summaryrefslogtreecommitdiff
path: root/gdb/doc/gdb.info-8
blob: 8d2bf47cc97198b2d6357af17e40e1a5b1d61aaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
This is Info file ./gdb.info, produced by Makeinfo version 1.68 from
the input file gdb.texinfo.

START-INFO-DIR-ENTRY
* Gdb: (gdb).                     The GNU debugger.
END-INFO-DIR-ENTRY
   This file documents the GNU debugger GDB.

   This is the Seventh Edition, February 1999, of `Debugging with GDB:
the GNU Source-Level Debugger' for GDB Version 4.18.

   Copyright (C) 1988-1999 Free Software Foundation, Inc.

   Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

   Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

   Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions.


File: gdb.info,  Node: Emacs,  Next: GDB Bugs,  Prev: Sequences,  Up: Top

Using GDB under GNU Emacs
*************************

   A special interface allows you to use GNU Emacs to view (and edit)
the source files for the program you are debugging with GDB.

   To use this interface, use the command `M-x gdb' in Emacs.  Give the
executable file you want to debug as an argument.  This command starts
GDB as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.

   Using GDB under Emacs is just like using GDB normally except for two
things:

   * All "terminal" input and output goes through the Emacs buffer.

   This applies both to GDB commands and their output, and to the input
and output done by the program you are debugging.

   This is useful because it means that you can copy the text of
previous commands and input them again; you can even use parts of the
output in this way.

   All the facilities of Emacs' Shell mode are available for interacting
with your program.  In particular, you can send signals the usual
way--for example, `C-c C-c' for an interrupt, `C-c C-z' for a stop.

   * GDB displays source code through Emacs.

   Each time GDB displays a stack frame, Emacs automatically finds the
source file for that frame and puts an arrow (`=>') at the left margin
of the current line.  Emacs uses a separate buffer for source display,
and splits the screen to show both your GDB session and the source.

   Explicit GDB `list' or search commands still produce output as
usual, but you probably have no reason to use them from Emacs.

     *Warning:* If the directory where your program resides is not your
     current directory, it can be easy to confuse Emacs about the
     location of the source files, in which case the auxiliary display
     buffer does not appear to show your source.  GDB can find programs
     by searching your environment's `PATH' variable, so the GDB input
     and output session proceeds normally; but Emacs does not get
     enough information back from GDB to locate the source files in
     this situation.  To avoid this problem, either start GDB mode from
     the directory where your program resides, or specify an absolute
     file name when prompted for the `M-x gdb' argument.

     A similar confusion can result if you use the GDB `file' command to
     switch to debugging a program in some other location, from an
     existing GDB buffer in Emacs.

   By default, `M-x gdb' calls the program called `gdb'.  If you need
to call GDB by a different name (for example, if you keep several
configurations around, with different names) you can set the Emacs
variable `gdb-command-name'; for example,

     (setq gdb-command-name "mygdb")

(preceded by `ESC ESC', or typed in the `*scratch*' buffer, or in your
`.emacs' file) makes Emacs call the program named "`mygdb'" instead.

   In the GDB I/O buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:

`C-h m'
     Describe the features of Emacs' GDB Mode.

`M-s'
     Execute to another source line, like the GDB `step' command; also
     update the display window to show the current file and location.

`M-n'
     Execute to next source line in this function, skipping all function
     calls, like the GDB `next' command.  Then update the display window
     to show the current file and location.

`M-i'
     Execute one instruction, like the GDB `stepi' command; update
     display window accordingly.

`M-x gdb-nexti'
     Execute to next instruction, using the GDB `nexti' command; update
     display window accordingly.

`C-c C-f'
     Execute until exit from the selected stack frame, like the GDB
     `finish' command.

`M-c'
     Continue execution of your program, like the GDB `continue'
     command.

     *Warning:* In Emacs v19, this command is `C-c C-p'.

`M-u'
     Go up the number of frames indicated by the numeric argument
     (*note Numeric Arguments: (Emacs)Arguments.), like the GDB `up'
     command.

     *Warning:* In Emacs v19, this command is `C-c C-u'.

`M-d'
     Go down the number of frames indicated by the numeric argument,
     like the GDB `down' command.

     *Warning:* In Emacs v19, this command is `C-c C-d'.

`C-x &'
     Read the number where the cursor is positioned, and insert it at
     the end of the GDB I/O buffer.  For example, if you wish to
     disassemble code around an address that was displayed earlier,
     type `disassemble'; then move the cursor to the address display,
     and pick up the argument for `disassemble' by typing `C-x &'.

     You can customize this further by defining elements of the list
     `gdb-print-command'; once it is defined, you can format or
     otherwise process numbers picked up by `C-x &' before they are
     inserted.  A numeric argument to `C-x &' indicates that you wish
     special formatting, and also acts as an index to pick an element
     of the list.  If the list element is a string, the number to be
     inserted is formatted using the Emacs function `format'; otherwise
     the number is passed as an argument to the corresponding list
     element.

   In any source file, the Emacs command `C-x SPC' (`gdb-break') tells
GDB to set a breakpoint on the source line point is on.

   If you accidentally delete the source-display buffer, an easy way to
get it back is to type the command `f' in the GDB buffer, to request a
frame display; when you run under Emacs, this recreates the source
buffer if necessary to show you the context of the current frame.

   The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way.  You can edit the
files with these buffers if you wish; but keep in mind that GDB
communicates with Emacs in terms of line numbers.  If you add or delete
lines from the text, the line numbers that GDB knows cease to
correspond properly with the code.


File: gdb.info,  Node: GDB Bugs,  Next: Formatting Documentation,  Prev: Emacs,  Up: Top

Reporting Bugs in GDB
*********************

   Your bug reports play an essential role in making GDB reliable.

   Reporting a bug may help you by bringing a solution to your problem,
or it may not.  But in any case the principal function of a bug report
is to help the entire community by making the next version of GDB work
better.  Bug reports are your contribution to the maintenance of GDB.

   In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.

* Menu:

* Bug Criteria::                Have you found a bug?
* Bug Reporting::               How to report bugs


File: gdb.info,  Node: Bug Criteria,  Next: Bug Reporting,  Prev: GDB Bugs,  Up: GDB Bugs

Have you found a bug?
=====================

   If you are not sure whether you have found a bug, here are some
guidelines:

   * If the debugger gets a fatal signal, for any input whatever, that
     is a GDB bug.  Reliable debuggers never crash.

   * If GDB produces an error message for valid input, that is a bug.
     (Note that if you're cross debugging, the problem may also be
     somewhere in the connection to the target.)

   * If GDB does not produce an error message for invalid input, that
     is a bug.  However, you should note that your idea of "invalid
     input" might be our idea of "an extension" or "support for
     traditional practice".

   * If you are an experienced user of debugging tools, your suggestions
     for improvement of GDB are welcome in any case.


File: gdb.info,  Node: Bug Reporting,  Prev: Bug Criteria,  Up: GDB Bugs

How to report bugs
==================

   A number of companies and individuals offer support for GNU products.
If you obtained GDB from a support organization, we recommend you
contact that organization first.

   You can find contact information for many support companies and
individuals in the file `etc/SERVICE' in the GNU Emacs distribution.

   In any event, we also recommend that you send bug reports for GDB to
this addresses:

     bug-gdb@prep.ai.mit.edu

   *Do not send bug reports to `info-gdb', or to `help-gdb', or to any
newsgroups.* Most users of GDB do not want to receive bug reports.
Those that do have arranged to receive `bug-gdb'.

   The mailing list `bug-gdb' has a newsgroup `gnu.gdb.bug' which
serves as a repeater.  The mailing list and the newsgroup carry exactly
the same messages.  Often people think of posting bug reports to the
newsgroup instead of mailing them.  This appears to work, but it has one
problem which can be crucial: a newsgroup posting often lacks a mail
path back to the sender.  Thus, if we need to ask for more information,
we may be unable to reach you.  For this reason, it is better to send
bug reports to the mailing list.

   As a last resort, send bug reports on paper to:

     GNU Debugger Bugs
     Free Software Foundation Inc.
     59 Temple Place - Suite 330
     Boston, MA 02111-1307
     USA

   The fundamental principle of reporting bugs usefully is this:
*report all the facts*.  If you are not sure whether to state a fact or
leave it out, state it!

   Often people omit facts because they think they know what causes the
problem and assume that some details do not matter.  Thus, you might
assume that the name of the variable you use in an example does not
matter.  Well, probably it does not, but one cannot be sure.  Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were
different, the contents of that location would fool the debugger into
doing the right thing despite the bug.  Play it safe and give a
specific, complete example.  That is the easiest thing for you to do,
and the most helpful.

   Keep in mind that the purpose of a bug report is to enable us to fix
the bug.  It may be that the bug has been reported previously, but
neither you nor we can know that unless your bug report is complete and
self-contained.

   Sometimes people give a few sketchy facts and ask, "Does this ring a
bell?"  Those bug reports are useless, and we urge everyone to *refuse
to respond to them* except to chide the sender to report bugs properly.

   To enable us to fix the bug, you should include all these things:

   * The version of GDB.  GDB announces it if you start with no
     arguments; you can also print it at any time using `show version'.

     Without this, we will not know whether there is any point in
     looking for the bug in the current version of GDB.

   * The type of machine you are using, and the operating system name
     and version number.

  1. What compiler (and its version) was used to compile GDB--e.g.
     "gcc-2.8.1".

   * What compiler (and its version) was used to compile the program
     you are debugging--e.g.  "gcc-2.8.1", or "HP92453-01 A.10.32.03 HP
     C Compiler".  For GCC, you can say `gcc --version' to get this
     information; for other compilers, see the documentation for those
     compilers.

   * The command arguments you gave the compiler to compile your
     example and observe the bug.  For example, did you use `-O'?  To
     guarantee you will not omit something important, list them all.  A
     copy of the Makefile (or the output from make) is sufficient.

     If we were to try to guess the arguments, we would probably guess
     wrong and then we might not encounter the bug.

   * A complete input script, and all necessary source files, that will
     reproduce the bug.

   * A description of what behavior you observe that you believe is
     incorrect.  For example, "It gets a fatal signal."

     Of course, if the bug is that GDB gets a fatal signal, then we
     will certainly notice it.  But if the bug is incorrect output, we
     might not notice unless it is glaringly wrong.  You might as well
     not give us a chance to make a mistake.

     Even if the problem you experience is a fatal signal, you should
     still say so explicitly.  Suppose something strange is going on,
     such as, your copy of GDB is out of synch, or you have encountered
     a bug in the C library on your system.  (This has happened!)  Your
     copy might crash and ours would not.  If you told us to expect a
     crash, then when ours fails to crash, we would know that the bug
     was not happening for us.  If you had not told us to expect a
     crash, then we would not be able to draw any conclusion from our
     observations.

  2. If you wish to suggest changes to the GDB source, send us context
     diffs.  If you even discuss something in the GDB source, refer to
     it by context, not by line number.

     The line numbers in our development sources will not match those
     in your sources.  Your line numbers would convey no useful
     information to us.

   Here are some things that are not necessary:

   * A description of the envelope of the bug.

     Often people who encounter a bug spend a lot of time investigating
     which changes to the input file will make the bug go away and which
     changes will not affect it.

     This is often time consuming and not very useful, because the way
     we will find the bug is by running a single example under the
     debugger with breakpoints, not by pure deduction from a series of
     examples.  We recommend that you save your time for something else.

     Of course, if you can find a simpler example to report *instead*
     of the original one, that is a convenience for us.  Errors in the
     output will be easier to spot, running under the debugger will take
     less time, and so on.

     However, simplification is not vital; if you do not want to do
     this, report the bug anyway and send us the entire test case you
     used.

   * A patch for the bug.

     A patch for the bug does help us if it is a good one.  But do not
     omit the necessary information, such as the test case, on the
     assumption that a patch is all we need.  We might see problems
     with your patch and decide to fix the problem another way, or we
     might not understand it at all.

     Sometimes with a program as complicated as GDB it is very hard to
     construct an example that will make the program follow a certain
     path through the code.  If you do not send us the example, we will
     not be able to construct one, so we will not be able to verify
     that the bug is fixed.

     And if we cannot understand what bug you are trying to fix, or why
     your patch should be an improvement, we will not install it.  A
     test case will help us to understand.

   * A guess about what the bug is or what it depends on.

     Such guesses are usually wrong.  Even we cannot guess right about
     such things without first using the debugger to find the facts.


File: gdb.info,  Node: Command Line Editing,  Next: Using History Interactively,  Prev: Formatting Documentation,  Up: Top

Command Line Editing
********************

   This chapter describes the basic features of the GNU command line
editing interface.

* Menu:

* Introduction and Notation::	Notation used in this text.
* Readline Interaction::	The minimum set of commands for editing a line.
* Readline Init File::		Customizing Readline from a user's view.
* Bindable Readline Commands::	A description of most of the Readline commands
				available for binding
* Readline vi Mode::		A short description of how to make Readline
				behave like the vi editor.


File: gdb.info,  Node: Introduction and Notation,  Next: Readline Interaction,  Up: Command Line Editing

Introduction to Line Editing
============================

   The following paragraphs describe the notation used to represent
keystrokes.

   The text <C-k> is read as `Control-K' and describes the character
produced when the <k> key is pressed while the Control key is depressed.

   The text <M-k> is read as `Meta-K' and describes the character
produced when the meta key (if you have one) is depressed, and the <k>
key is pressed.  If you do not have a meta key, the identical keystroke
can be generated by typing <ESC> first, and then typing <k>.  Either
process is known as "metafying" the <k> key.

   The text <M-C-k> is read as `Meta-Control-k' and describes the
character produced by "metafying" <C-k>.

   In addition, several keys have their own names.  Specifically,
<DEL>, <ESC>, <LFD>, <SPC>, <RET>, and <TAB> all stand for themselves
when seen in this text, or in an init file (*note Readline Init
File::.).


File: gdb.info,  Node: Readline Interaction,  Next: Readline Init File,  Prev: Introduction and Notation,  Up: Command Line Editing

Readline Interaction
====================

   Often during an interactive session you type in a long line of text,
only to notice that the first word on the line is misspelled.  The
Readline library gives you a set of commands for manipulating the text
as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line.  Using these editing commands,
you move the cursor to the place that needs correction, and delete or
insert the text of the corrections.  Then, when you are satisfied with
the line, you simply press <RETURN>.  You do not have to be at the end
of the line to press <RETURN>; the entire line is accepted regardless
of the location of the cursor within the line.

* Menu:

* Readline Bare Essentials::	The least you need to know about Readline.
* Readline Movement Commands::	Moving about the input line.
* Readline Killing Commands::	How to delete text, and how to get it back!
* Readline Arguments::		Giving numeric arguments to commands.
* Searching::			Searching through previous lines.


File: gdb.info,  Node: Readline Bare Essentials,  Next: Readline Movement Commands,  Up: Readline Interaction

Readline Bare Essentials
------------------------

   In order to enter characters into the line, simply type them.  The
typed character appears where the cursor was, and then the cursor moves
one space to the right.  If you mistype a character, you can use your
erase character to back up and delete the mistyped character.

   Sometimes you may miss typing a character that you wanted to type,
and not notice your error until you have typed several other
characters.  In that case, you can type <C-b> to move the cursor to the
left, and then correct your mistake.  Afterwards, you can move the
cursor to the right with <C-f>.

   When you add text in the middle of a line, you will notice that
characters to the right of the cursor are `pushed over' to make room
for the text that you have inserted.  Likewise, when you delete text
behind the cursor, characters to the right of the cursor are `pulled
back' to fill in the blank space created by the removal of the text.  A
list of the basic bare essentials for editing the text of an input line
follows.

<C-b>
     Move back one character.

<C-f>
     Move forward one character.

<DEL>
     Delete the character to the left of the cursor.

<C-d>
     Delete the character underneath the cursor.

Printing characters
     Insert the character into the line at the cursor.

<C-_>
     Undo the last editing command.  You can undo all the way back to an
     empty line.


File: gdb.info,  Node: Readline Movement Commands,  Next: Readline Killing Commands,  Prev: Readline Bare Essentials,  Up: Readline Interaction

Readline Movement Commands
--------------------------

   The above table describes the most basic possible keystrokes that
you need in order to do editing of the input line.  For your
convenience, many other commands have been added in addition to <C-b>,
<C-f>, <C-d>, and <DEL>.  Here are some commands for moving more rapidly
about the line.

<C-a>
     Move to the start of the line.

<C-e>
     Move to the end of the line.

<M-f>
     Move forward a word, where a word is composed of letters and
     digits.

<M-b>
     Move backward a word.

<C-l>
     Clear the screen, reprinting the current line at the top.

   Notice how <C-f> moves forward a character, while <M-f> moves
forward a word.  It is a loose convention that control keystrokes
operate on characters while meta keystrokes operate on words.


File: gdb.info,  Node: Readline Killing Commands,  Next: Readline Arguments,  Prev: Readline Movement Commands,  Up: Readline Interaction

Readline Killing Commands
-------------------------

   "Killing" text means to delete the text from the line, but to save
it away for later use, usually by "yanking" (re-inserting) it back into
the line.  If the description for a command says that it `kills' text,
then you can be sure that you can get the text back in a different (or
the same) place later.

   When you use a kill command, the text is saved in a "kill-ring".
Any number of consecutive kills save all of the killed text together, so
that when you yank it back, you get it all.  The kill ring is not line
specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

   Here is the list of commands for killing text.

<C-k>
     Kill the text from the current cursor position to the end of the
     line.

<M-d>
     Kill from the cursor to the end of the current word, or if between
     words, to the end of the next word.

<M-DEL>
     Kill from the cursor the start of the previous word, or if between
     words, to the start of the previous word.

<C-w>
     Kill from the cursor to the previous whitespace.  This is
     different than <M-DEL> because the word boundaries differ.

   Here is how to "yank" the text back into the line.  Yanking means to
copy the most-recently-killed text from the kill buffer.

<C-y>
     Yank the most recently killed text back into the buffer at the
     cursor.

<M-y>
     Rotate the kill-ring, and yank the new top.  You can only do this
     if the prior command is <C-y> or <M-y>.


File: gdb.info,  Node: Readline Arguments,  Next: Searching,  Prev: Readline Killing Commands,  Up: Readline Interaction

Readline Arguments
------------------

   You can pass numeric arguments to Readline commands.  Sometimes the
argument acts as a repeat count, other times it is the sign of the
argument that is significant.  If you pass a negative argument to a
command which normally acts in a forward direction, that command will
act in a backward direction.  For example, to kill text back to the
start of the line, you might type `M-- C-k'.

   The general way to pass numeric arguments to a command is to type
meta digits before the command.  If the first `digit' typed is a minus
sign (<->), then the sign of the argument will be negative.  Once you
have typed one meta digit to get the argument started, you can type the
remainder of the digits, and then the command.  For example, to give
the <C-d> command an argument of 10, you could type `M-1 0 C-d'.


File: gdb.info,  Node: Searching,  Prev: Readline Arguments,  Up: Readline Interaction

Searching for Commands in the History
-------------------------------------

   Readline provides commands for searching through the command history
for lines containing a specified string.  There are two search modes:
INCREMENTAL and NON-INCREMENTAL.

   Incremental searches begin before the user has finished typing the
search string.  As each character of the search string is typed,
Readline displays the next entry from the history matching the string
typed so far.  An incremental search requires only as many characters
as needed to find the desired history entry.  The <ESC> character is
used to terminate an incremental search.  <C-j> will also terminate the
search.  <C-g> will abort an incremental search and restore the
original line.  When the search is terminated, the history entry
containing the search string becomes the current line.  To find other
matching entries in the history list, type <C-s> or <C-r> as
appropriate.  This will search backward or forward in the history for
the next entry matching the search string typed so far.  Any other key
sequence bound to a Readline command will terminate the search and
execute that command.  For instance, a <RET> will terminate the search
and accept the line, thereby executing the command from the history
list.

   Non-incremental searches read the entire search string before
starting to search for matching history lines.  The search string may be
typed by the user or be part of the contents of the current line.


File: gdb.info,  Node: Readline Init File,  Next: Bindable Readline Commands,  Prev: Readline Interaction,  Up: Command Line Editing

Readline Init File
==================

   Although the Readline library comes with a set of `emacs'-like
keybindings installed by default, it is possible to use a different set
of keybindings.  Any user can customize programs that use Readline by
putting commands in an "inputrc" file in his home directory.  The name
of this file is taken from the value of the environment variable
`INPUTRC'.  If that variable is unset, the default is `~/.inputrc'.

   When a program which uses the Readline library starts up, the init
file is read, and the key bindings are set.

   In addition, the `C-x C-r' command re-reads this init file, thus
incorporating any changes that you might have made to it.

* Menu:

* Readline Init File Syntax::	Syntax for the commands in the inputrc file.

* Conditional Init Constructs::	Conditional key bindings in the inputrc file.

* Sample Init File::		An example inputrc file.


File: gdb.info,  Node: Readline Init File Syntax,  Next: Conditional Init Constructs,  Up: Readline Init File

Readline Init File Syntax
-------------------------

   There are only a few basic constructs allowed in the Readline init
file.  Blank lines are ignored.  Lines beginning with a `#' are
comments.  Lines beginning with a `$' indicate conditional constructs
(*note Conditional Init Constructs::.).  Other lines denote variable
settings and key bindings.

Variable Settings
     You can modify the run-time behavior of Readline by altering the
     values of variables in Readline using the `set' command within the
     init file.  Here is how to change from the default Emacs-like key
     binding to use `vi' line editing commands:

          set editing-mode vi

     A great deal of run-time behavior is changeable with the following
     variables.

    `bell-style'
          Controls what happens when Readline wants to ring the
          terminal bell.  If set to `none', Readline never rings the
          bell.  If set to `visible', Readline uses a visible bell if
          one is available.  If set to `audible' (the default),
          Readline attempts to ring the terminal's bell.

    `comment-begin'
          The string to insert at the beginning of the line when the
          `insert-comment' command is executed.  The default value is
          `"#"'.

    `completion-ignore-case'
          If set to `on', Readline performs filename matching and
          completion in a case-insensitive fashion.  The default value
          is `off'.

    `completion-query-items'
          The number of possible completions that determines when the
          user is asked whether he wants to see the list of
          possibilities.  If the number of possible completions is
          greater than this value, Readline will ask the user whether
          or not he wishes to view them; otherwise, they are simply
          listed.  The default limit is `100'.

    `convert-meta'
          If set to `on', Readline will convert characters with the
          eighth bit set to an ASCII key sequence by stripping the
          eighth bit and prepending an <ESC> character, converting them
          to a meta-prefixed key sequence.  The default value is `on'.

    `disable-completion'
          If set to `On', Readline will inhibit word completion.
          Completion  characters will be inserted into the line as if
          they had been mapped to `self-insert'.  The default is `off'.

    `editing-mode'
          The `editing-mode' variable controls which default set of key
          bindings is used.  By default, Readline starts up in Emacs
          editing mode, where the keystrokes are most similar to Emacs.
          This variable can be set to either `emacs' or `vi'.

    `enable-keypad'
          When set to `on', Readline will try to enable the application
          keypad when it is called.  Some systems need this to enable
          the arrow keys.  The default is `off'.

    `expand-tilde'
          If set to `on', tilde expansion is performed when Readline
          attempts word completion.  The default is `off'.

    `horizontal-scroll-mode'
          This variable can be set to either `on' or `off'.  Setting it
          to `on' means that the text of the lines being edited will
          scroll horizontally on a single screen line when they are
          longer than the width of the screen, instead of wrapping onto
          a new screen line.  By default, this variable is set to `off'.

    `keymap'
          Sets Readline's idea of the current keymap for key binding
          commands.  Acceptable `keymap' names are `emacs',
          `emacs-standard', `emacs-meta', `emacs-ctlx', `vi',
          `vi-command', and `vi-insert'.  `vi' is equivalent to
          `vi-command'; `emacs' is equivalent to `emacs-standard'.  The
          default value is `emacs'.  The value of the `editing-mode'
          variable also affects the default keymap.

    `mark-directories'
          If set to `on', completed directory names have a slash
          appended.  The default is `on'.

    `mark-modified-lines'
          This variable, when set to `on', causes Readline to display an
          asterisk (`*') at the start of history lines which have been
          modified.  This variable is `off' by default.

    `input-meta'
          If set to `on', Readline will enable eight-bit input (it will
          not strip the eighth bit from the characters it reads),
          regardless of what the terminal claims it can support.  The
          default value is `off'.  The name `meta-flag' is a synonym
          for this variable.

    `output-meta'
          If set to `on', Readline will display characters with the
          eighth bit set directly rather than as a meta-prefixed escape
          sequence.  The default is `off'.

    `print-completions-horizontally'
          If set to `on', Readline will display completions with matches
          sorted horizontally in alphabetical order, rather than down
          the screen.  The default is `off'.

    `show-all-if-ambiguous'
          This alters the default behavior of the completion functions.
          If set to `on', words which have more than one possible
          completion cause the matches to be listed immediately instead
          of ringing the bell.  The default value is `off'.

    `visible-stats'
          If set to `on', a character denoting a file's type is
          appended to the filename when listing possible completions.
          The default is `off'.

Key Bindings
     The syntax for controlling key bindings in the init file is
     simple.  First you have to know the name of the command that you
     want to change.  The following sections contain tables of the
     command name, the default keybinding, if any, and a short
     description of what the command does.

     Once you know the name of the command, simply place the name of
     the key you wish to bind the command to, a colon, and then the
     name of the command on a line in the init file.  The name of the
     key can be expressed in different ways, depending on which is most
     comfortable for you.

    KEYNAME: FUNCTION-NAME or MACRO
          KEYNAME is the name of a key spelled out in English.  For
          example:
               Control-u: universal-argument
               Meta-Rubout: backward-kill-word
               Control-o: "> output"

          In the above example, <C-u> is bound to the function
          `universal-argument', and <C-o> is bound to run the macro
          expressed on the right hand side (that is, to insert the text
          `> output' into the line).

    "KEYSEQ": FUNCTION-NAME or MACRO
          KEYSEQ differs from KEYNAME above in that strings denoting an
          entire key sequence can be specified, by placing the key
          sequence in double quotes.  Some GNU Emacs style key escapes
          can be used, as in the following example, but the special
          character names are not recognized.

               "\C-u": universal-argument
               "\C-x\C-r": re-read-init-file
               "\e[11~": "Function Key 1"

          In the above example, <C-u> is bound to the function
          `universal-argument' (just as it was in the first example),
          `<C-x> <C-r>' is bound to the function `re-read-init-file',
          and `<ESC> <[> <1> <1> <~>' is bound to insert the text
          `Function Key 1'.

     The following GNU Emacs style escape sequences are available when
     specifying key sequences:

    `\C-'
          control prefix

    `\M-'
          meta prefix

    `\e'
          an escape character

    `\\'
          backslash

    `\"'
          <">

    `\''
          <'>

     In addition to the GNU Emacs style escape sequences, a second set
     of backslash escapes is available:

    `\a'
          alert (bell)

    `\b'
          backspace

    `\d'
          delete

    `\f'
          form feed

    `\n'
          newline

    `\r'
          carriage return

    `\t'
          horizontal tab

    `\v'
          vertical tab

    `\NNN'
          the character whose ASCII code is the octal value NNN (one to
          three digits)

    `\xNNN'
          the character whose ASCII code is the hexadecimal value NNN
          (one to three digits)

     When entering the text of a macro, single or double quotes must be
     used to indicate a macro definition.  Unquoted text is assumed to
     be a function name.  In the macro body, the backslash escapes
     described above are expanded.  Backslash will quote any other
     character in the macro text, including `"' and `''.  For example,
     the following binding will make `C-x \' insert a single `\' into
     the line:
          "\C-x\\": "\\"


File: gdb.info,  Node: Conditional Init Constructs,  Next: Sample Init File,  Prev: Readline Init File Syntax,  Up: Readline Init File

Conditional Init Constructs
---------------------------

   Readline implements a facility similar in spirit to the conditional
compilation features of the C preprocessor which allows key bindings
and variable settings to be performed as the result of tests.  There
are four parser directives used.

`$if'
     The `$if' construct allows bindings to be made based on the
     editing mode, the terminal being used, or the application using
     Readline.  The text of the test extends to the end of the line; no
     characters are required to isolate it.

    `mode'
          The `mode=' form of the `$if' directive is used to test
          whether Readline is in `emacs' or `vi' mode.  This may be
          used in conjunction with the `set keymap' command, for
          instance, to set bindings in the `emacs-standard' and
          `emacs-ctlx' keymaps only if Readline is starting out in
          `emacs' mode.

    `term'
          The `term=' form may be used to include terminal-specific key
          bindings, perhaps to bind the key sequences output by the
          terminal's function keys.  The word on the right side of the
          `=' is tested against both the full name of the terminal and
          the portion of the terminal name before the first `-'.  This
          allows `sun' to match both `sun' and `sun-cmd', for instance.

    `application'
          The APPLICATION construct is used to include
          application-specific settings.  Each program using the
          Readline library sets the APPLICATION NAME, and you can test
          for it.  This could be used to bind key sequences to
          functions useful for a specific program.  For instance, the
          following command adds a key sequence that quotes the current
          or previous word in Bash:
               $if Bash
               # Quote the current or previous word
               "\C-xq": "\eb\"\ef\""
               $endif

`$endif'
     This command, as seen in the previous example, terminates an `$if'
     command.

`$else'
     Commands in this branch of the `$if' directive are executed if the
     test fails.

`$include'
     This directive takes a single filename as an argument and reads
     commands and bindings from that file.
          $include /etc/inputrc


File: gdb.info,  Node: Sample Init File,  Prev: Conditional Init Constructs,  Up: Readline Init File

Sample Init File
----------------

   Here is an example of an inputrc file.  This illustrates key
binding, variable assignment, and conditional syntax.


     # This file controls the behaviour of line input editing for
     # programs that use the Gnu Readline library.  Existing programs
     # include FTP, Bash, and Gdb.
     #
     # You can re-read the inputrc file with C-x C-r.
     # Lines beginning with '#' are comments.
     #
     # First, include any systemwide bindings and variable assignments from
     # /etc/Inputrc
     $include /etc/Inputrc
     
     #
     # Set various bindings for emacs mode.
     
     set editing-mode emacs
     
     $if mode=emacs
     
     Meta-Control-h:	backward-kill-word	Text after the function name is ignored
     
     #
     # Arrow keys in keypad mode
     #
     #"\M-OD":        backward-char
     #"\M-OC":        forward-char
     #"\M-OA":        previous-history
     #"\M-OB":        next-history
     #
     # Arrow keys in ANSI mode
     #
     "\M-[D":        backward-char
     "\M-[C":        forward-char
     "\M-[A":        previous-history
     "\M-[B":        next-history
     #
     # Arrow keys in 8 bit keypad mode
     #
     #"\M-\C-OD":       backward-char
     #"\M-\C-OC":       forward-char
     #"\M-\C-OA":       previous-history
     #"\M-\C-OB":       next-history
     #
     # Arrow keys in 8 bit ANSI mode
     #
     #"\M-\C-[D":       backward-char
     #"\M-\C-[C":       forward-char
     #"\M-\C-[A":       previous-history
     #"\M-\C-[B":       next-history
     
     C-q: quoted-insert
     
     $endif
     
     # An old-style binding.  This happens to be the default.
     TAB: complete
     
     # Macros that are convenient for shell interaction
     $if Bash
     # edit the path
     "\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"
     # prepare to type a quoted word -- insert open and close double quotes
     # and move to just after the open quote
     "\C-x\"": "\"\"\C-b"
     # insert a backslash (testing backslash escapes in sequences and macros)
     "\C-x\\": "\\"
     # Quote the current or previous word
     "\C-xq": "\eb\"\ef\""
     # Add a binding to refresh the line, which is unbound
     "\C-xr": redraw-current-line
     # Edit variable on current line.
     "\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="
     $endif
     
     # use a visible bell if one is available
     set bell-style visible
     
     # don't strip characters to 7 bits when reading
     set input-meta on
     
     # allow iso-latin1 characters to be inserted rather than converted to
     # prefix-meta sequences
     set convert-meta off
     
     # display characters with the eighth bit set directly rather than
     # as meta-prefixed characters
     set output-meta on
     
     # if there are more than 150 possible completions for a word, ask the
     # user if he wants to see all of them
     set completion-query-items 150
     
     # For FTP
     $if Ftp
     "\C-xg": "get \M-?"
     "\C-xt": "put \M-?"
     "\M-.": yank-last-arg
     $endif


File: gdb.info,  Node: Bindable Readline Commands,  Next: Readline vi Mode,  Prev: Readline Init File,  Up: Command Line Editing

Bindable Readline Commands
==========================

* Menu:

* Commands For Moving::		Moving about the line.
* Commands For History::	Getting at previous lines.
* Commands For Text::		Commands for changing text.
* Commands For Killing::	Commands for killing and yanking.
* Numeric Arguments::		Specifying numeric arguments, repeat counts.
* Commands For Completion::	Getting Readline to do the typing for you.
* Keyboard Macros::		Saving and re-executing typed characters
* Miscellaneous Commands::	Other miscellaneous commands.

   This section describes Readline commands that may be bound to key
sequences.


File: gdb.info,  Node: Commands For Moving,  Next: Commands For History,  Up: Bindable Readline Commands

Commands For Moving
-------------------

`beginning-of-line (C-a)'
     Move to the start of the current line.

`end-of-line (C-e)'
     Move to the end of the line.

`forward-char (C-f)'
     Move forward a character.

`backward-char (C-b)'
     Move back a character.

`forward-word (M-f)'
     Move forward to the end of the next word.  Words are composed of
     letters and digits.

`backward-word (M-b)'
     Move back to the start of this, or the previous, word.  Words are
     composed of letters and digits.

`clear-screen (C-l)'
     Clear the screen and redraw the current line, leaving the current
     line at the top of the screen.

`redraw-current-line ()'
     Refresh the current line.  By default, this is unbound.


File: gdb.info,  Node: Commands For History,  Next: Commands For Text,  Prev: Commands For Moving,  Up: Bindable Readline Commands

Commands For Manipulating The History
-------------------------------------

`accept-line (Newline, Return)'
     Accept the line regardless of where the cursor is.  If this line is
     non-empty, add it to the history list.  If this line was a history
     line, then restore the history line to its original state.

`previous-history (C-p)'
     Move `up' through the history list.

`next-history (C-n)'
     Move `down' through the history list.

`beginning-of-history (M-<)'
     Move to the first line in the history.

`end-of-history (M->)'
     Move to the end of the input history, i.e., the line currently
     being entered.

`reverse-search-history (C-r)'
     Search backward starting at the current line and moving `up'
     through the history as necessary.  This is an incremental search.

`forward-search-history (C-s)'
     Search forward starting at the current line and moving `down'
     through the the history as necessary.  This is an incremental
     search.

`non-incremental-reverse-search-history (M-p)'
     Search backward starting at the current line and moving `up'
     through the history as necessary using a non-incremental search
     for a string supplied by the user.

`non-incremental-forward-search-history (M-n)'
     Search forward starting at the current line and moving `down'
     through the the history as necessary using a non-incremental search
     for a string supplied by the user.

`history-search-forward ()'
     Search forward through the history for the string of characters
     between the start of the current line and the current cursor
     position (the POINT).  This is a non-incremental search.  By
     default, this command is unbound.

`history-search-backward ()'
     Search backward through the history for the string of characters
     between the start of the current line and the point.  This is a
     non-incremental search.  By default, this command is unbound.

`yank-nth-arg (M-C-y)'
     Insert the first argument to the previous command (usually the
     second word on the previous line).  With an argument N, insert the
     Nth word from the previous command (the words in the previous
     command begin with word 0).  A negative argument inserts the Nth
     word from the end of the previous command.

`yank-last-arg (M-., M-_)'
     Insert last argument to the previous command (the last word of the
     previous history entry).  With an argument, behave exactly like
     `yank-nth-arg'.  Successive calls to `yank-last-arg' move back
     through the history list, inserting the last argument of each line
     in turn.


File: gdb.info,  Node: Commands For Text,  Next: Commands For Killing,  Prev: Commands For History,  Up: Bindable Readline Commands

Commands For Changing Text
--------------------------

`delete-char (C-d)'
     Delete the character under the cursor.  If the cursor is at the
     beginning of the line, there are no characters in the line, and
     the last character typed was not bound to `delete-char', then
     return `EOF'.

`backward-delete-char (Rubout)'
     Delete the character behind the cursor.  A numeric argument means
     to kill the characters instead of deleting them.

`quoted-insert (C-q, C-v)'
     Add the next character typed to the line verbatim.  This is how to
     insert key sequences like <C-q>, for example.

`tab-insert (M-TAB)'
     Insert a tab character.

`self-insert (a, b, A, 1, !, ...)'
     Insert yourself.

`transpose-chars (C-t)'
     Drag the character before the cursor forward over the character at
     the cursor, moving the cursor forward as well.  If the insertion
     point is at the end of the line, then this transposes the last two
     characters of the line.  Negative arguments don't work.

`transpose-words (M-t)'
     Drag the word behind the cursor past the word in front of the
     cursor moving the cursor over that word as well.

`upcase-word (M-u)'
     Uppercase the current (or following) word.  With a negative
     argument, uppercase the previous word, but do not move the cursor.

`downcase-word (M-l)'
     Lowercase the current (or following) word.  With a negative
     argument, lowercase the previous word, but do not move the cursor.

`capitalize-word (M-c)'
     Capitalize the current (or following) word.  With a negative
     argument, capitalize the previous word, but do not move the cursor.


File: gdb.info,  Node: Commands For Killing,  Next: Numeric Arguments,  Prev: Commands For Text,  Up: Bindable Readline Commands

Killing And Yanking
-------------------

`kill-line (C-k)'
     Kill the text from the current cursor position to the end of the
     line.

`backward-kill-line (C-x Rubout)'
     Kill backward to the beginning of the line.

`unix-line-discard (C-u)'
     Kill backward from the cursor to the beginning of the current line.
     The killed text is saved on the kill-ring.

`kill-whole-line ()'
     Kill all characters on the current line, no matter where the
     cursor is.  By default, this is unbound.

`kill-word (M-d)'
     Kill from the cursor to the end of the current word, or if between
     words, to the end of the next word.  Word boundaries are the same
     as `forward-word'.

`backward-kill-word (M-DEL)'
     Kill the word behind the cursor.  Word boundaries are the same as
     `backward-word'.

`unix-word-rubout (C-w)'
     Kill the word behind the cursor, using white space as a word
     boundary.  The killed text is saved on the kill-ring.

`delete-horizontal-space ()'
     Delete all spaces and tabs around point.  By default, this is
     unbound.

`kill-region ()'
     Kill the text between the point and the *mark* (saved cursor
     position).  This text is referred to as the REGION.  By default,
     this command is unbound.

`copy-region-as-kill ()'
     Copy the text in the region to the kill buffer, so it can be yanked
     right away.  By default, this command is unbound.

`copy-backward-word ()'
     Copy the word before point to the kill buffer.  The word
     boundaries are the same as `backward-word'.  By default, this
     command is unbound.

`copy-forward-word ()'
     Copy the word following point to the kill buffer.  The word
     boundaries are the same as `forward-word'.  By default, this
     command is unbound.

`yank (C-y)'
     Yank the top of the kill ring into the buffer at the current
     cursor position.

`yank-pop (M-y)'
     Rotate the kill-ring, and yank the new top.  You can only do this
     if the prior command is yank or yank-pop.


File: gdb.info,  Node: Numeric Arguments,  Next: Commands For Completion,  Prev: Commands For Killing,  Up: Bindable Readline Commands

Specifying Numeric Arguments
----------------------------

`digit-argument (M-0, M-1, ... M--)'
     Add this digit to the argument already accumulating, or start a new
     argument.  <M-> starts a negative argument.

`universal-argument ()'
     This is another way to specify an argument.  If this command is
     followed by one or more digits, optionally with a leading minus
     sign, those digits define the argument.  If the command is
     followed by digits, executing `universal-argument' again ends the
     numeric argument, but is otherwise ignored.  As a special case, if
     this command is immediately followed by a character that is
     neither a digit or minus sign, the argument count for the next
     command is multiplied by four.  The argument count is initially
     one, so executing this function the first time makes the argument
     count four, a second time makes the argument count sixteen, and so
     on.  By default, this is not bound to a key.