summaryrefslogtreecommitdiff
path: root/gdb/dcache.c
blob: 3c3e71a3ced3de4b47405e0dadde1dd3a58f0781 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* Caching code.
   Copyright 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "dcache.h"
#include "gdbcmd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "target.h"

/* The data cache could lead to incorrect results because it doesn't
   know about volatile variables, thus making it impossible to debug
   functions which use memory mapped I/O devices.  Set the nocache
   memory region attribute in those cases.

   In general the dcache speeds up performance, some speed improvement
   comes from the actual caching mechanism, but the major gain is in
   the reduction of the remote protocol overhead; instead of reading
   or writing a large area of memory in 4 byte requests, the cache
   bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
   Reducing the overhead to an eighth of what it was.  This is very
   obvious when displaying a large amount of data,

   eg, x/200x 0 

   caching     |   no    yes 
   ---------------------------- 
   first time  |   4 sec  2 sec improvement due to chunking 
   second time |   4 sec  0 sec improvement due to caching

   The cache structure is unusual, we keep a number of cache blocks
   (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
   Within each line we remember the address of the line (always a
   multiple of the LINE_SIZE) and a vector of bytes over the range.
   There's another vector which contains the state of the bytes.

   ENTRY_BAD means that the byte is just plain wrong, and has no
   correspondence with anything else (as it would when the cache is
   turned on, but nothing has been done to it.

   ENTRY_DIRTY means that the byte has some data in it which should be
   written out to the remote target one day, but contains correct
   data.

   ENTRY_OK means that the data is the same in the cache as it is in
   remote memory.


   The ENTRY_DIRTY state is necessary because GDB likes to write large
   lumps of memory in small bits.  If the caching mechanism didn't
   maintain the DIRTY information, then something like a two byte
   write would mean that the entire cache line would have to be read,
   the two bytes modified and then written out again.  The alternative
   would be to not read in the cache line in the first place, and just
   write the two bytes directly into target memory.  The trouble with
   that is that it really nails performance, because of the remote
   protocol overhead.  This way, all those little writes are bundled
   up into an entire cache line write in one go, without having to
   read the cache line in the first place.
 */

/* NOTE: Interaction of dcache and memory region attributes

   As there is no requirement that memory region attributes be aligned
   to or be a multiple of the dcache page size, dcache_read_line() and
   dcache_write_line() must break up the page by memory region.  If a
   chunk does not have the cache attribute set, an invalid memory type
   is set, etc., then the chunk is skipped.  Those chunks are handled
   in target_xfer_memory() (or target_xfer_memory_partial()).

   This doesn't occur very often.  The most common occurance is when
   the last bit of the .text segment and the first bit of the .data
   segment fall within the same dcache page with a ro/cacheable memory
   region defined for the .text segment and a rw/non-cacheable memory
   region defined for the .data segment. */

/* This value regulates the number of cache blocks stored.
   Smaller values reduce the time spent searching for a cache
   line, and reduce memory requirements, but increase the risk
   of a line not being in memory */

#define DCACHE_SIZE 64

/* This value regulates the size of a cache line.  Smaller values
   reduce the time taken to read a single byte, but reduce overall
   throughput.  */

#define LINE_SIZE_POWER (5)
#define LINE_SIZE (1 << LINE_SIZE_POWER)

/* Each cache block holds LINE_SIZE bytes of data
   starting at a multiple-of-LINE_SIZE address.  */

#define LINE_SIZE_MASK  ((LINE_SIZE - 1))
#define XFORM(x) 	((x) & LINE_SIZE_MASK)
#define MASK(x)         ((x) & ~LINE_SIZE_MASK)


#define ENTRY_BAD   0		/* data at this byte is wrong */
#define ENTRY_DIRTY 1		/* data at this byte needs to be written back */
#define ENTRY_OK    2		/* data at this byte is same as in memory */


struct dcache_block
  {
    struct dcache_block *p;	/* next in list */
    CORE_ADDR addr;		/* Address for which data is recorded.  */
    char data[LINE_SIZE];	/* bytes at given address */
    unsigned char state[LINE_SIZE];	/* what state the data is in */

    /* whether anything in state is dirty - used to speed up the 
       dirty scan. */
    int anydirty;

    int refs;
  };


/* FIXME: dcache_struct used to have a cache_has_stuff field that was
   used to record whether the cache had been accessed.  This was used
   to invalidate the cache whenever caching was (re-)enabled (if the
   cache was disabled and later re-enabled, it could contain stale
   data).  This was not needed because the cache is write through and
   the code that enables, disables, and deletes memory region all
   invalidate the cache.

   This is overkill, since it also invalidates cache lines from
   unrelated regions.  One way this could be addressed by adding a
   new function that takes an address and a length and invalidates
   only those cache lines that match. */

struct dcache_struct
  {
    /* free list */
    struct dcache_block *free_head;
    struct dcache_block *free_tail;

    /* in use list */
    struct dcache_block *valid_head;
    struct dcache_block *valid_tail;

    /* The cache itself. */
    struct dcache_block *the_cache;
  };

static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);

static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);

static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);

static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);

static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);

static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);

static int dcache_writeback (DCACHE *dcache);

static void dcache_info (const char *exp, int tty);

void _initialize_dcache (void);

static int dcache_enabled_p = 0;

DCACHE *last_cache;		/* Used by info dcache */


/* Free all the data cache blocks, thus discarding all cached data.  */

void
dcache_invalidate (DCACHE *dcache)
{
  int i;
  dcache->valid_head = 0;
  dcache->valid_tail = 0;

  dcache->free_head = 0;
  dcache->free_tail = 0;

  for (i = 0; i < DCACHE_SIZE; i++)
    {
      struct dcache_block *db = dcache->the_cache + i;

      if (!dcache->free_head)
	dcache->free_head = db;
      else
	dcache->free_tail->p = db;
      dcache->free_tail = db;
      db->p = 0;
    }

  return;
}

/* If addr is present in the dcache, return the address of the block
   containing it. */

static struct dcache_block *
dcache_hit (DCACHE *dcache, CORE_ADDR addr)
{
  register struct dcache_block *db;

  /* Search all cache blocks for one that is at this address.  */
  db = dcache->valid_head;

  while (db)
    {
      if (MASK (addr) == db->addr)
	{
	  db->refs++;
	  return db;
	}
      db = db->p;
    }

  return NULL;
}

/* Make sure that anything in this line which needs to
   be written is. */

static int
dcache_write_line (DCACHE *dcache, register struct dcache_block *db)
{
  CORE_ADDR memaddr;
  char *myaddr;
  int len;
  int res;
  int reg_len;
  struct mem_region *region;

  if (!db->anydirty)
    return 1;

  len = LINE_SIZE;
  memaddr = db->addr;
  myaddr  = db->data;

  while (len > 0)
    {
      int s;
      int e;
      int dirty_len;
      
      region = lookup_mem_region(memaddr);
      if (memaddr + len < region->hi)
	reg_len = len;
      else
	reg_len = region->hi - memaddr;

      if (!region->attrib.cache || region->attrib.mode == MEM_RO)
	{
	  memaddr += reg_len;
	  myaddr  += reg_len;
	  len     -= reg_len;
	  continue;
	}

      while (reg_len > 0)
	{
	  s = XFORM(memaddr);
	  while (reg_len > 0) {
	    if (db->state[s] == ENTRY_DIRTY)
	      break;
	    s++;
	    reg_len--;

	    memaddr++;
	    myaddr++;
	    len--;
	  }

	  e = s;
	  while (reg_len > 0) {
	    if (db->state[e] != ENTRY_DIRTY)
	      break;
	    e++;
	    reg_len--;
	  }

	  dirty_len = e - s;
	  while (dirty_len > 0)
	    {
	      res = do_xfer_memory(memaddr, myaddr, dirty_len, 1,
				   &region->attrib);
	      if (res <= 0)
		return 0;

	      memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
	      memaddr   += res;
	      myaddr    += res;
	      len       -= res;
	      dirty_len -= res;
	    }
	}
    }

  db->anydirty = 0;
  return 1;
}

/* Read cache line */
static int
dcache_read_line (DCACHE *dcache, struct dcache_block *db)
{
  CORE_ADDR memaddr;
  char *myaddr;
  int len;
  int res;
  int reg_len;
  struct mem_region *region;

  /* If there are any dirty bytes in the line, it must be written
     before a new line can be read */
  if (db->anydirty)
    {
      if (!dcache_write_line (dcache, db))
	return 0;
    }
  
  len = LINE_SIZE;
  memaddr = db->addr;
  myaddr  = db->data;

  while (len > 0)
    {
      region = lookup_mem_region(memaddr);
      if (memaddr + len < region->hi)
	reg_len = len;
      else
	reg_len = region->hi - memaddr;

      if (!region->attrib.cache || region->attrib.mode == MEM_WO)
	{
	  memaddr += reg_len;
	  myaddr  += reg_len;
	  len     -= reg_len;
	  continue;
	}
      
      while (reg_len > 0)
	{
	  res = do_xfer_memory (memaddr, myaddr, reg_len, 0,
				&region->attrib);
	  if (res <= 0)
	    return 0;

	  memaddr += res;
	  myaddr  += res;
	  len     -= res;
	  reg_len -= res;
	}
    }

  memset (db->state, ENTRY_OK, sizeof (db->data));
  db->anydirty = 0;
  
  return 1;
}

/* Get a free cache block, put or keep it on the valid list,
   and return its address.  */

static struct dcache_block *
dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
{
  register struct dcache_block *db;

  /* Take something from the free list */
  db = dcache->free_head;
  if (db)
    {
      dcache->free_head = db->p;
    }
  else
    {
      /* Nothing left on free list, so grab one from the valid list */
      db = dcache->valid_head;

      if (!dcache_write_line (dcache, db))
	return NULL;
      
      dcache->valid_head = db->p;
    }

  db->addr = MASK(addr);
  db->refs = 0;
  db->anydirty = 0;
  memset (db->state, ENTRY_BAD, sizeof (db->data));

  /* append this line to end of valid list */
  if (!dcache->valid_head)
    dcache->valid_head = db;
  else
    dcache->valid_tail->p = db;
  dcache->valid_tail = db;
  db->p = 0;

  return db;
}

/* Writeback any dirty lines. */
static int
dcache_writeback (DCACHE *dcache)
{
  struct dcache_block *db;

  db = dcache->valid_head;

  while (db)
    {
      if (!dcache_write_line (dcache, db))
	return 0;
      db = db->p;
    }
  return 1;
}


/* Using the data cache DCACHE return the contents of the byte at
   address ADDR in the remote machine.  

   Returns 0 on error. */

static int
dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
{
  register struct dcache_block *db = dcache_hit (dcache, addr);

  if (!db)
    {
      db = dcache_alloc (dcache, addr);
      if (!db)
	return 0;
    }
  
  if (db->state[XFORM (addr)] == ENTRY_BAD)
    {
      if (!dcache_read_line(dcache, db))
         return 0;
    }

  *ptr = db->data[XFORM (addr)];
  return 1;
}


/* Write the byte at PTR into ADDR in the data cache.
   Return zero on write error.
 */

static int
dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
{
  register struct dcache_block *db = dcache_hit (dcache, addr);

  if (!db)
    {
      db = dcache_alloc (dcache, addr);
      if (!db)
	return 0;
    }

  db->data[XFORM (addr)] = *ptr;
  db->state[XFORM (addr)] = ENTRY_DIRTY;
  db->anydirty = 1;
  return 1;
}

/* Initialize the data cache.  */
DCACHE *
dcache_init (void)
{
  int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
  DCACHE *dcache;

  dcache = (DCACHE *) xmalloc (sizeof (*dcache));

  dcache->the_cache = (struct dcache_block *) xmalloc (csize);
  memset (dcache->the_cache, 0, csize);

  dcache_invalidate (dcache);

  last_cache = dcache;
  return dcache;
}

/* Free a data cache */
void
dcache_free (DCACHE *dcache)
{
  if (last_cache == dcache)
    last_cache = NULL;

  xfree (dcache->the_cache);
  xfree (dcache);
}

/* Read or write LEN bytes from inferior memory at MEMADDR, transferring
   to or from debugger address MYADDR.  Write to inferior if SHOULD_WRITE is
   nonzero. 

   Returns length of data written or read; 0 for error.  

   This routine is indended to be called by remote_xfer_ functions. */

int
dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
		    int should_write)
{
  int i;
  int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr);
  xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;

  for (i = 0; i < len; i++)
    {
      if (!xfunc (dcache, memaddr + i, myaddr + i))
	return 0;
    }

  /* FIXME: There may be some benefit from moving the cache writeback
     to a higher layer, as it could occur after a sequence of smaller
     writes have been completed (as when a stack frame is constructed
     for an inferior function call).  Note that only moving it up one
     level to target_xfer_memory() (also target_xfer_memory_partial())
     is not sufficent, since we want to coalesce memory transfers that
     are "logically" connected but not actually a single call to one
     of the memory transfer functions. */

  if (should_write)
    dcache_writeback (dcache);
    
  return len;
}

static void
dcache_info (const char *exp, int tty)
{
  struct dcache_block *p;

  printf_filtered ("Dcache line width %d, depth %d\n",
		   LINE_SIZE, DCACHE_SIZE);

  if (last_cache)
    {
      printf_filtered ("Cache state:\n");

      for (p = last_cache->valid_head; p; p = p->p)
	{
	  int j;
	  printf_filtered ("Line at %s, referenced %d times\n",
			   paddr (p->addr), p->refs);

	  for (j = 0; j < LINE_SIZE; j++)
	    printf_filtered ("%02x", p->data[j] & 0xFF);
	  printf_filtered ("\n");

	  for (j = 0; j < LINE_SIZE; j++)
	    printf_filtered ("%2x", p->state[j]);
	  printf_filtered ("\n");
	}
    }
}

void
_initialize_dcache (void)
{
  add_show_from_set
    (add_set_cmd ("remotecache", class_support, var_boolean,
		  (char *) &dcache_enabled_p,
		  "\
Set cache use for remote targets.\n\
When on, use data caching for remote targets.  For many remote targets\n\
this option can offer better throughput for reading target memory.\n\
Unfortunately, gdb does not currently know anything about volatile\n\
registers and thus data caching will produce incorrect results with\n\
volatile registers are in use.  By default, this option is off.",
		  &setlist),
     &showlist);

  add_info ("dcache", dcache_info,
	    "Print information on the dcache performance.");

}