_SH64_COMPACT #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = sh64_compact_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = sh64_compact_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = sh64_compact_pbb_begin (current_cpu, 0); #endif #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_COMPACT) : /* add $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_COMPACT) : /* add #$imm8, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), EXTQISI (ANDQI (FLD (f_imm8), 255))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDC_COMPACT) : /* addc $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_flag; tmp_flag = ADDCFSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm)), GET_H_TBIT ()); { SI opval = ADDCSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm)), GET_H_TBIT ()); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = tmp_flag; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDV_COMPACT) : /* addv $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; tmp_t = ADDOFSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm)), 0); { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = tmp_t; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_COMPACT) : /* and $rm64, $rn64 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = ANDDI (GET_H_GR (FLD (f_rm)), GET_H_GR (FLD (f_rn))); SET_H_GR (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'D', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDI_COMPACT) : /* and #$uimm8, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ANDSI (GET_H_GRC (((UINT) 0)), ZEXTSIDI (FLD (f_imm8))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDB_COMPACT) : /* and.b #$imm8, @(r0, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; UQI tmp_data; tmp_addr = ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GBR ()); tmp_data = ANDQI (GETMEMUQI (current_cpu, pc, tmp_addr), FLD (f_imm8)); { UQI opval = tmp_data; SETMEMUQI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BF_COMPACT) : /* bf $disp8 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bf_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_TBIT ())) { { UDI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BFS_COMPACT) : /* bf/s $disp8 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bf_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_TBIT ())) { { { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BRA_COMPACT) : /* bra $disp12 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bra_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = FLD (i_disp12); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BRAF_COMPACT) : /* braf $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = ADDDI (EXTSIDI (GET_H_GRC (FLD (f_rn))), ADDDI (pc, 4)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BRK_COMPACT) : /* brk */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); sh64_break (current_cpu, pc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BSR_COMPACT) : /* bsr $disp12 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bra_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { SI opval = ADDDI (pc, 4); SET_H_PR (opval); TRACE_RESULT (current_cpu, abuf, "pr", 'x', opval); } } { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = FLD (i_disp12); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BSRF_COMPACT) : /* bsrf $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { SI opval = ADDDI (pc, 4); SET_H_PR (opval); TRACE_RESULT (current_cpu, abuf, "pr", 'x', opval); } } { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = ADDDI (EXTSIDI (GET_H_GRC (FLD (f_rn))), ADDDI (pc, 4)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BT_COMPACT) : /* bt $disp8 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bf_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_TBIT ()) { { UDI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BTS_COMPACT) : /* bt/s $disp8 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bf_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_TBIT ()) { { { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = FLD (i_disp8); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_CLRMAC_COMPACT) : /* clrmac */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = 0; SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } { SI opval = 0; SET_H_MACH (opval); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CLRS_COMPACT) : /* clrs */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = 0; SET_H_SBIT (opval); TRACE_RESULT (current_cpu, abuf, "sbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CLRT_COMPACT) : /* clrt */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = 0; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPEQ_COMPACT) : /* cmp/eq $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = EQSI (GET_H_GRC (FLD (f_rm)), GET_H_GRC (FLD (f_rn))); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPEQI_COMPACT) : /* cmp/eq #$imm8, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = EQSI (GET_H_GRC (((UINT) 0)), EXTQISI (ANDQI (FLD (f_imm8), 255))); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGE_COMPACT) : /* cmp/ge $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = GESI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPGT_COMPACT) : /* cmp/gt $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = GTSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPHI_COMPACT) : /* cmp/hi $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = GTUSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPHS_COMPACT) : /* cmp/hs $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = GEUSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPPL_COMPACT) : /* cmp/pl $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = GTSI (GET_H_GRC (FLD (f_rn)), 0); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPPZ_COMPACT) : /* cmp/pz $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = GESI (GET_H_GRC (FLD (f_rn)), 0); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPSTR_COMPACT) : /* cmp/str $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; SI tmp_temp; tmp_temp = XORSI (GET_H_GRC (FLD (f_rm)), GET_H_GRC (FLD (f_rn))); tmp_t = EQSI (ANDSI (tmp_temp, 0xff000000), 0); tmp_t = ORBI (EQSI (ANDSI (tmp_temp, 16711680), 0), tmp_t); tmp_t = ORBI (EQSI (ANDSI (tmp_temp, 65280), 0), tmp_t); tmp_t = ORBI (EQSI (ANDSI (tmp_temp, 255), 0), tmp_t); { BI opval = ((GTUBI (tmp_t, 0)) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DIV0S_COMPACT) : /* div0s $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = SRLSI (GET_H_GRC (FLD (f_rn)), 31); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } { BI opval = SRLSI (GET_H_GRC (FLD (f_rm)), 31); SET_H_MBIT (opval); TRACE_RESULT (current_cpu, abuf, "mbit", 'x', opval); } { BI opval = ((EQSI (SRLSI (GET_H_GRC (FLD (f_rm)), 31), SRLSI (GET_H_GRC (FLD (f_rn)), 31))) ? (0) : (1)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DIV0U_COMPACT) : /* div0u */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = 0; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } { BI opval = 0; SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } { BI opval = 0; SET_H_MBIT (opval); TRACE_RESULT (current_cpu, abuf, "mbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DIV1_COMPACT) : /* div1 $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_oldq; SI tmp_tmp0; UQI tmp_tmp1; tmp_oldq = GET_H_QBIT (); { BI opval = SRLSI (GET_H_GRC (FLD (f_rn)), 31); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } { SI opval = ORSI (SLLSI (GET_H_GRC (FLD (f_rn)), 1), ZEXTBISI (GET_H_TBIT ())); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } if (NOTBI (tmp_oldq)) { if (NOTBI (GET_H_MBIT ())) { { tmp_tmp0 = GET_H_GRC (FLD (f_rn)); { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } tmp_tmp1 = GTUSI (GET_H_GRC (FLD (f_rn)), tmp_tmp0); if (NOTBI (GET_H_QBIT ())) { { BI opval = ((tmp_tmp1) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } else { { BI opval = ((EQQI (tmp_tmp1, 0)) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } } } else { { tmp_tmp0 = GET_H_GRC (FLD (f_rn)); { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } tmp_tmp1 = LTUSI (GET_H_GRC (FLD (f_rn)), tmp_tmp0); if (NOTBI (GET_H_QBIT ())) { { BI opval = ((EQQI (tmp_tmp1, 0)) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } else { { BI opval = ((tmp_tmp1) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } } } } else { if (NOTBI (GET_H_MBIT ())) { { tmp_tmp0 = GET_H_GRC (FLD (f_rn)); { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), GET_H_GRC (FLD (f_rn))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } tmp_tmp1 = LTUSI (GET_H_GRC (FLD (f_rn)), tmp_tmp0); if (NOTBI (GET_H_QBIT ())) { { BI opval = ((tmp_tmp1) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } else { { BI opval = ((EQQI (tmp_tmp1, 0)) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } } } else { { tmp_tmp0 = GET_H_GRC (FLD (f_rn)); { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } tmp_tmp1 = GTUSI (GET_H_GRC (FLD (f_rn)), tmp_tmp0); if (NOTBI (GET_H_QBIT ())) { { BI opval = ((EQQI (tmp_tmp1, 0)) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } else { { BI opval = ((tmp_tmp1) ? (1) : (0)); SET_H_QBIT (opval); TRACE_RESULT (current_cpu, abuf, "qbit", 'x', opval); } } } } } { BI opval = ((EQBI (GET_H_QBIT (), GET_H_MBIT ())) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DIVU_COMPACT) : /* divu r0, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = UDIVSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (((UINT) 0))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULR_COMPACT) : /* mulr r0, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = MULSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (((UINT) 0))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_DMULSL_COMPACT) : /* dmuls.l $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_result; tmp_result = MULDI (EXTSIDI (GET_H_GRC (FLD (f_rm))), EXTSIDI (GET_H_GRC (FLD (f_rn)))); { SI opval = SUBWORDDISI (tmp_result, 0); SET_H_MACH (opval); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } { SI opval = SUBWORDDISI (tmp_result, 1); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DMULUL_COMPACT) : /* dmulu.l $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_result; tmp_result = MULDI (ZEXTSIDI (GET_H_GRC (FLD (f_rm))), ZEXTSIDI (GET_H_GRC (FLD (f_rn)))); { SI opval = SUBWORDDISI (tmp_result, 0); SET_H_MACH (opval); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } { SI opval = SUBWORDDISI (tmp_result, 1); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DT_COMPACT) : /* dt $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), 1); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = EQSI (GET_H_GRC (FLD (f_rn)), 0); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_EXTSB_COMPACT) : /* exts.b $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (SUBWORDSIQI (GET_H_GRC (FLD (f_rm)), 3)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_EXTSW_COMPACT) : /* exts.w $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_EXTUB_COMPACT) : /* extu.b $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTQISI (SUBWORDSIQI (GET_H_GRC (FLD (f_rm)), 3)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_EXTUW_COMPACT) : /* extu.w $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTHISI (SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FABS_COMPACT) : /* fabs $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_fabsd (current_cpu, GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fabss (current_cpu, GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FADD_COMPACT) : /* fadd $fsdm, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_faddd (current_cpu, GET_H_FSD (FLD (f_rm)), GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fadds (current_cpu, GET_H_FSD (FLD (f_rm)), GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FCMPEQ_COMPACT) : /* fcmp/eq $fsdm, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { BI opval = sh64_fcmpeqd (current_cpu, GET_H_FSD (FLD (f_rm)), GET_H_FSD (FLD (f_rn))); SET_H_TBIT (opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } else { { BI opval = sh64_fcmpeqs (current_cpu, GET_H_FSD (FLD (f_rm)), GET_H_FSD (FLD (f_rn))); SET_H_TBIT (opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FCMPGT_COMPACT) : /* fcmp/gt $fsdm, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { BI opval = sh64_fcmpgtd (current_cpu, GET_H_FSD (FLD (f_rn)), GET_H_FSD (FLD (f_rm))); SET_H_TBIT (opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } else { { BI opval = sh64_fcmpgts (current_cpu, GET_H_FSD (FLD (f_rn)), GET_H_FSD (FLD (f_rm))); SET_H_TBIT (opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FCNVDS_COMPACT) : /* fcnvds $drn, fpul */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_fmov8_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = sh64_fcnvds (current_cpu, GET_H_DRC (FLD (f_dn))); CPU (h_fr[((UINT) 32)]) = opval; TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FCNVSD_COMPACT) : /* fcnvsd fpul, $drn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_fmov8_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DF opval = sh64_fcnvsd (current_cpu, CPU (h_fr[((UINT) 32)])); SET_H_DRC (FLD (f_dn), opval); TRACE_RESULT (current_cpu, abuf, "drc", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FDIV_COMPACT) : /* fdiv $fsdm, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_fdivd (current_cpu, GET_H_FSD (FLD (f_rn)), GET_H_FSD (FLD (f_rm))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fdivs (current_cpu, GET_H_FSD (FLD (f_rn)), GET_H_FSD (FLD (f_rm))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FIPR_COMPACT) : /* fipr $fvm, $fvn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_fipr_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); sh64_fipr (current_cpu, FLD (f_vm), FLD (f_vn)); #undef FLD } NEXT (vpc); CASE (sem, INSN_FLDS_COMPACT) : /* flds $frn, fpul */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = GET_H_FRC (FLD (f_rn)); CPU (h_fr[((UINT) 32)]) = opval; TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FLDI0_COMPACT) : /* fldi0 $frn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = sh64_fldi0 (current_cpu); SET_H_FRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "frc", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FLDI1_COMPACT) : /* fldi1 $frn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = sh64_fldi1 (current_cpu); SET_H_FRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "frc", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FLOAT_COMPACT) : /* float fpul, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_floatld (current_cpu, CPU (h_fr[((UINT) 32)])); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_floatls (current_cpu, CPU (h_fr[((UINT) 32)])); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMAC_COMPACT) : /* fmac fr0, $frm, $frn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = sh64_fmacs (current_cpu, GET_H_FRC (((UINT) 0)), GET_H_FRC (FLD (f_rm)), GET_H_FRC (FLD (f_rn))); SET_H_FRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "frc", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV1_COMPACT) : /* fmov $fmovm, $fmovn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DF opval = GET_H_FMOV (FLD (f_rm)); SET_H_FMOV (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV2_COMPACT) : /* fmov @$rm, $fmovn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_SZBIT ())) { { DF opval = GETMEMSF (current_cpu, pc, GET_H_GRC (FLD (f_rm))); SET_H_FMOV (FLD (f_rn), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } } else { { DF opval = GETMEMDF (current_cpu, pc, GET_H_GRC (FLD (f_rm))); SET_H_FMOV (FLD (f_rn), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV3_COMPACT) : /* fmov @${rm}+, fmovn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_SZBIT ())) { { { DF opval = GETMEMSF (current_cpu, pc, GET_H_GRC (FLD (f_rm))); SET_H_FMOV (FLD (f_rn), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 4); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } else { { { DF opval = GETMEMDF (current_cpu, pc, GET_H_GRC (FLD (f_rm))); SET_H_FMOV (FLD (f_rn), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 8); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV4_COMPACT) : /* fmov @(r0, $rm), $fmovn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_SZBIT ())) { { DF opval = GETMEMSF (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rm)))); SET_H_FMOV (FLD (f_rn), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } } else { { DF opval = GETMEMDF (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rm)))); SET_H_FMOV (FLD (f_rn), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fmov", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV5_COMPACT) : /* fmov $fmovm, @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_SZBIT ())) { { SF opval = GET_H_FMOV (FLD (f_rm)); SETMEMSF (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } } else { { DF opval = GET_H_FMOV (FLD (f_rm)); SETMEMDF (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV6_COMPACT) : /* fmov $fmovm, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_SZBIT ())) { { { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { SF opval = GET_H_FMOV (FLD (f_rm)); SETMEMSF (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } } } else { { { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), 8); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { DF opval = GET_H_FMOV (FLD (f_rm)); SETMEMDF (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV7_COMPACT) : /* fmov $fmovm, @(r0, $rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (GET_H_SZBIT ())) { { SF opval = GET_H_FMOV (FLD (f_rm)); SETMEMSF (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rn))), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } } else { { DF opval = GET_H_FMOV (FLD (f_rm)); SETMEMDF (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rn))), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV8_COMPACT) : /* fmov.d @($imm12x8, $rm), $drn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_fmov8_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = GETMEMDF (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm12x8))); SET_H_DRC (FLD (f_dn), opval); TRACE_RESULT (current_cpu, abuf, "drc", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FMOV9_COMPACT) : /* mov.l $drm, @($imm12x8, $rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_fmov9_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = GET_H_DRC (FLD (f_dm)); SETMEMDF (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rn)), FLD (f_imm12x8)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FMUL_COMPACT) : /* fmul $fsdm, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_fmuld (current_cpu, GET_H_FSD (FLD (f_rm)), GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fmuls (current_cpu, GET_H_FSD (FLD (f_rm)), GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FNEG_COMPACT) : /* fneg $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_fnegd (current_cpu, GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fnegs (current_cpu, GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FRCHG_COMPACT) : /* frchg */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = NOTBI (GET_H_FRBIT ()); SET_H_FRBIT (opval); TRACE_RESULT (current_cpu, abuf, "frbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FSCHG_COMPACT) : /* fschg */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = NOTBI (GET_H_SZBIT ()); SET_H_SZBIT (opval); TRACE_RESULT (current_cpu, abuf, "szbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FSQRT_COMPACT) : /* fsqrt $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_fsqrtd (current_cpu, GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fsqrts (current_cpu, GET_H_FSD (FLD (f_rn))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FSTS_COMPACT) : /* fsts fpul, $frn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = CPU (h_fr[((UINT) 32)]); SET_H_FRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "frc", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FSUB_COMPACT) : /* fsub $fsdm, $fsdn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (GET_H_PRBIT ()) { { DF opval = sh64_fsubd (current_cpu, GET_H_FSD (FLD (f_rn)), GET_H_FSD (FLD (f_rm))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } else { { DF opval = sh64_fsubs (current_cpu, GET_H_FSD (FLD (f_rn)), GET_H_FSD (FLD (f_rm))); SET_H_FSD (FLD (f_rn), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fsd", 'f', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_FTRC_COMPACT) : /* ftrc $fsdn, fpul */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = ((GET_H_PRBIT ()) ? (sh64_ftrcdl (current_cpu, GET_H_FSD (FLD (f_rn)))) : (sh64_ftrcsl (current_cpu, GET_H_FSD (FLD (f_rn))))); CPU (h_fr[((UINT) 32)]) = opval; TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_FTRV_COMPACT) : /* ftrv xmtrx, $fvn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_fipr_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); sh64_ftrv (current_cpu, FLD (f_vn)); #undef FLD } NEXT (vpc); CASE (sem, INSN_JMP_COMPACT) : /* jmp @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = GET_H_GRC (FLD (f_rn)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } ((void) 0); /*nop*/ } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JSR_COMPACT) : /* jsr @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { SI opval = ADDDI (pc, 4); SET_H_PR (opval); TRACE_RESULT (current_cpu, abuf, "pr", 'x', opval); } } { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = GET_H_GRC (FLD (f_rn)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } ((void) 0); /*nop*/ } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_LDC_GBR_COMPACT) : /* ldc $rn, gbr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_GBR (opval); TRACE_RESULT (current_cpu, abuf, "gbr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDC_VBR_COMPACT) : /* ldc $rn, vbr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_VBR (opval); TRACE_RESULT (current_cpu, abuf, "vbr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDC_SR_COMPACT) : /* ldc $rn, sr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); CPU (h_sr) = opval; TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDCL_GBR_COMPACT) : /* ldc.l @${rn}+, gbr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_GBR (opval); TRACE_RESULT (current_cpu, abuf, "gbr", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDCL_VBR_COMPACT) : /* ldc.l @${rn}+, vbr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_VBR (opval); TRACE_RESULT (current_cpu, abuf, "vbr", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDS_FPSCR_COMPACT) : /* lds $rn, fpscr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); CPU (h_fpscr) = opval; TRACE_RESULT (current_cpu, abuf, "fpscr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDSL_FPSCR_COMPACT) : /* lds.l @${rn}+, fpscr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); CPU (h_fpscr) = opval; TRACE_RESULT (current_cpu, abuf, "fpscr", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDS_FPUL_COMPACT) : /* lds $rn, fpul */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SF opval = SUBWORDSISF (GET_H_GRC (FLD (f_rn))); CPU (h_fr[((UINT) 32)]) = opval; TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDSL_FPUL_COMPACT) : /* lds.l @${rn}+, fpul */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SF opval = GETMEMSF (current_cpu, pc, GET_H_GRC (FLD (f_rn))); CPU (h_fr[((UINT) 32)]) = opval; TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDS_MACH_COMPACT) : /* lds $rn, mach */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_MACH (opval); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDSL_MACH_COMPACT) : /* lds.l @${rn}+, mach */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_MACH (opval); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDS_MACL_COMPACT) : /* lds $rn, macl */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDSL_MACL_COMPACT) : /* lds.l @${rn}+, macl */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDS_PR_COMPACT) : /* lds $rn, pr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_PR (opval); TRACE_RESULT (current_cpu, abuf, "pr", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_LDSL_PR_COMPACT) : /* lds.l @${rn}+, pr */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_PR (opval); TRACE_RESULT (current_cpu, abuf, "pr", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MACL_COMPACT) : /* mac.l @${rm}+, @${rn}+ */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_tmpry; DI tmp_mac; DI tmp_result; SI tmp_x; SI tmp_y; tmp_x = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } if (EQSI (FLD (f_rn), FLD (f_rm))) { { { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 4); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } tmp_y = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rm))); { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 4); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } tmp_tmpry = MULDI (ZEXTSIDI (tmp_x), ZEXTSIDI (tmp_y)); tmp_mac = ORDI (SLLDI (ZEXTSIDI (GET_H_MACH ()), 32), ZEXTSIDI (GET_H_MACL ())); tmp_result = ADDDI (tmp_mac, tmp_tmpry); { if (GET_H_SBIT ()) { { SI tmp_min; SI tmp_max; tmp_max = SRLDI (INVDI (0), 16); tmp_min = SRLDI (INVDI (0), 15); if (GTDI (tmp_result, tmp_max)) { tmp_result = tmp_max; } else { if (LTDI (tmp_result, tmp_min)) { tmp_result = tmp_min; } } } } { SI opval = SUBWORDDISI (tmp_result, 0); SET_H_MACH (opval); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } { SI opval = SUBWORDDISI (tmp_result, 1); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MACW_COMPACT) : /* mac.w @${rm}+, @${rn}+ */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpry; DI tmp_mac; DI tmp_result; HI tmp_x; HI tmp_y; tmp_x = GETMEMHI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 2); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } if (EQSI (FLD (f_rn), FLD (f_rm))) { { { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 2); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 2); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } tmp_y = GETMEMHI (current_cpu, pc, GET_H_GRC (FLD (f_rm))); { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 2); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } tmp_tmpry = MULSI (ZEXTHISI (tmp_x), ZEXTHISI (tmp_y)); if (GET_H_SBIT ()) { { if (ADDOFSI (tmp_tmpry, GET_H_MACL (), 0)) { { SI opval = 1; SET_H_MACH (opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } } { SI opval = ADDSI (tmp_tmpry, GET_H_MACL ()); SET_H_MACL (opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } } } else { { tmp_mac = ORDI (SLLDI (ZEXTSIDI (GET_H_MACH ()), 32), ZEXTSIDI (GET_H_MACL ())); tmp_result = ADDDI (tmp_mac, EXTSIDI (tmp_tmpry)); { SI opval = SUBWORDDISI (tmp_result, 0); SET_H_MACH (opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "mach", 'x', opval); } { SI opval = SUBWORDDISI (tmp_result, 1); SET_H_MACL (opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOV_COMPACT) : /* mov $rm64, $rn64 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = GET_H_GR (FLD (f_rm)); SET_H_GR (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'D', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVI_COMPACT) : /* mov #$imm8, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQIDI (ANDQI (FLD (f_imm8), 255)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVI20_COMPACT) : /* movi20 #$imm20, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movi20_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = FLD (f_imm20); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB1_COMPACT) : /* mov.b $rm, @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UQI opval = SUBWORDSIUQI (GET_H_GRC (FLD (f_rm)), 3); SETMEMUQI (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB2_COMPACT) : /* mov.b $rm, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 1); { UQI opval = SUBWORDSIUQI (GET_H_GRC (FLD (f_rm)), 3); SETMEMUQI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB3_COMPACT) : /* mov.b $rm, @(r0,$rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UQI opval = SUBWORDSIUQI (GET_H_GRC (FLD (f_rm)), 3); SETMEMUQI (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rn))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB4_COMPACT) : /* mov.b r0, @($imm8, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = ADDSI (GET_H_GBR (), FLD (f_imm8)); { UQI opval = SUBWORDSIUQI (GET_H_GRC (((UINT) 0)), 3); SETMEMUQI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB5_COMPACT) : /* mov.b r0, @($imm4, $rm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movb5_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm4)); { UQI opval = SUBWORDSIUQI (GET_H_GRC (((UINT) 0)), 3); SETMEMUQI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB6_COMPACT) : /* mov.b @$rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, GET_H_GRC (FLD (f_rm)))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB7_COMPACT) : /* mov.b @${rm}+, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_data; tmp_data = GETMEMQI (current_cpu, pc, GET_H_GRC (FLD (f_rm))); if (EQSI (FLD (f_rm), FLD (f_rn))) { { SI opval = EXTQISI (tmp_data); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 1); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } { SI opval = EXTQISI (tmp_data); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB8_COMPACT) : /* mov.b @(r0, $rm), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rm))))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB9_COMPACT) : /* mov.b @($imm8, gbr), r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, ADDSI (GET_H_GBR (), FLD (f_imm8)))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVB10_COMPACT) : /* mov.b @($imm4, $rm), r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movb5_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm4)))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL1_COMPACT) : /* mov.l $rm, @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rm)); SETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL2_COMPACT) : /* mov.l $rm, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = GET_H_GRC (FLD (f_rm)); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL3_COMPACT) : /* mov.l $rm, @(r0, $rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rm)); SETMEMSI (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rn))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL4_COMPACT) : /* mov.l r0, @($imm8x4, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (((UINT) 0)); SETMEMSI (current_cpu, pc, ADDSI (GET_H_GBR (), FLD (f_imm8x4)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL5_COMPACT) : /* mov.l $rm, @($imm4x4, $rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl5_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rm)); SETMEMSI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rn)), FLD (f_imm4x4)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL6_COMPACT) : /* mov.l @$rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL7_COMPACT) : /* mov.l @${rm}+, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } if (EQSI (FLD (f_rm), FLD (f_rn))) { { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 4); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL8_COMPACT) : /* mov.l @(r0, $rm), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rm)))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL9_COMPACT) : /* mov.l @($imm8x4, gbr), r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (GET_H_GBR (), FLD (f_imm8x4))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL10_COMPACT) : /* mov.l @($imm8x4, pc), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (FLD (f_imm8x4), ANDDI (ADDDI (pc, 4), INVSI (3)))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL11_COMPACT) : /* mov.l @($imm4x4, $rm), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl5_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm4x4))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL12_COMPACT) : /* mov.l @($imm12x4, $rm), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm12x4))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVL13_COMPACT) : /* mov.l $rm, @($imm12x4, $rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GET_H_GRC (FLD (f_rm)); SETMEMSI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rn)), FLD (f_imm12x4)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW1_COMPACT) : /* mov.w $rm, @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1); SETMEMHI (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW2_COMPACT) : /* mov.w $rm, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 2); { HI opval = SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1); SETMEMHI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW3_COMPACT) : /* mov.w $rm, @(r0, $rn) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1); SETMEMHI (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rn))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW4_COMPACT) : /* mov.w r0, @($imm8x2, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = SUBWORDSIHI (GET_H_GRC (((UINT) 0)), 1); SETMEMHI (current_cpu, pc, ADDSI (GET_H_GBR (), FLD (f_imm8x2)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW5_COMPACT) : /* mov.w r0, @($imm4x2, $rm) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw5_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = SUBWORDSIHI (GET_H_GRC (((UINT) 0)), 1); SETMEMHI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm4x2)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW6_COMPACT) : /* mov.w @$rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, GET_H_GRC (FLD (f_rm)))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW7_COMPACT) : /* mov.w @${rm}+, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_data; tmp_data = GETMEMHI (current_cpu, pc, GET_H_GRC (FLD (f_rm))); if (EQSI (FLD (f_rm), FLD (f_rn))) { { SI opval = EXTHISI (tmp_data); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { { SI opval = ADDSI (GET_H_GRC (FLD (f_rm)), 2); SET_H_GRC (FLD (f_rm), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } { SI opval = EXTHISI (tmp_data); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW8_COMPACT) : /* mov.w @(r0, $rm), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GRC (FLD (f_rm))))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW9_COMPACT) : /* mov.w @($imm8x2, gbr), r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDSI (GET_H_GBR (), FLD (f_imm8x2)))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW10_COMPACT) : /* mov.w @($imm8x2, pc), $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDDI (ADDDI (pc, 4), FLD (f_imm8x2)))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVW11_COMPACT) : /* mov.w @($imm4x2, $rm), r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw5_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDSI (GET_H_GRC (FLD (f_rm)), FLD (f_imm4x2)))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVA_COMPACT) : /* mova @($imm8x4, pc), r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDDI (ANDDI (ADDDI (pc, 4), INVSI (3)), FLD (f_imm8x4)); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVCAL_COMPACT) : /* movca.l r0, @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (((UINT) 0)); SETMEMSI (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVCOL_COMPACT) : /* movco.l r0, @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVT_COMPACT) : /* movt $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTBISI (GET_H_TBIT ()); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVUAL_COMPACT) : /* movua.l @$rn, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = sh64_movua (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVUAL2_COMPACT) : /* movua.l @$rn+, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = sh64_movua (current_cpu, pc, GET_H_GRC (FLD (f_rn))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { SI opval = ADDSI (GET_H_GRC (FLD (f_rn)), 4); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULL_COMPACT) : /* mul.l $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = MULSI (GET_H_GRC (FLD (f_rm)), GET_H_GRC (FLD (f_rn))); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULSW_COMPACT) : /* muls.w $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = MULSI (EXTHISI (SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1)), EXTHISI (SUBWORDSIHI (GET_H_GRC (FLD (f_rn)), 1))); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULUW_COMPACT) : /* mulu.w $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = MULSI (ZEXTHISI (SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 1)), ZEXTHISI (SUBWORDSIHI (GET_H_GRC (FLD (f_rn)), 1))); SET_H_MACL (opval); TRACE_RESULT (current_cpu, abuf, "macl", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_COMPACT) : /* neg $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = NEGSI (GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEGC_COMPACT) : /* negc $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_flag; tmp_flag = SUBCFSI (0, GET_H_GRC (FLD (f_rm)), GET_H_TBIT ()); { SI opval = SUBCSI (0, GET_H_GRC (FLD (f_rm)), GET_H_TBIT ()); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = tmp_flag; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NOP_COMPACT) : /* nop */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); ((void) 0); /*nop*/ #undef FLD } NEXT (vpc); CASE (sem, INSN_NOT_COMPACT) : /* not $rm64, $rn64 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = INVDI (GET_H_GR (FLD (f_rm))); SET_H_GR (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'D', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_OCBI_COMPACT) : /* ocbi @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } ((void) 0); /*nop*/ } #undef FLD } NEXT (vpc); CASE (sem, INSN_OCBP_COMPACT) : /* ocbp @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } ((void) 0); /*nop*/ } #undef FLD } NEXT (vpc); CASE (sem, INSN_OCBWB_COMPACT) : /* ocbwb @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GET_H_GRC (FLD (f_rn)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } ((void) 0); /*nop*/ } #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_COMPACT) : /* or $rm64, $rn64 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = ORDI (GET_H_GR (FLD (f_rm)), GET_H_GR (FLD (f_rn))); SET_H_GR (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'D', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORI_COMPACT) : /* or #$uimm8, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ORSI (GET_H_GRC (((UINT) 0)), ZEXTSIDI (FLD (f_imm8))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORB_COMPACT) : /* or.b #$imm8, @(r0, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; UQI tmp_data; tmp_addr = ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GBR ()); tmp_data = ORQI (GETMEMUQI (current_cpu, pc, tmp_addr), FLD (f_imm8)); { UQI opval = tmp_data; SETMEMUQI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_PREF_COMPACT) : /* pref @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); sh64_pref (current_cpu, GET_H_GRC (FLD (f_rn))); #undef FLD } NEXT (vpc); CASE (sem, INSN_ROTCL_COMPACT) : /* rotcl $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_temp; tmp_temp = SRLSI (GET_H_GRC (FLD (f_rn)), 31); { SI opval = ORSI (SLLSI (GET_H_GRC (FLD (f_rn)), 1), GET_H_TBIT ()); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_temp) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ROTCR_COMPACT) : /* rotcr $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_lsbit; SI tmp_temp; tmp_lsbit = ((EQSI (ANDSI (GET_H_GRC (FLD (f_rn)), 1), 0)) ? (0) : (1)); tmp_temp = GET_H_TBIT (); { SI opval = ORSI (SRLSI (GET_H_GRC (FLD (f_rn)), 1), SLLSI (tmp_temp, 31)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_lsbit) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ROTL_COMPACT) : /* rotl $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_temp; tmp_temp = SRLSI (GET_H_GRC (FLD (f_rn)), 31); { SI opval = ORSI (SLLSI (GET_H_GRC (FLD (f_rn)), 1), tmp_temp); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_temp) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ROTR_COMPACT) : /* rotr $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_lsbit; SI tmp_temp; tmp_lsbit = ((EQSI (ANDSI (GET_H_GRC (FLD (f_rn)), 1), 0)) ? (0) : (1)); tmp_temp = tmp_lsbit; { SI opval = ORSI (SRLSI (GET_H_GRC (FLD (f_rn)), 1), SLLSI (tmp_temp, 31)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_lsbit) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_RTS_COMPACT) : /* rts */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { UDI opval = ADDDI (pc, 2); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } ((void) 0); /*nop*/ { { UDI opval = GET_H_PR (); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'D', opval); } } ((void) 0); /*nop*/ } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_SETS_COMPACT) : /* sets */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = 1; SET_H_SBIT (opval); TRACE_RESULT (current_cpu, abuf, "sbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SETT_COMPACT) : /* sett */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = 1; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHAD_COMPACT) : /* shad $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shamt; tmp_shamt = ANDSI (GET_H_GRC (FLD (f_rm)), 31); if (GESI (GET_H_GRC (FLD (f_rm)), 0)) { { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), tmp_shamt); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { if (NESI (tmp_shamt, 0)) { { SI opval = SRASI (GET_H_GRC (FLD (f_rn)), SUBSI (32, tmp_shamt)); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { if (LTSI (GET_H_GRC (FLD (f_rn)), 0)) { { SI opval = NEGSI (1); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { { SI opval = 0; SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SHAL_COMPACT) : /* shal $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; tmp_t = SRLSI (GET_H_GRC (FLD (f_rn)), 31); { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), 1); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_t) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHAR_COMPACT) : /* shar $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; tmp_t = ANDSI (GET_H_GRC (FLD (f_rn)), 1); { SI opval = SRASI (GET_H_GRC (FLD (f_rn)), 1); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_t) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLD_COMPACT) : /* shld $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shamt; tmp_shamt = ANDSI (GET_H_GRC (FLD (f_rm)), 31); if (GESI (GET_H_GRC (FLD (f_rm)), 0)) { { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), tmp_shamt); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { if (NESI (tmp_shamt, 0)) { { SI opval = SRLSI (GET_H_GRC (FLD (f_rn)), SUBSI (32, tmp_shamt)); SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } else { { SI opval = 0; SET_H_GRC (FLD (f_rn), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLL_COMPACT) : /* shll $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; tmp_t = SRLSI (GET_H_GRC (FLD (f_rn)), 31); { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), 1); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_t) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLL2_COMPACT) : /* shll2 $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), 2); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLL8_COMPACT) : /* shll8 $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), 8); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLL16_COMPACT) : /* shll16 $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SLLSI (GET_H_GRC (FLD (f_rn)), 16); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLR_COMPACT) : /* shlr $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; tmp_t = ANDSI (GET_H_GRC (FLD (f_rn)), 1); { SI opval = SRLSI (GET_H_GRC (FLD (f_rn)), 1); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_t) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLR2_COMPACT) : /* shlr2 $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (GET_H_GRC (FLD (f_rn)), 2); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLR8_COMPACT) : /* shlr8 $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (GET_H_GRC (FLD (f_rn)), 8); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SHLR16_COMPACT) : /* shlr16 $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (GET_H_GRC (FLD (f_rn)), 16); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STC_GBR_COMPACT) : /* stc gbr, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_GBR (); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STC_VBR_COMPACT) : /* stc vbr, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_VBR (); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STCL_GBR_COMPACT) : /* stc.l gbr, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = GET_H_GBR (); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_STCL_VBR_COMPACT) : /* stc.l vbr, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = GET_H_VBR (); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_STS_FPSCR_COMPACT) : /* sts fpscr, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = CPU (h_fpscr); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STSL_FPSCR_COMPACT) : /* sts.l fpscr, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = CPU (h_fpscr); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_STS_FPUL_COMPACT) : /* sts fpul, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SUBWORDSFSI (CPU (h_fr[((UINT) 32)])); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STSL_FPUL_COMPACT) : /* sts.l fpul, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SF opval = CPU (h_fr[((UINT) 32)]); SETMEMSF (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'f', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_STS_MACH_COMPACT) : /* sts mach, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_MACH (); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STSL_MACH_COMPACT) : /* sts.l mach, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = GET_H_MACH (); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_STS_MACL_COMPACT) : /* sts macl, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_MACL (); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STSL_MACL_COMPACT) : /* sts.l macl, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = GET_H_MACL (); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_STS_PR_COMPACT) : /* sts pr, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_PR (); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_STSL_PR_COMPACT) : /* sts.l pr, @-$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = SUBSI (GET_H_GRC (FLD (f_rn)), 4); { SI opval = GET_H_PR (); SETMEMSI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_addr; SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_COMPACT) : /* sub $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBC_COMPACT) : /* subc $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_flag; tmp_flag = SUBCFSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm)), GET_H_TBIT ()); { SI opval = SUBCSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm)), GET_H_TBIT ()); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = tmp_flag; SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBV_COMPACT) : /* subv $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_t; tmp_t = SUBOFSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm)), 0); { SI opval = SUBSI (GET_H_GRC (FLD (f_rn)), GET_H_GRC (FLD (f_rm))); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } { BI opval = ((tmp_t) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SWAPB_COMPACT) : /* swap.b $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UHI tmp_top_half; UQI tmp_byte1; UQI tmp_byte0; tmp_top_half = SUBWORDSIHI (GET_H_GRC (FLD (f_rm)), 0); tmp_byte1 = SUBWORDSIQI (GET_H_GRC (FLD (f_rm)), 2); tmp_byte0 = SUBWORDSIQI (GET_H_GRC (FLD (f_rm)), 3); { SI opval = ORSI (SLLSI (tmp_top_half, 16), ORSI (SLLSI (tmp_byte0, 8), tmp_byte1)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SWAPW_COMPACT) : /* swap.w $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ORSI (SRLSI (GET_H_GRC (FLD (f_rm)), 16), SLLSI (GET_H_GRC (FLD (f_rm)), 16)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_TASB_COMPACT) : /* tas.b @$rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movw10_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UQI tmp_byte; tmp_byte = GETMEMUQI (current_cpu, pc, GET_H_GRC (FLD (f_rn))); { BI opval = ((EQQI (tmp_byte, 0)) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } tmp_byte = ORQI (tmp_byte, 128); { UQI opval = tmp_byte; SETMEMUQI (current_cpu, pc, GET_H_GRC (FLD (f_rn)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_TRAPA_COMPACT) : /* trapa #$uimm8 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); sh64_compact_trapa (current_cpu, FLD (f_imm8), pc); #undef FLD } NEXT (vpc); CASE (sem, INSN_TST_COMPACT) : /* tst $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = ((EQSI (ANDSI (GET_H_GRC (FLD (f_rm)), GET_H_GRC (FLD (f_rn))), 0)) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_TSTI_COMPACT) : /* tst #$uimm8, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI opval = ((EQSI (ANDSI (GET_H_GRC (((UINT) 0)), ZEXTSISI (FLD (f_imm8))), 0)) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_TSTB_COMPACT) : /* tst.b #$imm8, @(r0, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; tmp_addr = ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GBR ()); { BI opval = ((EQQI (ANDQI (GETMEMUQI (current_cpu, pc, tmp_addr), FLD (f_imm8)), 0)) ? (1) : (0)); SET_H_TBIT (opval); TRACE_RESULT (current_cpu, abuf, "tbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_XOR_COMPACT) : /* xor $rm64, $rn64 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI opval = XORDI (GET_H_GR (FLD (f_rn)), GET_H_GR (FLD (f_rm))); SET_H_GR (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'D', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_XORI_COMPACT) : /* xor #$uimm8, r0 */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = XORSI (GET_H_GRC (((UINT) 0)), ZEXTSIDI (FLD (f_imm8))); SET_H_GRC (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); CASE (sem, INSN_XORB_COMPACT) : /* xor.b #$imm8, @(r0, gbr) */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addi_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_addr; UQI tmp_data; tmp_addr = ADDSI (GET_H_GRC (((UINT) 0)), GET_H_GBR ()); tmp_data = XORQI (GETMEMUQI (current_cpu, pc, tmp_addr), FLD (f_imm8)); { UQI opval = tmp_data; SETMEMUQI (current_cpu, pc, tmp_addr, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_XTRCT_COMPACT) : /* xtrct $rm, $rn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movl12_compact.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ORSI (SLLSI (GET_H_GRC (FLD (f_rm)), 16), SRLSI (GET_H_GRC (FLD (f_rn)), 16)); SET_H_GRC (FLD (f_rn), opval); TRACE_RESULT (current_cpu, abuf, "grc", 'x', opval); } #undef FLD } NEXT (vpc); } ENDSWITCH (sem) /* End of semantic switch. */ /* At this point `vpc' contains the next insn to execute. */ } #undef DEFINE_SWITCH #endif /* DEFINE_SWITCH */